UNIVERSIDADE FEDERAL DE SANTA CATARINA CENTRO TECNOLÓGICO DE JOINVILLE CURSO DE ENGENHARIA NAVAL

RAFAËL JONAH AMOS ZEVENBERGEN

ESTIMATIVA DA POTÊNCIA INSTALADA DE EMBARCAÇÔES DRAGA AUTOTRANSPORTADORAS DE SUCÇÃO E ARRASTO

> Joinville 2024

RAFAËL JONAH AMOS ZEVENBERGEN

ESTIMATIVA DA POTÊNCIA INSTALADA DE EMBARCAÇÕES DRAGA AUTOTRANSPORTADORAS DE SUCÇÃO E ARRASTO

Trabalho apresentado como requisito para obtenção do título de bacharel em Engenharia Naval, no Centro Tecnológico de Joinville, da Universidade Federal de Santa Catarina.

Orientador: Dr. Thiago Pontin Tancredi

RAFAËL JONAH AMOS ZEVENBERGEN

ESTIMATIVA DA POTÊNCIA INSTALADA DE EMBARCAÇÕES DRAGA AUTOTRANSPORTADORAS DE SUCÇÃO E ARRASTO

Este Trabalho de Conclusão de Curso foi julgado adequado para obtenção do título de bacharel em Engenharia Naval, no Centro Tecnológico de Joinville, da Universidade Federal de Santa Catarina.

Joinville (SC), 27 de junho de 2024.

Banca Examinadora:

Dr. Thiago Pontin Tancredi Orientador/Presidente Universidade Federal de Santa Catarina

Dr. Ricardo Aurélio Quinhões Pinto Membro Universidade Federal de Santa Catarina

Dr. Luiz Eduardo Bueno Minioli Membro Universidade Federal de Santa Catarina

Dedico este trabalho ao ensino público

AGRADECIMENTOS

No âmbito familiar, agradeço ao apoio dos meus pais durante toda a minha jornada acadêmica. Agradeço tambémao meu falecido avô Marinus Zevenbergen, que me inspirarou a seguir a trajetória de engenheiro naval. Quanto às amizades de longa data, sou grato a Ester Bazzanella, Natália Speck, Pedro Lucas e Tales Yamamoto, que sempre me apoiaram ao longo dessa caminhada. Agradeço também aos colegas engenheiros navais Bruno Erzinger, Marijn Schoon, Papijn Meuldijk, Mauricio Silva, Daniel Alves e Marian Baicu, que me aconselharam e ajudaram no desenvolvimento do trabalho de conclusão de curso. Agradeço ao PET representado pelo professor Dr. Alexandro Brito pela bolsa e apoiar este trabalho. Por último, não poderia deixar de expressar minha gratidão ao professor Dr. Thiago Pontin Tancredi, não apenas por sua orientação, mas também por todo conhecimento compartilhado ao longo da graduação.

RESUMO

Os equipamentos de dragagem, quando em operação, removem material do fundo de corpos d'água, como rios, lagos, portos e canais, com objetivo de aumentar a profundidade, melhorar a navegabilidade, prevenir inundações, extrair matéria prima e/ou manter a infraestrutura de transportes aquáticos. Um dos equipamentos utilizados nessa atividade é a draga autotransportadora de sucção e arrasto, que se diferencia dos outros equipamentos de dragagem por sua navegabilidade, independendo de sistemas de reboque e/ou ancoragem, podendo ser utilizada para dragagem de zonas portuárias e canais navegáveis sem interditá-los. Em decorrência da capacidade de navegação da draga de sucção e arrasto, a estimativa da potência instalada nesses casos é diferente dos demais equipamentos de dragagem, devendo ser bem estimada desde a fase conceitual de um projeto. Na ausência de métodos especificamente destinados para essa estimativa, o presente trabalho propõe um método semiempírico para a estimativa da potência instalada requerida por dragas autotransportadoras de sucção e arrasto, o qual foi construído com base na coleta de dados técnicos de embarcações reais, realizada por meio de análises documentais. A verificação da validade dessas informações foi realizada, filtrando-se dados conflitantes, o que viabilizou a análise estatística apresentada. Com base na literatura existente, essa análise foi refinada, possibilitando a proposição de uma equação semiempírica, a qual foi validada por meio de uma comparação com os dados reais de outras dragas autotransportadoras de sucção e arrasto atualmente em operação.

Palavras-chave: dragagem; potência instalada; draga autotransportadora de sucção e arrasto.

ABSTRACT

Dredging equipment, when in operation, removes material from the bottom of water bodies such as rivers, lakes, ports, and canals, with the aim of increasing depth, improving navigability, preventing flooding, extracting raw materials, and/or maintaining water transport infrastructure. One of the pieces of equipment used in this activity is the trailing suction hopper dredger, which differs from other dredging equipment due to its navigability, as it does not rely on towing or anchoring systems and can be used for dredging port areas and navigable channels without obstructing them. Due to the dredger's navigational capability, the estimation of installed power in this case differs from other dredging equipment and must be accurately estimated from the conceptual phase of a project. In the absence of methods specifically intended for this estimation, the present work proposes a semi-empirical method for estimating the installed power required by trailing suction hopper dredgers, based on the collection of technical data from real vessels, gathered through document analysis. The validity of this information was verified by filtering conflicting data, enabling the statistical analysis presented. Based on existing literature, this analysis was refined, leading to the proposal of a semi-empirical equation, which was validated through a comparison with the real data from other trailing suction hopper dredgers currently in operation.

Keywords: dredging; installed power; trailing suction hopper dredger.

LISTA DE FIGURAS

Figura 1 – Draga autotransportadora de sucção e arrasto	20
Figura 2 – Empuxo de uma embarcação	21
Figura 3 – Componentes da resistência ao avanço	22
Figura 4 – Componentes da resistência de uma TSHD	23
Figura 5 – Passos do cálculo da potência instalada	24
Figura 6 – Sistema de tubulação e bomba centrifuga	26
Figura 7 – Relação calado e a capacidade de carga	28
Figura 8 – Relação peso bruto, peso leve e o deslocamento	28
Figura 9 – Relação potência propulsiva e deslocamento	29
Figura 10 – Relação potência propulsor a vante e potência durante a operação	29
Figura 11 – Relação potência instalada e deslocamento	30
Figura 12 – Fluxograma das fases do trabalho	31
Figura 13 - Distribuição da escala	37
Figura 14 – Volume da cisterna e potência instalada	38
Figura 15 - Capacidade de carga e potência instalada	39
Figura 16 – Volume da cisterna e potência propulsiva	39
Figura 17 - Capacidade de carga e potência propulsiva	40
Figura 18 - Volume de carga e potência dos propulsores de manobra	41
Figura 19 - Capacidade de carga e potência dos propulsores de manobra	41
Figura 20 - Potência propulsiva e potência dos propulsores de manobra	42
Figura 21 - Volume da cisterna e velocidade carregado	43
Figura 22 - Capacidade de carga e velocidade carregado	43
Figura 23 - Potência propulsiva e velocidade carregado	44
Figura 24 - Potência instalada e velocidade de serviço carregado	45
Figura 25 - Comparação da potência estimada com a real	55
Figura 26 - Desvio padrão percentual da potência estimada	56
Figura 27 - Sistema genérico de tubulação de sucção	58
Figura 28 - Gráfico da velocidade crítica estimada por Van der Berg	61
Figura 29 - Gráfico do parâmetro de deposição de Wilson e Tse	62
Figura 30 - Curva de eficiência em relação a velocidade média	66
Figura 31 - Comparação da estimativa da potência de bomba com a real	67

Figura 32 -	Desvio da potência estimada com a real	.68
Figura 33 -	Comparação potência instalada real e estimada	.71
Figura 34 -	Desvio da potência instalada estimada em relação a real	.72
Figura 35 -	Comparação potência instalada real e estimada	.73
Figura 36 -	Desvio da potência instalada estimada em relação a real	.73
Figura 37 -	Comparação potência instalada real e estimada	.74
Figura 38 -	Desvio da potência instalada estimada em relação a real	.75
Figura 39 -	Comparação potência instalada real e estimada	.76
Figura 40 -	Desvio da potência instalada estimada em relação a real	.77
Figura 43 -	Dados coletados	.82
Figura 44 -	Dados coletados	.83
Figura 45 -	Dados coletados	.84
Figura 46 -	Dados coletados	.85
Figura 47 -	Grupo de controle	.86
Figura 48 -	Índice de correlação	.87
Figura 49 -	Regressão para eq. empírica	.88
Figura 50 -	Regressão para eq. semiempírica	.89
Figura 51 -	Análise do método de Holtrop e Mennen	.90
Figura 52 -	Análise do método semiempírico de estimativa da potência instalada	.91
Figura 53 -	Interface da ferramenta de aplicação do método	.92
Figura 54 -	Interface da ferramenta de aplicação do método	.93
Figura 55 -	Interface da ferramenta de aplicação do método	.94
Figura 56 -	Análise da aplicação da equação empírica	.95
Figura 57 -	Análise do método semiempírico de estimativa da potência instalada	.96

LISTA DE TABELAS

Tabela 1 - Classe de dragas autotransportadoras de sucção e arrasto	20
Tabela 2 - Padronização dos dados	35
Tabela 3 - Regressão estatística	46
Tabela 4 - Coeficientes e desvio	47
Tabela 5 - Índice de correlação estatística	48
Tabela 6 - Coeficientes e desvio	49
Tabela 7 - Regressão estatística	50
Tabela 8 - Classe das dragas na análise	56
Tabela 9 - Coeficientes de perda menor	58
Tabela 10 - Características do solo arenoso	59
Tabela 11 - Características do fluido adotado	60
Tabela 12 - Faixas de profundidade máxima de dragagem	67
Tabela 13 - Regressão estatística	72
Tabela 14 - Regressão estatística	76

LISTA DE ABREVIATURAS E SIGLAS

- TSHD Trailing Suction Hopper Dredger
- DEME- Dredging Environmental and Marine Engineering
- PIAS Program for the Integral Approach of Shipdesign

LISTA DE SÍMBOLOS

g	Aceleração da gravidade			
α	Ângulo do tubo de sucção em relação a horizontal			
В	Boca			
Т	Calado			
W _{Carga}	Capacidade de carga da cisterna			
Х	Coeficiente 1 de cálculo de Churchill			
Y	Coeficiente 2 de cálculo de Churchill			
Cb	Coeficiente de bloco			
М	Coeficiente de cálculo de Wilson			
ΔD	Coeficiente de correção			
R ²	Coeficiente de determinação			
R² _{aj}	Coeficiente de determinação ajustado			
λ _f	Coeficiente de fricção de Moody			
Us	Coeficiente de fricção em uma tubulação			
Cwp	Coeficiente de linha d'água			
ξ	Coeficiente de perda de pressão menor			
Cm	Coeficiente de seção mestra			
Ср	Coeficiente prismático			
ΔP _{Est}	Componente estático de variação de pressão			
ΔP _{Mai}	Componente maior de variação de pressão			
ΔP _{Men}	Componente menor de variação de pressão			
Lpipe	Comprimento do tubo de sucção			
Lpp	Comprimento entre as perpendiculares			
LOA	Comprimento geral da embarcação			
Lwl	Comprimento na linha d'água			
ρw	Densidade d'água			
ρm	Densidade da mistura			
S₅	Densidade relativa do sólido no fluxo heterogêneo			
Δ	Deslocamento			
σ	Desvio padrão do resíduo			
d _{mf}	Diâmetro decisivo dos sólidos no fluxo heterogêneo			

D	Diâmetro do tubo de sucção
d 50	Diâmetro significativo de 50% da população dos sólidos
Efbc	Eficiência da bomba de dragagem
ηo	Eficiência de água aberta
ηн	Eficiência de casco
η _R	Eficiência de rotação relativa
η _T	Eficiência de transmissão
η _D	Eficiência quasi-propulsiva
Qm	Fluxo volumétrico da mistura
Qw	Fluxo volumétrico do líquido no fluxo heterogêneo
Qs	Fluxo volumétrico dos sólidos no fluxo heterogêneo
Fimpuls	Força de resistência de sucção
lm	Gradiente de perda de pressão de um fluxo heterogêneo
lmα	Gradiente de perda de pressão de um fluxo heterogêneo inclinado
lf	Gradiente de perda de pressão de um fluxo homogêneo
\overline{y}	Média dos valores observados
Fn	Número de Froude
n	Número de observações
Rn	Número de Reynolds
kv	Número de variáveis
W _{Leve}	Peso leve
DWT	Peso morto
lcb	Posição longitudinal do centro de carena
Pbd	Potência da bomba de dragagem
Ps	Potência de serviço
P _{PA}	Potência do propulsor avante
Pe	Potência efetiva
PD	Potência entregue
Pı	Potência instalada
PP	Potência propulsiva
Ppo	Potência propulsiva em regime de dragagem
Patm	Pressão atmosférica
Vac	Pressão da bomba de dragagem
Pman	Pressão manométrica

Н	Profundidade
C_{vd}	Proporção sólido e líquido no fluxo heterogêneo
RAPP	Resistência de apêndices
Rdh	Resistência de arrasto cabeça de dragagem
Rв	Resistência de bulbo
RA	Resistência de correlação
R _F	Resistência de fricção
Rw	Resistência de onda
Rtr	Resistência de popa transom
R⊤	Resistência total ao avanço
R _{total}	Resistência total ao avanço
Rpipe	Resistência viscosa da tubulação
k	Rugosidade de uma tubulação
yi	Valor da observação
ŷi	Valor estimado pela linha de tendência
ΔP	Variação de pressão
Vcrit	Velocidade crítica do escoamento
V	Velocidade da embarcação
Vs	Velocidade de serviço da embarcação
V ₅₀	Velocidade de um fluxo heterogêneo com 50% de sedimentação
Ni	Viscosidade cinemática d'água
Hc	Volume da cisterna
∇	Volume deslocado

SUMÁRIO

1. INTRODUÇÃO	17
1.1. OBJETIVOS	18
1.1.1. Objetivo Geral	18
1.1.2. Objetivos Específicos	18
2. FUNDAMENTAÇÃO TEÓRICA	19
2.1. DRAGA AUTOTRANSPORTADORA DE SUCÇÃO E ARRASTO	19
2.2. POTÊNCIA INSTALADA EM UMA EMBARCAÇÃO TSHD	21
2.2.1. Potência propulsiva	21
2.2.2. Potência da bomba de dragagem	24
2.2.2.1. Princípios do escoamento em um tubo de sucção	25
2.2.2.2. Princípios de operação das bombas centrífugas	25
2.3. ANÁLISE ESTATÍSTICA	27
2.4. ESTADO DA ARTE	28
3. METODOLOGIA	31
4. COLETA DE DADOS	33
4.1 FONTE DOS DADOS COLETADOS	33
4.2. PADRONIZAÇÃO E VALIDAÇÃO DOS DADOS	34
4.2.1. Averiguação da Autenticidade da Fonte	34
4.2.2. Padronização dos Dados e Unidades de Medida	34
4.3. DADOS COLETADOS	36
5. ANÁLISE EMPÍRICA DOS DADOS	37
5.1. ANÁLISE GERAL DOS DADOS	37
5.1.1 Relação da potência instalada com o volume e capacidade de carga	38
5.1.2. Relação da potência propulsiva com o volume e capacidade de carga	39
5.1.3. Relação da potência de manobra com o volume e capacidade de carga	40
5.1.4. Relação da potência propulsiva com a potência dos propulsores de manobra	. 42
5.1.5. Relação da velocidade de serviço com o volume e capacidade de carga	42
5.1.6. Relação da velocidade de serviço com a potência propulsiva e instalada	44
5.2. ESTIMATIVA EMPÍRICA DA POTÊNCIA COM UMA ÚNICA VARIÁVEL	46
5.2.1. Estimativa a partir do volume da cisterna	46
6. ANÁLISE SEMIEMPÍRICA DOS DADOS	. 48
6.1. DEFINIÇÃO DAS VARIÁVEIS	48
6.2. PROPOSIÇÃO DA EQUAÇÃO	49

6.3.1 Definição da fase de navegação analisada	. 51
6.3.2. Método de estimativa analisado	. 51
6.3.3. Validação do método de estimativa da potência propulsiva	. 51
6.3.4. Aplicação de Holtrop e Mennen	. 53
6.3.5. Resultados da comparação potência real e potência estimada	. 55
6.3.6. Inclusão no método semiempírico	. 57
6.4. ESTIMATIVA TEÓRICA DA POTÊNCIA DA(S) BOMBA(S) DE DRAGAGEM	. 57
6.4.1. Arranjo genérico do sistema de tubulação de uma TSHD	. 57
6.4.2. Características do escoamento e solo adotado	. 59
6.4.3. Velocidade crítica de escoamento	. 60
6.4.3. Perda de pressão ao longo da tubulação e potência teórica requerida	. 63
6.4.4. Análise da eficiência do sistema genérico de tubulação	. 65
6.4.5. Validação do método empírico da potência de bomba de dragagem	. 67
6.4.6. Inclusão no método semiempírico	. 69
6.5. COMPOSIÇÃO FINAL DO MÉTODO E FERRAMENTA DE CÁLCULO	. 69
7. VALIDAÇÃO DOS RESULTADOS	. 71
7.1. VALIDAÇÃO DA EQUAÇÃO EMPÍRICA PROPOSTA	. 71
7.2. VALIDAÇÃO DA EQUAÇÃO SEMIEMPÍRICA PROPOSTA	. 74
8. CONCLUSÃO	. 78
REFERÊNCIAS	. 80
APÊNDICE A – BASE DE DADOS	. 82
APÊNDICE B – GRUPO DE CONTROLE	. 86
APÊNDICE C – ÍNDICE DE CORRELAÇÃO	. 87
APÊNDICE D – REGRESSÃO PARA EQUAÇÃO EMPÍRICA	. 88
APÊNDICE E – REGRESSÃO PARA EQUAÇÃO SEMIEMPÍRICA	. 89
APÊNDICE F – ANÁLISE DO MÉTODO DE HOLTROP E MENNEN	. 90
APÊNDICE G – ANÁLISE DA ESTIMATIVA DA POTÊNCIA DE DRAGAGEM	. 91
APÊNDICE H – INTERFACE DA FERRAMENTA DE CÁLCULO	. 92
APÊNDICE I – ESTIMATIVA DA POTÊNCIA INSTALADA / GRUPO DE CONTROLE	. 95

1. INTRODUÇÃO

Dragagem é um processo de escavação e remoção de solo e camadas rígidas não desagregáveis submersas, utilizando equipamentos de dragagem mecânicos ou hidráulicos. As dragas mecânicas empregam alguma forma de caçamba ou pá para extrair o solo, enquanto as dragas hidráulicas são caracterizadas por extrair o material por meio de um escoamento hidráulico de alta velocidade através de um tubo de sucção (Alfredini; Arasak, 2014).

