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RESUMO

Nos tultimos anos, houve um aumento significativo na coleta de dados de mobilidade, impul-
sionado pela proliferacdo da Internet das Coisas. Esses dados abrangem uma ampla gama de
fontes, fornecendo informacdes detalhadas sobre movimento e localiza¢do ao longo do tempo,
formando o que € denominado como trajetdria de objetos moveis. Esses dados de mobilidade
ndo se limitam apenas a sequéncia de movimentac¢ao no espago e tempo, mas também englobam
uma variedade de aspectos relacionados ao objeto em movimento, ao ambiente e ao trajeto em
si, originando as chamadas trajetdrias de multiplos aspectos. Por exemplo, ao rastrear a trajeto-
ria de movimento de um individuo ao longo do dia, € possivel capturar ndo apenas informacdes
sobre sua localiza¢c@o, mas também dados relacionados a sua saidde, condicdes climéticas, locais
visitados e modos de transporte utilizados. Essa abundancia de dados de mobilidade proporci-
ona perspectivas promissoras para andlises mais aprofundadas e compreensdao das dindmicas
de movimento em diferentes dominios de aplicagdo, incluindo controle de trafego, previsao
de eventos extremos (como furacdes e tsunamis), sistemas de recomendacdo, entre outros. No
entanto, lidar eficientemente com esses vastos volumes de dados heterogéneos representa um
desafio considerdvel, dificultando a extracao de insights valiosos, tanto devido a complexidade
dos dados quanto ao seu processamento. Nesse contexto, a sumarizacao de trajetérias gerando
dados representativos emerge como uma potencial solu¢do para minimizar esses desafios na
manipulagcdo de dados de trajetérias com multiplos aspectos. Os métodos atuais de sumari-
zacdo de dados de trajetdrias frequentemente se concentram apenas nas dimensdes espacial e
temporal, ignorando os miltiplos aspectos semanticos dos dados. Neste contexto, este trabalho
propde o desenvolvimento de novos algoritmos para sumarizar dados de trajetorias de multi-
plos aspectos. Duas abordagens sdo apresentadas: MAT-SG, baseada na densidade espacial dos
dados, e MAT-SGT, baseada na densidade espacial e temporal. Resultados experimentais de-
monstraram a eficicia das abordagens propostas em diferentes conjuntos de dados, destacando
sua capacidade de fornecer uma representacdo significativa das trajetérias de mobilidade. Além
disso, uma medida de representatividade € introduzida neste trabalho para avaliar a qualidade
dos dados representativos gerados.

Palavras-Chave: Trajetéria de Multiplo Aspecto. Sumarizacdo de Dados. Sumarizagdo de Tra-

jetorias. Trajetdria representativa.






RESUMO ESTENDIDO

Introducao

Nos ultimos anos, a proliferacdo da Internet das Coisas tem impulsionado um aumento signi-
ficativo na produgdo e coleta de dados da mobilidade de objetos, como pessoas, animais ou
veiculos. Esses dados, conhecidos como trajetéria de objetos méveis, oferecem uma visao do
movimento e posi¢do ao longo do tempo. Com o avango das pesquisas nesta drea, foi reco-
nhecido o potencial de enriquecer esses dados espago-temporais com informagdes semanticas,
resultando no conceito de trajetérias semanticas. Mais recentemente, observou-se o potencial
de enriquecer um ou mais pontos das trajetérias com diversos aspectos semanticos, conhecido
hoje como a nog¢ao de trajetdrias de maltiplos aspectos (MELLO et al., 2019). A Figura 1 ilustra
a evolucdo ao longo dos anos dessas categorizagdes associadas a trajetorias.
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Figura 1 — Evolucao histérica dos tipos de Trajetérias
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A Figura 1(a) ilustra a trajetdria de um individuo ao longo do dia por meio de uma trajetdria
denominada bruta, que inclui informac¢des sobre sua mobilidade, sua posi¢do geografica e o
tempo. Na Figura 1(b), é apresentada a mobilidade desse individuo por meio de uma trajetéria
semantica, enriquecida com informacdes sobre sua mobilidade espagco-temporal e os locais por
ele visitados. Por fim, a Figura 1(c) demonstra a mobilidade desse individuo por meio de uma
trajetoria de multiplos aspectos, que também incorpora informagdes sobre suas postagens em
redes sociais, como avaliagcdes dos locais visitados, condi¢des climdticas e meio de transporte
utilizado.

Essa vasta quantidade de dados gerados continuamente e a complexidade desses dados de mul-
tiplos aspectos introduzem desafios na sua geréncia e andlise. Neste contexto, a sumarizacao
de trajetdrias surge como uma potencial solu¢do para lidar com dados de trajetorias de multi-
plos aspectos. A sumarizagdo de dados de trajetdrias pode ser definida como uma técnica para
resumir os dados de trajetdrias, com o objetivo de evidenciar informag¢des mais relevantes e ge-
renciar melhor o volume de dados (ETIENNE et al., 2016). Esta técnica visa reduzir o volume
de dados (FENG; ZHU, 2016) enquanto preserva os padrdes principais da mobilidade original
(AHMED, 2019). Um dado representativo € considerado aquele que captura 0 movimento prin-
cipal de um conjunto de trajetérias (LEE; HAN; WHANG, 2007; AYHAN; SAMET, 2015).
Portanto, a sumarizacdo de dados com o intuito de computar uma informagdo representativa
pode beneficiar diversas aplica¢des, como sistemas de recomendacao, previsao de fendmenos
naturais e deteccao de anomalias.

O principal desafio na sumarizacdao de dados de trajetérias de multiplos aspectos estd na com-
plexidade desses dados, que envolve uma grande quantidade de informagdes e heterogeneidade
nas dimensdes associadas a cada ponto da trajetoria. Por exemplo, um ponto de interesse (POI)
pode agregar varios contextos semanticos do local visitado, como dimensdes espaciais (latitude
e longitude) e dados como categoria (um hotel, por exemplo), preco e avaliagdo do local. Além



disso, os pontos da trajetéria podem conter informagdes sobre o individuo naquele momento,
como batimentos cardiacos, e informagdes ambientais, como condicdo climatica. Portanto, a
sumarizagao desses dados apresenta desafios significativos.

Objetivos

O objetivo desta tese € desenvolver um framework composto por novos métodos para suma-
rizar dados de trajetdrias de multiplos aspectos, visando reduzir dados e capturar informagdes
essenciais, computando um dado representativo para um conjunto de trajetérias similares.

Para atender a este objetivo principal foram propostos os seguintes objetivos especificos:

* Propor e implementar algoritmos de identificacao de densidade de trajetérias de multiplos
aspectos para serem sumarizadas;

* Propor e implementar métodos para sumarizar todos os aspectos das trajetérias de entrada
visando tratar a individualidade de cada aspecto, crucial para garantir que todos os aspec-
tos das trajetdrias sejam adequadamente considerados durante o processo de sumarizacao,
permitindo uma representacdo mais completa e precisa dos dados;

* Propor uma nova medida de representatividade permitindo avaliar quantitativamente a
qualidade de uma trajetéria de multiplos aspectos representativa.

Metodologia
A seguinte metodologia € adotada neste trabalho para alcancar os objetivos propostos:

1. Realizar revisao de literatura em sumarizacio de dados de trajetérias, com foco em traba-
lhos que resultam em dados representativos em dados de trajetérias multiplos-aspectos;

2. Propor um modelo conceitual para representacdo do dado representativo, visando manter
0 mapeamento entre as trajetorias originais e o dado representativo computado;

3. Propor e implementar algoritmos para identificacdo de densidade dos dados, focando na
densidade espacial (MAT-SG) e densidade espago-temporal (MAT-SGT);

4. Propor e implementar um novo método para sumarizagao de dados de trajetéria de malti-
plos aspectos baseado na densidade espacial, tratando os aspectos em sua individualidade;

5. Propor e implementar um novo método para sumarizacdo de dados de trajetdria de multiplo-
aspecto baseado na densidade espacial e temporal, tratando todos os aspectos em sua
individualidade, resultando na sequéncia temporal do comportamento da trajetdria;

6. Realizar uma série de experimentos utilizando conjuntos de dados de diferentes tipos e
caracteristicas.

7. Propor uma medida de representatividade visando mensurar a qualidade do dado repre-
sentativo em funcdo do conjunto de trajetérias originais, baseado na sua similaridade e
informagdes cobertas pelo dado representativo;

8. Avaliar o comportamento dos métodos propostos usando conjuntos de dados reais e sin-
téticos, por meio de cdlculos estatisticos. Avalia-se o desempenho dos métodos propostos
em relacdo a capacidade de fornecer representacdes significativas das trajetorias;



9. Escrever artigos descrevendo as lacunas identificadas no estado-da-arte em relagdo a su-
marizacao de trajetérias de multiplos aspectos, bem como acerca dos novos métodos pro-
postos visando computar a trajetoria representativa;

10. Escrever a redacao da tese descrevendo os principais conceitos necessarios de dados de
trajetdria, o problema de sumarizacao, o estado da arte, a descri¢do das solu¢des propos-
tas, avaliacOes experimentais e as conclusdes obtidas.

Esta tese possui algumas limitagdes, as quais faz-se nessdrio estabelecé-las para uma melhor
compreensdo. Primeiro, seu foco é o desenvolvimento de novos métodos de sumarizacdo de
dados de trajetérias de multiplos aspectos. Tal delimitacdo permite explorar a complexidade
associada a estes dados. Segundo, utiliza-se o termo redugdo de dados de trajetorias nesta tese
para se referir unicamente ao conceito de sumariza¢do, compreendendo que a versdao sumari-
zada dos dados minimiza o volume de dados. Terceiro, assume-se que os conjuntos de dados a
serem sumarizados ja se encontram filtrados por algum critério, exibindo assim algum grau de
similaridade definida pelo analista. Desse modo, esta tese ndo lida com questdes de limpeza de
dados ou pré-processamento, concentrando-se nas atividades de sumarizagao.

Resultados e Discussao

Esta tese possui como principal contribui¢cdo um framework composto por dois novos métodos
para sumarizar dados de trajetorias de multiplos aspectos: MAT-SG e MAT-SGT, e uma me-
dida de representatividade (RMMAT). Ambos os métodos sao desenhados para prover dados
representativos do conjunto original.

Em contraste com o estado-da-arte, que muitas vezes negligencia o tratamento dos multiplos
aspectos dos dados, ou mesmo suas particularidades, esses dois métodos visam abstrair cada
uma das dimensdes de acordo com sua prépria singularidade, bem como capturar a sequéncia
temporal dos dados. Além disso, os métodos propostos distinguem-se por manter um mape-
amento claro entre os dados originais e os dados sumarizados, por meio de uma modelagem
de facil compreensdo. Isso permite a persisténcia dos dados, facilitando a busca por padrdes e
insights. Ainda, uma vez que nao encontramos na literatura uma forma de quantificar o quanto
esse dado representativo reflete do conjunto original, como uma contribuicdo secunddria esta
tese também apresenta uma medida de representatividade (RMMAT) para avaliar a qualidade
do dado representativo em relacdo a similaridade da trajetoria representativa e sua cobertura de
informacao em relacao ao conjunto original de trajetdrias.

Experimentos foram conduzidos em quatro conjuntos de dados, incluindo conjuntos de dados
abertos (Foursquare-NYC, Gowalla Location-Based Social Network e Brightkite) e um con-
junto de dados privado (dataset Pisa). Todos os conjuntos de dados consistiam em trajetdrias
de usudrios, e em todos os casos, foram filtrados os dados por usudrio, calculando a trajetdria
representativa por usudrio. Para avaliar a eficicia dos métodos propostos, foram utilizadas duas
métricas: (i) Average Recall (AR), que avalia a capacidade dos métodos em ranquear correta-
mente as trajetérias do mesmo usudrio como mais similares a trajetdria representativa; e (ii) a
métrica RMMAT para avaliar a qualidade do dado representativo em relacdo a similaridade e
cobertura de informacao das trajetérias do mesmo usudrio.

Os resultados experimentais revelaram a eficicia das abordagens propostas em diversos cendrios
de dados. Tanto o método baseado em densidade espacial (MAT-SG) quanto o método que
considera densidade espacial e temporal (MAT-SGT) demonstraram ser capazes de fornecer
representacoes significativas das trajetdrias com multiplos aspectos. Além disso, a introdugdo
da medida de representatividade permitiu uma avaliacdo mais precisa da qualidade dos dados
representativos gerados.



Para superar algumas limitagdes identificadas nesta pesquisa, sugerem-se trabalhos futuros: (i)
o desenvolvimento de estratégias de sumarizagao que considerem possiveis dependéncias entre
diferentes aspectos dos dados, como a avaliacdo ou preco de um local visitado em detrimento
ao local visitado em si; e (ii) a investigagdo de novas estratégias de segmentacio espacial para
reduzir a complexidade dos métodos.

Consideracoes Finais

Este trabalho contribui significativamente para o campo da sumarizacao de dados de trajetérias
de multiplos aspectos, fornecendo um framework composto por novos métodos para lidar com
dados de mobilidade complexos. Os resultados obtidos sugerem que os métodos propostos sao
promissores € podem ser aplicados em uma variedade de dominios de aplicagao.

Palavras-Chave: Trajetéria de Multiplo Aspecto. Sumarizacdo de Dados. Sumarizagao de Tra-
jetodrias. Trajetdria representativa.



ABSTRACT

In recent years, the widespread adoption of the Internet of Things has led to a significant in-
crease in the production and collection of mobility data. Various sources have provided this data,
which provides comprehensive details about data movement and position over time, commonly
referred to as the trajectory of moving objects Mobility data not only encompasses space and
time but also includes multiple aspects related to the movement object, the environment, and
the trajectory, resulting in multiple-aspect trajectories. For instance, by analyzing the trajectory
movement of an individual during one day, it is possible to identify information about her/his
position, time occurrence, health, weather conditions, visited places, and transportation modes.
This large volume of data provides diverse perspectives for analyzing and understanding move-
ment dynamics across various application domains, such as traffic control, forecasting extreme
events (such as hurricanes and tsunamis), recommendation systems, and more. However, man-
aging trajectory data poses challenges, making it difficult to efficiently extract valuable insights
due to data complexity and processing requirements. In this context, trajectory summarization,
which computes representative data, emerges as a potential solution to mitigate these challenges
in handling multiple-aspect trajectory data. State-of-the-art methods often focus only on spatial
and temporal dimensions, overlooking multiple semantic aspects. Hence, the objective of this
thesis is to develop new algorithms for summarizing multiple-aspect trajectories by comput-
ing representative data. Our main contributions involve two novel methods: MAT-SG, based
on spatial density, and MAT-SGT, based on both spatial and temporal density. Experimental
results have demonstrated the efficacy of both proposed methods across different dataset types,
highlighting their ability to provide a significant representation of input data. Additionally, a
representative measure is introduced to evaluate the quality of computed data representatives.

Keywords: Multiple-Aspect Trajectory. Data Summarization. Trajectory Summarization. Rep-

resentative Trajectory.
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1 INTRODUCTION

The rapid proliferation of the Internet of Things (IoT) has given rise to diverse tech-
nologies, including portable and wearable devices, embedded computing, and Location-Based
Social Networks (LBSNs) like Facebook, Twitter, and Instagram (MUZAMMAL et al., 2017;
CESARIO; COMITO; TALIA, 2014). These technologies yield valuable information on mov-
ing objects, such as people or animals. The collection of spatial position sequences over time
forms the basis of a raw trajectory (BOGORNY; HEUSER; ALVARES, 2010). In the evolving
geography of trajectory data, we recently encountered the concept of Multiple Aspect Trajectory
data (MAT), where trajectories encapsulate additional aspects such as visited places, health con-
ditions, transportation modes, and weather conditions (MELLO et al., 2019). The accumulation
of such data resulting from the movement of numerous objects can generate massive volumes
of data.

Trajectory data has emerged as a focal issue in diverse domains, including data man-
agement (RICHLY, 2018; SU et al., 2020; WANG et al., 2021), data mining (FENG; ZHU,
2016; GEORGIOU et al., 2018; BIAN et al., 2018; da SILVA; PETRY; BOGORNY, 2019),
privacy (FIORE et al., 2020), and monitoring (AHMED et al., 2019). Regarding trajectory
management, the challenges are primarily associated with the large volume of continuously
generated data and their diverse nature deriving from different devices and sources. Effective
management and analysis of these data are critical for extracting valuable insights. Another
challenge of complexity is related to the three dimensions inherent to MAT data (spatial, tem-
poral, and semantic), where the third dimension is composed of multiple and heterogeneous
aspects. In this context, trajectory summarization emerges as a potential solution to mitigate the
complexity of manipulating MAT.