O projeto de uma embarcação é composto por um conjunto de subprojetos e etapas representadas em uma espiral de projeto, a qual, tradicionalmente, é percorrida sequencialmente e iterativamente até que uma solução viável seja alcançada (Evans, 1959).

Para facilitar a gestão e o controle, um projeto naval costuma ser dividido nas fases: informacional, conceitual, preliminar e contratual; sendo que é na fase conceitual que são levantadas as soluções para o problema definido na fase informacional, sendo também realizada a seleção do solução-conceito (Back, 2008).

A maior dificuldade na definição da solução-conceito consiste na obtenção de informações técnicas a respeito de cada solução, já que as características de projeto ainda são especulativas e limitadas (Rozenfeld, 2006). Em relação ao projeto de uma embarcação, uma das informações cruciais a serem levantadas a respeito das soluções-conceito é a estimativa inicial da potência instalada requerida para o projeto (Papanikolaou, 2014).

Os equipamentos de dragagem, além de serem divididos entre mecânicos e hidráulicos, também são classificados entre estacionários e autotransportadores. Para os equipamentos estacionários, a estimativa da potência instalada necessária para a operação depende da energia necessária para dragar o solo, já a estimativa da potência instalada necessária das embarcações autotransportadoras depende, além da energia necessária para dragar o solo, da energia exigida para movimentar a embarcação durante a operação de dragagem (Vlasblom, 2003).

Assim, nota-se a importância do desenvolvimento de métodos para uma estimativa inicial consistente e assertiva da potência instalada que será requirida para cada solução de projeto estabelecida na fase conceitual, e que leve em consideração as características específicas das dragas autotransportadoras de sucção e arrasto.

É nesse contexto que o presente trabalho visa estabelecer uma equação semiempírica para a estimativa da potência instalada para dragas autotransportadoras de sucção e arrasto.

Nessa perspectiva, propõe-se a coleta de dados técnicos a respeito das embarcações existentes através de análises documentais, verificando a validade dessas informações e filtrando as embarcações com dados conflitantes, viabilizando, assim, a análise estatística dos dados coletados.

Por fim, com base na literatura existente, propõem-se refinar a análise, visando a proposição de uma equação semiempírica para estimar a potência instalada de uma draga autotransportadora de sucção e arrasto (TSHD), validando-a através de uma comparação com os dados de outras TSHD existentes.

1.1. OBJETIVOS

Para resolver a problemática da estimativa da potência instalada necessária em uma draga autotransportadora de sucção e arrasto (TSHD), propõe-se os objetivos descritos nesta seção.

1.1.1. Objetivo Geral

Obter uma equação semiempírica capaz de estimar a potência instalada necessária em uma draga autotransportadora de sucção e arrasto ainda durante a fase conceitual do projeto da embarcação.

1.1.2. Objetivos Específicos

- Obter dados técnicos de embarcações reais;
- Definir os componentes que influenciam a potência instalada;
- Definir uma equação empírica para estimar a potência instalada;
- Estimar a potência propulsiva e a potência da(s) bomba(s) de sucção;
- Estabelecer um método semiempírico para estimar a potência instalada;
- Validar o método empírico e semiempírico.

2. FUNDAMENTAÇÃO TEÓRICA

A fim de alcançar um método apurado para estimar a potência instalada de uma draga autotransportadora de sucção e arrasto (TSHD), é necessário compreender as características desse tipo de embarcação, definindo as componentes que compõem a potência instalada e buscando entender o atual estado da arte a respeito dessa problemática.

2.1. DRAGA AUTOTRANSPORTADORA DE SUCÇÃO E ARRASTO

Uma draga autotransportadora de sucção e arrasto (TSHD) é uma embarcação autopropelida com capacidade de navegação marítima ou fluvial, com o propósito de dragar solo submerso depositando-o em uma cisterna a bordo, para que depois seja transferido para um local de armazenamento em terra. Usualmente esse tipo de embarcação possui os seguintes componentes instalados (Figura 1) (Alfredini; Arasak, 2014):

- a) Uma instalação de dragagem que permita encher ou esvaziar a cisterna instalada a bordo;
- b) Tubulações com orifícios de sucção, chamados de bocas de dragagem, que são arrastados sobre o fundo do mar durante a operação de extração do solo;
- c) Uma ou mais bombas de dragagem para sugar, pelas bocas de dragagem, o solo solto;
- d) Um overflow system para descarregar a água redundante sugada junto ao material dragado;
- e) Portas ou válvulas fecháveis no fundo da cisterna para descarregar a carga;
- f) Pórticos conectados as tubulações de sucção para içá-los e descê-los;
- g) Um compensador de ondas, para corrigir o movimento vertical da embarcação em relação ao fundo do mar.

Figura 1 – Draga autotransportadora de sucção e arrasto

Fonte: Alfredini e Arasaki (2014, p. 1078).

Antes de iniciar uma operação de dragagem, uma embarcação TSHD reduz sua velocidade para 2 ou 3 nós e então o pórtico do munhão, o pórtico intermediário e o pórtico da boca de dragagem abaixam a tubulação de sucção. A seguir, são acionadas as bombas de sucção, enquanto a boca de dragagem se aproxima do leito do mar, iniciando a sucção do solo e o deposito do material extraído na cisterna.

Para solos não sedimentáveis, ou mal sedimentados, a dragagem é interrompida quando a altura da mistura no tanque atinge a borda superior do overflow system (Vlasblom, 2003). Ainda segundo Vlasblom (2003), as dragas de sucção e arrasto podem ser agrupadas em cinco classes, as quais são definidas em função do peso morto da embarcação (DWT) (Tabela 1).

HD definidas por seu	peso bruto
Peso Bruto	Unidade
+- 5000	toneladas
5000 – 10000	toneladas
10000 – 15000	toneladas
15000 – 25000	toneladas
> 25000	toneladas
	ID definidas por seu Peso Bruto +- 5000 5000 – 10000 10000 – 15000 15000 – 25000 > 25000

Tabela 1	- Classe	de dragas	autotrans	portadoras	de suc	ção e arra	asto
						5	

Fonte: Adaptado de Vlasblom (2003, p. 17).

2.2. POTÊNCIA INSTALADA EM UMA EMBARCAÇÃO TSHD

Segundo Vlasblom (2003), a potência instalada em uma embarcação TSHD depende do equilíbrio de quatro componentes principais: a potência propulsiva, a potência da bomba de dragagem, a potência das bombas de jato d'água e a potência dos propulsores de manobra.

2.2.1. Potência propulsiva

Segundo Molland *et al.* (2011), para dimensionar o sistema propulsivo é necessário conhecer o empuxo requerido (T) na velocidade (V) da embarcação, a potência requerida (P), a eficiência quasi-propulsive (η_D), a eficiência da transmissão (η_T) e o arranjo do sistema propulsivo (Figura 2).

Já segundo Tancredi (2021), o conjunto das forças físicas que se opõem ao avanço de uma embarcação, é chamada de resistência ao avanço do casco nu e pode ser dividida em três componentes:

- a) Resistência friccional: composta pela soma das forças de cisalhamento τ agindo sobre cada elemento da superfície do casco que esteja em contato com o meio fluído;
- b) Resistência de pressão viscosa: resultado a integração dos campos de pressão na região a vante e a ré do casco;

Fonte: Molland (2011, p. 8).

c) Resistência de ondas: composta pela pressão gerada no deslocamento da água causado pelo avanço do corpo, a qual corresponde a energia necessária para sustentar as ondas geradas pelo movimento do casco da embarcação.

Por fim, Molland *et al.* (2011) concluem que essas componentes podem ser combinadas de diferentes formas (Figura 3). Na primeira, as parcelas de pressão viscosa e de fricção são combinadas em uma parcela chamada de resistência viscosa. Já na segunda, as parcelas de pressão viscosa e de ondas são combinadas em uma parcela chamada de resistência de pressão.

Figura 3 – Componentes da resistência ao avanço

Fonte: Molland (2011, p. 14).

Já a resistência ao avanço total de uma embarcação pode ser obtida a partir da soma da resistência ao avanço do casco nu com a resistência ao avanço dos apêndices da embarcação, tais como: hélice(s), leme(s), aleta(s) estabilizadora(s) entre outros componentes, incluindo aqueles que tenham resistência aerodinâmica, como as obras mortas do navio (Molland *et al.*, 2011).

Além disso, durante as operações de dragagem, as TSHD sofrem com componentes adicionais de resistência ao avanço que também devem ser contabilizadas, pois, quando o(s) tubo(s) de sucção são empregados, além de gerarem a resistência viscosa (R_{pipe}) usual de um apêndice, eles geram uma resistência de arrasto (R_{draghead}) em decorrência do contato da cabeça de dragagem com solo. Além disso, outra componente associada a tubulação e a(s) bomba(s) de sucção da embarcação é a força (F_{impuls}) causada pela diferença de pressão produzida para a sucção do material extraído (Vlasblom, 2003) (Figura 4).

Figura 4 – Componentes da resistência de uma TSHD

Fonte: Vlasblom (2003, p. 42).

Assim, a potência efetiva (P_E) corresponde a potência requerida para movimentar a embarcação na velocidade requerida, sendo calculada pela multiplicação da resistência total ao avanço (R_T) e a velocidade da embarcação (V_s) (Molland *et al.*, 2011).

Já a potência entregue (P_D) corresponde a potência fornecida ao(s) propulsor(es), a qual é calculada dividindo-se a potência efetiva pela eficiência quasi-propulsive (η_D). Sendo que a eficiência quasi-propulsive é dada pela multiplicação dos coeficientes de eficiência: de água aberta (η_0), do casco (η_H) e rotação relativa (η_R) (Molland *et al.*, 2011).

A seguir, a potência de serviço (P_S), por sua vez, refere-se à potência requerida levando em consideração todas as perdas do sistema propulsivo, sendo calculada pela potência entregue (P_D) dividida pela eficiência de transmissão (η_T) (Molland *et al.*, 2011).

Por fim, a potência instalada (P_I) corresponde a potência requerida para o(s) motor(es) da embarcação, a qual corresponde a potência de serviço (P_s) multiplicada

por uma margem que considera diferentes fatores adversos, como incrustações no casco e variações na condição de mar (Figura 5) (Molland *et al.*, 2011).

Figura 5 – Passos do cálculo da potência instalada

Fonte: Molland (2011, p. 10).

Além da potência total, cujo procedimento de cálculo é mostrado na Figura 5, para as dragas autotransportadoras de sucção e arrasto, é necessário considerar ainda a potência requerida pela(s) bomba(s) de sucção, além da potência requerida pelo propulsor de vante, muito comum nas embarcações TSHD em virtude da manobrabilidade exigida para as operações de dragagem (Vlasblom, 2003).

2.2.2. Potência da bomba de dragagem

As bombas de dragagem de uma TSHD possuem a função de sugar o solo submerso e depositá-lo na cisterna da draga. Para estimar sua potência é necessário conhecer o diâmetro, o comprimento e outras características da tubulação, em especial a diferença de pressão requerida pela bomba para se obter o escoamento desejado.

2.2.2.1. Princípios do escoamento em um tubo de sucção

Assim, para estimar a potência necessária e dimensionar a(s) bomba(s) de dragagem, é necessário primeiro compreender as características da tubulação a qual ela(s) será conectada e as características do fluxo da mistura água/solo desejado.

A perda de pressão ao longo de uma tubulação pode ser dividida em duas componentes, a perda maior e a perda menor. Sendo que a perda maior se dá pela perda de pressão decorrente da fricção do escoamento com a superfície interna do(s) tubo(s), enquanto a perda menor se dá pelos encaixes, curvas e outros obstáculos que podem estar presentes no sistema de tubulação (Matousek, 2004).

2.2.2.2. Princípios de operação das bombas centrífugas

No contexto das dragas autotransportadoras de sucção e arrasto, as bombas centrífugas são utilizadas em diversos sistemas da operação de dragagem, podendo assumir diferentes funções a depender da fase de operação, sendo usadas, por exemplo, nas bombas de dragagem e na bomba de jato d'água (Vlasblom, 2003).

A função da bomba centrífuga e as fases de operação nas quais será utilizada, são os fatores determinantes para seu dimensionamento, pois definem se a bomba centrífuga terá que escoar apenas água do mar ou uma mistura de água e solo, além de definirem a vazão volumétrica, a pressão requerida na entrada da bomba e a pressão requerida na saída da bomba (Matousek, 2004).

Uma abordagem simplificada utilizada para o cálculo dá diferença de pressão necessária, assume que a concentração de material sólido e a velocidade do escoamento formado pela mistura do solo dragado e da água do ambiente, são uniformes ao longo de todo o tubo de sucção (Figura 6), (Vlasblom, 2003).

Figura 6 – Sistema de tubulação e bomba centrifuga

Fonte: Vlasblom (2003, p. 28).

Essa abordagem simplificada permite realizar uma estimativa rápida para os diferentes tipos de solo que a draga autotransportadora deve ser capaz de dragar. Nesse caso são consideradas a profundidade (k) da bomba até a linha d'agua e a distância entre a bomba e o solo a ser dragado (h_z), a profundidade da água no local (H), a densidade da mistura (ρ_m), a velocidade (V_s) da mistura no tubo de sucção, o coeficiente de perda de pressão (β), o coeficiente de resistência de Darcy-Weisbach (λ_f), o comprimento do tubo de sucção (L), o diâmetro do tubo de sucção (D) e a perda de pressão na tubulação (ξ). Considerando essas variáveis é possível calcular a diferença de pressão necessária (Vac) para o funcionamento do sistema (Equação 1 e 2) (Vlasblom, 2003).

$$\xi = \beta + \lambda_f * L / D [Pa]$$
(1)

$$\rho_{w} * g * H + Vac = \rho_{m} * g * h_{z} + \xi/2 * \rho_{m} * V_{s}^{2} [Pa]$$
(2)

Assim, a potência requerida para uma bomba de dragagem (P_{bd}) é dada pela pressão manométrica (P_{man}) necessária para sustentar o escoamento desejado multiplicada pela vazão volumétrica (Q_m) e dividida pela eficiência da bomba centrífuga (E_{fbc}) (Equação 3), (Matousek, 2004).

$$P_{bd} = P_{man} * Q_m / E_{fbc} [W]$$
(3)

2.3. ANÁLISE ESTATÍSTICA

Para viabilizar uma forma objetiva de quantificar a acurácia de uma regressão estatística e conferir a aplicabilidade das equações obtidas por meio da análise de dados realizada neste trabalho, foram empregados o desvio padrão dos resíduos (σ) e o coeficiente de determinação (R²).

Segundo Walpole *et al* (2012), o desvio padrão (σ) dos resíduos em uma regressão linear é uma medida da dispersão dos valores observados (yi) em relação aos valores ajustados pela linha de tendência (\hat{y} i). Conforme mostrado na Equação 4, o desvio padrão dos resíduos é calculado como a raiz quadrada da média dos quadrados dos resíduos, sendo que essa média é dividida pelo número de observações (n) menos 2.

$$\sigma = \{ \left[\sum_{i=1}^{n} (y_i - \hat{y}_i)^2 \right] / (n - 2) \}^{1/2} [un]$$
(4)

Desta forma, o desvio padrão dos resíduos reflete o erro médio com que a linha de tendência prevê os valores observados em relação aos valores reais observados no fenômeno modelado.

Além do desvio padrão dos resíduos, outro parâmetro crucial para avaliar a acurácia de uma regressão é o coeficiente de determinação. O qual é dado pelos valores observados (yi), os valores ajustados pela linha de tendência (\hat{y} i) e a média dos valores observados (\overline{y}) (Equação 5).

$$R^{2} = 1 - \sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2} / \sum_{i=1}^{n} (y_{i} - \overline{y})^{2} [-]$$
(5)

No entanto, o coeficiente determinação ainda poder ser ajustado pelo número de observações que compuseram a regressão aliado ao número de variáveis (kv) que a equação da linha de tendência possui (Equação 6), fornecendo o coeficiente quadrático ajustado (R²_{aj}) (Walpole *et al*, 2012).

$$R^{2}_{aj} = 1 - (n - 1) / (n - (kv + 1) * (1 - R^{2}) [-]$$
(6)

2.4. ESTADO DA ARTE

Vlasblom (2003) apresenta uma análise estatística dos dados de dragas autotransportadoras de sucção e arrasto com a linha de tendência correlacionando diversos parâmetros e características presentes nos projetos dessas embarcações.

Inicialmente, é mostrada na Figura 7, a relação entre o calado (T) e a capacidade de carga dragada da cisterna (W_{Carga}), a qual resultou em uma regressão logarítmica (Equação 7) que apresentou um coeficiente de determinação de 0,89.

$$T = 3,0656 * Ln(W_{Carga}) - 19,711 [m]$$
(7)

Já a relação entre o peso bruto e o deslocamento (Δ) (Equação 8), obtida por uma regressão linear simples, apresentou um coeficiente de determinação de 0,99 (Figura 8), enquanto a relação entre o peso leve (W_{LEVE}) e o deslocamento (Equação 9), também obtida por uma regressão linear simples, apresentou um coeficiente de determinação de 0,96 (Figura 8).

Figura 8 - Relação peso bruto, peso leve e o deslocamento

Fonte: Vlasblom (2003, p. 21).

DWT = 0,6827 *
$$\Delta$$
 [t] (8)

$$W_{Leve} = 0.3173 * \Delta [t]$$
 (9)

A seguir, é apresentada a relação entre a potência propulsiva (P_P) e o deslocamento (Equação 10), a qual também foi obtida por uma regressão linear simples e apresentou um coeficiente de determinação de 0,87 (Figura 9).

Figura 9 – Relação potência propulsiva e deslocamento

$$P_{P} = 0,461 * \Delta - 510,11 \text{ [kW]}$$
(10)

Já a relação entre a potência do propulsor avante (P_{PA}) e a potência propulsiva em regime de dragagem (P_{PO}) (Equação 11), foi obtida por uma regressão linear simples e apresentou um coeficiente de determinação de 0,80 (Figura 10).

Figura 10 – Relação potência propulsor a vante e potência durante a operação

$$P_{PA} = 0,1758 * P_{PO} - 19,495 \text{ [kW]}$$
(11)

Fonte: Vlasblom (2003, p. 47).

Fonte: Vlasblom (2003, p. 48).

Por fim, a relação entre a potência instalada (P₁) e o deslocamento (Equação 12), também foi obtida por uma regressão linear simples e apresentou um coeficiente de determinação de 0,89 (Figura 11).

Figura 11 – Relação potência instalada e deslocamento

$$P_{I} = 0,5806 * \Delta [kW]$$
 (12)

As relações obtidas por Vlasblom (2003) viabilizam a primeira abordagem ao problema, evidenciando as concordâncias e divergências existentes na análise estatística dessas características de projeto.