Trajectory summarization provides a promising route to address data management
challenges, facilitating the extraction of meaningful patterns with applications across various
domains. For instance, understanding individual behavior through trajectory data aids recom-
mendation systems in delivering personalized suggestions. Furthermore, discerning patterns in
weather conditions contribute to predicting and assessing the intensity of phenomena such as
hurricanes.

The summarization of trajectory data poses a recognized challenge, as emphasized in
various surveys (WANG et al., 2021; GEORGIOU et al., 2018; FIORE et al., 2020). However,
there is a notable scarcity of literature that comprehensively presents and analyzes studies on
trajectory summarization, particularly those that provide representative data, with a specific
focus on MAT.

A representative trajectory refers to a compact yet informative representation of a
set of trajectories, given typical patterns that capture the essential characteristics of the original
dataset while minimizing information loss. For instance, the analysis of an individual’s behavior
is relevant to several application domains such as LBS recommendations and criminal investi-

gations (FENG; ZHU, 2016). Despite the importance of this concept, there is a noticeable gap
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in the literature, with only one identified summarization approach that provides representative
data focusing on MAT (SEEP; VAHRENHOLD, 2019).

1.1 PROBLEM STATEMENT

For accurate trajectory summarization in high-dimensional trajectory datasets, the main
challenge is to discover, in a feasible way, the most representative data considering their dimen-
sions and aspects that better characterize the input data. By doing so, we can ensure that the
trajectory data is summarized effectively.

Given a dataset T of trajectories, the problem of compute representative data (R7T) can

be formulated as follows

Problem 1 (Representative Trajectory Computation). A representative trajectory RT is a com-
pact and informative representation of T that aims to strike a balance between quality and utility,
ensuring that RT retains enough information about the original elements while minimizing data

loss.

Let T be a set of trajectories. Given the large size of T, it is often necessary to sum-
marize the trajectories to obtain a compact and informative representation of the original data,
which makes less complex analysis or decision-making tasks. The problem of computing rep-
resentative data can be formulated as the task of computing representative information from T
that captures the essential characteristics of the original data while minimizing information loss.
It is important to note that the concept of representativeness and capturing essential characteris-
tics can be broad and generic. In this thesis, we specifically consider essential characteristics to
be present in trajectories that exhibit a certain data density and show certain tendencies in their
aspects.

Despite the importance of this issue, there is a noticeable gap in the literature, with only
one summarization method providing representative data focused on MAT (SEEP; VAHREN-
HOLD, 2019). However, it is limited in the sense that all attributes of the points are treated as
spatial or non-spatial data, i.e., semantic data are not analyzed individually as categorical or
numeric data. It also does not provide details about the proposed method, as it is a short paper.
In order to better address this problem, this thesis reviews and categorizes relevant research,
aiming to provide a comprehensive understanding of trajectory summarization methods that
yield representative data. This problem leads to our research question: '"Can we develop new
methods for computing representative data for a set of MATSs to discover relevant infor-
mation and deal with gaps in related work by considering all aspects in MATSs regarding
their individuality?''. We hypothesize that we can compute representative MAT by identifying
patterns regarding some data density, summarizing all aspects considering their individuality,
and providing utility data.

In order to tackle this question, we propose a framework composed by MAT-SG and

MAT-SGT as novel trajectory summarization methods. MAT-SG is designed to address the
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challenges associated with MATs by segmenting trajectories into a spatial grid and perform-
ing summarization within each relevant cell. This method aims to identify movement patterns
specific to each spatial area, addressing multiple aspects and treating each one individually.

In contrast, MAT-SGT expands upon the methodology of MAT-SG by incorporating
temporal sequence information into the summarization process. This enhancement allows MAT-
SGT to provide a more comprehensive representation of the temporal evolution of movement
patterns, thus capturing additional nuances in the data that may be overlooked by spatial-only
data density.

The choice of summarization method depends on the intended use case. When priori-
tizing spatial areas and understanding the actions occurring in specific regions, such as in vessel
trajectories, where it is essential to identify regions related to specific activities, like fishing or
cargo handling, MAT-SG is the preferred method. On the other hand, when temporal sequence
and the associated aspects are the focus, such as in recommendation systems where individ-
ual trajectories reveal patterns like daily routines and preferences based on weather conditions,
MAT-SGT offers a more suitable solution.

Moreover, introducing these summarization methods prompted a secondary research
question: ""How much of the representative trajectory captures and reflects the original
MATS’ essence within an input dataset?''. This question underscores the need for a represen-
tativeness measure (RMMAT), motivated by the lack of quantitative measures comprehensively
evaluating the quality of representative trajectory data. With RMMAT we aim to fill this gap by
providing a multifaceted measure that assesses both the similarity and coverage of the represen-

tative trajectory in relation to the complete input dataset.

1.2 OBJECTIVES

The main objective of this thesis is to propose a framework composed of new methods
for MAT summarization that address the gaps in the state-of-the-art, considering all aspects of
MAT regarding their individually, while maintaining a focus on reducing data and capturing
essential information from the input data. This thesis aims to contribute to the problem of sum-
marizing MATs, considering that the concept of MAT and their data management is a brand
new research topic. The main objective of this thesis is to propose a framework composed by
pioneering methods for MAT summarization that compute a representative MAT from a set of
similar MATs.

From this main objective, we can derive the following specific objectives:

* Propose and implement an algorithm for identifying the density of MATSs to be summa-

rized;

* Propose and implement methods for summarizing all aspects of the input MATs aiming

to deal with their individuality;
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* Propose a new representativeness measure to evaluate quantitatively the quality of repre-
sentative MAT.

1.3 CONTRIBUTIONS

This thesis aims to contribute with state-of-the-art as follows:

A survey related to state-of-the-art summarization of trajectory data focused on represen-
tative data computation;

* A conceptual model to represent the representative MAT, in the sense of defining mapping

data between the input MAT's and the representative MAT;

A novel method for summarizing MAT data based on spatial density, treating all aspect

data in its individuality;

A novel method for summarizing MAT data based on spatial and temporal density, treat-

ing all aspect data in its individuality, providing the temporal sequence of the pattern.

A multifaceted measure that assesses the quality of representative trajectory based on its

representativeness (similarity and coverage information) of the complete input dataset.

The research results yielded by this thesis are intended to assist researchers and ana-
lysts with different approaches related to the use of MATSs. It empowers them to make informed
decisions about the quality and relevance of their data concerning the methods for summarizing
MATSs according to their analytical goals. Additionally, it provides a powerful tool with a mea-
sure to make informed decisions regarding the quality and relevance of representative data for
analytical goals. With these contributions, researchers and analysts can analyze their data and
compute and use the representative data in other approaches, such as performing predictions.
It can also help in analyzing different sets of MATs and identifying their similarities, as well
as analyze the quality and relevance of the data, empowering them to make informed decisions

and achieve their analytical goals.

1.4 SCOPE DELIMITATION

To ensure a thorough understanding of this work, it is essential to establish some de-
limitations. These delimitations are crucial for the success of this research.

Firstly, our primary focus is on trajectories with multiple aspects. By considering vari-
ous and distinct aspects enriched in trajectory data, the goal is to provide a more comprehensive
analysis. This delimitation allows for a targeted exploration of the complexities associated with

multiple-aspect trajectories.
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Secondly, the term reducing trajectory data in this work refers only to the concept of
trajectory summarization approaches. We understand that this strategy minimizes the volume
of data, and our research delves into methodologies aimed at summarizing trajectories.

Thirdly, we assume that some criterion already filters the input trajectories and exhibits
a degree of similarity. This assumption streamlines the focus on the analysis aspect, emphasiz-
ing the exploration of summarization techniques without delving into data-cleaning processes.

Finally, we also assume that the input data is already pre-processed. This pre-processing
step ensures that the data is in a format ready for analysis. By making this assumption, the re-
search can concentrate on the core aspects of trajectory summarization without being encum-
bered by data formatting concerns.

The research aims to provide a more focused and detailed investigation by establishing
these delimitations. This focused strategy is anticipated to produce more accurate and reliable

results, contributing to a fine understanding of multiple-aspect trajectory summarization.

1.5 THESIS STRUCTURE

The rest of this thesis is structured as follows. In Chapter 2, we discuss the primary
concepts that help to understand our work. These concepts include data summarization, trajec-
tory data, and trajectory summarization. We also analyze surveys on trajectory data to identify
gaps in the literature. Next, in Chapter 3, we present the main works related to trajectory sum-
marization to provide representative data.

In Chapter 4, we introduce two new methods for summarizing MATs. The first one is
called MAT summarization based on a spatial grid (MAT-SG), which segments the input MAT's
into a spatial grid and performs summarization within each relevant cell. This helps to identify
movement patterns specific to each spatial area, addresses various dimensions, and treats each
semantic type individually. The second one is called MAT summarization based on a spatial
grid and Temporal Sequence (MAT-SGT), which is a data summarization method specifically
designed to compute representative MATSs by identifying the temporal sequence associated with
the movement pattern. We provide a running example to illustrate both methods and highlight
their differences.

In Chapter 6, we present preliminary experiments. First, we introduce a multifaceted
measure, the Representativeness Measure for MAT (RMMAT), that assesses the quality of a
representative trajectory based on its representativeness (similarity and coverage information) of
the complete input dataset. Then, we evaluate the experimental evaluation in several trajectory
datasets using two different strategies: by Average Recall and by RMMAT. We then demonstrate
that MAT-SG and MAT-SGT achieve good results in different dataset types.

Finally, in Chapter 7, we summarize the findings of this thesis and discuss future re-

search opportunities in trajectory summarization that result in representative data.
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2 BASIC CONCEPTS

In order to clarify the problem of trajectory summarization, this chapter presents the
necessary concepts to understand the rest of this work. We start with an overview of data sum-
marization and the elements that compose a data summarization process. Next, we introduce

trajectories of moving objects, including MAT's and some issues related to their summarization.
2.1 DATA SUMMARIZATION

Data summarization aims to provide data in a compact format, furnishing an informa-
tive version of a set of data. Providing a data summary is considered a descriptive task in data
mining. A key feature of summarization is that this summarized representation of data is still
informative, and a close inference (or sometimes the same inference) can be obtained from the
summarized data in the same way as the original data (HESABI et al., 2015).

Consider E = {ey,e2,...,e, } aset E of n elements. Then, data summarization is formally

defined as follows.

Definition 2.1.1 (Data Summarization). A summary S of E is a set of summarized elements S =
{s1,52,..,5¢}, where: (i) S is a non-empty set, (ii) each s; € S represents a summarized element

of E, (iii) each element s; € S corresponds to at least one element e; € E, and (iv) k < n.

A good summary is characterized by a small size for the summarized version while
retaining enough information about all original elements. Each summary s; essentially covers
a set of elements with minimal information loss. In other words, the elements of E are sum-
marized in a way that these elements are replaced by the corresponding summary that covers
them (CHANDOLA; KUMAR, 2007). A summarized element can be derived from either a se-
lected element e; € E or through the computation of an element group, typically facilitated by

statistical functions such as maximum or average.
2.1.1 Data Summarization vs. Data Compression

It is crucial to distinguish data summarization from data compression. Data compres-
sion 1s used to reduce data volume, where they consider compression techniques using statistical
or dictionary-based methods, and they treat data as large byte sequences (AHMED, 2019). The

formal definition of Data Compression is as follows:

Definition 2.1.2 (Data Compression). A compressed data C of E is given by C = (Cg, decoder),
where (i) Cg is an encoded version of E, (ii) Cg is a representation of E with fewer bits, and

(ii1) decoder is an algorithm that reconstructs Cg in E or some approximation of it.

Data compression entails encoding the original data, which converts the original data

into a compressed representation, and decoding it to recover the information that reconstructs
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the original data or an approximation from the compressed representation (BLELLOCH, 2013).
Although compression produces compact data, it often results in compact yet unintelligible data.
In contrast, data summarization offers an intelligible representation, facilitating further analysis
and decision-making (AHMED, 2019).

2.1.2 Data Summarization vs. Data Fusion

Another clarification point is the similarities and differences between data summariza-
tion and data fusion. Data fusion integrates data from multiple sources to enhance accuracy and

specificity compared to a single source (ESTEBAN et al., 2005). The formal definition is:

Definition 2.1.3 (Data Fusion). Given two sets A and B, the fused data of A and B is a set
Fa ) = {f1./2,--fi}> where: (i) F4 p) is a non-empty set, and (ii) each f; € F{4 p) represents an

element matching pair (a,b).

Effective data fusion results in a smaller F{, p) size than AU B while preserving infor-
mation. In simpler terms, it means that when we combine two datasets, we can get a smaller
dataset with minimal information loss. This means that the original elements of A and B are
fused so that they are replaced by the fused element that covers them.

In summary, while both data summarization and data fusion produce representative
versions of datasets, they differ in terms of the nature of the input data. Data fusion involves
integrating data from multiple sources with similar information, while data summarization fo-
cuses on condensing a single dataset. In the context of this thesis, the emphasis is on data

summarization.
2.1.3 Classifying Data Summarization

Ahmed (2019) classifies data summarization techniques into two categories: structured
and unstructured data. Structured data refers to predefined formats featuring fixed fields or at-
tributes with well-defined data types and relationships, typically following a predefined schema
or model. Within structured data, subcategories include machine learning, statistical, and se-
mantics approaches. Unstructured data, however, lacks a predefined data model or organized
format. Examples encompass text documents, emails, social media posts, images, videos, and
audio files. Subcategories within unstructured data cover machine learning and other diverse
approaches.

Data summarization techniques can be categorized into two primary approaches based
on their output: extractive and abstraction (GHODRATNAMA et al., 2020; MOHSIN et al.,
2021). Extractive summarization entails selecting and presenting only the most pertinent infor-
mation from the source data, efficiently eliminating redundancy. The goal here is to preserve the
original data faithfully. Abstractive summarization, conversely, involves a deeper understand-

ing of the meaning of data sources and generates new information that captures critical insights.
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The emphasis is on creating a concise and coherent summary, even if it does not replicate the

exact data or order from the source.

2.1.4 The Effectiveness of Data Summarization

The effectiveness of summarization data depends on the purpose for which they are
used (GHODRATNAMA et al., 2020). Whether summarizing text (HEU; QASIM; LEE, 2015;
MOHSIN et al., 2021; MA et al., 2022), documents (BOUDIN; HUET; TORRES-MORENO,
2011; GHODRATNAMA et al., 2020), images (SREELAKSHMI; MANMADHAN, 2021), or
other data types, the chosen approach should align with the desired outcomes. For instance,
a text summary helps readers learn essential points within a vast text, while a network traffic
summary aids network administrators in understanding network activities (AHMED, 2019).

In essence, summarization can be viewed as a selection problem' or as a way to con-

struct new data that represents the original source.

2.1.5 The Data Summarization Process

Data summarization, irrespective of data type, typically comprises four core compo-
nents: (1) input data, the raw data to be summarized; (ii) preprocessing, an optional step that
prepares the input data for summarization; (iii) summarization, the central task where vari-
ous methods and approaches are employed to generate summaries; and (iv) summarized data,
the result of the summarization process, presenting the reduced yet informative version of the
input data. This generic process is observed in several works (BOUDIN; HUET; TORRES-
MORENO, 2011; HEU; QASIM; LEE, 2015; MOHSIN et al., 2021; MA et al., 2022) and as
depicted in Figure 2.

i i . summarized
input data preprocessing » Ssummarization data
L

Figure 2 — Generic Process for Data Summarization

In conclusion, data summarization is a crucial tool for extracting valuable insights from
large datasets. By aligning the choice of approaches and techniques with the specific goal of the
summarization task, it is possible to empower decision-makers to navigate complexity effec-
tively. This, in turn, enhances their understanding of intricate information domains, ultimately

facilitating more informed and impactful decision-making processes.