Os resultados apresentados nesta seção, fornecem um primeiro direcionamento quanto as relações que podem ser exploradas para a construção de um modelo destinado a estimar a potência instalada em uma draga autotransportadora de sucção e arrasto.

Fonte: Vlasblom (2003, p. 48).

3. METODOLOGIA

Seguindo o objetivo de se obter um método simples para estimar a potência instalada requerida para uma draga autotransportadora de sucção por arrasto, foram estabelecidas as seguintes etapas para este trabalho: coleta de dados, padronização dos dados, análise dos dados, proposta de equação empírica para estimativa da potência instalada, proposta de equação semiempírica para estimativa da potência instalada, inclusão da estimativa de Holtrop e Mennen (1982) no modelo semiempírico, inclusão da estimativa teórica da potência de bomba de dragagem no modelo semiempírico e, por fim, validação dos resultados (Figura 12).

Fonte: Autor (2024).

A etapa de coleta de dados teve como proposito obter as informações de embarcações reais, tais como: dimensões principais, coeficientes de forma, peso morto, potência instalada, potência da(s) bomba(s) de sucção, capacidade volumétrica de sucção e volume da cisterna. Para isso foram aplicadas duas técnicas: a de entrevista e a de análise documental, cujos detalhes metodológicos foram baseados em Hartry (1997).

Na fase de verificação dos dados, buscou-se analisar a confiabilidade dos dados coletados além de se certificar que tais informações estão seguindo os mesmos padrões para cada característica coletada. Nesse sentido, foram verificadas quaisquer inconsistências nos dados coletados e nas definições disponíveis na análise documental, padronizando as informações utilizando uma mesma terminologia e uma mesma unidade de medida para cada parâmetro analisado.

A primeira análise estatística realizada buscou encontrar relações e tendências entre os dados coletados (Chein, 2019). Utilizando o programa Excel, essa abordagem permitiu obter uma primeira equação empírica para estimar a potência instalada de uma embarcação draga autotransportadora de sucção e arrasto a partir das relações lineares identificadas na análise estatística dos dados.

Já na segunda análise, os dados e as regressões foram analisados considerando a literatura existente a respeito dos equipamentos de dragagem, resistência ao avanço de uma embarcação e sobre as características de uma draga autotransportadora de sucção e arrasto (TSHD).

Nessa fase buscou-se aliar as relações e tendências obtidas a partir das análises por regressão linear múltipla, com o comportamento teórico conhecido, refinando assim o modelo empírico para a estimativa da potência instalada de uma TSHD, dando origem a uma equação semiempírica.

Nesse sentido, o método de Holtrop e Mennen (1982) foi incluído para estimar a potência propulsiva, juntamente com um modelo genérico para a estimativa teórica da potência da(s) bomba(s) de dragagem. Essa abordagem visa incluir ambos os parâmetros no modelo semiempírico para a estimativa da potência instalada em uma embarcação TSHD.

Por fim, a última etapa buscou validar os resultados obtidos na análise estatística dos dados, bem como as equações (empírica e semiempírica) geradas para estimar a potência instalada em uma embarcação TSHD; confrontando o resultado desses modelos com os dados reais de outras embarcações do mesmo tipo.

4. COLETA DE DADOS

Nesta fase do trabalho buscou-se obter o máximo possível de dados confiáveis a respeito de dragas autotransportadoras de sucção e arrasto existentes, bem como de projetos futuros a serem construídos.

4.1 FONTE DOS DADOS COLETADOS

Com o intuito de se buscar dados autênticos, foram pesquisadas informações disponíveis diretamente junto aos proprietários de dragas e de estaleiros especializados na construção desse tipo de embarcação. Assim, foram obtidos dados das empresas de dragagem e de fabricação de embarcações: Van Oord (2023), Boskalis (2023), Damen (2023) e DEME (2024).

A Boskalis disponibiliza os dados de sua frota de 16 dragas de sucção e arrasto, incluindo: dimensões principais, capacidade volumétrica das cisternas, capacidade de carga dragada nas cisternas, velocidade de navegação carregado, potência instalada, potência propulsiva, potência dos propulsores avante, potência da bomba de sucção abordo, potência da bomba submersa, potência dos jatos de água e a potência das bombas de descarga do material dragado.

Na mesma linha, a empresa Damen disponibiliza os dados de seus projetos de TSHD em um catálogo de 10 embarcações, incluindo tanto projetos já executados quanto projetos ainda não construídos. Os dados incluídos no catálogo são: dimensões principais, capacidade volumétrica das cisternas, capacidade de carga dragada nas cisternas, velocidade de navegação carregado, potência instalada, potência propulsiva, potência dos propulsores a vante, potência da bomba de sucção abordo, potência da bomba submersa, potência dos jatos de água e a potência das bombas de descarga do material dragado.

Já a empresa DEME disponibiliza os dados técnicos de sua frota de forma mais reservada, porém informa dados suficientes para análises em relação a potência instalada, como por exemplo, o diâmetro da tubulação de sucção, a profundidade de operação e as dimensões principais da embarcação.

Por fim, a empresa Van Oord também disponibiliza os dados técnicos de forma mais reservada, sendo algumas mais descritivas que outras, todavia, foi

possível obter as dimensões principais de todas as 24 embarcações de sua frota, bem como os dados referentes: a potência instalada, a capacidade volumétrica das cisternas e as características das tubulações de dragagem, incluindo a profundidade de operação.

4.2. PADRONIZAÇÃO E VALIDAÇÃO DOS DADOS

A padronização e validação dos dados foi realizada para assegurar a confiabilidade das análises realizadas e consistiu em dois procedimentos. No primeiro, foi verificada a confiabilidade das fontes dos dados de cada embarcação estudada, de forma a certificar que as informações foram coletadas de fontes oficiais, ou seja, diretamente do construtor, proprietário ou operador da embarcação. Já no segundo, foi realizada uma padronização dos termos utilizados para se referir a cada informação, bem como a conversão dos valores para o sistema internacional de unidades.

4.2.1. Averiguação da Autenticidade da Fonte

Conforme já mencionado, a fim de não contaminar o banco de dados com informações incorretas ou desatualizadas, foram adicionadas apenas as informações obtidas diretamente do construtor, proprietário ou operador da embarcação. Neste trabalho, os dados públicos das empresas Van Oord, Boskalis, Damen e DEME foram utilizados para compor o banco de dados da pesquisa, sendo retirados diretamente dos sítios oficiais de cada empresa, entre novembro de 2023 e março de 2024.

4.2.2. Padronização dos Dados e Unidades de Medida

Para que as análises estatísticas pudessem ser realizadas, foi necessário padronizar a nomenclatura dos dados obtidos e a unidade de medida utilizada para cada informação coletada. Dessa forma, buscou-se padronizar a terminologia utilizando a nomenclatura brasileira utilizada por Alfredini e Arasak (2014) para descrever as características de dragas autotransportadora de sucção e arrasto.

O sistema internacional de medida foi o sistema escolhido para padronizar as informações coletadas das diferentes fontes de dados a respeito das dragas

autotransportadoras de sucção e arrasto, viabilizando as comparações diretas e posteriores análises estatísticas dos dados (Tabela 2).

Padronização dos dados				
Unidade				
-				
-				
-				
-				
-				
-				
m				
m				
m				
m				
m				
t				
t				
t				
m ³				
-				
m				
m				
nós				
kW				
	ados Unidade			

Tabela 2 - Padronização dos dados

Fonte: Autor (2024).

4.3. DADOS COLETADOS

Com a utilização da ferramenta Excel, os dados foram coletados e sistematizados em uma planilha de análise, seguindo a padronização descrita nos subcapítulos 4.2.1. e 4.2.2. deste trabalho. Os resultados desse processo podem ser vistos nos (Apêndices A e B.

Finalizada a fase de coleta, sistematização e padronização, deu-se início as análises estatísticas dos dados visando determinar equações empíricas que pudessem ser utilizadas como modelos preditivos ou que permitissem a inclusão de outros modelos teóricos, dando origem a modelos semiempíricos.

Os dados coletados das empresas Boskalis, Damen e Van Oord foram utilizados na elaboração tanto da equação empírica quanto do método semiempírico, ambos destinados a estimar a potência instalada em embarcações TSHDs (Apêndice A). Já os dados provenientes da empresa DEME foram empregados como grupo de controle (Apêndice B), sendo utilizados apenas na etapa de validação do trabalho.
5. ANÁLISE EMPÍRICA DOS DADOS

Nesta primeira análise foram estudadas diversas correlações estatísticas entre os dados disponíveis no banco de dados construído para este trabalho, a fim de se obter um primeiro modelo empírico para a estimativa inicial da potência instalada requerida por embarcações do tipo TSHD.

5.1. ANÁLISE GERAL DOS DADOS

Ao todo foram coletados os dados relevantes de 49 dragas de sucção e arrasto, as quais, em sua maioria, operam nas regiões portuárias e, em menor quantidade, na manutenção de vias fluviais.

Com intuito de averiguar a abrangência da base de dados, foi verificada a distribuição das embarcações estudadas dentro da divisão proposta por Vlasblom (2003), a qual se baseia na capacidade de carga das dragas de sucção e arrasto (Figura 13).

Figura 13 - Distribuição e classificação dos dados coletados

A seguir, utilizando a ferramenta Excel, foram estudadas regressões matemáticas que buscassem estabelecer correlações entre os dados coletados.

Fonte: Autor (2024).

Inicialmente foram analisadas diversas regressões envolvendo várias combinações entre os dados, de modo a selecionar aquelas que apresentassem o maior coeficiente de determinação (R²), ou seja, aquelas que melhor representassem o fenômeno modelado.

5.1.1 Relação da potência instalada com o volume e capacidade de carga

Visto que o elemento principal no direcionamento do projeto de uma draga autotransportadora de sucção e arrasto é a cisterna (Vlasblom, 2003), a primeira regressão estudada buscou correlacionar a potência instalada com a capacidade volumétrica da cisterna a bordo de uma embarcação TSHD (Figura 14).

Uma segunda característica das cisternas que pode ser correlacionada com a potência instalada é a sua capacidade de carga (Figura 15). Ambas as análises apresentaram uma correlação estatística considerada satisfatória, pois apresentaram um coeficiente de determinação superior a 0,8; quando regressões polinomiais de segunda ordem foram utilizadas.

No entanto, o volume de carga da cisterna apresentou uma correlação estatística melhor que aquela obtida na relação com a capacidade de carga, possivelmente em decorrência da sua maior influência nas dimensões principais da embarcação, e, portanto, uma maior correlação com a potência propulsiva necessária para o projeto.

Fonte: Autor (2024).

Figura 15 - Capacidade de carga e potência instalada

5.1.2. Relação da potência propulsiva com o volume e capacidade de carga

Para compreender melhor a relação da cisterna com a potência propulsiva, foi realizada uma análise da correlação estatística entre o volume da cisterna das embarcações TSHDs e a potência propulsiva (Figura 16).

Esse estudo apresentou uma excelente correlação, alcançando um coeficiente de determinação de 0,97, mesmo utilizando uma regressão linear. Assim, é possível observar que, de fato, o volume da cisterna é um fator determinante para esse dimensionamento.

Fonte: Autor (2024).

Fonte: Autor (2024).

De forma complementar, uma análise da capacidade de carga e da potência propulsiva foi realizada (Figura 17). Ambas as análises apresentaram uma correlação estatística considerada satisfatória por apresentarem um coeficiente de determinação superior a 0,8. No entanto, o volume da cisterna apresentou um coeficiente de determinação mais próximo a um. Contudo nota-se uma necessidade de expandir a faixa de dados para TSHD com volumes de cisterna e capacidades de carga superiores a 10000 m³ e 15000 t, respectivamente, a fim de averiguar a confiabilidade dessas regressões nessas faixas de valores.

Fonte: Autor (2024).

5.1.3. Relação da potência de manobra com o volume e capacidade de carga

Um dos sistemas essenciais das dragas autotransportadoras de sucção e arrasto são os propulsores de manobra, pois, durante a dragagem, a manobrabilidade é fator determinante para viabilizar a rota de dragagem mais eficiente. Por essa razão, foi realizada a análise estatística entre o volume da cisterna e a potência dos propulsores de manobra (Figura 18).

Figura 18 - Volume de carga e potência dos propulsores de manobra

Fonte: Autor (2024).

Assim como no caso da potência propulsiva, uma análise estatística também foi realizada para a potência dos propulsores de manobra em relação a capacidade de carga (Figura 19), bem como em relação ao volume da cisterna (Figura 18).

Ambas as análises apresentaram uma correlação estatística considerada satisfatória por apresentarem um coeficiente de determinação superior a 0,8. No entanto, assim como no caso da potência propulsiva, a regressão em relação ao volume da cisterna apresentou uma maior confiabilidade estatística.

Figura 19 - Capacidade de carga e potência dos propulsores de manobra

Fonte: Autor (2024).

5.1.4. Relação da potência propulsiva com a potência de manobra

A potência propulsiva e a potência dos propulsores de manobra apesar de serem características distintas de projeto, impactam diretamente na navegação e na capacidade de manobra da embarcação.

Por essa razão, foi analisada uma correlação estatística entre essas duas grandezas (Figura 20), a qual aponta para uma forte correlação estatística, resultando em um coeficiente de determinação acima de 0,96 quando uma regressão polinomial de segunda ordem é utilizada.

Figura 20 - Potência propulsiva e potência dos propulsores de manobra

5.1.5. Relação da velocidade de serviço com o volume e capacidade de carga

A velocidade de serviço de uma draga autotransportadora de sucção e arrasto determina o tempo de operação necessário para que a draga vá ao ponto de descarregamento da cisterna e retorne para a área de dragagem, impactando diretamente no tempo e no custo da operação. Por essa razão, foi realizada uma análise estatística entre o volume da cisterna e a velocidade de serviço das TSHD, quando essas se encontram totalmente carregadas (Figura 21).

Fonte: Autor (2024).

Figura 21 - Volume da cisterna e velocidade carregado

Aliado ao tempo que a draga autotransportadora de sucção e arrasto leva para navegar da área de dragagem até o ponto de descarregamento da cisterna, outro fator determinante no custo e no tempo de operação, é a capacidade de carga da draga, pois as operações de dragagem são pagas em função da massa de material dragado (Vlasblom, 2003). Assim, foi analisada a relação entre a capacidade de carga e a velocidade carregada das TSHD (Figura 22).

Figura 22 - Capacidade de carga e velocidade carregado

Fonte: Autor (2024).

Fonte: Autor (2024).

Tanto as análises referentes a relação entre o volume da cisterna e a velocidade carregada, quanto da relação entre a capacidade de carga e a velocidade carregada das TSHD apresentaram um coeficiente de determinação superior a 0,8, quando regressões polinomiais de segunda ordem foram utilizadas, indicando novamente a forte influência desses parâmetros no projeto de uma draga autotransportadora de sucção e arrasto.

5.1.6. Relação da velocidade de serviço com a potência propulsiva e instalada

Mesmo considerando a influência da forma do casco e de outras características do sistema propulsivo, a velocidade de serviço está diretamente relacionada a potência propulsiva de uma embarcação. Com intuito de averiguar essa relação, uma análise estatística foi realizada entre a potência propulsiva e a velocidade da TSHD carregada (Figura 23). Averiguou-se que a regressão exponencial apresentou um coeficiente de determinação superior a 0,93; indicando seu alto grau de correlação.

Figura 23 - Potência propulsiva e velocidade carregado

Com objetivo de estudar a correlação da potência instalada com a velocidade na condição carregada das TSHD, uma análise estatística foi realizada entre essas duas características (Figura 24). Nessa análise foi possível observar, assim como no

Fonte: Autor (2024).

caso anterior, que a regressão que melhor descreve essa correlação é a exponencial, alcançando um coeficiente de determinação igual a 0,76.

Figura 24 - Potência instalada e velocidade carregado

Apesar de ter sido constatado algum grau de correlação, é possível observar que a velocidade de serviço carregado das TSHDs não é um bom parâmetro para a predição da potência instalada nessas embarcações.

É possível que a correlação observada (Figura 24) se dê, na verdade, em função da influência que a velocidade na condição carregada exerce na potência propulsiva requerida para a embarcação, a qual, como visto na seção 2.4, é uma das 4 componentes da potência instalada em uma embarcação TSHD.

No entanto, dado que a forma do casco e outros parâmetros também influenciam na determinação da potência propulsiva requerida, o nível de correlação observada entre a velocidade carregada e a potência instalada em uma embarcação TSHD não alcançou os valores observado nas outras análises vistas neste capítulo.

Fonte: Autor (2024).

5.2. ESTIMATIVA EMPÍRICA DA POTÊNCIA COM UMA ÚNICA VARIÁVEL

Baseado nos resultados apresentados neste capítulo, para que a estimativa da potência instalada em uma embarcação TSHD possa ser realizada ainda na fase conceitual do projeto, foi proposto a elaboração de uma equação empírica que utiliza um único parâmetro de entrada, o volume da cisterna desejado para a embarcação.

5.2.1. Estimativa a partir do volume da cisterna

Conforme já foi estabelecido, em uma abordagem inicial, que não exija uma estimativa prévia da potência necessária para cada sistema de uma embarcação TSHD, é possível estimar a potência instalada considerando apenas o volume da cisterna a bordo da embarcação.

Assim, a partir da potência instalada e da capacidade volumétrica conhecida de 43 embarcações TSHDs, utilizando a ferramenta Excel, foi realizada a análise estatística dos dados coletados e cujos resultados são mostrados na Tabela 3.

Regressão estatística		
R	0,9563	
R quadrático	0,9146	
R quadrático ajustado	0,9104	
Desvio padrão	2570,8141 [kW]	
Desvio padrão	29 [%]	
Observações	43	

Tabela 3 - Regressão estatística

Fonte: Autor (2024)

Observando as informações da Tabela 3, é possível constatar que a regressão polinomial de segundo grau apresentou um resultado satisfatório em relação ao coeficiente de determinação. Por essa razão, esse modelo foi adotado para a estimativa da potência instalada de uma embarcação TSHD utilizando o volume total da cisterna como parâmetro de entrada, sendo que os coeficientes da equação proposta são mostrados na Tabela 4.