I The selection problem consists of selecting the most appropriate elements of a predefined set of elements, i.e.,

the best ones from a given collection (DESU, 1970).
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2.2 TRAJECTORY DATA

One of the foundational pillars of this work is the comprehensive exploration of tra-
jectories of moving objects. With the widespread adoption of geolocation technologies and the
ubiquity of tracking systems, trajectory data has become essential in various fields. In data
analytics, trajectory data holds significant importance as it is increasingly being collected for
mining, analysis, and decision-making (RENSO; SPACCAPIETRA; ZIMANYT, 2013).

Trajectory data, in essence, is a record of the movement of an object through the spatial
and temporal dimensions. It is encountered in its simplest form as the raw trajectory - a sequen-
tial representation of the movement of an object across geographic space over time (ERWIG et

al., 1999). This raw trajectory primarily consists of two fundamental dimensions:

« spatial dimension: This dimension encapsulates the geographic coordinates, such as lat-
itude and longitude, precisely identifying the location of the object at distinct time inter-

vals, i.e., its physical space;

* temporal dimension: This dimension refers to the timestamp, or a time intervals, as-
sociated with each spatial coordinate. This time information compose a chronological
sequence, providing insights into the temporal aspects of the movement of an object and

interactions.

Around 2007, the concept of semantic trajectory emerged, in which a third dimension
is aggregated into data trajectories, i.e., a raw spatiotemporal trajectory (x, y, #) is enriched
with semantic information. This third dimension is the semantic layer, which is infused with
contextual information, such as a point of interest (POI) (e.g., a restaurant) that the object had
visited along its trajectory (ALVARES et al., 2007; PARENT et al., 2013).

This additional semantic dimension adds depth to trajectory data analysis and enables
more meaningful insights. Consider Figure 3, which presents the trajectory of an individual
during a single day. In this example, the raw trajectory maintains the spatiotemporal informa-
tion about the individual (Figure 3(a)). Figure 3(b), in turn, shows a semantic trajectory with
contextual information (POIs) associated with its points (home, work, and restaurant).

With the typical use of IoT and social media, enriching trajectories with a vast amount
of semantic information has become possible. When trajectories or their individual points be-
come associated with multiple and heterogeneous semantic contexts, they transform into what
is known as multiple aspect trajectories (MAT) (MELLO et al., 2019). These M AT are charac-
terized by the fusion of three dimensions: spatial, temporal, and semantic, where the semantic
dimension may represent multiple and heterogeneous aspects.

Figure 3(c) shows the raw trajectory enriched with information like the mean of trans-
portation used by the individual, postings on social networks, weather conditions, and so on.
This example highlights that a multiple-aspect trajectory is a complex object whose attributes

can hold simple or complex objects according to the context of each described domain.
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Figure 3 — An example of a raw trajectory (a), semantic trajectory (b), and a multiple aspect trajectory(c).
2.2.1 Applications and Challenges

Trajectory data finds its applications across various domains, including transportation
and logistics (MARKOVIC et al., 2018; KONG et al., 2018), geographical phenomenons anal-
ysis (LEE; HAN; WHANG, 2007; ZHENG, 2015), location-based services (ZHENG, 2015;
YANG; WANG; ZHANG, 2019; WANG et al., 2021), and social sciences (NARA, 2021). While
trajectory data holds great promise, it also presents several challenges (MARTINEZ; CRISTO-
BAL; BELKOURA, 2018; GAO et al., 2019), such as:

* Data Volume and Velocity: Trajectory data can generate vast amounts of data, especially
in scenarios involving numerous moving objects. Effectively managing this high data

volume could be a complex task.

* Complex Analysis: Analyzing trajectory data demands advanced spatial, temporal, and
semantic analytics, including trajectory clustering, anomaly detection, and predictive mod-
eling. These analyses can be computationally intensive and require expertise in data sci-

ence.

In the face of these challenges, data reduction is an alternative method to reduce the
complexity of data management. The complexity of data management is mitigated by intelli-
gently reducing the volume of trajectory data through techniques like trajectory summarization.
This approach aims to combine similar trajectories and reduce the amount of data to be pro-

cessed, making it more manageable for analysis while preserving essential patterns and insights.
2.3 TRAJECTORY SUMMARIZATION
Trajectory data summarization is a vital process that condenses extensive and complex

trajectories into more manageable and informative summaries (ETIENNE et al., 2016). The

main goals of trajectory summarization are:
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* Reducing Data Volume: Managing large trajectory datasets can be challenging due to
their vast volume, making storage and processing difficult (FENG; ZHU, 2016; GEOR-
GIOU et al., 2018). Summarization techniques aim to reduce the volume of data while

retaining essential information, making it more manageable.

* Preserving Key Patterns: Summarization techniques focus on capturing and preserving
the key movement patterns and tendencies in the original data (AHMED, 2019). This

ensures that valuable insights are not lost in the summarization process.

In essence, trajectory summarization involves a process that derives representative in-

formation from a dataset, often given by a representative selection/computation problem.

2.3.1 Representative Trajectory Data

The concept of a representative trajectory is pivotal in trajectory summarization. Ac-
cording to (LEE; HAN; WHANG, 2007; AYHAN; SAMET, 2015), a representative trajectory
can be described as an imaginary trajectory that denotes the main behavior of a cluster of tra-
jectories. Alternatively, (PANAGIOTAKIS et al., 2012) suggests that a representative trajectory
can vary according to the considered focus, like interest, density, frequency, and pairwise dis-
tance.

Approaches to determining representative data from a trajectory dataset can be broadly
categorized into two types: those that compute a representative trajectory through mathemati-
cal computation (LEE; HAN; WHANG, 2007; ETIENNE et al., 2016; BORKOWSKI, 2017;
GAO et al., 2019) and those that select specific trajectories or segments to represent the entire
dataset (PANAGIOTAKIS; PELEKIS; KOPANAKIS, 2009; PANAGIOTAKIS et al., 2012), re-
ferred to as a selection problem.

Given a set of trajectories T, the challenge lies in summarizing these data to obtain
a compact yet informative representation, facilitating simplified analysis and decision-making
processes. Thus, the problem of computing representative data involves deriving a trajectory
that captures the essential characteristics of the original dataset while minimizing information
loss.

For example, Figure 4(a) showcases individual MAT's capturing various actions over
several days (Sunday, Monday, and Tuesday). In contrast, Figure 4(b) illustrates a representative
MAT computed through a summarization process applied to these individual MATs. The rep-
resentative MAT effectively emphasizes frequently occurring actions (MACHADO; MELLO;
BOGORNY, 2022a).

Analyzing trajectory patterns offers valuable insights for data analysts, enabling better
decision-making. For instance, with representative trajectories, a recommendation system can
learn the patterns of an individual and provide personalized recommendations. As demonstrated
in Figure 4 (c), the system can identify a vegetarian restaurant along a new trajectory for the

individual and recommend it to him/her.
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(a) input MATs

(c) recomendation system

Figure 4 — An example of MATs (a), a representative MAT for them (b), and an example of recommendation based
on its representative MAT (c). Adapted from Machado, Mello e Bogorny (2022a).

In summary, trajectory summarization is pivotal in handling and extracting insights
from trajectory data, reducing their complexity while preserving essential information for vari-
ous applications, 1.e., the problem can be formalized as finding RT, as stated in Problem 1. To
achieve this, resolving conflicts among similar data instances is essential, necessitating the ap-
plication of similarity measures to identify data similarities. These measures are essential for an-
alyzing trajectory data, including tasks such as clustering (LEE; HAN; WHANG, 2007), classi-
fication (PORTELA; CARVALHO; BOGORNY, 2022), and k-nearest neighbor search (SEEP;
VAHRENHOLD, 2021).

2.3.2 Similarity Measures

Similarity measures are essential tools in trajectory data analysis, providing a basis for
solving various analytical problems. These measures evaluate the similarity between trajecto-
ries and enable quantitative comparisons. There are several categories of similarity measures,
depending on the focus of the analysis. In the following, we explore some of the most prominent

ones.

* Similarity measure based on spatial dimension: The most popular category of similar-
ity measures that rely exclusively on the concept of space (WANG et al., 2013), involv-
ing computing the topology and geometry, like homotopy type (BUCHIN et al., 2013) or
computing distances between geographic coordinates, like Euclidean distance, Haversine
distance and/or the Hausdorff distance. They assess how close trajectories are in physical

space;
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* Similarity measure based on sequence data: Designed for sequence data, these mea-

sures can be adapted for trajectory analysis. Well-known examples include Dynamic
Time Warping (DTW) (BERNDT; CLIFFORD, 1994), Longest Common Subsequence
(LCSS) (VLACHOS; KOLLIOS; GUNOPULOS, 2002), as well as the Edit Distance

(ED) (SU et al., 2020). These measures focus on aligning trajectory points over time;

Similarity measure based on Temporal dimension: Some measures are designed to
consider the temporal dimension. They align timestamped locations in trajectory con-
text, often associating spatial distance metrics with temporal similarity. Examples include
equal-time and similar-time distance (BUCHIN; KILGUS; K6LZSCH, 2018);

Similarity Measure for Raw Trajectory: Tailored for raw trajectories, these measures
offer solutions that account for both spatial and temporal dimensions. Examples com-
prise the Discrete Fréchet distance (DF), as a discrete variant of Fréchet distance (EITER;
MANNILA, 1994), SDist (YING; XU; YIN, 2009), Minimum Euclidean Horizontal (MEH)
distance (FRENTZOS et al., 2007) and Uncertain Movement Similarity (UMS) (FUR-
TADO et al., 2018);

Similarity Measure for multidimensional in trajectory data: These measures support
all three trajectory dimensions: space, time, and semantics. Examples include Multidi-
mensional Similarity Measure (MSM) (FURTADO et al., 2016), Stops and Moves Similar-
ity Measure (SMSM) (LEHMANN; ALVARES; BOGORNY, 2019), and Multiple aspect
trajectory similarity (MUITAS) (PETRY et al., 2019).

These similarity measures are crucial in summarizing trajectory data, as they allow for

the analysis of similar trajectories and the computation of representative data. This is necessary

to effectively summarize trajectory data. Such measures enable data analysts to gain insights

into the movement patterns of objects and individuals across various domains.



43

3 RELATED WORK

To gain insight into the research issue, this chapter reviews existing surveys in the liter-
ature concerning trajectory data, specifically focusing on understanding the current challenges
and open issues in this domain. These surveys shed light on problems related to storing and
processing trajectory data, underscoring the need for effective solutions to mitigate these chal-
lenges. One such solution is reducing trajectory data by computing representative data using
summarization methods. However, these problems become more complex with MATs. There-
fore, we also review and analyze approaches related to trajectory data summarization, which

involves reducing trajectory data to compute representative data.

3.1 SURVEYS ON TRAJECTORY DATA

In recent years, trajectory data has gained significant attention, showing multiple sur-
veys exploring various topics. In this section, we analyze surveys published between 2016 and
2023 to identify trends and highlight the importance of understanding trajectory data. This anal-
ysis can guide future research. Table 1 depicts a comparison of these studies.

In our exploration, we have identified several surveys investigating trajectory data min-
ing, data management, visual analytics, privacy, and data analytics. Specifically, seven sur-
veys (ZHENG, 2015; FENG; ZHU, 2016; GEORGIOU et al., 2018; BIAN et al., 2019; da
SILVA; PETRY; BOGORNY, 2019; XIE et al., 2020) focus on trajectory data mining using
different methods, such as classification (BIAN et al., 2019; da SILVA; PETRY; BOGORNY,
2019), and prediction (GEORGIOU et al., 2018; XIE et al., 2020; HUANG et al., 2022; YIN;
WEN; LI, 2023). In contrast, three surveys focus on trajectory data management (RICHLY,
2018; SU et al., 2020; WANG et al., 2021), but only one (SU et al., 2020) of them mentions
query processing and similarity measurement. Additionally, one of them focuses on visual anal-
ysis (AHMED et al., 2019),

Privacy has emerged as a salient concern in trajectory data research, as noted in the
survey by (FIORE et al., 2020). It underscores the need for risk assessments regarding attribute
linkage and emphasizes anonymization as a pivotal process in trajectory data privacy protection.

Additionally, two surveys encompass data analytics (KONG et al., 2018; ALMEIDA
et al., 2020), offering a more comprehensive view of research conduct and identifying key
techniques and challenges in the field.

As we delve into the challenges and open issues identified across these surveys, tra-
jectory data management surfaces as a recurring topic (ZHENG, 2015; FENG; ZHU, 2016;
GEORGIOU et al., 2018; XIE et al., 2020; RICHLY, 2018; WANG et al., 2021; AMIGO et al.,
2021; ALMEIDA et al., 2020). Data volume, particularly in the context of Big Data, stands out
as a primary challenge (FENG; ZHU, 2016; GEORGIOU et al., 2018; AMIGO et al., 2021),
encompassing storage, processing, and transmission. Scalable solutions for handling vast tra-
jectory datasets remain a pivotal area of exploration (RICHLY, 2018; ALMEIDA et al., 2020).
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Table 1 — Comparison of Surveys on Trajectory Data

Search Challenges and

Area Survey Open Issues Contributions

- Big Data management

- Big data preparation

- Data representation

- Data mining

- Big Data management

- Understanding the behaviour of

- Systematic review on data mining
- Analysis of methods to transform
trajectories into other data formats

(ZHENG, 2015)

(FENG; ZHU, 2016) Framework architecture for data mining

trajectories
Data - Privacy-preserving methods
Mining - Formal definitions related to prediction
. . - Taxonomy of the solutions
(GEORGIOU et al., 2018) Big data management and Prediction | Properties of the datasets for validation
purposes

(BIAN et al., 2019) Big data preparation and classification Sgi?;;ion of datasets using different
(da SILVA; PETRY; BOGORNY, 2019) | - Classification of clustering techniques
(XIE et al., 2020) Big data management and Prediction Comparison of datasets using different

prediction techniques

- Data limitation
(HUANG et al., 2022) - Prediction - Analysis of popular prediction methods
- Ethical and Legal Considerations
- Data limitation

(YIN; WEN; LI, 2023) - Prediction

- Analysis and comparison of prediction

- Ethical and Legal Considerations methods
(RICHLY, 2018) Big Data management Framework architecture for data mining
Data (SU et al., 2020) B Classification and analysis of distance
Management measures
- Big Data management Overview of reduction trajectory data,
(AMIGO et al., 2021) - Understanding the behaviour of from compression to segmentation
trajectories techniques
(WANG et al., 2021) Big data preparation and management | Data management overview
Visual Summary of trajectory data, public video
Ar;al tics (AHMED et al., 2019) Use of trajectory data in monitoring data sets and methods for reducing
y footage
Privacy (FIORE et al., 2020) - Risk assc?s?ments. of attribute linkage Rf{search on privacy of
- Anonymizing trajectory data trajectory micro-data
- Privacy-preserving methods
Data (KONG et al., 2018) - Understanding the behaviour of Classification of trajectory data
Analytics trajectories

- Big Data management

- Understanding the behaviour of
trajectories

- Privacy-preserving methods

Surveys on Big Data trajectory analytics
with a focus on integration, design, and
analysis

(ALMEIDA et al., 2020)

Several surveys highlight the importance of data reduction and data preparation tech-
niques (ZHENG, 2015; BIAN et al., 2019; GEORGIOU et al., 2018; FIORE et al., 2020; XIE
et al., 2020; WANG et al., 2021; AMIGO et al., 2021). These methods aim to enhance data
quality, reduce data volume, and automate tasks like data cleaning, ultimately facilitating more
efficient analysis.

Privacy protection for trajectory data emerges as a critical concern, emphasizing the
challenges related to anonymization (FIORE et al., 2020; KONG et al., 2018; ALMEIDA et
al., 2020). Understanding the behavior of trajectories is another recurring theme, as it directly
influences data analysis (ZHENG, 2015; FENG; ZHU, 2016; KONG et al., 2018; ALMEIDA
et al., 2020; AMIGO et al., 2021). In addition, Huang et al. (2022), Yin, Wen e Li (2023) have
identified data limitation as a significant challenge in the context of trajectory prediction. The
availability, quality, and diversity of historical data are critical factors in obtaining high-quality

training data. These studies emphasize the importance of obtaining representative trajectory
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data to ensure accurate predictions.

Notably, trajectory data management and mining domains have received significant
attention in recent surveys, with challenges related to data management. In this context, we
highlight the challenges pointed out as the efforts to reduce the volume of data stored by data
preprocessing tasks, aiming to improve data quality and minimize data size (RICHLY, 2018;
WANG et al., 2021; FENG; ZHU, 2016; BIAN et al., 2019; AMIGO et al., 2021).

While reducing trajectory data is widely acknowledged as a challenge in data manage-
ment, in-depth explorations are limited. Nevertheless, only two studies have explored this topic:
Almeida et al. (2020), which focuses on data integration, unifying different sources into a single
data format, and Amigo et al. (2021), which provides an overview of trajectory data compres-
sion. Amigo et al. (2021) consider several approaches to reducing a single trajectory into a
more compact version, focusing on analyzing compression techniques and computing semantic
knowledge. This thesis attempts to fill existing literature gaps, highlighting the data reduction
challenges. In this way, an under-explored yet crucial theme refers to the summarization of tra-
Jjectory data, so we also offer a comprehensive overview of the state-of-the-art in trajectory data
summarization. The subsequent section presents a detailed exploration of relevant literature on

this subject.

3.2 RELATED WORKS ON TRAJECTORY SUMMARIZATION

Trajectory data reduction is essential for refining complex trajectory datasets into man-
ageable and informative representations. Research in trajectory data reduction, aimed at gener-
ating representative data, has seen significant advancements over the years. By analyzing and
classifying related works, we have identified eleven studies focused on data summarization.

To provide a comprehensive understanding of the landscape, we begin with an overview
of the related works, followed by an analysis categorized into different topics. These topics en-
compass (i) representative data type, (ii) methods performed by the approach, and (iii) evalua-
tion of the approach.

Our research into trajectory summarization begins with related works dating back to
2007. A pioneering contribution by Lee, Han e Whang (2007) addressed the challenge of pro-
cessing trajectory data by proposing a partition-and-group framework for spatial trajectories.
Their approach involved two steps: partitioning trajectories using an approximation algorithm
and then clustering the segments using TRAjectory CLUStering (TRACLUS) density-based clus-
tering algorithm, which is based on the clustering algorithm Density-Based Spatial Clustering of
Applications with Noise (DBSCAN) (ESTER et al., 1996). The proposed TRACLUS algorithm
demonstrated its effectiveness in summarizing trajectory data by identifying common behaviors
among subtrajectories, i.e., a common subtrajectory is defined as the representative trajectory
for each cluster, which can be identified as the summarized data for this set of subtrajectories.

In 2012, Panagiotakis et al. (2012) contributed to this progress with their work.
Their study focused on spatiotemporal trajectory segmentation and sampling in Moving Object
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Databases (MOD) to capture shared portions between trajectories. They segmented trajectories
into subtrajectories, clustered them to identify shared ones, and selected the most representative
subtrajectory for each cluster based on density and similarity. The study proposed a method for
capturing shared subtrajectories and selecting representative subtrajectories, improving trajec-
tory data summarization. Their approach effectively represented trajectories by capturing shared
portions and selecting representative subtrajectories by both spatial and temporal dimensions.

In 2013, Buchin et al. (2013) made a noteworthy contribution to trajectory data sum-
marization. Their study aimed to compute the median trajectory in a set of input spatial tra-
jectories, considering both simple median and homotopic median approaches. They segmented
input trajectories into subtrajectories, arranged them, and determined the middle trajectory as a
representative using either simple or homotopic median computation. By considering obstacles
in the route, the study improved the understanding of trajectory paths, and introducing both
the simple median and homotopic median methods offered flexibility in trajectory summariza-
tion. The comparison of the two approaches revealed that the homotopic median outperformed
the simple median in most cases, highlighting its effectiveness in trajectory summarization and
demonstrating advancements in this field.

In 2015, a significant advancement was made by Ayhan e Samet (2015), who intro-
duced DICLERGE (Divide-Cluster-Merge), a novel clustering framework for spatiotemporal
trajectories designed explicitly for aircraft trajectory data. DICLERGE divides trajectories into
three major flight phases (climb, enroute, and descent) and clusters each phase separately. The
framework also includes the generation of a representative trajectory, achieved through lateral
and vertical smoothing processes. Lateral smoothing involves filtering and connecting the clus-
ter centroids of the trajectory points, while vertical smoothing determines the enroute altitude
by calculating the median altitude of all trajectory points. DICLERGE offers a tailored approach
to divide, cluster, and summarize aircraft trajectories into distinct flight phases, providing rep-
resentative data for this specific context.

In 2016, Etienne et al. (2016) made a notable contribution by introducing a novel
method for describing the typical movement of a cluster of homogeneous spatiotemporal trajec-
tories. The study addressed the challenge of summarizing the central tendency for such clusters
by the introduced method of Trajectory Box Plot (TBP). The TBP computes a representative
trajectory by selecting an initial reference trajectory and pairing positions within it with corre-
sponding positions in other trajectories within the same cluster. The central position for each
cluster point is computed, and these ordered central positions are connected to generate a new
reference trajectory. This iterative process repeats until the reference trajectory converges to a
central (representative) trajectory. The computation process is based on the work of Petitjean,
Ketterlin e Gangarski (2011). The study introduced the Trajectory Box Plot (TBP) to represent
the typical movement of homogeneous spatiotemporal trajectories by central tendencies.

In 2018, Agarwal et al. (2018) addressed the challenge of subtrajectory clustering
within spatial trajectories. The goal was to cluster subsequences of trajectories effectively to

capture shared portions, identify segments with shared characteristics among trajectories, and
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provide a summarized representation of the trajectories. The ultimate goal was to find the op-
timal set of subtrajectories that could effectively represent the entire input dataset. The study
utilized an approximation algorithm based on the Set-Cover problem (CORMEN et al., 2009),
an effective approach to this challenge to compute the representative trajectory for each cluster.

In 2019, Gao et al. (2019) presented a compression model for spatiotemporal trajec-
tories enriched with semantic information. Their study aimed to improve the representation and
compression of trajectory data by incorporating semantic aspects. The authors introduce a multi-
resolution synchronization-based clustering model called CascadeSync. This model identifies
delimited regions of geographic space, referred to as Region of Interest (ROI), by clustering raw
trajectory points. Gradually, these clusters are synchronized hierarchically, leading to the for-
mation of a hierarchical ROI network. This process reduces the number of ROIs as the area size
of each region increases. The study introduced a novel approach where each original trajectory
can be compressed into a sequence of ROIs, incorporating semantic information. The approach
of using CascadeSync for hierarchical ROI clustering and incorporating semantic information
into trajectory compression demonstrated advancements in handling spatiotemporal trajectories
enriched with semantics.

In 2020, the authors complemented their 2019 study by proposing a hierarchical em-
bedding model. This model allowed the incorporation of each ROl/trajectory as a continuous
vector in a semantic vector space. Significantly, it facilitated semantic similarity computation
between two ROIs/trajectories through Euclidean distance metrics (GAO et al., 2020).

Additionally, in 2019, Buchin, Kilgus e Kolzsch (2019) introduced a framework
called Group Diagram (GD) for representing spatiotemporal trajectories. The framework aims
to represent input trajectories with minimal subtrajectories while preserving their essential char-
acteristics. It generates a single representative trajectory called the minimal GD. The minimal
GD i1s computed through a segmentation step, where subtrajectories within the input trajecto-
ries are clustered. The representative subtrajectory was computed as the middle subtrajectory
for each cluster, considering a predefined maximum distance from all other subtrajectories.
These representative subtrajectories are then connected to form the representative trajectory.
The GD framework provides a novel data representation for spatiotemporal trajectories and of-
fers an approach to summarize trajectories while maintaining essential information. Using the
GD framework and the approximation algorithm based on the Set-Cover problem facilitated the
generation of representative trajectories, demonstrating advancements in trajectory summariza-
tion techniques.

Seep e Vahrenhold (2019) proposed a solution for generating representative semantic
trajectories also in 2019. Their study focused on identifying a sequence of transitions common
to most routes within trajectory data, aiming to capture essential trajectory patterns. The authors
considered a Finite State Machine (FSM) version called Extended FSM (EFSM) for their ap-
proach. In EFSM, each state represents a data point, and the sequence of states and transitions
constitutes a subtrajectory. The complete sequence of states and transitions generated the repre-

sentative trajectory, which captured common patterns among trajectories. The common pattern
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was defined by analyzing the routes along the time dimension, and each transition was defined
depending on the spatial and non-spatial aspects (SEEP; VAHRENHOLD, 2021). While spe-
cific findings and results were not mentioned in the short paper format, using EFSM to infer
representative semantic trajectories demonstrates advancements in trajectory analysis.

In 2021, the authors advanced their work by proposing a method called EFSMClust,
which extends the k-means algorithm to cluster trajectories with multiple aspects (SEEP; VAHREN-
HOLD, 2021). The clustering algorithm defines a similarity measure between a trajectory and a
graph-based representation of a cluster centroid. The computed representative trajectory based
on EFSM in the previous work is used to define the centroid of each cluster, and by using
the similarity measure, they define the trajectories nearest to each representative trajectory to
compute the final cluster. As this second work refers to another part and does not focus on rep-
resentative computation, this step is not detailed. Although the study does not provide specific
findings or results in the short paper format, it demonstrated advancements in trajectory analysis
by using representative trajectories to improve cluster computation.

In 2020, Rodriguez e Ortiz (2020) introduced an approach for generating a repre-
sentative trajectory from spatiotemporal trajectories. The study aimed to identify and represent
patterns within trajectory data, effectively summarizing the underlying information. The input
trajectories were initially segmented into subtrajectories, breaking them into more manageable
parts. Subtrajectories were grouped, and pattern detection was performed using the DBSCAN
algorithm, similar to the approach in the study by Lee, Han e Whang (2007). A representative
trajectory is identified for each cluster using an arrangement of the spatial data of these subtra-
jectories. The study contributed to the field by introducing an approach that relied on pattern
detection and spatial data arrangement to represent trajectories effectively.

Li (2021) proposed, in 2021, a method for extracting typical ship trajectories using
Automatic Identification System (AIS) data and trajectory clustering. The study aimed to iden-
tify and provide representative ship motion trajectories from a set of ship trajectories. The study
involved preprocessing AIS data and preparing it for trajectory analysis. Ship trajectories were
segmented into meaningful subtrajectories. The improved DBSCAN clustering algorithm was
applied to cluster trajectories to identify their typical mobility. The result is representative tra-
jectories using the center of the clusters. The study contributed to the field by introducing a
method for extracting and representing distinct ship trajectories using an improved DBSCAN
clustering algorithm.

Finally, in recent research, Pugliese et al. (2023) presented a novel approach for MAT
summarization by enriching raw trajectories with semantic context. However, their approach
does not consider input data trajectories with multiple aspects, as the raw trajectories are en-
riched during the process, and group representative data is created for each group rather than

just one representative information.
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3.2.1 Discussion

Based on the discussion in Section 2.2, the evolution of trajectory summarization for
trajectory data shows that semantic trajectories emerged in 2007. However, there is still a need
for further improvement in summarizing this data, especially within the context of MATSs that
involve multiple and complex aspects. The challenge is to improve the summarization of the
semantic dimension, which only began in 2019. We present a comprehensive table (Table 2) to
compare related works regarding representative data. This table examines critical elements of

each study: (i) considered dimension; (ii) summarization type; and (iii) mapping information.

Table 2 — Related work comparison

Considered Dimensions” | Summarization | Mapping
Study - - . .
Space | Time | Semantic type information
TraClus X Computation
(LEE; HAN; WHANG, 2007)
(PANAGIOTAKIS et al., 2012) X X Selection
Median Trajector .
(BUCHIN ot al., 2{)13) X Computation
DICLERGE .
(AYHAN; SAMET, 2015) x| X Computation
TBP .
(ETIENNE et al., 2016) X | X Computation
(AGARWAL et al., 2018) X * Computation
CascadeSync .
(GAO et a);., 2019) X X Computation X
GD X X Selection
(BUCHIN; KILGUS; K6LZSCH, 2019)
(SEEP; VAHRENHOLD, 2019) X * * Computation
(RODRIGUEZ; ORTIZ, 2020) X * Computation
(LI, 2021) X * * Selection
MAT-SG (ours) X X X Computation X
MAT-SGT (ours) X X X Computation X

2 In the Considered Dimension column, "X" indicates a completely resolved dimension, "*" indicates a
dimension that is not completely resolved, and an empty cell indicates a dimension that is not addressed
in the study or is not mentioned.

First, some studies, as marked with (*), do not encompass all dimensions provided in
the input trajectories within their methods. Observing the works that consider the semantic di-
mension, Seep e Vahrenhold (2019) consider a trajectory annotated with additional information
(a semantic trajectory), where all attributes of the points are treated as a spatial or non-spatial
value. Li (2021) refers to the vessel scenario and consider specific aspects of the semantic
dimension (vessel speed and direction) while reducing trajectory points and computing repre-
sentative data. Other works use semantic dimension only to enrich their final raw data, without
regarding it as input data or incorporating it into their summarization method, as observed in
Gao et al. (2019).

As expected, the spatial dimension is a consensus among all studies, and most of them

also include the temporal dimension. However, only some studies deal with semantic aspects in
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their processes to compute representative data, making this problem an open issue.

A notable observation is that while trajectory summarization can be categorized into
two types: computation of representative data through mathematical methods or selection of
specific trajectories or segments to represent the entire dataset, as described in Section 2.3.1,
most related works primarily focus on the computation task. Over the years, this emphasis
on computation has led to significant advancements in summarization techniques. However, it
is essential to recognize that the semantic dimension has been somewhat overlooked in these
computations, even in the most recent studies. While spatial and temporal dimensions are con-
sistently addressed, capturing and representing all semantic aspects remains an open issue.

Furthermore, mapping information, which pertains to understanding the relationship
between input trajectories and the summarized data, is another critical aspect that has received
limited attention. Notably, only one study (GAO et al., 2019) describes this topic explicitly.
Other related works do not perform mappings or do not provide any information about them.

In Gao et al. (2019), they propose a method to convert an input trajectory into an ROI
network. Each ROI represents the origin of an input trajectory, and the trajectory itself can be
represented as a sequence of ROIs within the ROI network. Furthermore, all trajectories passing
through a particular ROI are recorded. However, this mapping information primarily indicates
which input trajectory contributes to a particular ROI without specifying the specific points
within the trajectory that form the ROI.

3.2.2 Evaluation of the Representative Trajectory Data Computation Process

This section conducts a thorough analysis of evaluations presented in related works,
focusing on considered datasets and the evaluated factors. Special attention is given to the re-
duction process used for computing representative data, specifically in relation to the summa-
rization task, as indicated by bold highlighting in the Evaluated factor column of Table 3. Ad-
ditionally, for studies that explicitly evaluate the computation of representative data, we provide
an overview of their evaluation.

Only three works evaluate their approach regarding some factor of computation of rep-
resentative data (PANAGIOTAKIS et al., 2012; BUCHIN et al., 2013; SEEP; VAHRENHOLD,
2019), referring reduction process, as highlighted in bold in Table 3, and the evaluation of these
studies are detailed in the following.

Among the related works, only five (PANAGIOTAKIS et al., 2012; BUCHIN et al.,
2013; SEEP; VAHRENHOLD, 2019), MAT-SG, and MAT-SGT) systematically evaluate their
approach concerning the computation of representative data, focusing on the reduction process,
as highlighted in bold in Table 3. The evaluations of these studies are detailed below.

In Panagiotakis et al. (2012), the approach undergoes a quantitative evaluation using
both real and synthetic databases. The process involves computing representative data as sub-
trajectories concentrated at the center of the cluster. The evaluation focuses on determining

optimal parameters for clustering trajectories. To construct the sub-trajectory sampling set, a
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Table 3 — Comparative of the related works w.r.t. evaluated factor

Study Dataset Evaluated factor Compares to

Hurricanes® and

Animals* (Elk and Deer)

Synthetic dataset,

(PANAGIOTAKIS et al., 2012) Transport® (Athens trucks),
Transpon6 (Milano)

TraClus (LEE; HAN; WHANG, 2007) Clustering process -

standard sampling
(random and
stratified sampling)

Performance sampling
Representative data

Median Trajectory

(BUCHIN et al., 2013) Synthetic dataset Computed medians -
DICLERGE (AYHAN; SAMET, 2015)  Private dataset (Aircraft) Clustering process -
TBP (ETIENNE et al., 2016) Vessels’ (AIS Brest, France) - -
Synthetic data, Geolifed
Urban Taxi

(AGARWAL et al., 2018) Clustering process -

(Beijing) (LIAN; ZHANG, 2018),
Private dataset

Synthetic dataset,

CascadeSync Geolife, Hurricanes,

(GAO et al., 2019) Urban Taxi® (T-Drive)

and Animals!? (Barn Swallows)

Compression algorithm -

GD . s Data representation
(BUCHIN; KILGUS; K6LZSCH, 2019) /*nimals™ (LifeTrack Geese) process )
(SEEP; VAHRENHOLD, 2019) Hurricanes and Geolife Representative data TRA.CLUS a nd
Median Trajectory
(RODRIGUEZ; ORTIZ, 2020) Private dataset (Transport) - -
(LI, 2021) Private dataset (Vessel) Clustering processing -
Private dataset (Pisa),
Foursquare'2, .
MAT-SG (ours) Brightkite!?, Representative data MAT-SGT
Gowalla'*
Private dataset (Pisa),
Foursquare, .
MAT-SGT (ours) Brightkite, Representative data MAT-SG
Gowalla

* Highlighted in bold are the evaluated factors applied to the computation of the representative data.