Coeficientes e constantes oriundos da regressão		
Componente	Coeficiente	
Intersecção	-534,23	
Volume da cisterna	1,6178	
Volume da cisterna^2	-2.2262 10 ⁻⁵	

Tabela 4 - Coeficientes e desvio

Fonte: Autor (2024)

A partir dessa análise estatística, isolou-se os principais coeficientes e constantes resultantes da regressão polinomial de segunda ordem realizada utilizando os dados obtidos das embarcações reais. Esse processo resultou em uma equação empírica para estimativa inicial da potência instalada (Pi), a qual considera apenas o volume da cisterna (H_c) como variável de entrada (Equação 13).

$$Pi = -2,2262*10^{-5} * H_c^2 + 1,6178 * H_c - 534,23 [kW]$$
(13)

6. ANÁLISE SEMIEMPÍRICA DOS DADOS

A fim de se obter uma estimativa mais apurada da potência instalada que será requerida por uma embarcação TSHD, é possível incorporar mais variáveis ao modelo empírico proposto no capítulo anterior, viabilizando uma maior acurácia e um menor desvio padrão dos resultados. Entretanto, para incorporar mais elementos ao modelo, é necessário encontrar formas confiáveis de se estimar esses elementos ainda na fase conceitual do projeto da embarcação. Dessa forma, propõem-se realizar uma estimativa desses valores utilizando-se modelos teóricos e empíricos já conhecidos, para então aplicar os resultados desses modelos como parâmetros de entrada do modelo semiempírico proposto neste capítulo.

6.1. DEFINIÇÃO DAS VARIÁVEIS

Conforme descrito na seção 5.3. a potência instalada de uma draga autotransportadora de sucção e arrasto se dá pelo equilíbrio da potência associada a quatro diferentes sistemas: a bomba(s) de sucção, a bomba(s) de jato d'agua, a propulsão e o propulsor para manobras.

Sendo importante destacar que, tal como visto no capítulo anterior, a análise dos dados empíricos levantados corrobora essa afirmação, pois, a partir de uma análise de correlação realizada usando a ferramenta Excel (Tabela 5), foi possível observar que as variáveis de maior correlação estatística com a potência instalada das embarcações estudadas são as mesmas observadas por Vlasblom (2003).

Índice de correlação estatística		
Variável	Índice de correlação [-]	
Diâmetro do tubo de sucção	0,7872	
Potência da(s) bomba(s) de sucção	0,9769	
Potência do(s) jato(s) d'agua	0,9175	
Potência propulsiva máxima	0,9699	
Potência propulsor de manobra	0,8402	
Volume da cisterna	0,9749	

Fonte: Autor (2024)

Diante desse resultado, optou-se por excluir as características que possuem um índice de correlação inferior a 0,9, restringindo as variáveis a serem incorporadas ao modelo preditivo às seguintes opções: a potência da(s) bomba(s) de sucção (Bd), a potência da(s) bomba(s) de jato d'água, a potência propulsiva (Pp) e o volume da cisterna (Hc).

No entanto, entre essas opções, a potência da(s) bomba(s) de jato d'água foi excluída por exigir informações detalhadas a respeito da cabeça de dragagem e dos parâmetros de operação, cujos dados podem não estar disponíveis na fase conceitual do projeto da embarcação.

6.2. PROPOSIÇÃO DA EQUAÇÃO

A seguir, uma análise estatística foi realizada com as três variáveis escolhidas para compor o modelo preditivo visando determinar uma equação que permita estimar a potência instalada durante a fase conceitual do projeto de uma embarcação TSHD. Inicialmente, os dados de 32 embarcações reais foram utilizados para a determinação da regressão, cujos resultados são mostrados na Tabela 6.

Coeficientes e constantes oriundos da regressão		
Componente	Coeficiente	
Intersecção	-72,4977	
Capacidade da cisterna (H _c)	0,4426	
[Capacidade da cisterna] ² (H _c ²)	-5,4732 10 ⁻⁰⁶	
Potência da bomba de dragagem (B _d)	1,6241	
Potência propulsiva (P _p)	-0,0435	

Tabela 6 - Coeficientes e desvio

Fonte: Autor (2024).

A partir da análise estatística (Tabela 6) que isolou os efeitos das principais componentes do modelo preditivo objeto deste trabalho, foi possível obter uma equação empírica para estimar a potência instalada durante a fase conceitual do projeto de uma embarcação TSHD (Equação 14), cujo coeficiente de determinação e o desvio padrão são mostrados na Tabela 7.

$$Pi = H_c^*0,231 - H_c^{2*}5,473^*10^{-6} + B_d^*1,624 - P_p^*0,043 - 72,5 \text{ [kW]}$$
(14)

Regressão estatística			
Componente	Valor [-]		
R	0,9874		
R quadrático	0,9751		
R quadrático ajustado	0,9714		
Desvio padrão	1408,9540		
Desvio padrão	16%		
Observações	32		

Tabela 7 - Regressão estatística

Fonte: Autor (2024).

No entanto, um fator indesejado é observado na Equação 14, a potência propulsiva (Pp) entra com um coeficiente negativo, o qual reduz a estimativa da potência instalada com o aumento da potência propulsiva.

Tipicamente, esse comportamento contraintuitivo ocorre quando duas variáveis possuem uma tendência muita parecida. Nesse caso a potência propulsiva e a potência de bomba de dragagem possuem uma tendência similar com a potência instalada. No entanto, como o grau de correlação da potência da(s) bomba(s) de sucção é superior, ela entra como fator dominante enquanto a potência propulsiva atua como fator de correção, assumindo um coeficiente negativo.

Para mitigar esse efeito, uma nova regressão foi proposta, restringindo o peso máximo de cada variável e adicionando uma restrição aos coeficientes de primeira ordem, considerando apenas o uso de valores positivos, resultando na Equação 15.

$$Pi = H_c^*0,442 - Hc^{2*}5,470^*10^{-6} + B_d^*1,456 + P_p^*0,199 - 72 [kW]$$
(15)

Embora a nova equação proposta possua um desvio padrão 0,5% maior que o da obtida pela regressão linear múltipla sem a imposição das limitações aos coeficientes (Equação 14), ela fornece uma contribuição positiva da potência instalada, sendo uma abordagem mais assertiva para o projeto de dragas autotransportadoras de sucção e arrasto. 6.3. estimativa da potência propulsiva

Em virtude do alto nível de correlação alcançado pela Equação 15, nesta etapa do trabalho buscou-se um método já existente para estimar a potência propulsiva de uma draga autotransportadora de sucção e arrasto, que apresente confiabilidade e acurácia aceitáveis; e que possa ser utilizado ainda na fase conceitual do projeto da embarcação.

6.3.1 Definição da fase de navegação analisada

As dragas autotransportadoras de sucção e arrasto enfrentam três regimes de navegação: navegação durante a dragagem (operação), navegação na condição carregada (chegada) e navegação na condição sem carga (partida).

Conforme já mencionado, durante a operação de dragagem, além da resistência ao avanço referente ao movimento do casco, existe a resistência adicional de arrasto da tubulação de sucção, a resistência causada pela própria sucção e a resistência causada pelo arrasto da cabeça de dragagem junto ao solo.

Já quando as TSHD estão navegando para a zona de descarregamento (condição carregada) e de volta para área de dragagem (condição sem carga), a resistência ao avanço decorre unicamente do arrasto do casco da embarcação e de seus apêndices.

6.3.2. Método de estimativa analisado

Entre os vários métodos para se estimar a potência propulsiva de uma embarcação, aquele proposto por Holtrop e Mennen (1982) foi construído a partir de uma série de ensaios realizados no instituto de pesquisa naval Marin e descreve a resistência ao avanço, o empuxo e a potência propulsiva requerida para uma embarcação que navega a uma dada velocidade de avanço.

6.3.3. Validação do método de estimativa da potência propulsiva

Buscando avaliar o uso do método de Holtrop e Mennen (1982) para se estimar a potência propulsiva requerida por TSHDs, foram comparadas as potências propulsivas reais existentes nas embarcações estudadas, com os valores estimados utilizando o modelo de Holtrop e Mennen (1982), considerando as características reais das embarcações catalogadas no banco de dados.

Inicialmente é necessário conhecer as limitações do método. Dessa forma, segundo o manual da PIAS (2019), a área da seção transversal do bulbo deve ser inferior a 20% da área da seção transversal a meia-nau, o coeficiente da seção mestra (C_m) deve ser maior que 0,5, a razão Lwl/B deve estar entre 3,5 e 9,5, a posição longitudinal do centro de carena (L_{cb}) deve estar entre -5% e +5%, o coeficiente prismático (C_p) deve variar entre 0,40 e 0,93, o ângulo de entrada da linha d'água não pode exceder 70° e, por fim, o número de Froude deve estar abaixo de 0,35.

Assim, dado que a aplicação do método de Holtrop e Mennen (1982) requer que os valores referentes aos coeficientes de forma das embarcações sejam conhecidos, para contornar essa limitação, propõem-se o uso de modelos empíricos para estimar tais características.

O deslocamento de algumas das embarcações estudadas pôde ser encontrado durante a fase de coleta de dados, nesses casos, a determinação do coeficiente de bloco (C_b) seguiu a clássica definição proposta para esse parâmetro. Já para as embarcações em que esse valor não era conhecido, arbitrou-se o valor de 0,8; tipicamente observado em embarcações TSHDs.

A seguir, o coeficiente de seção mestra (C_m), que é uma medida da relação entre a área da seção transversal máxima do casco e a área de um retângulo que envolve essa seção, foi estimado pelo método proposto por Schneekluth (1985) apud Ship Design (2014) (Equação 16).

$$C_m = 0.9 + 0.1 C_b$$
 [-] (16)

Já o coeficiente de linha d'água (C_{wp}) que é a relação entre a área da linha d'água do navio e a área de um retângulo que envolve essa linha, foi estimado a partir da equação empírica proposta por Schneekluth e Bertram (1998), a qual é válida para embarcações com formas usuais de popa (Equação 17).

$$C_{wp} = (1 + 2 C_b) / 3 [-]$$
 (17)

Por fim, a posição longitudinal do centro de carena (L_{cb}), que é o ponto do casco onde atua a resultante das forças de empuxo e que representa o centro do volume deslocado pela embarcação, pode ser estimado pela equação proposta por Schneekluth e Bertram (1998) (Equação 18).

$$L_{cb} = -0,135 + 0,194 * C_{p} [\%]$$
(18)

É importante observar que Schneekluth e Bertram (1998) defini a posição do L_{cb} como uma porcentagem do comprimento da embarcação, medida em relação a meia nau. Assim, um resultado igual a 0% indica que o L_{cb} se encontra exatamente a meia nau, sendo que valores negativos indicam que o L_{cb} está a ré da meia nau, enquanto valores positivos indicam que o L_{cb} está à frente da meia nau.

6.3.4. Aplicação de Holtrop e Mennen

No modelo semiempírico proposto por Holtrop e Mennen (1982), tal como visto na Equação 19, a resistência ao avanço total de uma embarcação (R_{total}) é composta por 6 parcelas: a resistência friccional (R_F), a resistência de apêndices (R_{APP}), a resistência do bulbo (R_B), a resistência da poupa transom (T_{RT}) e a resistência de correlação modelo-navio (R_A).

$$R_{total} = R_F(1+k1) + R_{APP} + R_W + R_B + T_{RT} + R_A [kN]$$
(19)

Os fundamentos teóricos desse fenômeno já foram descritos na seção 2.2.1., sendo que a seguir são descritos os procedimentos práticos adotados para viabilizar a utilização desse método no modelo proposto neste trabalho, sendo que:

a) Resistência de fricção (R_F): o método propõe a utilização das equações vistas em Morrall (1970) para estimar essa parcela (Equações 20 e 21), as quais são baseadas no número de Reynolds (Rn) (Equação 22), cuja validade é limitada ao intervalo de 10⁵ < Rn < 10¹⁰. Por fim, a superfície molhada da embarcação (S), pode ser estimada pelo método de Holtrop e Mennen (1982) utilizando a Equação 23.

$$R_{F} = V_{s}^{2} * C_{F} * S * \rho_{w} / 2 [kN]$$
(20)

$$C_{\rm F} = 0,075 / \left[\ln_{10}({\rm Rn}) - 2 \right]^2 \left[- \right]$$
(21)

$$Rn = V * Lwl / Ni[-]$$
(22)

$$S = L (2T + B) C_m^{0.5} (0,453 + 0,4425 C_b - 0,2862 C_m$$
(23)
- 0,003467 B/T + 0,36 B/T + 0,3696 C_{wp}) + 2,38 * A_{BT}/C_b [m²]

Observa-se que, nas análises realizadas, foi adotado o valor de 1,13902 10⁻⁶ m²/s para a viscosidade cinemática (*Ni*) da água, correspondendo a 15° celsius.

 b) Resistência de onda (R_w): o método propõe a utilização da resistência de onda segundo Holtrop e Mennen (1982) (Equação 24), a qual se baseia no número de Froude (Equação 25).

$$R_{W} = c_{1} * c_{2} * c_{5} * \nabla * \rho_{w} * g * exp\{m_{1} * F_{nd} + m_{2} * \cos(\lambda * Fn^{-2})\} [kN]$$
(24)

$$F_{nd} = V / (LwI * g)^{1/2} [-]$$
(25)

c) Resistência de correlação modelo-navio (R_A): o método propõe a utilização de uma equação para a estimativa da resistência de correlação (Equação 26), a qual depende do coeficiente de correlação empírico (C_A) (Equação 27), também deduzida por Holtrop e Mennen (1982).

$$R_{A} = V_{s}^{2} * C_{A} * S * \rho_{w} / 2 [kN]$$
(26)

$$C_{A} = 0,006(L + 100) - 0,16 - 0,00205 + 0,003 (L/7,5) 0,5 Cb^{4} c_{2} (0,04 - c_{4}) [-]$$
(27)

 d) Fator de forma (1 + k1): Por fim, o método também propõe estimar o coeficiente de forma usando a equação vista em Holtrop e Mennen (1982) (Equação 28).

$$(1 + k1) = c_{13} * \{0,93 + c_{12} * (B / L_r)^{0,92497} (0,95 - C_p)^{-0,521448} * (1 - C_p + 0,0225 * L_{cb})^{0,6906} \} [-]$$
(28)

Já as parcelas de resistência do bulbo (R_B), de resistência dos apêndices (R_{APP}) e de resistência da popa transom (R_{TR}) foram desconsideradas, pois, além de serem parcelas de menor importância, ainda requerem informações que dificilmente estão disponíveis durante a fase conceitual do projeto de uma embarcação.

6.3.5. Resultados da comparação potência real e potência estimada

Na Figura 25 é mostrada a comparação entre a estimativa da potência propulsiva calculada com o método de Holtrop e Mennen (1982) para a velocidade de serviço na condição carregada das TSHD e a potência propulsiva real existente nas embarcações estudadas. Sendo que os dados foram ordenados da embarcação com maior peso bruto para a de menor peso bruto (Apêndice F), permitindo agrupá-los conforme a classe da embarcação (Tabela 8).

Figura 25 - Comparação da potência estimada com a real

Fonte: Autor (2024).

A estimativa apresentou um desvio padrão percentual de 15%, o qual pode ser resultado das simplificações realizadas como, por exemplo, a desconsideração dos apêndices e do bulbo presente em algumas das embarcações estudadas.

Classe das TSHD na análise		
Número da embarcação	Classe	
1 - 10	Mega Hopper	
11 - 16	Jumbo Hoppers	
17 - 18	Large Hoppers	
19 - 35	Medium Hoppers	
36 - 43	Small Hoppers	
Fonte: Auto	or (2024)	

Tabela 8 - Classe das dragas na análise

Para facilitar a compreensão e a comparação dos resultados, na Figura 26 são mostrados os erros percentuais na estimativa realizada para cada uma das embarcações estudadas. A análise apresentou uma maior acurácia percentual para as TSHD da categoria jumbo hopper e mega hopper (Figura 26), com exceção de duas embarcações.

Figura 26 - Desvio padrão percentual da potência estimada

Conforme pode ser visto, o desvio padrão dos casos analisados foi de 15%, indicando a viabilidade do uso do método de Holtrop e Mennen (1982) para a estimativa da potência propulsiva requerida pelas dragas autotransportadoras de sucção e arrasto (Figura 26).

Fonte: Autor (2024).

Embora essa análise indique um grau satisfatório de precisão da estimativa da potência propulsiva requirida para uma dada velocidade de serviço usando o método de Holtrop e Mennen (1982), é possível que o erro médio desse modelo para embarcações TSHDs seja ainda menor, visto que foram realizadas simplificações para viabilizar a aplicação do método, além do uso de modelos empíricos para estimar os coeficientes adimensionais, o que pode ter reduzido a acurácia do modelo.

6.3.6. Inclusão no método semiempírico

Para a inclusão da estimativa da potência propulsiva através do método proposto por Holtrop e Mennen (1982), é necessário definir os parâmetros de entrada. Nesse caso, existem duas abordagens possíveis, a aplicação direta das equações de Holtrop e Mennen (1982) ou a aplicação das simplificações propostas neste trabalho, quando, por exemplo, parte das informações ainda não foram definidas para o projeto.

6.4. ESTIMATIVA TEÓRICA DA POTÊNCIA DA(S) BOMBA(S) DE DRAGAGEM

A estimativa da potência das bombas de dragagem é um dos aspectos determinantes do dimensionamento de uma draga de sucção e arrasto. Alguns dos fatores decisivos para esse dimensionamento são: a profundidade de dragagem, o comprimento do tubo de dragagem, o diâmetro do tubo de dragagem, o fluxo volumétrico no tubo de dragagem, o fluxo de massa esperado para o solo dragado, além das características do solo na região de dragagem.

Ponderando que a estimativa da potência da bomba de dragagem requerida depende de diversos fatores, este trabalho propôs-se a focar em apenas um tipo de solo, sendo discutido apenas um dos métodos indicados por Matousek (2004) para a estimativa da potência da bomba de dragagem.

6.4.1. Arranjo genérico do sistema de tubulação de uma TSHD

Inicialmente, a fim de realizar uma estimativa genérica da potência da bomba de dragagem requerida, um esquema básico da tubulação de sucção foi proposto (Figura 27), o qual foi baseado na observação de dragas autotransportadoras reais.

Figura 27 - Sistema genérico de tubulação de sucção

Fonte: Adaptado de Vlasblom (2003, p. 28).

Na configuração genérica mostrada na Figura 27 adotou-se que a tubulação de sucção das dragas opera em uma profundidade máxima (H) de dragagem e apresenta um ângulo alfa (α) de 45 graus com a horizontal, o que resulta em um comprimento da tubulação (L_{pipe}) que pode ser calculado pela Equação 29.

$$Lpipe = sen(45) * H$$
 (29)

Além disso, foi adotado que a tubulação possui quatro curvas de 90 graus e duas bifurcações com válvulas fechadas que são incorporadas no cálculo de perda de pressão ao longo sistema (Tabela 9). Já os coeficientes de perda menor (ξ) devido a fricção foram estabelecidas a partir dos valores tabelados por Wilson *et al* (2006).

C	coeficientes de perda menor adotac	los
Parte	Coef. de perda menor [-]	Quantidade [-]
Entrada	0,5	1
Curva	0,2	4
Bifurcação	0,6	1
Saída	0,5	1
	Fonte: Autor (2024).	

Tabela 9 - Coeficientes de perda menor

Por fim, para simplificar o cálculo da potência necessária da bomba de dragagem, adotou-se que o sistema é composto por uma única bomba de sucção, conectada com a tubulação no nível da linha d'água. Segundo Matousek (2004), a eficiência das bombas centrífugas de dragagem varia de 60% (quando em péssimas condições de operação) a 80% (quando operando na condição ideal). Dessa forma, neste trabalho foi adotada uma eficiência média de 75%.

6.4.2. Características do escoamento e solo adotado

O regime de fluxo ideal para a mistura água/solo dragada é o heterogêneo turbulento plenamente desenvolvido, o qual só é alcançado a partir de uma velocidade crítica em que não ocorre mais a sedimentação de sólidos no leito da tubulação de sucção. Para conhecer essa velocidade e calcular as demais características do fluxo da mistura, é necessário estabelecer as características do solo.

Tipicamente o solo dragado por embarcações TSHDs é arenoso e não coesivo (Vlasblom, 2003). Por essa razão, o solo de referência utilizado para o cálculo da potência da bomba de dragagem foi o solo de areia de vasta amplitude de granulação, o qual contém desde sólidos mais finos até mais granulados (Tabela 10).

Caracterís	ticas amplas do solo a	renoso
Variável	Valor	Unidade
Densidade do sólido	2650	kg/m³
Diâmetro característico 50%	0,42	mm
Diâmetro característico 85%	0,62	mm
Diâmetro decisivo	0,42	mm
Porosidade do solo	40	%
Fonto: Autor (2024)		

Tabela 10 - Características do solo arenoso

Fonte: Autor (2024).

Matousek (2004) define que as dragas autotransportadoras de sucção e arrasto, em média, dragam uma mistura de água com solo que formam um fluido heterogêneo de densidade entre 1300 e 1600 kg/m³. Baseado nessa informação, na Tabela 11 são mostradas as características do fluído adotado para o modelo genérico desenvolvido neste trabalho.

Características do fluido adotado		
Variável	Valor	Unidade
Densidade d'água	1000	kg/m ³
Densidade do sólido	2650	kg/m³
Densidade da mistura	1500	kg/m³
Viscosidade cinemática	0,000001	m²/s
	Fonte: Autor (2024).	

Tabela 11 - Características do fluido adotado

6.4.3. Velocidade crítica de escoamento

A velocidade crítica de deposição dos sólidos dragados dentro da tubulação de sucção (V_{crit}) é a velocidade mínima do escoamento em que os sólidos dragados acompanham o escoamento do fluido e não se depositam no leito da tubulação (Matousek, 2004).

Sendo assim, esse é um dos parâmetros mais relevantes para a estimativa da potência da bomba de dragagem, pois ele define a velocidade mínima requerida para a mistura na tubulação e, consequentemente, a potência mínima necessária para que a operação de dragagem mantenha o fluxo ideal do material dragado.

A partir do método proposto por van den Berg *et al* (1998) (Figura 28), é possível estimar a velocidade crítica de deposição dos sólidos dragados em um tubo na horizontal com base na densidade relativa do solo (S_s), na relação entre o fluxo volumétrico dos sólidos dragado e o fluxo volumétrico do líquido (C_{vd}), no diâmetro decisivo dos sólidos dragados (d_{mf}) e no diâmetro da tubulação de sucção (D) (Equação 30).

$$V_{crit} = 1,7 (5 - d_{mf}^{-1/2}) D^{1/2} (C_{vd}/(C_{vd}+0,1))^{1/6} ((S_s-1)/1,65)^{1/2} [m/s]$$
(30)

Figura 28 - Gráfico da velocidade crítica estimada por Van der Berg

Fonte: Van den Berg (1998, p153).

Sendo que, segundo Matousek (2004), a densidade relativa dos sólidos dragados é a densidade do sólido em relação ao líquido que o permeia (Equação 31). Já a concentração volumétrica dos sólidos dragados é dada pelo escoamento volumétrico dos sólidos dragados em relação ao escoamento volumétrico do líquido que o permeia (Equação 32). E, por fim, o diâmetro decisivo é o diâmetro médio dos diâmetros característicos do solo (d%) (Equação 33).

$$S_s = \rho_s / \rho_w$$
 [-] (31)

$$C_{vd} = Q_s / Q_w [-]$$
 (32)

$$d_{mf} = (d_{10} + d_{20} + d_{30} + d_{40} + d_{50} + d_{60} + d_{70} + d_{80} + d_{90}) / 9$$
(33)

No caso das dragas autotransportadoras de sucção e arrasto, a tubulação de sucção não está na horizontal, mas sim inclinada com um ângulo (α) em relação a horizontal, o qual depende do comprimento da tubulação de sucção (L_{pipe}) e da distância vertical do eixo de rotação da tubulação com o solo a ser dragado (H) (Equação 34).

$$\alpha = \operatorname{sen}^{-1}(H / L_{pipe}) \text{ [rad]}$$
(34)

O efeito da inclinação sobre a velocidade crítica do escoamento para que seja heterogêneo suspenso e completamente desenvolvido, pode ser incluído na estimativa da velocidade crítica (v_{sma}) com o método proposto por Wilson e Tse (1984), o qual utiliza a Equação 35 para corrigir a estimativa da velocidade crítica do escoamento heterogêneo plenamente desenvolvido. O método utiliza o parâmetro de deposição ΔD , o qual depende do ângulo de inclinação da tubulação (Figura 29).

$$v_{crita} = v_{crit} + \Delta D \ (2^*g^*D^*(S_s - 1))^{1/2} \ [m/s]$$
(35)

Figura 29 - Gráfico do parâmetro de deposição de Wilson e Tse

Fonte: Wilson e Tse (1984, p112).

Embora a velocidade crítica seja a velocidade de maior eficiência para um escoamento heterogêneo turbulento plenamente desenvolvido, evita-se utilizar esse valor, pois, no caso de alguma avaria, a velocidade média do escoamento pode cair abaixo da velocidade crítica, prejudicando a eficiência (Matousek, 2004). Portanto, para o modelo genérico, optou-se por uma velocidade média do escoamento 10% superior a velocidade crítica estimada pela Equação 35.

6.4.3. Perda de pressão ao longo da tubulação e potência teórica requerida

Na estimativa da perda de pressão (ΔP) ao longo da tubulação (Equação 36), alguns fatores devem ser levados em consideração, como a perda maior de pressão (ΔP_{Mai}) em decorrência a fricção ao longo do tubo, a perda de pressão menor (ΔP_{Men}) em decorrência dos encaixes, curvas e flanges ao longo do sistema de tubulação e, por fim, a perda estática de pressão (ΔP_{Est}) em decorrência da diferença de potencial gravitacional entre a entrada e saída do sistema de tubulação.

$$\Delta P = \Delta P_{Mai} + \Delta P_{Men} + \Delta P_{Est} [Pa]$$
(36)

A perda maior de pressão ao longo da tubulação se refere a perda de pressão decorrente da fricção do escoamento com a tubulação. Wilson *et al* (2006) propõem, como ponto partida, utilizar o método clássico de Darcy-Weisbach para calcular o gradiente hidráulico de perda de pressão de um escoamento em uma tubulação horizontal (I_f) (Equação 37).

$$I_{f} = \lambda_{f} * V_{m}^{2} / (D * 2 * g) [-]$$
(37)

Sendo que o coeficiente de fricção de Darcy-Weisbach (λ_f), para um fluxo turbulento, é dado inicialmente pelo diagrama de Moody (1944), a partir do número de Reynolds da tubulação (Equação 38). A fim de não depender do diagrama, neste trabalho foram adotadas as Equações 39, 40 e 41, as quais foram propostas por Churchill (1977) e permitem determinar o coeficiente de fricção (S) a partir do diâmetro (D) e da rugosidade absoluta da tubulação (k).

$$R_e = D * V_m / v_f [-]$$
 (38)

$$\lambda_{\rm f} = 8 \left\{ (8/{\rm R}_{\rm e})^{12} + ({\rm X} + {\rm Y})^{-1.5} \right\}^{1/12} [-] \tag{39}$$

$$X = \{-2,457^* \ln[(7/R_e) + 0,27^* k / D]\}^{16} [-]$$
(40)

$$Y = (37530/R_e)^{16} [-]$$
(41)

Uma vez determinado o gradiente hidráulico de perda de pressão por fricção de uma tubulação horizontal contendo um escoamento turbulento, é possível utilizar a Equação 43 para calcular o gradiente hidráulico de um escoamento heterogêneo turbulento em uma tubulação horizontal.

$$I_{m} = I_{f} + 0.5 * u_{s} * (V_{m}/V_{50})^{-M} * C_{vd} * (S_{s}-1) [-]$$
(43)

Segundo Wilson *et al*, 2006, a velocidade em que metade dos sólidos do escoamento fica suspensa (V₅₀) (Equação 44), o coeficiente de cálculo (M) (Equação 45) e o coeficiente mecânico de fricção entre sólidos e a superfície da tubulação (u_s), são parâmetros adicionais necessários para a estimativa do gradiente.

$$V_{50} = 3,39 * d_{50}^{0,35} * [(S_{s}-1)/1,65]^{0,45} [m/s]$$
(44)

$$M = [ln(d_{85}/d_{50})]^{-1} [-]$$
(45)

Além disso, Wilson *et al* (2006) se baseiam no modelo de Worster e Denny (1995) para estimar o gradiente hidráulico de um escoamento turbulento heterogêneo em tubulação inclinada em relação a horizontal a partir do gradiente hidráulico de um escoamento turbulento heterogêneo em uma tubulação horizontal (Equação 46).

$$I_{m\alpha} = I_f + (I_m - I_f) * \cos(\alpha)^{(1+M*\gamma)} + C_{vd} * (S_{s-1}) * \sin(\alpha) [-]$$
(46)

Por fim, é possível calcular a perda de pressão maior ao longo da tubulação de sucção multiplicando o gradiente hidráulico de um escoamento turbulento heterogêneo em tubulação inclinada em relação a horizontal, pelo comprimento da tubulação, a gravidade e a densidade da água (Equação 47).

$$\Delta P_{Mai} = I_{m\alpha} * L_{pipe} * g * \rho_w [Pa]$$
(47)

Já a perda menor de pressão no sistema de tubulação é ocasionada pelas curvas, bifurcações, mudanças de diâmetro e transições do sistema. Utilizando a Equação 48, é possível calcular essa perda considerando um escoamento de água doce ao longo da tubulação.

$$\Delta P_{Men} = \Sigma \xi_i * V_m^2 / (2 * g) [Pa]$$
(48)

No caso do escoamento heterogêneo contendo sólidos, é razoável presumir que a densidade da mistura dividida pela densidade d'água pode ser utilizado como fator de correção dessa estimativa (Equação 49).

$$\Delta P_{Men} = \Sigma \xi_i * V_m^2 / (2 * g) * (\rho_m / \rho_w) [Pa]$$
(49)

A diferença de pressão estática é determinada pela diferença de pressão entre a entrada e a saída do sistema de sucção, ou seja, desconsiderando a velocidade do fluído no interior da tubulação. Nesse caso, além da pressão atmosférica (P_{atm}), existe uma coluna de água do lado externo da tubulação (H * ρ_w), a qual deve ser subtraída da coluna de material dragado existente dentro da tubulação (H * ρ_m). Por fim, no modelo desenvolvido, a pressão existente na saída da tubulação (P_{sai}) corresponde à pressão atmosférica (Equação 50).

$$\Delta P_{Est} = P_{ent} - P_{sai} = (P_{atm} + H^* \rho_w - H^* \rho_m) - (P_{atm}) [Pa]$$
(50)

Assim, a potência requerida para a bomba de dragagem é dada pela variação total da pressão no sistema de tubulação, multiplicado pela vazão volumétrica da mistura heterogênea e, finalmente, dividido pela eficiência da bomba (Equação 51).

Observando os dados das embarcações TSHDs estudadas, neste trabalho considerou-se uma eficiência média de 75% para as bombas de dragagem.

$$P_{bd} = P_{man} * Q_m / E_{fbc} [W]$$
(51)

6.4.4. Análise da eficiência do sistema genérico de tubulação

A fim de auxiliar no dimensionamento inicial do sistema de tubulação, foram realizadas duas análises do sistema de tubulação genérico proposto para esse trabalho. A primeira com intuito de investigar a influência da velocidade do escoamento na eficiência da tubulação, enquanto a segunda investigou a influência do diâmetro na eficiência da tubulação.

Para cinco profundidades diferentes de dragagem; 25, 50, 75, 100 e 125 metros; o diâmetro ideal da tubulação de dragagem foi encontrado usando a função solver do Excel. Então para cada profundidade e respectivo diâmetro ideal a velocidade média foi variada de zero a vinte metros por segundo, para os mesmos coeficientes de atrito das perdas de pressão menor, características do solo e do escoamento (Tabelas 10 e 11).

Obtendo-se a eficiência para cada velocidade de escoamento (Figura 30), essa análise não respeitou a velocidade crítica do escoamento heterogêneo turbulento plenamente desenvolvido. Dessa forma foi traçado uma curva indicando a velocidade crítica dos escoamentos os diferentes diâmetros e profundidades.

Figura 30 - Curva de eficiência em relação a velocidade média

Observando a Figura 31, é possível constatar que a eficiência máxima é superior para as maiores profundidades. Isso ocorre devido a influência da perda menor de pressão decorrente da entrada, da saída, das curvas e das bifurcações da tubulação. Em maiores profundidades, a parcela de perda de pressão maior se torna mais relevante em relação a menor e como, em geral e no caso desses dados de entrada do problema, ela é mais eficiente que a parcela menor, a eficiência em profundidades maiores se torna superior.

Fonte: Autor (2024).

6.4.5. Validação do método empírico da potência de bomba de dragagem

Nessa etapa, uma comparação foi realizada, entre a potência de bomba de dragagem calculada pelo modelo genérico proposto neste trabalho e a potência máxima real da bomba de dragagem de cada embarcação estudada (Figura 31).

Nesse caso, é importante observar que, para a aplicação do modelo genérico desenvolvido neste trabalho foi utilizado o diâmetro do tubo de sucção das embarcações reais, sendo considerada a profundidade máxima de operação declarada para cada embarcação estudada (Tabela 12).

1

Faixas de profundidade máxima das TSHD		
Número da embarcação	Profundidade máx. [m]	
1 - 4	100 - 135	
4 - 17	50 - 100	
17 - 37	15 - 50	

Fonte: Autor (2024)

A potência requerida pelo sistema genérico de tubulação foi multiplicada pelo número de tubos de sucção presente na embarcação, No entanto, notou-se que

Fonte: Autor (2024).

algumas dragas com profundidade máxima de dragagem acima de 100 metros e que possuem dois tubos de sucção tiveram um desvio muito mais acentuado em relação as outras, sendo possível inferior que, quando essas embarcações operam em altas profundidades, sejam utilizados apenas um tubo de sucção, com as bombas operando em série.

O desvio padrão da potência mínima estimada para o sistema genérico de tubulação de sucção em relação a potência real de bomba de dragagem instalada nas dragas autotransportadoras de sucção e arrasto foi de 54,39%.

Alguns fatores devem ser considerados a respeito dessa comparação, o tipo de solo e as características do escoamento definidas para o modelo genérico, foram os mais conservadores e típicos para uma operação de uma TSHD, o que favorece respostas de potência mínima requerida menores para a potência da bomba de dragagem. Apresentando resultados mais a amenos em relação a real potência de bomba instalada (Figura 32).

Figura 33 - Desvio da potência estimada com a real

Fonte: Autor (2024).

Aliado a isso, a potência de referência adotada para a comparação, foi a máxima disponível da(s) bomba(s) instaladas nas embarcações. O que não reflete necessariamente a potência máxima disponível para a(s) bomba(s) em operação de dragagem. Visto que a potência máxima desse sistema tipicamente só pode ser

aproveitada na operação de descarga da draga, quando os outros sistemas, como o propulsivo, não estão operando.

Entretanto o fator determinante do desvio padrão observado (Figura 33), possivelmente decorre do fato do modelo genérico adotar a potência mínima requerida, na velocidade de escoamento com máxima eficiência possível. Quando num projeto real pode ser interessante ter uma margem extra de potência para viabilizar o aumento do fluxo de mistura e acelerar o processo de dragagem.

6.4.6. Inclusão no método semiempírico

Para a inclusão desse método de estimativa da potência da(s) bomba(s) de dragagem no modelo de estimativa da potência instalada, é necessário definir os parâmetros de entrada desse cálculo. Nesse caso é indispensável definir a profundidade máxima de dragagem desejada e a vazão volumétrica desejada para a operação (Apêndice H).

Os parâmetros opcionais de cálculo são as características do solo, características do escoamento heterogêneo turbulento plenamente desenvolvido e as características da tubulação de sucção, além da inclusão da margem de potência desejada. Que podem ser usados no lugar dos parâmetros genéricos da operação de dragagem adotados no modelo.

6.5. COMPOSIÇÃO FINAL DO MÉTODO E FERRAMENTA DE CÁLCULO

A equação empírica obtida (Equação 15) foi combinada com o método proposto por Holtrop e Mennen (1982) para estimativa da potência propulsiva e com método teórico usando os coeficientes empíricos para estimativa da potência da(s) bomba(s) de dragagem.

$$Pi = H_c^*0,442 - Hc^{2*}5,470^*10^{-6} + B_d^*1,456 + P_p^*0,199 - 72 [kW]$$
(15)

A aplicação do método de Holtrop e Mennen (1982), se deu por duas maneiras, ou com a versão simplificada tal qual realizado para estimativa da potência propulsiva das embarcações reais a fim de validar o método, ou da forma completa seguindo todos os cálculos e parâmetros de entrada do método de Holtrop e Mennen. Para um resultado mais preciso, aconselha-se utilizar o método por completo.

Utilizando os métodos sugeridos para estimativa da potência da(s) bomba(s) de sucção e propulsiva. As simplificações e o sistema genérico de tubulação foram incorporadas (Tabela 9, 10 e 11) na ferramenta de cálculo criada no Excel para aplicação do método, na forma de torná-los variáveis opcionais. Para um resultado mais apurado, aconselha-se adotar o sistema de tubulação real e as características do escoamento desejado com seus respectivos parâmetros (Apêndice H).

7. VALIDAÇÃO DOS RESULTADOS

Neste capítulo são apresentadas as duas análises realizadas para a validação da equação empírica e do método semiempírico propostos para estimativa inicial da potência instalada de embarcações TSHD. A primeira, estimando a potência instalada nas embarcações do grupo de controle usando a equação empírica (Equação 13) e a segunda, utilizando o método semiempírico (Apêndice I).