3 http://www.nhc.noaa.gov/data/hurdat/

4 https://www.fs.usda.gov/research/pnw/forestsandranges/locations/starkey

3 http://www.chorochronos.org/Default.aspx ?tabid=7 1 &iditem=3 1

6 Milano dataset consists of GPS traces describing the movement of a set of 17K vehicles during one week at the beginning of
April 2007 (not available).

7 http://www.chorochronos.org

8 https://www.microsoft.com/en-us/research/publication/geolife- gps-trajectory-dataset-user-guide/

9 https://www.microsoft.com/en-us/research/publication/t-drive-trajectory-data-sample/

10 https://www.datarepository.movebank.org/handle/10255/move.655

1 https://zenodo.org/records/3508780

12 https://github.com/bigdata-ufsc/datasets_v1_0/tree/main/data/multiple_trajectories/Foursquare_NYC

13 https://github.com/bigdata-ufsc/datasets_v1_0/tree/main/data/multiple_trajectories/Brightkite

14 https://github.com/bigdata-ufsc/datasets_v1_0/tree/main/data/multiple_trajectories/Gowalla

proposed distance measure calculates the number of trajectories in the input dataset represented
in each sampling. For comparative analysis with other sampling techniques, the Root Mean
Square Error (RMSE) metric is employed, indicating which technique offers superior coverage
of the space-time within the input dataset.

In Buchin et al. (2013), two approaches, namely the simple median and homotopic
median, are systematically compared through both quantitative and qualitative analyses. The
quantitative evaluation involves considering metrics such as the number of vertices, total length,
and total turning angle of the median trajectory computed by both approaches, along with the

average of these measures for the input trajectories. Qualitative analysis is conducted through
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visual inspection, revealing that the homotopic median results better results.

In the work by Seep e Vahrenhold (2019), a comprehensive quantitative and qualitative
evaluation is conducted on its representative data, comparing results against TRACLUS and
Median Trajectory. The qualitative assessment involves visual analysis, while the quantitative
evaluation employs means and median distance (using Fréchet distance) between input and
representative data for each approach. This work demonstrates a more faithful representation in

both evaluations of the considered datasets.

3.2.3 Summary

Since summarizing trajectories is a vital process that condenses extensive and complex
trajectories into more manageable and informative summaries, and while MATs have emerged
as a promising data type, offering extensive possibilities for data analysis, it is noteworthy that
state-of-the-art approaches that summarize MATSs tend to overlook the consideration of all se-
mantic aspects individually. Additionally, there is a lack of studies that summarize MATs and
provide mapping information regarding the relationship between the representative data and
corresponding input points. This information would allow us to understand the origin of each
part of our representative data.

In response to these observations, this thesis introduces two novel approaches, MAT-
SG and MAT-SGT, designed to address these challenges. In the following chapter, we delve into
the details of these approaches, elucidating their methodology and contributions to the trajectory
summarization field.

Furthermore, an examination of related works reveals that only one study (SEEP;
VAHRENHOLD, 2019) encompasses all three dimensions (spatial, temporal, and semantic)
in evaluating the representative trajectory computation process. However, it is crucial to note
that this evaluation primarily relies on visual analysis (qualitative evaluation), with quantitative
aspects limited to the spatial dimension. The authors mention the lack of a well-defined measure
for quantitative evaluation and assessing the degree to which the representative data genuinely
represents all the input data.

In response to this gap, we propose a novel representativeness measure (RMMAT)
detailed in Chapter 5. This measure aims to provide a robust quantitative evaluation measure,
addressing the identified need for a comprehensive assessment of how well representative data
truly represents all aspects of the input trajectory data. Only the study by Seep e Vahrenhold
(2019) compares their work with methods that encompass spatial dimensions (LEE; HAN;
WHANG, 2007; BUCHIN et al., 2013), but no quantitative comparison is performed. The
datasets used in Seep e Vahrenhold (2019) refer to spatial (Hurricanes) and semantic (Geo-
life) analysis. However, the analysis of the Geolife dataset is only qualitative, focusing on pat-
terns identified by specific user. Since no compatibility baseline is available, we choose to use

datasets involving MATSs, providing quantitative evaluation as detailed in Chapter 6.
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4 METHODS FOR MULTIPLE ASPECT TRAJECTORY DATA SUMMARIZATION

In the fast-paced world of data management, the challenge of reducing trajectory data
to improve data processing and data mining is essential. As we explored in Chapter 2, this chal-
lenge remains a little explored, and in Chapter 3, we examined related works that emphasized
summarizing trajectories, observing that primarily their focus is based on spatial and tempo-
ral dimensions. However, the semantic dimension, which holds the key to opening a deeper
understanding of trajectory data, remains largely unexplored.

Considering that the semantic aspects provide context and meaning for both the ob-
ject and its movement regarding its raw trajectory, MATSs, with their multidimensional nature,
possess the power to provide comprehensive insights into object movement and its associated
aspects. However, these aspects usually are not considered in representative data, leading to
a combinatorial explosion that requires additional summarization strategies, particularly for
MATSs computing representative data. These strategies could provide insights into both object
movement and associated aspects.

In this chapter, we delve into strategies designed to confront this challenge head-on.
These strategies offer summarization for computing representative data from MATSs, harness-
ing the full spectrum of information contained within these trajectories. We present two novel
methods developed during the Ph.D. research, each employing distinct strategies for reducing
trajectory data through summarization.

The first method, detailed in Section 4.1, is named MAT-SG (MACHADO; MELLO;
BOGORNY, 2022a), which computes representative data exploring the pattern involved in
each spatial area regarding input MATs, effectively summarizing all involved aspects. MAT-SG
stands as the pioneering trajectory summarization method explicitly tailored for MATSs, address-
ing various dimensions while treating each aspect individually. However, it is important to note
that MAT-SG may not provide optimal solutions when preserving temporal sequences within
the representative data is crucial. For this reason, Section 4.2 introduces the second method,
MAT-SGT (MACHADO et al., 2023a), which aims to provide representative data that capture
the temporal sequences within input MAT's, summarizing all related aspects.

These methods are presented to bridge the gap between MATs and the need for more
efficient and informative summarization, providing valuable tools for data analysts and re-

searchers in various fields.

4.1 MAT-SG: MULTIPLE ASPECT TRAJECTORY SUMMARIZATION BASED ON A SPA-
TIAL GRID

The method outlined in this section is a significant contribution to this Thesis. It intro-
duces a novel algorithm known as MAT-SG (Multiple Aspect Trajectory Summarization based
on a spatial Grid), which is designed to reduce the input dataset while aspiring to offer represen-

tative data that encapsulates the predominant patterns within MATs. MAT-SG extracts essential
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insights about the moving object, such as its spatial regions and relevant attributes associated
with these regions. Our method focuses on computing a representative MAT that accurately re-
flects the primary behavior and characteristics of the input MATSs, taking into account the spatial
density and frequency of each attribute value. MAT-SG was developed to address the lack of
summarization methods for reducing input MATs while still resulting in representative data.
We assume the input MATs were already filtered by some criterion'>. So, the repre-
sentative MAT denotes the primary behavior of these input MATSs considering spatial density

and frequency of each aspect attribute value.

4.1.1 Data model

To maintain representative MAT generated by MAT-SG, we rely on a conceptual data
model shown in Figure 5. This conceptual model provides a standardized representation of the
input data and keeps the representative points and their mappings to the input points. Each point,
in turn, holds information about all dimensions: space (x and y coordinates), temporal aspects
(that could be represented by a timestamp or a time interval, denoting the start and end times),
and semantic aspects (a set of the attributes with their corresponding values). Each attribute

belongs to a categorical or numerical data type.

<LenUm > MultipleAspectTrajectory
SemanticType

-id :int
= <<gnum constant>> CATEGORICAL : int - description : String
- <<enum constant>> NUMERICAL : int

1

AttributeValue <<composedOfs =

- type - value : Object
- proportion : float

1.+

<4 pttributeValue Pai
: i . el TemporalAspect
SemanticAspect h T 1
narme ° Strin . - x : double - startTime : Date
9 N = endTime : Date
-y : double

[ ™

RepresentativePoint

Figure 5 — The conceptual model for MAT-SG.

This Thesis introduces a concept that contributes significantly to the model for repre-
sentative data. This model enables mapping data between input MATs and the resultant rep-
resentative MAT. The representative MAT is structured as a set of representative MAT points,
denoted as p,. The MAT-SG algorithm computes these points, and the representative MAT (RT)

is essentially composed of a sequence of p,’s.

15 These criteria are out of the scope of this paper, but examples could encompass operations like clustering

or straightforward filtering. For example, these criteria might involve tasks such as given MATs generated
by check-ins of different individuals to discern their patterns during specific time periods. A simple filter
could ensure that the dataset contains only the trajectories of a particular individual during these defined time
intervals.
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To compute RT, we summarize the information into p,’s. Each p, summarizes rele-
vant information derived from multiple input MAT points, and a relationship is established and
maintained between p, and its corresponding MAT points to ensure accurate representation. It
is important to note that p, is a specialized MAT point that preserves specific attributes, con-
tributing to its significance in the summarization process. This attribute-holding capacity of p,
further enhances its value in representing and maintaining crucial information within MATs.
Unlike input MAT points, each p, provides a set of Temporal Aspects, as the representative
point represents a representative spatial region and the usual activities in that region, including

the usual time that the object frequents each region.

4.1.2 Architecture

An overview of the MAT-SG method is presented in Figure 6, illustrating its core com-
ponent: Data Summarization, which comprises two main sub-components: (i) Data Segmenta-
tion and (ii) p, computation. The first one, Data Segmentation, aims to discern underlying data
patterns based on spatial density. The second one, p, Computation, is focused on summarizing

data by analyzing its frequency.

Data Summarization

Data Segmentation
‘ zl

'

output data

P, computation

I (all dimension)

. Representative
L] AT RT)
| 5

Spatial
Temporal

Sermantic

Input data

Figure 6 — MAT-SG overview.

The process begins with an input set of filtered MATSs (T) in step 1. These MATSs are
selected based on specific criteria, although the specific details of these selection criteria are not
discussed in this thesis. We assume that T exhibit some degree of similarity among the selected
MATs. Step 2 involves segmenting the input MAT points into a spatial cell grid, facilitating the
identification of relevant cells. For each of these relevant cells, step 4 is performed to calcu-
late representative points that comprehensively summarize all dimensions and encapsulate the
essential characteristics of the input data within each cell.

The outcome is the group of all computed representative points within a MAT object,
resulting in the RTas the output data in steps 5 and 6. To refine the results, step 7 involves
the selection of the best among the computed RT's as the final output. MAT-SG provides a
comprehensive representation of the primary behaviors and characteristics demonstrated by the
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input MATs, taking into account spatial density and the frequency of each aspect attribute value.
The following section will provide a detailed exploration of the MAT-SG process.

4.1.3 Algorithm

MAT-SG considers a set of input parameters besides the input MATs. They are detailed
in Table 4. 7, and 7,, are optionally defined by the analyst; otherwise, default values are as-
sumed. MAT-SG starts by calculating rc = |T.points| X T, which is based on a proportion 7.
For example, given 7, = 1% and |T.points| = 200, then rc = 2. In other words, only cells with a
minimum of 2 points are considered relevant for accommodating a p,. Subsequently, MAT-SG

proceeds through its steps, meticulously detailed in the following sections.

Table 4 — Parameters of our summarization methods

Parameter Explanation Default

T Set of previously filtered input MATs -
Minimum proportion of all input MAT points |T.points]|,

Tre Ce . . . re=2
deciding if a cell is considered a relevant cell to compute p,

Try A rate of representativeness value for ranking values” 10%

* Ranking values are computed by data frequency, specifically only for the temporal
dimension and categorical values of the semantic dimension.

The MAT-SG algorithm, detailed in Algorithm 1, is designed to compute an optimal
RT by identifying the most suitable spatial segmentation. It initiates by determining the mini-
mum spatial threshold (Ts) to measure the dispersion among all input points. Subsequently, it
calculates the distance between the grid origin (0,0) and the farthest point from it (line 6). This
calculation helps establish the maximum grid size, assuming all points fall within a single cell.
The initial z value computed in this process is a multiplier for determining the cell size. Us-
ing this initial z value, the algorithm creates an initial grid with a single cell encompassing all
MAT points, configuring the start of the process (line 11 - more detailed in Algorithm 2). The
subsequent steps involve iteratively reducing the z value to analyze and compute an improved
RT (lines 10 to 25). This iterative approach aims to identify the optimal segmentation that
yields the most refined RT . Additionally, the option to reduce z value in 15% in each interaction
(line 25) was determined after conducting various tests to identify the most effective reduction
rate, considering both runtime efficiency and the sufficiency of information for generating a
new RT.

Within each iteration, the algorithm performs data spatial segmentation based on the
current z value, culminating in spatial allocation (Cell Grid allocation step). Subsequently, it
computes representative points for each group of points (lines 12 to 14). As previously men-
tioned, MAT-SG accomplishes MAT summarization through two key internal components: (i)
data segmentation; and (ii) p, computation.

To assess the quality of the computed RT, it is compared to the previously calculated

representative trajectory (betterRT ), with a stipulated margin of 10% improvement. If a superior
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RT is identified, the algorithm updates the betterRT and resets the counter-tracking iterations

without improvement. The best RT is determined by its similarity, coverage, and superiority

over others in two new computations. Section 4.1.3.3 provides a detailed explanation of the

selection process.

Algorithm 1: MAT-SG

-T- RN I L7 D "N JUR S R

—
=)

11

12
13
14

15
16
17
18

input : T, 7., 7,
output: RT /* representative trajectory */
rc < |T.points| X Ty;
T, <— computeMinSpatial Threshold();
rt <0
betterRT < 0
count + 0;
7 <— computeMaxZValue();
betterRTmeasure < 0;
Weim < 0.5;
Weover $— (1 - Wsim);
while z > 1 do
/I component (i) - Fig. 6 (steps 2 and 3)
spatialCellGrid < cellGridAllocation(rc,z,T) // Algorithm 2
// component (ii) - Fig. 6 (step 4)
foreach eachGroupPoint € spatialCellGrid do
pr < computeRepPoint(eachGroupPoint, T,,);
L rt < rtUp, // Fig. 6 (step 5)

// analysis of better RT - Fig. 6 (step 7)
rtMeasure < RMMAT (rt, T, Wim, Weover )
if (rtMeasure x 1.1) > betterRT measure then
betterRT measure < rtMeasure;
betterRT + rt;

19 rt <0

20 count < 0;

21 else

22 L count + +;

23 if count > 1 then

24 | break;

25 | z42X 0.85;

26 return betterRT;

The two components of the MAT-SG method are detailed next.

4.1.3.1 Data Segmentation Component

The initial step of the MAT-SG algorithm involves segmenting the points from the

input MATs into a grid of square cells. This process is illustrated in Figure 7, which depicts a

spatial grid with a highlighted cell. The size of each cell is determined by a threshold of spatial
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dispersion (7;), which specifies the maximum spatial distance between any two points within

the cell. In other words, this threshold represents the diagonal length of each cell.

Spatial Grid

 ~

NEmp

Lz min(d(pi, pr))

i3
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N
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o
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Figure 7 — Cell size computation

The calculation of 7; (as shown in the equation in Figure 7) is performed dynamically
and automatically. It is computed based on the average minimum spatial distances between the
input MAT points. In the case of a given input set T with n points, we calculate the Euclidean
distance d() for each point p; € T concerning its nearest neighbor p; € T. The value of 7 is
then obtained by multiplying a factor z with the average of these minimal distances.