7.1. VALIDAÇÃO DA EQUAÇÃO EMPÍRICA PROPOSTA

A equação empírica para estimativa da potência instalada proposta com base no volume da cisterna foi aplicada no grupo de controle (Apêndice B), montado a partir dos dados da frota de TSHDs da empresa DEME. A seguir, utilizando uma planilha Excel, foi realizada a comparação entre o resultado da estimativa a partir da equação empírica proposta e os valores de potência instalada das dragas reais (Figura 33).

Figura 34 - Comparação potência instalada real e estimada

Observando-se os resultados obtidos, é possível notar que a equação proposta possui a tendência de superestimar a potência instalada (Figura 34), apresentando um desvio padrão de 21,5%. Além disso, foi observado que o uso apenas da capacidade da cisterna como único parâmetro de entrada não é capaz de estimar de forma apurada a potência instalada de uma draga de sucção e arrasto.

Fonte: Autor (2024).

Figura 35 - Desvio da potência instalada estimada em relação a real

No entanto, um fator de correção pode ser empregado para reduzir a tendência da equação de superestimar a potência instalada necessária. Dessa forma buscou-se o fator de correção que reduzisse o erro obtido, dando origem a Equação 52, cujo coeficiente de determinação e o desvio padrão são mostrados na Tabela 13.

$$Pi = -2,23*10-5 * Hc^{2} + 1,62 * Hc - 2563 [kW]$$
(52)

Regressão e	statística				
Componente	Valor [-]				
R	0,9920				
R quadrático	0,9840				
R quadrático ajustado	0,9827				
Desvio padrão	1989 [kW]				
Desvio padrão	24 [%]				
Fourter (0004)					

٦	「abe	la 1	13 -	Regressão	estatíst	ica
				0		

Fonte: Autor (2024).

Para determinar o fator mostrado na Equação 52, foi aplicado um procedimento de otimização utilizando o programa Excel, o qual buscou minimizar o erro do modelo preditivo a partir do ajuste do fator de correção. Os resultados referentes ao modelo que incluiu o fator de correção apresentaram um desvio padrão 5% menor do que o observado inicialmente (Figura 35).

Fonte: Autor (2024).

Figura 36 - Comparação potência instalada real e estimada

A maior acurácia do modelo contendo o fator de correção (Figura 36) pode ser explicada pela definição do volume da cisterna informada por cada empresa pesquisada. Pois, algumas empresas consideram que esse parâmetro corresponde ao ponto em que a carga transborda da cisterna, enquanto outras, consideram que esse limite corresponde ao ponto máximo de operação do overflow system.

Figura 37 - Desvio da potência instalada estimada em relação a real

Fonte: Autor (2024).

Fonte: Autor (2024).

7.2. VALIDAÇÃO DA EQUAÇÃO SEMIEMPÍRICA PROPOSTA

Seguindo a mesma abordagem, uma comparação foi realizada a partir da potência instalada estimada utilizando o método semiempírico desenvolvido neste trabalho, sendo que para a estimativa da potência propulsiva foi empregado o método de Holtrop & Mennen (1982) considerando as simplificações propostas na seção 6.3.

Já a inclusão da potência da(s) bomba(s) de dragagem, foi realizada a partir do modelo genérico de uma tubulação de sucção discutido na seção 6.4. e que utiliza a profundidade máxima de operação, o diâmetro do tubo de sucção e a quantidade de tubos de sucção como dados de entrada.

Os resultados obtidos (Figura 37) podem, a um só tempo, avaliar a aplicação do método semiempírico para estimativa da potência instalada em embarcações TSHDs, como também avaliar a aplicação do modelo genérico para estimativa da potência da(s) bomba(s) de dragagem.

A análise resultou em um baixo desvio padrão (24%), indicando que o modelo semiempírico proposto para a estimativa da potência instalada de embarcações TSHDs é aplicável e que os métodos de estimativa propostos para a potência propulsiva e para a potência da(s) bomba(s) de dragagem são apurados no que tange

Fonte: Autor (2024).

a uma análise inicial ocorrida ainda na fase conceitual do projeto de uma draga autotransportadora de sucção e arrasto (Figura 38).

Figura 39 - Desvio da potência instalada estimada em relação a real

Em relação aos resultados obtidos, é importante destacar que a aplicação do método semiempírico proposto partiu de várias suposições e simplificações, tanto na aplicação do método de Holtrop e Mennen (1982) para estimativa da potência propulsiva, quanto na aplicação da abordagem teórica baseada em modelos empíricos para a estimativa da potência da(s) bomba(s) de dragagem.

Apesar do resultado positivo da aplicação da equação semiempírica, esperase que o método obtenha resultados ainda mais precisos quando os parâmetros reais de projeto da draga autotransportadora de sucção e arrasto são incorporados ao modelo, em especial quando são conhecidos o tipo de solo que se pretende dragar, os coeficientes de forma da embarcação e as características do sistema de tubulação que se pretende utilizar.

No entanto, um fator de correção pode ser empregado para corrigir a tendência da equação de superestimar a potência instalada necessária. Dessa forma uma nova análise foi realizada considerando o fator deduzido com auxílio do programa Excel (Tabela 14).

Fonte: Autor (2024).

 Regressão e	estatística
Componente	Valor [-]
R	0,9986
R quadrático	0,9972
R quadrático ajustado	0,9964
Desvio padrão	1044 [kW]
Desvio padrão	12 [%]
Fonte: Autor	· (2024).

Tabela 14 - Regressão estatística

Na Equação 50 é mostrado o novo modelo foi obtido, o qual, ao considerar o fator de correção, apresentou um desvio padrão bem inferior ao observado inicialmente (Figura 39).

$$Pi = H_c^*0,442 - Hc^{2*}5,470^*10^{-6} + B_d^*1,456 + P_p^*0,199 + 1033 [kW]$$
(53)

Figura 40 - Comparação potência instalada real e estimada

Analisando os resultados, é possível constatar que o desvio observado na análise do grupo de controle é significativamente menor do que aquele observado na estimativa realizada sem o fator de correção (Figura 40), resultando em um desvio padrão de 12%, contra os 24% do modelo original.

Fonte: Autor (2024).

Figura 41 - Desvio da potência instalada estimada em relação a real

A maior acurácia observada nesse modelo também decorre da compensação necessária para o valor estimado da potência da bomba de dragagem, pois, em geral, a potência teórica reflete melhor a potência de sucção de fato utilizada durante a operação de dragagem, uma vez que a potência da bomba instalada considera como condição crítica de dimensionamento a fase de descarga e não de sucção.

Fonte: Autor (2024).

8. CONCLUSÃO

Diante da problemática apresentada, neste trabalho foram estudadas diversas abordagens para a construção de um método confiável para a estimativa da potência instalada requerida para uma draga autotransportadora de sucção e arrasto (TSHD), a qual possa ser realizada ainda na fase conceitual do projeto da embarcação.

Inicialmente são apresentados os fundamentos teóricos e o estado da arte referente ao dimensionamento da potência instalada em embarcações TSHD, para, a seguir, ser apresentada a metodologia utilizada no desenvolvimento proposto.

Coletados e sistematizados os dados, as análises empíricas permitiram constatar que o parâmetro de maior influência para o dimensionamento da potência instalada em uma embarcação TSDH é o volume da cisterna definido para o projeto, corroborando as afirmações vistas na literatura de que o projeto de uma draga autotransportadora de sucção e arrasto é governado pelo dimensionamento da cisterna a ser instalada a bordo da embarcação.

Dessa forma, a equação empírica proposta para estimar a potência instalada, não apenas possui um bom grau de confiabilidade e baixo desvio padrão (24%), como é um modelo facilmente aplicável na fase inicial do projeto de uma embarcação TSHD, visto que o volume da cisterna é uma das primeiras características definidas nesse tipo de projeto.

Já a equação semiempírica que incorporou a potência propulsiva e a potência da(s) bomba(s) de dragagem como parâmetros de entrada do modelo, apresentou um desvio padrão menor (12%) e um coeficiente de determinação maior em relação a equação empírica baseada exclusivamente no volume da cisterna. Contudo, para viabilizá-la, foi necessário incluir modelos capazes de estimar a potência propulsiva e a potência da(s) bomba(s) de dragagem ainda na fase conceitual do projeto.

O método de Holtrop e Mennen (1982) para estimativa da potência propulsiva foi analisado e validado como uma forma confiável de se estimar a potência propulsiva requerida por dragas autotransportadoras de sucção e arrasto. No entanto, a aplicação desse método é limitada, uma vez que o projetista pode priorizar a potência propulsiva requerida durante a operação de dragagem e não durante a navegação na condição em que a cisterna está totalmente carregada. Já a inclusão da potência da(s) bomba(s) de dragagem baseou-se em uma abordagem teórica aliada a modelos empíricos já estabelecidos na literatura, o que possibilitou, não apenas incluir esse parâmetro ao modelo, como também viabilizou a análise a respeito da influência de parâmetros como o diâmetro da tubulação e a velocidade de escoamento, no projeto de uma embarcação TSHD.

Por fim, a etapa de validação do método semiempírico desenvolvido apresentou um resultado considerado satisfatório, sendo, atualmente, o método mais apurado para a estimativa inicial da potência instalada na fase conceitual do projeto de uma draga autotransportadora de sucção e arrasto.

Para trabalhos futuros, recomenda-se explorar a potência requerida para a(s) bomba(s) de jato d'água e explorar mais a relação desse parâmetro com a potência instalada, além de estudar outros subsistemas que requerem energia e potência dentro das embarcações TSHDs, como, por exemplo, o guindaste dos tubos de sucção.

REFERÊNCIAS

ALFREDINI, P.; ARASAKI, E. Engenharia portuária. São Paulo: Blucher, 2014.

BACK, N. *et al.* **Projeto integrado de produtos:** Planejamento, conceito e modelagem. Barueri: Manole, 2008.

BOSKALIS. **Boskalis**, © 1910 - 2024. Trailing suction hopper dredger fleet overview.

Disponível em: www.bosklais.com. Acesso em: 24 dez. 2023.

CHEIN, Flávia. Introdução aos modelos de regressão linear. Brasília: Enap, 2019.

CHURCHILL, S.W. Friction-factor equation spans all fluid-flow regimes. **Chemical Engineering.** Philadelphia, v. 84, n. 24, p. 91-92. jan. 1977.

DAMEN. **Damen**, © 1927 - 2024. Trailing suction hopper dredger fleet overview. Disponível em: www.damen.com. Acesso em: 20 dez. 2023.

DEME. Deme, © 1996 - 2024. Trailing suction hopper dredger fleet overview.

Disponível em: www.deme-group.com. Acesso em: 20 mar. 2024.

EVANS, J. H. Basic Design Concepts. **Journal of the american society for naval engineers.** Washington, v. 71, n. 4, p. 671-678. nov. 1959.

HARTRY, H. P. *et al.* **Guide to program outcome measurement:** For the U.S. department of education, Washington: The Urban Institute, 1997.

HOLTROP, J.; MENNEN G.G.J. An approximate power prediction method. **International shipbuilding progress**. Wageningen, v. 29, n. 335, p. 166-170. jul. 1982.

MATOUSEK, V. Dredge pumps and slurry transport. Delft: TU OCW, 2004.

MOLLAND, A. *et al.* **Ship resistance and propulsion:** Practical estimation of ship propulsive power. New York: Cambridge University Press, 2011.

MOODY, L.F. Friction factors for pipe flow. **Transactions of the American Society of Mechanical Engineers**. Los Angeles, v. 66, n. 8, p. 671-684. nov. 1944.

MORRALL, A. **1957 ITTC model ship correlation line values of frictional resistance coefficient**. Delft: TUDelft, 1970.

PAPANIKOLAOU, A. Ship design: Methodologies of preliminary design. Athens: Springer, 2014.

ROZENFELD, H. *et al.* **Gestão de desenvolvimento de produtos:** Uma referência para a melhoria do processo. São Paulo. Saraiva, 2006.

SARC. **Sarc**, © 1980 - 2024. PIAS manual: resistance prediction with empirical methods. Disponível em: https://www.sarc.nl/images/manuals/pias/htmlEN/resist.html Acesso em: 25 mar 2024.

SCHEENKLUTCH, H. Schiffsentwurf für Effizienz und Wirtschaftlichkeit. Koehler: Heford, 1985.

SCHEENKLUTCH, H.; BERTRAM, V. Ship design for efficiency and economy. Butterworth-Heinemann: Oxford, 1998.

TANCREDI, T.P. As componentes da resistência ao avanço de um navio. Disponível em: https://www.youtube.com/watch?v=uJI1WgG6uHk. Acesso em: 12 jan. 2024.

VAN DEN BERG, C.H. **European mining course proceedings:** Pipelines as transportation systems. New York: Routledge, 1998.

VAN OORD. Van Oord, © 1868 - 2024. Trailing suction hopper dredger fleet overview.

Disponível em: www.vanoord.com. Acesso em: 17 dez. 2023.

VLASBLOM, W. Trailing Suction Hopper Dredger. *In*: VLASBLOM, Willem. **Designing dredging equipment**. Delft: TUDelft, 2003. p. 10-117.

WALPOLE, R.E. et al. Probability and statistics for engineers and scientists 9th.

ed. Boston: Pearson, 2012.

WILSON, K.C. Deposition-limit nomograms for particles of various densities in pipeline flow. Cranfield: BHRA Fluid Engineering, 1979.

WILSON, K.C. Effect of solids concentration on deposit velocity. **Journal of pipelines**. v. 5, n. 4, p. 251-257. out. 1986.

WILSON, K.C. *et al.* **Slurry transport using centrifugal pumps 3th.** Guildford: Springer, 2006.

WILSON, K.C. **Proceedings hydrotransport seminar:** Back to basics - with the experts. Cranfield: BHRA Fluid Engineering, 1996.

WILSON, K.C.; TSE, J.K.P. **Deposition limit for coarse-particle transport in inclined pipes.** Cranfield: BHRA Fluid Engineering, 1984.

APÊNDICE A – Base de Dados

-	-	-	-	n	-
Empresa	Estaleiro	Nome do Design	Nome da embarcação	Ano	Classe
Boskalis	Verolme Shipyard Heusde	en B.V.	Queen of the Netherland:	1998	Mega Hopper
Boskalis	Verolme Shipyard Heusde	en B.V.	Fairway	1997	Mega Hopper
Boskalis	Merwede Shipyard		Oranje	2004	Mega Hopper
Boskalis	Merwede Shipyard		Prins der Nederland	2004	Mega Hopper
Boskalis	IHC Dredgers B.V.		Willem van Oranje	2010	Jumbo Hopper
Boskalis	Merwede Shipyard		Gateway	2010	Jumbo Hopper
Boskalis	JJ. Sietas KG Schiffwert 0	Этьн	Beachway	2010	Large Hopper
Boskalis	JJ. Sietas KG Schiffwert 0	Этьн	Medway	2012	Medium Hopper
Boskalis	IHC Dredgers B.V.		Crestway	2008	Medium Hopper
Boskalis	IHC Dredgers B.V.		Shoreway	2008	Medium Hopper
Boskalis	Merwede Shipyard		Waterway	2001	Medium Hopper
Boskalis	Merwede Shipyard		Coastway	2002	Medium Hopper
Boskalis	Shipkits B.V.		Causeway	2013	Medium Hopper
Boskalis	Shipkits B.V.		Freeway	2014	Medium Hopper
Boskalis	Shipkits B.V.		Strandway	2014	Medium Hopper
Boskalis	Intervak Scheepswerf		Shoalway	2010	Medium Hopper
Damen		TSHD 5000			Medium Hopper
Damen		TSHD 4000			Medium Hopper
Damen		TSHD 3000			Medium Hopper
Damen	TSHD 25001	PORT AND MAINTEN/	ANCE SERIES		Small Hopper
Damen		TSHD 2500		2015	Small Hopper
Damen		TSHD 2000			Small Hopper
Damen	TSHD 2000	PORT AND MAINTEN	ANCE SERIES		Small Hopper
Damen		TSHD 1500			Small Hopper
Damen	TSHD PORT	AND MAINTENANCE	SERIES 1000		Small Hopper
Uamen		TSHD 650		2017	Small Hopper
Van Oord			Volvox Terranova	1998	Mega Hopper
Van Oord			HAM 318	2008	Mega Hopper
Van Uord			Vox Máxima	2009	Mega Hopper
Van Uord			Hotterdam	2001	Mega Hopper
Van Uord			Vox Amailia	2018	Jumbo Hopper
Van Uord			Vox Alexia	2021	Small Hopper
Van Uord			Ultrecht	1996	Jumbo Hopper
Van Uord			HAM 310	1985	Small Hopper
Van Uord			Vox Ariane	2021	Jumbo Hopper
Van Uord			Vox Apolonia	2021	Jumbo Hopper
Van Uord			Volvox Asia	1998	Jumbo Hopper
Van Uord			Lelystad	1986	Large Hopper
Van Uord			Geopotes IS	1985	Small Hopper
Van Uord			HAM 316	1998	Large Hopper
Van Uord			Volvox Delta	1984	Medium Hopper
Van Oord Vaa Oord			Volvox Ulympia Volvov Assistant	2003	Medium Hopper
van Oord Vae Oard			VOIVOX Atalanta	1333	Preatum Hopper
Van Oord Vaa Oord			Central June	2000	Small Hopper
Van Oord Van Oard			LOSIALALUZ	1004	Smail Hopper
Van Oord Van Oard			E Carta Vanda	1334	Small Hopper
Van Oord Van Oord			Losta verde Desus Casta Dara Ha	1330	Small Hopper
Van Oord Van Oard			Dravo Costa Dorada	1307	Smail Hopper
Van Uord			Losta Atlantica	2003	i Small Hopper