The size of these grid cells (cell size) essentially determines the granularity of the
spatial segmentation. Once the cell size is established, the input MAT points are allocated to the
appropriate cells within the spatial grid. After this allocation, the process identifies the so-called
relevant cells, which contain a sufficient number of points (at least rc) to provide meaningful
representation and insights.

Algorithm 2 details the Data Segmentation step. An advantage of this approach is that
it only generates cells that contain points, optimizing memory usage. It allocates the points from
T to a spatial grid, implemented as an inverted index (or inverted list). In this implementation,
the key represents the identity of the cell position, while the value comprises a list of the T

points allocated within that cell.

Algorithm 2: MAT-SG:cellGridAllocation

input :rc,z, T
output: spatialCellGrid /* inverted list */
spatialCellGrid + 0;
Ty <— computeTy(2);
cellSize +— computeCellSize(7s);
foreach T € T do
foreach p € T do
key < getCellPosition(px, py, cellSize);
if spatialCellGrid.get (key) = 0 then
spatialCellGrid.new(key);
spatialCellGrid.get(key).put(p);
else
L spatialCellGrid.get (key).append(p);

[V LR S

- 0 R

—

spatialCellGrid.updateByRelevantCells(rc);
return spatialCellGrid

.
W N

The algorithm first computes the cell size of the spatial grid (lines 2 and 3) considering
that all cells in the grid have the same size. To determine the appropriate cell for each MAT

point, it calculates the grid position key for point p (line 6), considering the cell size defined by
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the getCellPosition function, which is calculated as (Cel’l’gize, Cel’;ﬁ

). Then, p is allocated into
the grid cell of this position (lines 6 to 11), provided that the cell already exists.

In cases where the designated cell does not exist, the algorithm creates a new key and
inserts the point into it (lines 8 and 9). This process of allocating points to grid cells ensures
efficient spatial segmentation and allocation of the input MAT points while optimizing memory
usage. The spatialCellGrid 1s updated to maintain only relevant cells (line 12). It identifies
cells containing sufficient points (at least rc) to offer meaningful representation and insights.

The spatial data segmentation is efficiently done with the allocation method, which
optimizes memory utilization by dynamically generating cells when necessary. Identifying rel-
evant cells ensures that the subsequent algorithm step focuses on regions of interest with suffi-

cient data density to provide valuable summarization and insights.
4.1.3.2 Representative Point Computation component

In the second component of MAT-SG, the aim is to summarize each group of points
(eachGroupPoint) obtained from the first component. This is depicted in Figure 6 (step 4). It
is important to note that cells containing less than rc points are considered weak representative
cells and are discarded from the group of points in the last component. In this component, a p,
is computed for each group. These representative p,’s together form the RT (Algorithm 1, lines
12 to 14). To generate a p,, the three MAT dimensions for all points in the cell, we summarize
the three MAT dimensions for all points in the cell: spatial, temporal, and semantic.

For spatial dimension, the centroid point is computed (WOOQOD et al., 1990), i.e., the av-
erage of the (x,y) coordinates in eachGroupPoint. For the temporal dimension, we compute the
Significant Temporal Intervals (STI) that accommodate all timestamps within the set of points

eachGroupPoint. The STI captures the time intervals during which these points are distributed.

Definition 4.1.1. Significant Temporal Intervals (STI). Let Time = tsy,ts2,...,ts,, where
each ts represents the temporal value of each point. An STI is a collection of time intervals
[tsiv1—1si],..., [tsm—1 — s that encompasses all the ¢si values within the points of each cell
grid (tsi € eachGroupPoint). In this context, i denotes the initial index in the Time sequence,

and m represents the final index.

To identify the most relevant ST Is for the task of creating representative points (p,),
MAT-SG establishes a ranking based on the intervals (sti € STI) and their corresponding tem-
poral tendencies. We use the predefined threshold 7, to define which sti are considered repre-
sentative for p,. Specifically, sti intervals with a frequency rate greater than or equal to 7,, are
considered representative.

To illustrate this process, Algorithm 3 outlines the computation of the ranking for
representative S7'Is. This process is exemplified in a visual representation in Figure 8.

First, a Time list is generated to hold all #s’s € eachGroupPoint. It is sorted for better

analyzing the time intervals (lines 1 to 3), as shown in Figure 8 (a). Then, we consider a com-
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Algorithm 3: MAT-SG:computeTemporal Dimension

input : eachGroupPoint, T,
output: rankSTI /* ranking of representative STIs for eachGroupPoint */
foreach p € eachGroupPoint do

| Time.add(p.time);

Time.sort();
Atime <— computeTimesDif ference(Time);
Varine < computeValidValues(Atipe);
7 < computeTimeT hreshold(Vp,, );
ST 1, < 0;
rankST1 < 0;
9 foreach ts € Time do
10 ST Lyyx-.append(ts);
11 if 6; > 1 and (|STlaux|/|Timel|) > 7y, then
12 rankSTI.new(ST Iy );
13 rankST1.get (ST Ly ). put (|ST Ly | /| Timel);
14 ST Ly 0

15 rankSTI < normalizeRank(rankSTI());
16 return rankSTI
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Figure 8 — An example of temporal dimension summarization in a grid cell

puted threshold (7;) to define when a ts € Time 1s close to another and aggregate ts’s to generate
an sti, as explained in the following.

Consider 6; as the time difference between two consecutive timestamps (8; = ts;11 —
ts;), and let Apjne = {81;02;...;0,—1 } represent a set of &; values for all ts € Time (line 4). It is
important to note that, according to our conceptual model (presented in Figure 5), each point in
the input dataset contains one Temporal Aspect, which could be either a single timestamp or a
temporal interval defined by timestamps for the start and end times. In the latter case, the time
difference is computed as two separate ts € Time.

In line 5, we set the Valid Temporal Interval set Vy,, . as all 0; € Arip, that fit into the

average Arijme plus or minus the standard deviation 6 Ar;,,., as defined by Equation 4.1.
Viagime = {6 € Atimes 1 <i< (n—1) | (Atime — OA7ime) < & < (Atime + GATime) } 4.1

To establish ST'I that accurately represents the underlying patterns within each group
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of points (eachGroupPoint), it is imperative to create a robust definition of these intervals adapt-
able to various scenarios. This adaptability ensures that the methodology remains effective
across different datasets. To achieve this, we utilize a computational procedure to calculate
T;, aiming to define which are the sti’s in eachGroupPoint, by identifying when a ts € Time
is in proximity to another and combining them to produce an sti. This procedure involves the
identification and removal of potential outliers from the analysis.

In line 6, 7; is determined as the average of the set Vy,, (m). Its purpose is to
filter out &; € Arime that differ significantly from the general trend, effectively removing outliers
from consideration. This is illustrated in Figure 8 (b), where all 6; € Arjy,e are shown, along
with V., . Notably, in this example, 07:05 is identified as an outlier. The subsequent Figure 8
(c) demonstrates the computation of ;.

The construction of ST’/ is based on the calculated 7; and is carried out in lines 9 to
14. We initially append to ST'I,,, the values of ts € Time (line 10), and while 6; is less than t;,
we consider zs part of a sti and continue to append subsequent timestamps. When 6; exceeds 1,
and the frequency rate of this interval is considered representative (line 11), it is identified as a
distinct sti € ST1. This ST1,,, is then added as a new key to the inverted list of rankST1 (line
12), with its frequency rate serving as the value associated with this key (line 13). It is worth
noting that a temporal interval sti may also represent a single timestamp when it is considerably
distant from its neighbors, meaning that the time differences 9; to its adjacent points, regarding
temporal information, exceed ;. This process is illustrated in Figure 8 (d).

In the example, we have a first sti; = {08:00, 08:30, 08:55} as all their 6; < T;. A stip
= {16:00} holds a single sti as the time differences to its neighbors exceed 7;. This process
is repeated to all the remaining ts € Time. In Figure 8 (e), with a specified 7, of 25%, the
identified STIs are {[08 : 00 — 08 : 55],[19 : 30 — 20 : 10]}. In the final step of the temporal
dimension computation, performed in line 15, the resulting S7'/s are normalized to ensure that
their rate values sum to 100%. This normalization process is depicted in Figure 8 (f).

We summarize the semantic dimension in the final step of p, Computation. This di-
mension encompasses various aspects, which we categorize into two types: (i) categorical, such
as the mean of transportation and weather conditions, and (i7) numerical, such as air temperature
and humidity. For numerical types, we calculate the median value!®.

We determine the representative mode values for categorical aspects, similar to the
temporal dimension. These mode values appear most frequently within each aspect of the data
grid cell and are identified based on a predefined threshold (7,,). Once identified, we normalize
the values to ensure the proportion values add up to 100%.

To illustrate this process with a practical example, consider a group of ten data points
associated with activities performed in each place. Among these points, four are labeled as
"tourism", four as "work", and two as "study". Initially, when applying MAT-SG, the mode val-

ues are "tourism" and "work", with each representing 40% of the data, while "study" accounts

16 'We prefer the median value instead of the mean value when the data are not symmetrically distributed since it
is less sensitive to the influence of outliers (MCCLUSKEY; LALKHEN, 2007).
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for 20%. However, with a representative value threshold set at 7,, = 25%, the "study" value
falls short of meeting the threshold and is consequently excluded as a representative value. In
this case, "tourism" and "work" are considered representative values, and their proportions are
adjusted to reflect the distribution of the most common activities in the dataset, with each now
representing 50% of the representative values. This reorganization ensures that the representa-
tion accurately reflects the distribution of the most common activities in the dataset, providing
an informative summary of the categorical data.

Overall, the p, computation step combines the computation of centroids, sti’s, and rep-
resentative values for numerical and categorical aspects. This step consolidates the summarized

information for each dimension, essential in determining the RT .

4.1.3.3 Computation of the Better Representative Trajectory

To analyze and compute the better RT (according to Figure 6 step 7), MAT-SG employs
a representativeness measure called RMMAT (details provided in Chapter 5). This measure is
based on a similarity measure and the covered MAT points.

The representativeness measure is computed using the RMMAT function (Algorithm 1,
line 15). This function calculates the representativeness measure between the input MATs (T)
and the computed RT. The chosen similarity measure for this implementation is MUITAS
(PETRY et al., 2019), recognized as a state-of-the-art similarity measure for MATs. MUITAS
quantifies the distance between points in two MATS to determine their similarity.

The RMMAT measure reflects the overall coverage of both MAT points and the infor-
mation in the RT'. To ensure equal consideration of both similarity and covered information, we
employ a strategy with equal weights, setting @sin, = Ocover = % The measure combines the sim-
ilarity measure and coverage proportion, aiming to identify the RT that achieves the maximum
coverage of both MAT points and their contained information.

In the MAT-SG method, spatial segmentation takes priority over other dimensions.
This means that even in scenarios where all points within the same cell exhibit temporal and
semantic differences, MAT-SG computes at least one representative point considering the spatial
dimension. This prioritization emphasizes the representativeness of specific locations in the

input MATs, thus ensuring that spatial information is adequately preserved in the RT .

4.2 MAT-SGT: MULTIPLE ASPECT TRAJECTORY SUMMARIZATION BASED ON A
SPATIAL GRID AND TEMPORAL SEQUENCE

MAT-SG stands out as a pioneering approach to generating representative data tailored
specifically for MATs. It accomplishes this by addressing all aspects of MATs individually,
which leads to a more comprehensive representation of the data. Moreover, MAT-SG introduces

a pivotal task by establishing a mapping between the input MAT's and the resulting representa-
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tive MAT. This mapping is instrumental in preserving the relationship between the original data
and its summarized representation.

It is worth emphasizing that the MAT-SG method involves spatial segmentation and
data summarization. This process is valuable for identifying movement patterns that are specific
to different spatial areas. Additionally, it comprehensively considers various dimensions and
treats each semantic type individually, which is beneficial for capturing the full spectrum of
MATs.

However, the effectiveness of trajectory data summarization should be viewed in the
context of the intended purpose of the representative data. In some scenarios, temporal infor-
mation is critical for understanding when and how events or movements occur over time. While
MAT-SG excels in various aspects of summarization, it may not fully capture the temporal di-
mension of the data. This limitation might be a crucial factor for certain applications or analyses
that heavily rely on temporal patterns within MATS.

In light of the importance of considering the intended purpose of representative data
and the significance of temporal information in some scenarios, a novel method for summarizing
MATs has been introduced, called Multiple Aspect Trajectory Summarization based on a Spatial
Grid and Temporal Sequence (MAT-SGT). This method is designed to address the limitation
of not fully capturing the temporal dimension of the data while still maintaining some of the
advantages of MAT-SG.

Similar to MAT-SG, MAT-SGT aims to reduce the input dataset while providing repre-
sentative data encapsulating the predominant patterns within MATs. However, MAT-SGT takes
a novel approach by specifically focusing on identifying the temporal sequences associated with
movement patterns. This is a crucial addition, as it ensures that the summarization method can
better reveal when and how events or movements occur over time within MATS.

In addition to capturing temporal sequences, MAT-SGT retains some key features from
MAT-SG, such as establishing mappings between input MAT's and the representative MAT, as
well as incorporating spatial segmentation. This comprehensive approach allows MAT-SGT to
consider both spatial and temporal aspects in MAT summarization.

Analyzing and extracting meaningful insights from MAT data, which includes spa-
tial, temporal, and semantic aspects, can be challenging. Considering this issue, our method
analyzes the distribution of points over time and space to identify information values that best
represent the main behavior exhibited in the input MATSs. By leveraging spatiotemporal analysis
techniques, we can capture patterns in movement, providing valuable insights into the overall

trajectory data with a focus on the spatiotemporal sequence.
4.2.1 Data model
In maintaining the representative MATs computed by MAT-SGT a conceptual data

model, illustrated in Figure 9, is employed.

This model provides a standardized representation of the input data and preserves the
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<<enums>> MultipleAspectTrajectory
SemanticType

-id:int
- <<enum constant>> CATEGORICAL : int - description : String
- <<enum constant>> NUMERICAL : int

1

AttributeValue <<composedOf>>

- type - value : Object
- proportion : float 1.5
A Attributevalue -
: . 1 « Point TemporalAspect
SemanticAspect h " d - int 1
- name : String * ~x : double - startTime : Date
-y : double - endTime : Date

T Tm

RepresentativePoint

Figure 9 — The conceptual model for MAT-SGT

relationships between representative points and their corresponding input points, similar to the
approach in MAT-SG. Each point in this model contains information related to spatial, temporal,
and semantic dimensions. The semantic dimension consists of a set of aspects along with their
respective values. The RT (representative MAT) is organized as a set of p,’s that effectively
summarizes the information from the MAT. Each p, summarizes relevant data derived from
input MAT points, and a robust relationship is maintained between each p, and its associated
MAT points to ensure the accuracy of the representation.

A notable distinction between MAT-SGT and MAT-SG lies in how they handle tem-
poral aspects related to representative points. In the MAT-SG method, a p, could potentially
encompass a set of Temporal Aspects. In contrast, MAT-SGT takes a different approach, where
each p, is associated with a single Temporal Aspect, which could be a single occurrence or a
temporal interval, maintaining only the relationship regarding the Point entity, as each p, is a
specialized MAT point that preserves specific attributes. In essence, RT in MAT-SGT is con-
structed as a temporal sequence of p,’s, highlighting the importance of temporal information
in this method. This emphasis on temporal sequences is a distinctive feature that sets MAT-
SGT apart from MAT-SG and enhances its capabilities for MAT summarization, especially in
capturing the temporal information of mobility activity.

4.2.2 Architecture

Figure 10 provides an overview of the MAT-SGT method, comprised of two core com-
ponents: (i) Data Segmentation and (ii) p, computation. The main objective of Data Segmenta-
tion is to reveal underlying data patterns focused on data density in both spatial and temporal
dimensions. In contrast, the p, Computation component summarizes data by analyzing attribute
value frequency.

The method receives as input a set of filtered MATs (T) based on specific criteria (step
1). Subsequently, the input MAT points are segmented into a spatial cell grid (step 2) to identify
relevant cells. For each relevant cell, steps 4 to 6 are performed to compute representative points
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Figure 10 — Overview of the MAT-SGT method.

pr that summarize all dimensions and capture the essential characteristics of the input data
within each cell.