Figura 42 - Dados coletados

m	m	m	m	m
Comprimento geral	Comprimento entre	Boca	Poptal	Calado mávimo
da embarcação	perpendiculares	2000		
230,71		32	16,85	13,674
230,71		32	16,85	13,5
201		28	15	12,1
201		28	15	12,1
143,53		28	13,5	10
143,53		28	13,5	10
120,35		21	8,7	7,8
121,32		21	7,7	6,8
97,5		21,6	7,6	7,1
97,5		21,6	7,6	7,1
97,7		23	7	6,58
97,7		23	7	6,58
92,1	84,87	19	7,25	6,82
92,1	84,87	19	7,25	6,82
	84,87	19	7,25	6,82
90	83,09	19	7,25	6,28
91,5	84,95	21	8,8	6,9
88,5	81,5	19,6	8,8	6,4
81	75	18,4	8,1	4,5
82,4	79,9	15,2	5,8	5,4
80,3	76,1	16.2	5,6	5,1
73	69	18.4	7.4	4.7
76	72.7	14.2	5.4	4,9
70	66.9	13.2	5.4	4.5
58.7	56.1	12.2	4.5	3.8
60.37	55.6	12	4	3.5
164.1	154	29.03	11.2	11.2
227.2		32	17.2	13.37
203	185	31	17.5	14.5
186.2	172.64	31	12.5	11.37
158.85	143.25	36	14.5	10.25
137.6	127.8	28	10.3	10,20
154.6	141.65	28	11.85	10.37
167.6	141,00	23.04	116	10.07
137.6	127.8	28	10.3	10,01
137.6	127.8	28	10.3	
133.93	127	26.04	11	9.47
136 95	130.7	26,07	882	8 19
132 11	128	23,64	10.03	9.07
128.46	115.62	23,04	12.9	9.07
117 19	110.2	217	9.12	8 12
97.75	84.95	21,1 19.92	82	7 19
91,15	84.95	17.04	0,2	677
975	955	18.42	0,0	0,rr 7.12
97,0 97,0	0,00	17.02	0,0	1,12
04,00 QA	84.44	17.02	6.0	5,00
J4 07 00	04,44	102	0,3 e	5,00 6.4
01,33	76 95	14 01	600	0,4 E 25
03,01	10,35	14,01	0,33	5,25
82,8	78,5	16		5

Figura 43 - Dados coletados

t	t	t	m'
Destances	0	D	Capacidade volumétrica
Deslocamento	Arqueação bruta	Peso morto	da cisterna
	33423	59168	35500
82910	33423	58298	35500
	23985	39355	22205
	23985	39355	22205
	13917	22000	12000
		22000	12000
	6848	11849	8086
	6725	9646	7516
	5005	8350	5600
	5005	8350	5600
	5393	7192	4906
	5393	7144	4906
	4320	6750	4500
	4320	6750	4500
	4320	6750	4500
	4088	6750	4500
	1000	8300	5000
		6800	4600
		5000	3100
		4150	2650
		3625	2500
		3020	2300
		3350	2200
		000	2100
		2300	1700
		1350	1000
		1130	650
		30234	20000
		67471	39467
		53839	31387
		38000	21665
		20951	18893
		15700	11100
		23000	18292
		21224,696	13392
		15700	11100
		15700	11100
		17299	10834
		13200	10329
		14387	9931
		14389	9535
		9731	7788
		6355	4883
		6230	4692
		5576	4497
		4907	3738
		4177	3702
		3155	2671
		3000	2548
		3855	2400

Figura 44 - Dados coletados

kM kM<							
Potencia da bomba de dagagem abced de dagaem de dagagem abced de dagaem abced de dagaem de d	k₩	kW	k₩	kW	kW	k₩	k₩
27634 000 de dragagem zubmerra de lato f água total em descaga Velocidad de serviço de demandara 27750 6000 3000 12000 22650 22650 19500 5000 3000 8800 14000 1500 19500 5000 3500 2250 7500 12000 1000 18707 7500 2500 7500 12000 3400 570 7721 2000 3500 2500 7500 4000 450 6700 4000 700 4000 4000 450 500 6705 1950 2700 4000 4000 500 500 6706 4000 700 4000 4000 500 500 9472 1925 1932 3850 2862 500 9472 1925 1932 3850 2862 500 9472 1925 1932 3850 2864 287 <t< td=""><td>Potência instalada</td><td>Potência da bomba</td><td>Potência da bomba</td><td>Potência da bomba</td><td>Potência de bomba</td><td>Potência propulsiva em</td><td>Potência do propulsor</td></t<>	Potência instalada	Potência da bomba	Potência da bomba	Potência da bomba	Potência de bomba	Potência propulsiva em	Potência do propulsor
27834 7000 12000 12000 23000 2850 19500 5000 3000 8800 14000 1500 19500 5000 3000 8800 14000 1500 19500 5000 3500 2500 7500 12000 1400 1370 750 2500 7500 12000 1400 570 7121 2000 1000 2000 3400 570 570 6700 4000 700 4000 4000 450 550 6705 1500 2760 4000 500 500 6365 1500 1500 2760 4000 500 9472 1825 1492 3650 2382 500 9472 1825 1492 3650 2382 500 9472 1825 1492 3650 2382 500 3800 1750 1750 600 2382 500 3800 1678 1773 600 2700 280 260	1 otenoia instalada	de dragagem abordo	de dragagem submersa	de jato d'água	total em descarga	velocidade de serviço	de manobra
27550 6000 3000 12000 23000 2550 19500 5000 3000 8800 14000 1500 19501 5000 2500 7560 12000 1400 1971 2000 2500 7500 12000 1400 1721 2000 1000 2000 3400 570 7721 2000 700 4000 4000 450 6700 4000 700 4000 4000 450 6700 4000 700 4000 400 500 6865 1500 7500 2760 4000 500 9472 1825 1432 3650 2382 500 9472 1825 1432 3650 2382 500 9472 1825 1432 3650 2382 500 9472 1825 1432 3650 2382 500 9472 1825 1432 3650 2382 500 9472 1825 1432 1860 2382 500 9472 1825 1432 1860 2382 500 9470 200 200 2300 <td< td=""><td>27634</td><td>7000</td><td></td><td>3000</td><td>12000</td><td>23000</td><td>2650</td></td<>	27634	7000		3000	12000	23000	2650
19500 5000 3000 8800 14000 1500 13870 7500 3500 2500 7500 12000 1400 13870 7500 2500 7500 12000 1400 13870 7500 12000 1400 570 570 7121 2000 1000 2000 3400 570 6700 4000 700 4000 460 570 6700 4000 700 4000 460 580 6700 4000 700 4000 460 580 6865 1500 750 2760 4000 500 5865 1500 1432 3850 2382 500 59472 1825 1432 3850 2382 500 59472 1825 1432 3850 2382 500 3800 1676 1750 500 2700 280 3800 1676 167	27550	6000		3000	12000	23000	2650
19500 5000 3000 3600 1300 1600 1500 13370 7500 3500 2500 7500 12000 1400 13370 7500 2000 3400 570 570 7121 2000 1000 2000 3400 570 6700 4000 700 4000 4000 450 6700 4000 700 4000 4000 450 6365 1500 7500 2760 4000 500 6365 1500 1500 2760 4000 500 6365 1500 1500 2760 4000 500 9472 1825 1432 3650 2882 500 9472 1825 1432 3650 2882 500 6666 1680 1750 1432 3650 2882 500 3800 1757 1750 600 3000 450 3800 1757 1750 2700 400 3800 1757 1750 600 3000 280 3800 1678 1500 350 280 280 1900 280 390 <td>19500</td> <td>5000</td> <td></td> <td>3000</td> <td>8800</td> <td>14000</td> <td>1500</td>	19500	5000		3000	8800	14000	1500
13870 7500 3500 2500 7500 12000 1400 7121 2000 1000 2000 3400 570 7121 2000 1000 2000 3400 570 6700 4000 700 4000 4000 480 6700 4000 700 4000 4000 480 6700 4000 700 4000 4000 480 6700 4000 700 4000 4000 480 6700 4000 700 4000 4000 500 6385 1500 1500 2760 4000 500 9472 1825 1432 3650 2882 500 9472 1825 1432 3650 2882 500 9472 1825 1432 3650 2882 500 9480 2200 200 750 3800 2882 500 9472 1825 1432 3650 2882 500 9480 2200 3500 3600 280 280 3800 1678 1676 500 280 280 3800 1676 500	19500	5000		3000	8800	14000	1500
13870 7500 2500 7500 1000 2000 3400 570 7121 2000 1000 2000 3400 570 6700 4000 700 4000 4000 450 6700 4000 700 4000 4000 450 6385 1500 700 4000 4000 500 5385 1500 750 2780 4000 500 9472 1825 1432 3850 2882 500 9472 1825 1432 3850 2882 500 9472 1825 1432 3850 2882 500 9472 1825 1432 3850 2882 500 9472 1825 1432 3850 2882 500 3800 1750 600 3000 430 282 500 3800 1750 1750 600 280 280 280 3800 1678 1750 600 280 280 280 3800 1678 1590 350 280 280 280 29490 2000 3500 280 280 280	13870	7500	3500	2500	7500	12000	1400
7121 2000 1000 2000 3400 570 6700 4000 700 4000 4000 450 6700 4000 700 4000 4000 450 6870 4000 700 4000 4000 570 6875 1500 2760 4000 500 68772 1825 1492 3650 2382 500 9472 1825 1492 3650 2382 500 9472 1825 1492 3650 2382 500 9472 1825 1492 3650 2382 500 9472 1825 1492 3650 2382 500 8666 1860 1750 600 2700 400 300 3800 1750 1750 600 2700 200 280 260	13870	7500		2500	7500	12000	1400
7121 2000 4000 700 4000 450 6700 4000 700 4000 450 6385 1500 700 4000 450 6385 1500 700 4000 450 6385 1500 2760 4000 500 9472 1825 1432 3650 2882 500 9472 1825 1432 3650 2882 500 9472 1825 1432 3650 2822 500 9472 1825 1432 3650 2382 500 9472 1825 1432 3650 2382 500 9472 1825 1432 3650 2382 500 9473 1870 750 600 3100 450 3800 1878 1750 350 2700 400 1300 1878 1879 500 2500 280 2340 150 350 2200 280 280 1303 1900 2250 1400 2000 844 2440 300 2250 840 200 240 24949 2550 1400	7121	2000		1000	2000	3400	570
6700 4000 4000 4000 450 6700 4000 1500 2760 4000 500 6385 1500 1500 2760 4000 500 8385 1500 2760 4000 500 9472 1825 1492 3650 2382 500 9472 1825 1492 3650 2382 500 8666 1860 1492 3650 2382 500 6666 1860 1492 1880 2382 500 3380 1750 1750 600 2700 400 3380 1750 1750 600 2700 280 3300 1878 350 2700 280 280 1350 1350 350 2700 300 280 1400 200 2400 300 281 284 28480 5500 5000 4300 2250 3000 <	7121	2000		1000	2000	3400	570
6700 4000 4000 450 6858 1500 1500 2760 4000 500 9472 1825 1492 3650 2362 500 9472 1825 1492 3650 2362 500 9472 1825 1492 3650 2362 500 9472 1825 1492 3650 2362 500 9466 1680 1492 3650 2362 500 6666 1680 1492 360 2362 500 9472 1825 1750 750 3500 2360 260 9480 2200 2200 750 3500 2700 400 93800 1678 1678 500 2400 280 1350 1350 350 2400 280 28636 5500 5000 4300 2200 2500 3000 28636 5500 5000 4300 2200 2500 3000 3106 28636 5500 50	6700	4000		700	4000	4000	450
6385 1500 1500 2760 4000 500 6385 1500 1500 2760 4000 500 9472 1825 1402 3650 2362 500 9472 1825 1492 3650 2362 500 6666 1680 1432 3650 2362 500 6666 1680 1432 1860 2382 500 3850 1750 1750 600 2380 500 3850 1750 1750 600 3100 450 3850 1750 1750 600 2700 280 3800 1878 1678 500 2700 280 3800 1878 1570 350 280 280 3800 1878 1570 350 280 280 3800 1878 1350 350 280 280 2844 284 3400 280 390 280 2848 5500 5000 4300 2250 2500 300 23848 3400 5250 1400 2000 14400 2000 23848 240 1400 <	6700	4000		700	4000	4000	450
6385 1500 1500 2760 4000 500 9472 1825 1432 3650 2382 500 9472 1825 1432 3650 2382 500 9472 1825 1432 3650 2382 500 9472 1825 1432 3650 2382 500 9472 1825 1432 3650 2382 500 666 1680 1432 1860 2382 500 4380 2200 2200 750 3500 3500 500 3800 1678 1678 500 2700 400 3800 1678 1678 500 2700 280 1350 1350 350 2400 300 280 1400 280 360 280 280 280 2848 5500 5000 4300 2250 25200 3000 2848 5400 5250 1400 2000 14400 2000 2848 3400 5250 1400 2000 14400 2000 23848 3400 5250 1400 2000 14400 1440 <	6365	1500		1500	2760	4000	500
9472 1825 1432 3650 2382 500 9472 1825 1432 3650 2382 500 9472 1825 1432 3650 2382 500 6666 1860 1432 3650 2382 500 6666 1680 1432 3650 2382 500 3850 750 1750 600 3500 500 3860 1678 1678 500 2500 280 3800 1676 1678 500 2500 280 1350 1350 350 2400 300 280 1900 2 300 280 300 280 1800 2 5500 5000 4300 2250 3000 31303 2 3000 2520 3000 300 254 23449 9400 5250 1400 2000 14400 2000 23840 <t< td=""><td>6365</td><td>1500</td><td></td><td>1500</td><td>2760</td><td>4000</td><td>500</td></t<>	6365	1500		1500	2760	4000	500
9472 1825 1432 3850 2382 500 9472 1825 1432 3650 2382 500 6666 1680 2200 750 3500 2500 500 4380 2200 2200 750 3500 450 500 3800 1678 1678 500 2700 400 2500 282 1350 1750 1750 0 2500 280 280 280 280 280 280 280 280 280 280 280 280 280 280 300 280	9472	1825		1492	3650	2982	500
3472 1825 1432 3650 2382 500 6666 1660 1432 1680 2382 500 3850 1750 1750 600 3100 450 3850 1750 1750 600 3100 450 3800 1678 1678 500 2700 400 2500 2801 2500 280 2801 2801 3800 1678 1678 500 2400 3001 280 1350 1350 350 2400 300 280 300 280 1800 2803 3900 280 300 280 300 280 2849 2849 2834 2849 2834 284 3000 2550 3000 3000 23848 9400 5250 1400 2000 14400 2000 23849 2400 5250 1400 2000 14400 1440 1440 </td <td>9472</td> <td>1825</td> <td></td> <td>1492</td> <td>3650</td> <td>2982</td> <td>500</td>	9472	1825		1492	3650	2982	500
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	9472	1825		1492	3650	2982	500
0000 0200 2200 750 000 1500 1500 1500 3850 1750 1750 600 3100 450 3800 1678 1678 500 2700 280 3800 1678 1678 500 280 2840 287 1350 1350 350 24400 300 480 300 280 1350 1350 350 2400 300 280 300 280 1800 2840 390 280 390 280 390 280 2849 900 5000 4300 2250 2520 3000 23848 3400 5250 1400 2000 14400 2000 23848 3400 5250 1400 2000 14400 2000 23848 3400 5250 1400 2000 14400 2000 13552 14260 14260 14400 144	6666	1680		1492	1680	2982	500
3600 2200 2200 600 3000 450 3800 1678 1678 500 2700 400 3800 1678 1678 500 2800 2800 3800 1350 350 2800 2984 287 1350 1350 350 2400 300 280 1800 2803 894 281 2830 894 284 28490 5500 5000 4300 2250 25200 3000 3109 23648 3400 5250 1400 2000 14400 2000 28640 1352 1400 2000 14400 2000 2348 2364 2364 2364 2364 2364 2364 2364 2364 2364 2364 2364 2364 2364 2364 2364 2400 2000 2000 2000 2000 2000 2000 2000 2000 2460 2460 2460	4980	2200	2200	750	1000	3500	500
3636 1137 1130 000 3000 400 3800 1678 1678 500 2500 280 1350 1350 350 2400 300 1350 1350 350 2400 300 100 280 1400 280 100 1400 280 1800 400 280 2834 287 300 1800 280 900 280 2834 5500 5000 4300 2250 25200 3000 28366 5500 5000 4300 2250 25200 3000 27470 3900 5250 1400 2000 14400 2000 23848 9400 5250 1400 2000 14400 2000 23848 2340 5250 1400 2000 14400 2000 23840 1352 1400 2000 14400 2000 1352 14260 14260 1440 1440 1440 13580 1358 1458 1458 1458 1458 12380 1458 1458 1458 1458 1458	4000	1750	1750	600		2100	450
3000 1010 1010 300 2100 260 1350 1350 350 2394 280 1350 1350 350 2400 300 1800 280 1400 280 1900 280 1400 280 1800 834 254 28636 5500 5000 4300 2250 25200 3000 31309 23848 9400 5250 1400 2000 14400 2000 23848 9400 5250 1400 2000 14400 2000 23848 9400 5250 1400 2000 14400 2000 1352 1352 1400 2000 14400 2000 1352 1350 1400 2000 14400 2000 1352 14260 1426 1426 1426 1426 14466 14466 14466 14466 14466 14466 14466 14466<	3800	1679	1679	500		2700	400
1350 1350 350 2000 2001 1350 1350 350 2400 300 1700 280 1000 280 1800 280 900 280 29490 894 254 29490 280 3000 280 29490 894 254 23848 9400 5250 1400 2000 14400 2000 23848 9400 5250 1400 2000 14400 2000 23848 9400 5250 1400 2000 14400 2000 23840 1352 1400 2000 14400 2000 13522 14200 14200 14400 14400 14401 14411 14280 14280 1440 14411 14411 14411 14411 14411 14411 14411 14411 14411 14411 14411 14411 14411 144111 144111 144111	0000	1010	1010	500		2500	400
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						2000	200
1350 1350 330 2400 300 1700 280 1400 280 1800 390 280 28430 900 281 28636 5500 5000 4300 2250 25200 3000 31309 22348 9400 5250 1400 2000 14400 2000 23848 9400 5250 1400 2000 14400 2000 23848 9400 5250 1400 2000 14400 2000 23848 9400 5250 1400 2000 14400 2000 23848 9400 5250 1400 2000 14400 2000 1352 14280 14280 14280 1440 14280 1440		1250	1250	250		2304	201
1800 1400 280 1800 834 280 28636 5500 5000 4300 2250 3000 23648 3400 5250 1400 2000 3000 23848 3400 5250 1400 2000 14400 2000 23848 3400 5250 1400 2000 14400 2000 23848 3400 5250 1400 2000 14400 2000 23848 3400 5250 1400 2000 14400 2000 23848 3400 5250 1400 2000 14400 2000 13522 13380 13380 14260 14460 14460 14460 12380 12380 14160 14460 14460 14460 14460 12380 1417 1417 1417 1417 1417 1417 1417 1417 1417 1417 1417 1417 1417 1417 <td></td> <td>1330</td> <td>1350</td> <td>300</td> <td></td> <td>2400</td> <td>300</td>		1330	1350	300		2400	300
1600 1400 280 28430 834 254 28636 5500 5000 4300 2250 834 254 28636 5500 5000 4300 2250 25200 3000 31303 23648 3400 5250 1400 2000 14400 2000 23648 3400 5250 1400 2000 14400 2000 23646 3400 5250 1400 2000 14400 2000 13522 14260 14260 14260 14260 14260 14260 14400						1/00	280
1600 900 280 29490 894 254 28636 5500 5000 4300 2250 25200 3000 31309 23848 9400 5250 1400 2000 14400 2000 23848 9400 5250 1400 2000 14400 2000 23848 9400 5250 1400 2000 14400 2000 23848 9400 5250 1400 2000 14400 2000 23848 9400 5250 1400 2000 14400 2000 23849 9400 5250 1400 2000 14400 2000 13522 1352 14260 14260 14260 14260 1440 14260 11380 12380 12380 14380 1441 1441 1441 1441 1441 1441 1441 1441 1441 1441 1441 1441 1441 1441 1441 <td></td> <td></td> <td></td> <td></td> <td></td> <td>1400</td> <td>280</td>						1400	280
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						900	280
234300 5500 5000 4300 2250 25200 3000 27470 23848 9400 5250 1400 2000 14400 2000 23848 9400 5250 1400 2000 14400 2000 23848 9400 5250 1400 2000 14400 2000 23840 1352 1400 2000 14400 2000 14400 2000 13521 14260 14260 14260 14400	1800					894	254
28836 5500 5000 4300 2250 25200 3000 31309 1400 2000 14400 2000 23848 9400 5250 1400 2000 14400 2000 23848 9400 5250 1400 2000 14400 2000 23840 13522 1400 2000 14400 2000 13522 14260 <td>29490</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	29490						
31309 1400 2000 14400 2000 23848 9400 5250 1400 2000 14400 2000 23848 23640 13522 1400 2000 14400 2000 13522 14260 14260 14260 14260 14260 14260 14400	28636	5500	5000	4300	2250	25200	3000
27470 0 1400 2000 14400 2000 23848 9400 5250 1400 2000 14400 2000 23846 13522 1400 2000 14400 2000 14260 <td< td=""><td>31309</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	31309						
23848 9400 5250 1400 2000 14400 2000 23848 23840 13522 14260 13522 14260<	27470						
23848 23640 23522 14260 14260 21480 13380 12380 12380 12137 11000 6542 6633 6633 6187 5547 5317 4217 4217 4217 2800 14217	23848	9400	5250	1400	2000	14400	2000
23640 13522 13522 14260 14260 14260 21480 13380 13380 12380 12137 11100 6542 6633 6633 187 5547 5317 4217 14217 2380 14217	23848						
13522 14260 14260 21480 13380 12380 12137 11100 6533 6833 6187 5547 5317 4217 280	23640						
14260 14260 21480 13380 12380 12380 12380 12137 11100 6542 6633 6187 5547 5317 4217 2380	13522						
14260 21480 13380 12380 1237 1100 6542 6633 6187 5547 5317 4217 2360	14260						
21480 13380 13380 12380 12137 1100 6542 6633 6633 6187 5547 5317 4217 4217 2800 1	14260						
13380 12380 12137 11100 6542 6633 6187 5547 5317 4217 4217 2360	21480						
12380 12137 11100 6542 6633 6187 5547 5517 4217 4217 280	13380						
12137 11100 6542 6633 6187 5547 5317 4217 4217 2380	12380						
11100 6542 6633 6187 5547 5317 4217 2360	12137						
6542 6633 6187 5547 5317 4217 2360	11100						
6633 6187 5547 5317 4217 4217 2380	6542						
6187 5547 5317 4217 4217 2380	6633						
5547 5317 4217 2360	6187						
5317 4217 4217 2980	5547						
4217 4217 2980	5317						
4217 2980	4217						
2360	4217						
	2980						