All computed p,’s are ordered based on the temporal dimension (step 7), resulting in
the RT as the output data (step 8). The best of the computed RT’s is then selected as the final
result (step 9). MAT-SGT provides a comprehensive representation of the main behaviors and
characteristics exhibited by the input MATSs, considering the spatial and temporal density as
well as the frequency of each aspect attribute value. The next section details the MAT-SGT
process.

Notably, MAT-SGT focuses on temporal summarization and in-depth analysis of other
aspect attribute values. The temporal intervals defined in the Data Segmentation component
play a pivotal role in this analysis.

In essence, MAT-SGT builds upon the MAT-SG methodology by incorporating tempo-
ral interval definition and temporal summarization. The overarching goal is to provide a richer
and more comprehensive representation of input MATSs, taking into account spatial and tem-
poral density, the frequency of aspect attribute values, and a deeper understanding of temporal

aspects in the data analysis process.

4.2.3 Algorithm

MAT-SGT algorithm considers the same input parameters as MAT-SG, as detailed in
Table 4 (Algorithm 4). Like MAT-SG, it first computes the minimum spatial threshold (7;) to
measure the dispersion between input points. It then determines the initial z value by calculating
the distance between the grid origin (0,0) and the point that is furthest away from it (line 5).
Since the initial grid is based on the initial z value (lines 9 and 10), this cell size is iteratively
reduced, aiming to compute a better RT" (lines 8 to 26).

Both MAT-SG and MAT-SGT algorithms aim to find the optimal segmentation for a
better RT. One of the main differences in MAT-SGT is in line 11, where it aims to find the
optimal segmentation for a better RT. Each iteration segments data spatiotemporally, based
on the current z value, providing spatial allocation (Cell Grid allocation step), and calculates
representative points by analyzing the temporal intervals for each group of points. The second

main difference in this method refers to the temporal sequence of representative points that
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generate the RT (line 15).

The MAT-SGT algorithm accomplishes MAT summarization through two internal com-
ponents: (i) data segmentation; and (ii) p, computation. The quality of the resulting RT is com-
pared to the previous (betterRT). If it improves by at least 10%, betterRT gets updated (lines
17 to 21). The algorithm stops and returns the best RT" if no improvements are found in two

iterations. The two components of the MAT-SGT method are detailed next.

Algorithm 4: MAT-SGT

input : T, 7., T
output: RT /* representative trajectory */

1 rc < |T.points| X Tyc;
2 1, < computeMinSpatial Threshold();
3 rt,betterRT <0
4 betterRTmeasure,count < 0;
5 z < computeMaxZValue();
6 wg, — 0.5;
T Weover < (1 - Wsim);
8 whilez > 1do
/I component (i) - Fig. 10 (steps 2 and 3)
9 cellSize < computeCellSize(7y, z);
10 relCells + cellGridAllocation(rc, cellSize);
/I components (i) and (ii) - Fig. 10 (step 4 and 5)
11 setGroupPoints < STldefinition(relCells, T,);
/I component (ii) - Fig. 10 (step 6)
12 foreach eachGroupPoint € setGroupPoints do
13 pr < computeRepPoint(eachGroupPoint, Tr,);
14 L rt<—rtUpy
15 rt.sort(); // order by STI - Fig. 10 (step 7)
// analysis of better RT - Fig. 10 (step 9)
16 rtMeasure < RMMAT (rt, T, Wgim, Weover);
17 if (rtMeasure x 1.1) > betterRT measure then
18 betterRT measure < rtMeasure;
19 betterRT < rt;
20 rt <0
21 count < 0;
22 else
23 L count + +;
24 if count > 1 then
25 | break;
26 74—7x0.85;

27 return betterRT;

4.2.3.1 Data Segmentation Component

This component performs data segmentation in two steps: (i) Cell Grid Allocation and
(ii) Temporal Intervals Definition. In the first step, the cell size is computed based on the value of
z and 7,. This cell size determines the granularity of the spatial segmentation. Next, it allocates
the input MAT points into the corresponding cells of the spatial grid. This step is similar to
the spatial segmentation step of our previous method (MAT-SG). After allocating points, the
method identifies relevant cells with at least rc points for insights.

In the second step, MAT-SGT analyzes the relevant cells to compute Significant Tempo-
ral Intervals (STI). This step is similar to the computeTemporal Dimension algorithm of MAT-
SG (Algorithm 3). However, MAT-SGT introduces an additional refinement, where this analy-
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sis serves both the purpose of data segmentation and the computation of representative points.
For data segmentation, the STI rank is computed for each relevant cell. It involves computing
and analyzing all temporal intervals within the cell and their tendency, determining which in-
tervals can be considered representative based on a frequency rate threshold of 7,,. By applying
this procedure, MAT-SGT defines the STI within each relevant cell, capturing the temporal pat-
terns and characteristics of the input MATs. Then, it groups MAT points, each group defined by
each sti € ST of its corresponding relevant cell (Algorithm 4, line 11). This grouping allows for

the identification and extraction of meaningful points that share similar temporal characteristics.

4.2.3.2  Representative Point Computation Component

The second component of MAT-SGT summarizes the groups of points obtained from
the initial component. This entails the computation of a representative point (p,) for each group,
and these p,’s are sorted into a temporal sequence, ultimately forming the RT'. The p, generation
process comprehensively addresses the spatial, temporal, and semantic dimensions.

For the spatial dimension, the algorithm calculates the centroid of the points within
each group. In the temporal dimension, we utilize the sti as previously explained. Different
strategies are applied when dealing with semantic dimensions, which can include both categor-
ical and numerical aspects.

For numerical attributes, such as temperature or air humidity, MAT-SGT computes the
median value as the representative value. In contrast, categorical attributes like transportation
means or weather conditions rank the representative mode values. The mode signifies the most
frequently occurring value for each aspect within the group. To determine which values are con-
sidered representative, a predefined threshold (7,,) is applied, similar to our previous method.
After identifying the representative values, these values are normalized to ensure that they col-
lectively sum to 100%, effectively representing the distribution of these values within the group.
This normalization ensures an accurate reflection of the categorical data distribution, delivering
an informative summary.

In summary, the p, computation step combines centroid computation, utilization of sti,
and representative value determination for both numerical and categorical aspects. This com-
prehensive approach consolidates the summarized information for each dimension, contributing

to the computation of the RT'.

4.2.3.3 Computation of the Better Representative Trajectory

To analyze and compute the better RT (according to Figure 10 step 9), MAT-SGT
employs a representativeness measure called RMMAT (details provided in Chapter 5) that re-
flects the overall coverage of both MAT points and the information in the RT. This measure

is computed in line 16 in Algorithm 4. This analysis sets wg, and wcyer to equal values. The
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measure combines the similarity measure and coverage proportion, aiming to identify the RT
that achieves the maximum coverage of both MAT points and their contained information.

In the MAT-SGT method, spatiotemporal segmentation takes priority over other di-
mensions. It means that if all points within the same cell are semantically different, the algo-
rithm analyzes the temporal density of the points. It computes at least one representative point
that considers spatial and temporal dimensions. This approach highlights the representativeness
of a specific location at a particular time in the input MATSs. By incorporating temporal den-
sity analysis, the method captures the significance of an area at a specific moment, taking into

account the dynamic nature of the data.

4.3 OUTPUT DATA

Both MAT-SG and MAT-SGT compute a representative MAT (represented by RT)
which is outputted as a CSV file. The structure of the CSV file is determined by: (i) the
configuration settings for the RT computation, and (ii) the information of each representative
MAT point. The configuration settings include: CellSize, T,c, Ty, Icelll, minPointRC, IRT|, and

lcoverPointsl. Here is a breakdown of what each setting represents:

CellSize refers to the final cell size of the spatial grid;

|cell| refers to the number of cells that were computed in the model,

minPointRC refers to the minimum number of points that are needed in each cell to be

considered relevant in the RT computation;

IRT | refers to the size of RT, which is the number of p,’s;

* |coverPointsl| refers to the number of input MAT points that the RT cover, as determined

by the mapping information.

The second element in the output file contains information about each representative
MAT point (p,). This information has the following structure: "lat_lon, time, #Semantic_Aspe-
cts#, mapping". The "lat_lon" refers to the spatial dimensions of the point made up of latitude
and longitude. The "time" refers to the temporal aspects of the point, which can be either an
interval or a single occurrence. In MAT-SG, the "time" information can be a rank, whereas in
MAT-SGT, each p, is represented by only one-time value. The "#Semantic_Aspects#" illus-
trated all the semantic aspects of the input MATSs. These are categorical types that provide a
normalized rank of information. For example, weather conditions can be ranked as follows:
"{CLOUDS: 0.5; CLEAR: 0.4; RAIN: 0.1}". Numerical types are represented by their median
value. Finally, the "mapping" refers to the input MAT points that make up the referent p,. For
instance, in "127: 3; 127: 9; 129: 43; 134: 92; 137: 110; 137: 118; 138: 139," the present p, is
composed of points with ID #3 and #9 of the trajectory ID #127, along with other points.
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4.4 RUNNING EXAMPLE

This section provides an illustrative example of both methods, MAT-SG and MAT-SGT
in order to highlight their differences. We consider a set of input MATS, denoted as T = (g, , s).
Each MAT, represented as ¢ = (pg,, Pgys--s Pgn)s T = (Prys Pras--os Pr)» ANA S = (Pgys Psys -5 Ps, )
corresponds to the trajectory of a same individual in the different days. Figure 11 presents these
MATs along with related aspects such as the price spent at Pols, the visited Pols, weather

conditions, and rain precipitation.

Spatial Segmentation input MAT description

19 pg1=[(0.0, 6.2), 05:45, Home, Clear, 10]
18 pq2 =[(0.8, 6.2), 11:57, $$, Library, Clouds, 20]
17 pg3 = [(3.1, 11), 17:12, §3, Shopping, Clear, 10]
16 pqg4 = [(4.3, 16.9), 19:39, University, Clear, 0]
ii pg5 = [(6, 13.1), 22:24, $, Restaurant, Clear, 0]
13 g6 = [(0.6, 6.5), 23:20, Home, Clear, 10]
12 pr1 = [(0.4, 6.7), 06:15, Home, Clear, 15]
11 pr2 = [(2.5, 10.5), 10:10, $$, Library, Clouds, 15]
10 pr3 = [(3, 13.5), 12:20, $$%, Restaurant, Clouds, 20]
9 pr4 = [(5.8, 16.5), 14:00, University, Clouds, 15]
? pr5 = [(6.3, 13), 21:23, $, Restaurant, Clear, 10]
6 6 = [(0.4, 6.6), 23:30, Home, Clear, 15]
5 ps1 =[(1, 6.8), 06:50, Home, Clear, 10]
4 ps2 = [(4, 14.5), 10:35, $$, Shopping, Clouds, 15]
3 ps3 = [(4.3, 17.9), 14:15, University, Clouds, 15]
2 ps4 = [(6.3, 13.1), 18:00, $, Restaurant, Clear, 10]
; s5 = [(6.4, 11), 22:15, $$, Restaurant, Clear, 10]

01 2 3 4 5 6 7 8 910

Figure 11 — Sample data with point aspects information for trajectories g, r, and s.

In this example, we set the input values as T,,.= 25% and 7,,= 25%. Given that the
total number of points in T is 17, a relevant cell must contain more than 4 points. Additionally,
we define a cell size of 12.5 to ensure a consistent structure and facilitate understanding of the

summarization process in both methods.

44.1 MAT-SG

Figure 12 presents the resulting representative trajectory rt = (p, , p,) from different
perspectives. In Figure 12 (a), the spatial distribution of the representative trajectory computed
from T is showcased. The input MATSs are segmented into a grid of cells, and the red line denotes
the corresponding RT . Figure 12 (b) provides a detailed output, offering additional information
and insights about the RT. As previously mentioned, data summarization occurs within cells
containing more than 4 points.

For a more in-depth understanding of our summarization process, each step is illus-
trated in Figure 13. Let’s focus on the first cell, as shown in Figure 13 (a). In step (b), which
corresponds to the p, Computation step, each dimension is summarized. The temporal and
semantic dimensions are highlighted, considering 7,,= 25%, and the values considered repre-

sentative for each aspect are identified, i.e., those with at least a 7,, value. Subsequently, these
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b)

Representative Trajectory

prt1 = [(0,8, 6,7),
[*05:45 - 06:50": 0.5, "22:15 - 23:30™: 0.5],
[null: 0.56, $5: 0.44],
Home, Clear, 10,

[pa1, pa2, pq3, pg6, pr1, pr2, pré, ps1, ps5]]

prt2 = [(5,1, 13.3),
["14:00 - 14:15": 0.5, "21:23 - 22:24"; 0.5],
[null: 0.5, $: 0.5],
[Restaurant: 0.57, University: 0.43],
[Clouds: 0.625, Clear: 0.375], 10,

[pa4, pgs, pr3, prd, prs5, psZ, ps3, psd]]

q—

§ — Il —

1 2 3 4 5 [

Figure 12 — Visualization of the resulting MAT-SG representative trajectory (RT') from different perspectives: (a)

Spatial view; and (b) Detailed RT description of point aspects, providing additional insights.

representative values for each aspect are normalized, and the resulting values across all aspects
represent the p, of this cell. In this instance, p,;, serves as the referent MAT point for the first

cell, derived from pg,, py,» Pgs> Pgs> Pris» Pra» Pre> Ps;» and pg., as illustrated in Figure 15 (c).
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» c) The representative point:

prt1 =[(0,8, 6,7),

[“05:45 - 06:50": 0.5, "22:15 - 23:30": 0.5],
[null: 0.56, $$: 0.44],

Home, Clear, 10,

[pa1, pa2, pq3, pqgs, pr1, pr2, pré, ps1, ps5]]

Figure 13 — A step-by-step perspective of the summarization process in MAT-SG, illustrated by the analyzed cell

(a), the p, Computation step (b), and the final representative points computed (c).

In this scenario, insightful observations can be made, such as the individual’s tendency
to check in at home in the morning (between 05:45 and 05:50) and during the night period
(between 22:15 and 23:30), likely corresponding to the times of leaving and returning to her/his

residence.

44.2 MAT-SGT

Figure 14 shows the resulting 7t = (pys,, Priy,..., Pr,) in different perspectives. Fig-

ure 14 (a) shows the spatial distribution of the representative trajectory computed from T. The
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input MATs are segmented into a grid of cells, and the red line indicates the corresponding
RT. Figure 14 (b) illustrates a spatiotemporal perspective displaying the evolution of the input
MATSs and the computed RT, providing insights into how they unfold over time. Detailed output

is illustrated in Figure 14 (c), providing additional information and insights about the RT .

a) b) €)

Representative Trajectory

o00:00
22:00 prt1 = [(0,5, 6,6), 05:45 - 06:50,

o

20:00_
18:008
16:005
[14.00&
12:00
10:00

Home, Clear, 10,
[pa1, pri,psi]]

prt2 = [(5,1, 17,2), 14:00 - 14:15,
University, Clouds, 15,
[prd,ps3]]

prt3 = [(6,2, 13,1), 21:23 - 22:24,

$, Restaurant, Clear, 5,
[pas5,prs]]

prtd = [(2,5, 8,0), 22:15 - 23:30,
[null:67%, $$: 33%)],

[Home: 67%, Restaurant: 33%)], Clear, 10,
| [pq6,pré,ps5]]

| e—] [

Figure 14 — Resulting MAT-SGT in representative trajectory (RT) visualization in different perspectives: (a) Spa-
tial perspective; (b) Spatiotemporal perspective; and (c) RT description of point aspects providing
additional details.

To gain a better understanding of our summarization process, we have illustrated each
step in Figure 15. Let’s focus on the first cell, as shown in Figure 15 (a). In step (b), which
refers to the Temporal Intervals definition step, we identify 5 temporal intervals, consisting
of 2 temporal intervals and 3 simple occurrences. Considering a 7,,= 25%, only 2 temporal
intervals were considered as relevant sti € ST from the input MATs in this cell. The first sti
covers the time interval between 05:45 and 05:50, while the second covers 22:15 to 23:30.
These sti’s contain important MAT points that contribute to the computation of RT considering
spatiotemporal density. Moving on to step (c) in Figure 15, it illustrates the p, Computation
step, where the group of points in each relevant s¢i are summarized into a representative point.
Specifically, p,;, represents the referent MAT point for the first segment (derived from pg,, p;,,
and py,), and p,,, represents the referent MAT point for the second segment, as illustrated in
Figure 15 (d).