Figura 45 - Dados coletados

											Ī
DEME	LOA	8	٥	F	Dred depth	°	Diâmetro	光	Max S	٩	S
	Е	Е	Е	E	Е		mm	m³	knots	kW	kw
Congo river	168	38	13,3	12,15	56	2	1300	30190	16,6	25445	23200
Nile river	144	28	11,9	10,56	60	2	1200	17000	14	19559	17280
ange Wapper	129,8	26,82	10,8	9,81	50	1	1200	13700	14,2	13860	11520
Uilenspiegel	142,8	26,8	10,8	9,8	50	1	1200	13700	15,7	13960	11520
Antigoon	115	22,6	9,8	8,86	45	1	1200	8460	14	9735	8000
Brabo	122,19	28	9,8	9,1	43	1	1200	11650	14,9	11037	8000
Breughel	122,19	28	9,8	9,1	43	1	1200	11650	14,9	11037	8000
Breydel	125,5	28	9,8	9,1	43	1	1200	11650	14,9	11037	8000
Charlemange	101,22	20,8	9,2	8,5	60	1	700	5000	13	5876	5400
Artevelde	97,5	21,6	2'6	7,1	33	1	1000	5600	12,3	6826	4050
Mareike	97,5	21,6	2'6	7,1	33	1	1000	5600	12,3	6826	4050
Reynaert	97,5	21,6	2'6	7,1	33	1	1000	5580	12,3	6823	4050
Mellina	94,25	16,95	8,4	6,4	35	1	800	3309	11,5	4823	2600
Minerva	86,3	18	7,2	5,8	30	1	750	3515,89	12	5544	2400

Figura 46 - Grupo de controle

APÊNDICE C – Índice de Correlação

				Deadweight		DirectorPlanos	det pump output			Speed Sailing
	Total installed power	อภาพน รรณษ	Hopper capacity	8 miles - Dll	Suotion pipe diameter	bread	+ diluting pump	Propulsion power sailing	Bow thruster	Loaded
Total installed power	-									
Gross tonnage	0,937243623	-								
Hopper capacity	0,904377266	0,381000486	-							
Deadweight 8 miles – D II	0,303276689	0,976687653	0,335003967	-						
Suction pipe diameter	0,787210664	0,770617027	0,761397688	0,771685071	-					
DredgePumps Inboard	0,380558343	0,308780832	0,869575625	0,877720218	0,792413678	-	_			
Jet pump output + diluting pump	0,833980496	0,738270841	0,765773089	0,77371776	0,683541115	0,827405449	-	_		
Propulsion power sailing	0,96296557	0,933933742	0,925910579	0,93349913	0,847469669	0,36551645	0,872574059	-		
Bow thruster	0,368156241	0,91864713	0,918460987	0,920350483	0,826031657	0,959817882	0,829093228	0,979569619	-	
Speed Sailing Loaded	0,305648334	0,861513239	0,805865789	0,812811469	0,850775724	0,9275378	0,821360146	0,912837915	0,904705692	

Figura 47 - Índice de correlação

negree	סטוחון סנמנוסנורס							
Multiple R	0,9563							
R Square	0,9146							
Adjusted R Square	0,9104							
Standard Error	2570,8141							
Observations	44,0000							
ANOVA								
	df	SS	SM	F	Significance F			
Regression	2	2902070518	1451035259 2	219,5516	1,24368E-22			
Residual	41	270972490,6	6609085,136					
Total	43	3173043009						
	Coefficients	Standard Error	t Stat P	o-value	Lower 95%	Upper 95% c	ower 95,09	Upper 95,0%
Intercept	-5,342E+02	9,402E+02	-5,682E-01 5,	730E-01	-2433,049331	1364,588751	-2433,05	1364,588751
Hopper capacity	1,618E+00	1,436E-01	1,127E+01 3,	945E-14	1,327837874	1,907777627	1,327838	1,907777627
Hopper capacity^2	-2,226E-05	3,799E-06	-5,860E+00 6,	836E-07	-2,99334E-05	-1,45901E-05	-3E-05	-1,459E-05

Figura 48 - Regressão para eq. empírica

APÊNDICE D – Regressão para Equação Empírica

SUMMARY OUTPUT

Fonte: Autor (2024).

	Total installed power	Hopper capacity	DredgePumps Inboard	Propulsion power sailing				
otal installed power	-							
opper capacity	0,904377266	-						
IredgePumps Inboard	0,980558349	0,869575625	1					
ropulsion power sailing	0,96296557	0,925910579	0,96551645	1				
UMMARY OUTPUT								
Regression S	tatistics							
Aultiple R	0,987474406							
Square	0,975105703							
djusted R Square	0,971417659							
standard Error	1408,954077							
bservations	32							
NOVA								
	df	S	SW	F	Significance F			
Regression	4	2099468057	524867014,1	264,3964404	3,15161E-21			
lesidual	27	53599092,94	1985151,59					
otal	31	2153067149						
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95,0%	Upper 95,0%
ntercept	-72,4977	776,9095	-0,0933	0,9263	-1666,584223	1521,588897	-1666,584223	1521,588897
Hopper capacity	0,4426	0,1679	2,6366	0,0137	0,09815412	0,78697046	0,09815412	0,78697046
Hopper capacity] ²	-5,47E-06	0,000	-1,6563	0,1092	-1,2248E-05	1,30654E-06	-1,2248E-05	1,30654E-06
DredgePumps Inboard	1,6241	0,2846	5,7073	000000	1,040246272	2,208022685	1,040246272	2,208022685
ropulsion power sailing	-0,0435	0,1615	-0,2693	0,7897	-0,374773289	0,287797953	-0,374773289	0,287797953
om regressão multi-linea	ar		Com Solver					
beficientes			Coeficientes					
ntercept	-72,4977		Intercept	-1125,764417				
lopper capacity	0,4426		Hopper capacity	0,51809811				
Hopper capacity] ²	-5,47E-06		[Hopper capacity] ²	-7,77048E-06				
)redgePumps Inboard	1,6241		DredgePumps Inboard	1,163				
ropulsion power sailing	-0,0435		Propulsion power sailing	0,198585218				

APÊNDICE E – Regressão para Equação Semiempírica

Figura 49 - Regressão para eq. semiempírica

Fonte: Autor (2024).

APÊNDICE F – Análise do método de Holtrop e Mennen

	kW	kW	kW	%
	Pontência	Estimativa por		
n° da Emb.	Instalada	Holtrop e Mennen	Desvio	Desvio %
1	27000	27148,77	148,77	0,01
2	25200	25508,05	308,05	0,01
3	23600	23936,69	336,69	0,01
4	23000	20572,84	-2427,16	-0,11
5	23000	20449,51	-2550,49	-0,11
6	18000	16712,82	-1287,18	-0,07
7	14400	14960,15	560,15	0,04
8	14000	13509,34	-490,66	-0,04
9	14000	13509,34	-490,66	-0,04
10	14000	13493,74	-506,26	-0,04
11	12000	12848,15	848,15	0,07
12	12000	12848,15	848,15	0,07
13	12000	12858,57	858,57	0,07
14	9000	8439,65	-560,35	-0,06
15	8000	7057,66	-942,34	-0,12
16	8000	7057,66	-942,34	-0,12
17	8000	7057,66	-942,34	-0,12
18	4000	3857,25	-142,75	-0,04
19	4000	3857,25	-142,75	-0,04
20	4000	3877,44	-122,56	-0,03
21	4000	3877,44	-122,56	-0,03
22	3600	4173,46	573,46	0,16
23	3500	3429,30	-70,70	-0,02
24	3500	3430,76	-69,24	-0,02
25	3400	3004,14	-395,86	-0,12
26	3400	2853,28	-546,72	-0,16
27	3300	2904,15	-395,85	-0,12
28	3100	3008,54	-91,46	-0,03
29	2984	2521,36	-462,64	-0,16
30	2982	2189,56	-792,44	-0,27
31	2982	2189,56	-792,44	-0,27
32	2982	2189,56	-792,44	-0,27
33	2982	2112,66	-869,34	-0,29
34	2700	2139,69	-560,31	-0,21
35	2700	1970,74	-729,26	-0,27
36	2500	1624,15	-875,85	-0,35
37	2500	2682,30	182,30	0,07
38	2400	1975,96	-424,04	-0,18
39	2300	2276,26	-23,74	-0,01
40	1700	1276,87	-423,13	-0,25
41	1400	1067,00	-333,00	-0,24
42	900	800,99	-99,01	-0,11
43	894	1056,97	162,97	0,18

Figura 50 - Análise do método de Holtrop e Mennen

APÊNDICE G – Análise da Estimativa da Potência de Dragagem

	kW		Γ			
	Estimada	Potência real	C	Dif.	Dif. %	Desvio padrão
1	12402,65	19300,00		6897,35	0,36	0,13
2	9092,54	11000,00		-7185,07	-0,65	0,43
3	7773,91	12000,00		-3547,81	-0,30	0,09
4	6784,93	13600,00		6815,07	0,50	0,25
5	4806,99	12000,00		2386,02	0,20	0,04
6	4609,20	12000,00		2781,61	0,23	0,05
7	4279,54	7500,00		3220,46	0,43	0,18
8	4279,54	7500,00		3220,46	0,43	0,18
9	4074,90	10400,00		2250,21	0,22	0,05
10	3064,95	5400,00		2335,05	0,43	0,19
11	3064,95	5400,00		2335,05	0,43	0,19
12	3064,95	5400,00		2335,05	0,43	0,19
13	3040,47	9400,00		3319,06	0,35	0,12
14	2533,40	4540,00		2006,60	0,44	0,20
15	2410,65	8800,00		3978,69	0,45	0,20
16	2410,65	8800,00		3978,69	0,45	0,20
17	1570,89	10600,00		7458,21	0,70	0,50
18	1486,92	4000,00		2513,08	0,63	0,39
19	1486,92	4000,00		2513,08	0,63	0,39
20	1360,95	2000,00		639,05	0,32	0,10
21	1360,95	2000,00		639,05	0,32	0,10
22	1267,30	3600,00		2332,70	0,65	0,42
23	1105,51	3500,00		2394,49	0,68	0,47
24	1040,80	2200,00		1159,20	0,53	0,28
25	1040,80	3000,00		1959,20	0,65	0,43
26	1040,80	3650,00		2609,20	0,71	0,51
27	1040,80	3650,00		2609,20	0,71	0,51
28	1040,80	3650,00		2609,20	0,71	0,51
29	1040,80	1680,00		639,20	0,38	0,14
30	1040,80	2750,00		1709,20	0,62	0,39
31	976,08	2760,00		1783,92	0,65	0,42
32	976,08	2760,00		1783,92	0,65	0,42
33	879,01	2940,00		2060,99	0,70	0,49
34	772,02	1750,00		977,98	0,56	0,31
35	463,96	1678,00		1214,04	0,72	0,52
36	463,96	1000,00		536,04	0,54	0,29
37	254,87	1350,00		1095,13	0,81	0,66

Figura 51 - Análise do método semiempírico de estimativa da potência instalada

Desvio Pa	drão
3222,558	0,543872
kW	%
Description	6.44
Desvio me	edio
0,467382	0,51867084

Fonte: Autor (2024).

APÊNDICE H – Interface da Ferramenta de Cálculo

Figura 52 - Interface da ferramenta de aplicação do método

Input Optional Mandatory Hopper m³ Ηv Hopper volume Dredging depth Max. Depth of dredging Н m Soil d50 mm d85 mm dmf mm Avarage solid diameter n Avarege particle size Ro_s kg/m³ Porosity of soil Flow kg/m³ Density of the mixture Ro_m kg/m³ Density of the water Ro_w vf m²/s Kinematic viscocity of liquid m/s Mean velocity vm Suction pipe D mm Suction pipe k Absolute roughness of the pipeline wall m 0 Pipe angle in relation to the horizontal axis w

Main ship dimensions					
LOA	m	Length on waterline			
Lpp	m	Length between perpendiculars			
В	m	Breadth moulded			
Tf	m	Draught molded on F.P.			
Та	m	Draught molded on A.P.			
т	m	Avarege molded draught			
Depth	m	Depth			

Figura 53 - Interface da ferramenta de aplicação do método

Dimensional coefficients				
Cb	-	Block coefficient		
Cm	-	Medship section coefficient		
Cwp	-	Waterplane area coefficient		
Ср	-	Prismatic coefficient		

Appandages					
(1*k2)eq	-	Appandages coefficient			
Sapp m2 Wetted area appendages					

Propeller					
D		m	Propeller Diameter		
Z		-	N of Propeller Blades		
		m	Clearence Propeller with Keel Line		

Stern			
At	m	n2	Transom Area
Cstern	-		Stern Shape Parameter (-10 if V-shaped sections,
			0 if Normal section shape, 10 Hogner stern)

Bulb			
Abt	m2	Tranverse Bu	lb Area
hB	m	Centre of Bul	b Area above the Keel Line

Vessel sailing speed				
Vs	knots	Service speed sailling loaded		

Figura 54 - Interface da ferramenta de aplicação do método

Output						
Power estim	Power estimate					
PI	kW	Instaled power				
РР	kW	Propulsive power				
PD	kW	Dredging pump power				

APÊNDICE I – Estimativa da potência instalada / grupo de controle

Eq com base na cisterna							
PI est		Sigma	Sigma²	%	%²		
kW							
28017		-2572	6613957,4	-0,10	0,0102154		
20535		-976	951896,83	-0,05	0,0024883		
17451		-3591	12897258	-0,26	0,0671384		
17451		-3491	12189003	-0,25	0,0625457		
11559		-1824	3327089,2	-0,19	0,0351069		
15292		-4255	18102350	-0,39	0,1486048		
15292		-4255	18102350	-0,39	0,1486048		
15292		-4255	18102350	-0,39	0,1486048		
6998		-1122	1259377,7	-0,19	0,0364748		
7827		-1001	1002629,1	-0,15	0,0215183		
7827		-1001	1002629,1	-0,15	0,0215183		
7800		-977	954402,9	-0,14	0,0205013		
4575		248	61348,922	0,05	0,0026374		
4879		665	442776,43	0,12	0,0144058		
	Média	-1775,42	Média	-0,15			

Figura 55 - Análise da aplicação da equação empírica

Fonte: Autor (2024).

Desvio padrão

0,2151112 %

Desvio padrão

2436,8194 kW

Eq com base teórica							
PI est		Sigma	Sigma²	%	%²		
kW							
23733		1712	2931255	0,07	0,004527		
17766		1793	3213089	0,09	0,008399		
11223		2637	6951584	0,19	0,036187		
12160		1800	3238636	0,13	0,016618		
8826		909	826897,8	0,09	0,008725		
10473		564	318277,9	0,05	0,002613		
10473		564	318277,9	0,05	0,002613		
10480		557	309941,8	0,05	0,002544		
4551		1325	1754399	0,23	0,050812		
5035		1791	3206296	0,26	0,068813		
5035		1791	3206296	0,26	0,068813		
5027		1796	3226470	0,26	0,069307		
3092		1731	2996884	0,36	0,128835		
2996		2548	6490600	0,46	0,211173		
	Média	1344,75	Média	0,16			
		Desvio padrão Desvio padrão					
		1561,027	kW	0,206152	%		

Figura 56 - Análise do método semiempírico de estimativa da potência instalada

Fonte: Autor (2024).