In this scenario, it is inferred that the individual typically leaves home between 05:45
and 06:50. After spending time during the day, he/she tends to have dinner near home, likely in

a more affordable restaurant, before returning home.

4.5 SUMMARY

This chapter addresses the challenges of summarizing trajectories, particularly focus-
ing on reducing trajectory data volume and preserving key patterns, as described on Section 2.3,
with a specific emphasis on the complexities highlighted in MATs, such as data volume, veloc-

ity, and complexity (as described in Section 2.2). Our main contribution are 2 novel methods,
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a) b) ™= 25%

05:45 - 06:50 = 33%

22:15-23:30 =33%

11:57 = 11%
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3 points:
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prt1 =[(0,5, 6,6), 05:45 - 06:50,
$, Home, Clear, 10,
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' prt4 = [(2,5, 8,0), 22:15 - 23:30,

[$:67%, $$: 33%],
[Home: 67%, Restaurant: 33%], Clear, 10,
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Figure 15 — A step-by-step perspective of the summarization process in MAT-SGT, illustrated by the analyzed cell
(a), the Temporal Definition step (b), the p, Computation step (c), and the final representative points
computed (d).

MAT-SG and MAT-SGT, designed to generate a representative MAT for a given set of MAT's
filtered by some criteria.

In essence, both MAT-SG and MAT-SGT methods aim to compute a representative
MAT (RT) by delving into the distribution of MAT points. These approaches systematically
identify and prioritize significant segments and aspects within the input MATSs, resulting in an
RT that comprehensively captures the main behaviors and characteristics of the input MATS.
This ensures a succinct summary of each aspect individually. Moreover, both methods establish
a coherent mapping between the input MAT's and the resultant representative MAT, thereby pre-
serving the intrinsic relationship between the original data and its summarized representation.

While MAT-SG specializes in spatial segmentation/density and data summarization,
aiding in the identification of movement patterns across various spatial areas and addressing
various aspects, i.e., MAT-SG excelling in summarizing representative aspects within specific
spatial areas. This method is invaluable when understanding spatial patterns is crucial, regard-
less of temporal sequence relevance. For example, in the context of vessel trajectories, where
the purpose is to identify the region where each activity happens (cargo or fishing) and the
pattern aspects involved in each activity, MAT-SG works well.

In contrast, MAT-SGT focuses on emphasizing temporal sequences, providing detailed
insights into the chronology of events or movements over time. It focuses on computing a rep-
resentative MAT by identifying the temporal sequences associated with movement patterns. For
instance, in the context of a recommendation system, where understanding the sequence move-
ment over time, identifying the region, trend period, and aspects involved, MAT-SGT could be
better suited.

Despite serving distinct purposes, both methods share the common goal of identifying
and prioritizing significant segments and aspects, culminating in a representative MAT (RT)

that effectively captures the pivotal features of the input MATs. However, the choice between
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MAT-SG and MAT-SGT depends on the analysis objectives, with MAT-SG preferred for spatial

pattern comprehension and MAT-SGT for detailed temporal narratives.
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S RMMAT: REPRESENTATIVE MEASURE FOR MULTIPLE ASPECT TRAJECTO-
RIES

This chapter presents another contribution of this Thesis. It introduces the Represen-
tativeness Measure for Multiple-Aspect Trajectories (RMMAT)'? | a standardized metric for
evaluating the effectiveness of representative data given by summarization methods, offering a
solution to the challenge of evaluating how effectively a representative trajectory reflects the
original dataset (MACHADO et al., 2023b). RMMAT leverages similarity metrics and covered
information to offer a comprehensive measure that quantifies the quality of representative data
concerning the complete input dataset. This score can be customized to align with the specific
requirements of different analytical scenarios, allowing analysts to tailor the evaluation process
accordingly.

The core question addressed in this section is: "How much of the RT captures and
reflects the original MATs’ essence within an input dataset T (D =1y, 1y, ..., ¢, )?". The compu-
tation of RT should be customizable based on specific use case objectives and requirements, as
different applications may demand varying levels of granularity and information preservation.

Designed for big trajectory data with multiple aspects, this novel representativeness
measure aims to quantify the information coverage of RT" from the input dataset T and estimate
its similarity to the entire dataset, i.e., it measures how well a representative trajectory captures
the essence of the original dataset, which is particularly useful given the increasing complexity
and growth of trajectory data. The objective is to simplify the evaluation of summarization
methods and extract valuable insights from extensive MAT datasets.

RMMAT is designed to provide a balanced and objective measure of two components:
(i) similarity metric and (ii) covered information. By assigning numerical values to similarity,
this measure offers a concrete and measurable way to assess how closely the RT reflects the
complex patterns in the input dataset. Additionally, the measure takes into account the covered
information, allowing us to evaluate whether the RT can accurately encapsulate specific points
from the dataset, thus reflecting the overall integrity of the RT concerning the entire dataset.
By combining these two components, RMMAT aims to address the limitations of evaluating
representativeness in summarized MAT, providing a rigorous and objective evaluation of how

well the RT captures the intricacies of the data. Both components are detailed next.

5.1 SIMILARITY METRIC COMPONENT

Trajectory similarity serves as a metric to measure the similarity between two trajec-
tories, considering the entire movement, involving attributes like spatial positions, temporal
sequences, and semantic aspects. This method helps in assessing how much common patterns
exist in the movement of two trajectories. While traditional similarity measures are effective for

comparing individual trajectories, computing the similarity of a particular trajectory, the RT,

17" Source code available at https:/github.com/RepresentantativeMAT/RMMAT. git
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against all other trajectories in a dataset is still an open issue.

To address this issue, we evaluate the similarity measure between RT and each tra-
jectory f1,fp,...,t, in T, where both T and RT are non-empty elements. Recognizing the po-
tential presence of skewed distributions or outliers in the dataset, we decided to use the me-
dian value of the similarity measure across all pairs of MATs (RT and each t € T), given that
0 < Similarity < 1. By using the median, a more robust measure of central tendency than the
average, we guard against the influence of outliers and skewed data distributions. It ensures that
extreme values or anomalies in similarity scores do not unduly impact the result, providing a

more balanced representation of central tendency. The equation is expressed as follows.

|Similarity (RT,T)| =

(5.1)
Me({Similarity(RT,t,),Similarity(RT,t,), ...,Similarity(RT,t,)})

The function Me calculates the median similarity score between RT and all # € T by

computing the median of the similarity measures.

5.2 COVERED INFORMATION COMPONENT

Aiming to evaluate the accuracy on which RT encapsulates specific information from
T, the covered information within T by RT is computed. So, the covered MAT points by RT
in each t € T are computed, i.e., the total MAT points in T that are mapped contribute to the
computation of RT'. The resulting proportion represents the covered information, a non-negative
value indicating the overall integrity of the RT relative to the entire dataset. This computation

1s defined as:

Y pC RT) 52

T°(RT) = ( e

|T.points|

The mapping between the input MATSs and the representative MAT allows determining

how much the computed RT covers the input MATs (T¢(RT)). Equation 5.2 calculates the

proportion of covered MAT points by the RT concerning all # € T, representing how well the
computed RT captures the points of the input MATs (T.points).

RMMAT is designed to provide a representativeness measure score that balanced both

components: (i) similarity metric and (ii) covered information, and it is calculated by the final

equation RMMAT, where RMMAT € [0,1]:

RMMAT = @y, X |Similarity (RT,T)| + @cover X T(RT) (5.3)

Let W = @y, Ocover be a non-empty set of weights. The weights @i, and @gpyer rep-
resent the importance of each component for computing the representativeness between trajec-
tories for a specific scenario. It is assumed that @, + Wcover = 1.0. Components with higher

weights have a more pronounced impact on the final representativeness scores. The weights can
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be adjusted based on the specific scenario to prioritize either the covered information (Woyer)

or the similarity (Wg;;,).
5.3 RUNNING EXAMPLE

For the sake of understanding, this section introduces a running example to illustrate
the functionality of RMMAT. It consists of a set of input MATs T, each one representing a
trajectory attributed to a different individual.

For computing RMMAT, several key elements require definition: (i) the selection of
a summarization method responsible for deriving representative data; (ii) the establishment of
an appropriate similarity measure; (iii) the definition of weights (W) to individual components.
Here, we opt to use the same Running Example presenting for MAT-SGT, disposed in Sec-
tion 4.4.2, one state-of-the-art MAT summarization method, and the widely recognized MAT
similarity measure MUITAS (PETRY et al., 2019). As exemplified in Chapter 4, both methods
MAT-SG and MAT-SGT establish a mapping between the input data and the resultant rep-
resentative trajectory, facilitating the inclusion of covered information in the computation of
representativeness. We employ a balanced weights strategy by setting @y, = Ocover = %

In order to compute similarity using MUITAS, settings must be defined, including
features, weight, and proximity functions. Each attribute in the input dataset is defined as a sin-
gle feature. Proximity functions consider spatial, temporal, and semantic aspects with weight-
balanced dimensions. Regarding the summarization method, we will use the setup of MAT-SGT
where 7,,= 0.1 and 7,,= 0.25.

The input MATSs and their corresponding RT are shown in Figure 16. The trajectories
are depicted on the left side, and their corresponding RT calculated is shown on the right side.
The spatial and temporal information, along with the price and category of the Pols, weather

conditions, and precipitation, represent the input trajectories and the RT .

input MATs Representative MAT
pq1 = [(0.0, 6.2), 05:45, Home, Clear, 10] prt1 =[(0,5, 6,6), 05:45 - 06:50,
pq2 = [(0.8, 6.2), 11:57, $$, Library, Clouds, 20] $, Home, Clear, 10,
q pq3 = [(3.1,11), 17:12, $$, Shopping, Clear, 10] [pq1, pr1,ps1]]
pg4 = [(4.3, 16.9), 19:39, University, Clear, 0]
pg5 = [(6, 13.1), 22:24, $, Restaurant, Clear, 0]
pq6 = [(0.6, 6.5), 23:20, Home, Clear, 10] prt2 =[(5,1, 17,2), 14:00 - 14:15,
pr1 =[(0.4, 6.7), 06:15, Home, Clear, 15] $, Linlvgrsny, Clouds, 15,
pr2 = [(2.5, 10.5), 10:10, $$, Library, Clouds, 15] [prd,ps3]]
r pr3 =[(3,13.5), 12:20, $$$, Restaurant, Clouds, 0]
pr4 = [(5.8, 16.5), 14:00, University, Clouds, 15] - .92 . 99.
pr5 =[(6.3, 13), 21:23, $, Restaurant, Clear, 10] prt; [(6.2, 13‘1=’ 21:23 - 22:24,
pré = [(0.4, 6.6), 23:30, Home, Clear, 10] t$, ;5‘2‘]’]’3“" Clear, 5,
,pr:
ps1=[(1, 6.8), 06:50, Home, Clear, 10] Pas:Pp!
ps2 = [(4, 14.5), 10:35, $$, Shopping, Clouds, 15]| _ . .
ps3 = [(4.3,17.9), 14:15, University, Clouds, 15] (e ) P2zl
ps4 =[(6.3, 13.1), 18:00, $, Restaurant, Clear, 10]| [$:67%, $$: 33%],
Ps5 = [(6.4, 11), 22:15, $$, Restaurant, Clear, 10] [Home: 67%, Restaurant: 33%)],
Clear, 10, [pq6,pr6,ps5]]

Figure 16 — Set of input MATs T = (g,r,s), where ¢ = (Pg,,Pgys--sPgn)s T = (PrysPrys--rPrp)» and s =
(Ps)>Psy» -+ Ps,) (left), and their correspondent RT (right).

For computing RMMAT, we first compute the similarity between each trajectory in
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T and RT, where MUITAS(q,RT) = 0.686, MUITAS(r,RT) = 0.835, and MUITAS(s,RT) =
0.871. Then, according to Equation 5.1, the |Similarity (RT,D)| = 0.835. Regarding the covered
information, Equation 5.2, T“(RT) = % =0.5882.

Finally, considering the computation of RMMAT with balanced weights strategy by
setting s = Wcover = %, and according to Equation 5.3, we have RMMAT = (0.5 x 0.835) +
(0.5 x0.5882) = 0.7116. It means that RT has a representativeness of 0.7116 of T considering

both similarity and covered information.
54 ANALYZING RMMAT REGARDING SIMILARITY INFORMATION

This section delves into the analysis of RMMAT focusing on similarity information.
As (PETRY et al., 2019), we use the trajectories of each user as the ground truth, as trajectories
of the same user are more likely to be similar than the trajectories of other users. Then, to gain
insights into RMMAT behavior, we conducted an experiment using a sample of user trajectories
of the Foursquare dataset (see Section 6.1).

Since there is no common strategy in the literature to evaluate a representative MAT
for benchmarking, we established our criteria. For each group, we choose the MAT #; with the
median similarity score as the baseline, computed across all group trajectories. It ensures that
the baseline serves as a reference point for comparison purposes.

We present illustrative examples of evaluations based on the standard deviation (SD)
of average and median similarity scores of each user’s baseline. Three users were selected for
in-depth analysis, each representing distinct characteristics in terms of SD: (1) user 185, show-
casing a lower SD for average similarity scores; (ii) user 730, featuring a lower SD for median
similarity scores; and (iii) user 708, displaying the highest SD for both average and median
similarity scores.

This evaluation uses y;;,, = 1 and @,y = 0 based on the MUITAS similarity measure.
The experiment involves assessing the representativeness of R7 in similarity information with
different threshold values for relevant cell (RC) and representativeness value (RV), namely 7.
and 7,,. The methods were repeated for each user with different parameter settings for 7,, and
Tyc, varying from 0% to 25% (0, 1, 5, 10, 15, 20, 25), to evaluate the sensitivity and robustness
of the RMMAT measure. This investigation explores the impact of varying combinations of
these thresholds on the computation of RT in both MAT-SG and MAT-SGT.

On using MUITAS, we considered proximity functions, including spatial, temporal,
and semantic functions, to assess the similarity between trajectories 7 € T and RT with spec-
ified weights to balance all dimensions. The functions used are: (i) spatial: Euclidean dis-
tance measure. We consider a match occurs if the distance falls within a predefined threshold
(2 x cellSize); (ii) temporal: we consider a match if the timestamp of 7 falls within the temporal
interval of RT'; (iii) semantic: for numeric types, a match occurs if the difference is equal to or
less than 10% of the RT value, and for categorical types, a match occurs if the attribute value

of T falls within the range of RT values.
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Figures 17 and 18 visually depict the results of the similarity evaluation for each user
under different input parameter configurations, compared to the baseline. These figures high-

light the variations in similarity scores while varying the temporal threshold.

. c‘)a) Similarity evaluation for User 185  b) Similarity evaluation for User 708
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Figure 17 — This graph analyzes the similarity evaluation (Y-axis) by comparing varying threshold RC, the 7,
shown as distinct lines, and the threshold RV, the 7,,, concerning baseline for users 185, 708, and 730.
It explores different parameter configurations of the 7,, (X-axis) to evaluate similarity. This analysis
refers to the MAT-SG method.
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Our RMMAT consistently outperformed the baseline for low parameter configurations,
shedding light on the intricate interplay between different threshold parameters and their impact
on RT computed from MUITAS.

For MAT-SG, users 185 and 708 exhibit a specific RT behavior pattern across different
RV threshold values. Regarding the threshold RC, determining relevant cells for RT computa-
tion seems to influence RT changes significantly since, for these users, an increase in the value
of this parameter configuration results in a decrease in RMMAT. This underscores the sensitivity
of RMMAT to parameter choices and their implications for the representativeness of RT". The
behavior of user 730 highlights the importance of parameter configurations in R7 computation.

For MAT-SGT, users 708 and 730 display specific RT behavior patterns across dif-
ferent RV threshold values. As the value of this parameter configuration increases, RMMAT
decreases, emphasizing the influence of parameter configurations on R7 computation and its
subsequent impact on representativeness.

We employed correlation coefficients to quantify the impact of threshold values for
RC and RV in both methods on the RMMAT measure. The coefficients reveal relationships
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Figure 18 — This graph analyzes the similarity evaluation (Y-axis) by comparing varying threshold RC, the 7,
shown as distinct lines, and the threshold RV, the 7,,, concerning baseline for users 185, 708, and 730.
It explores different parameter configurations of the 7,, (X-axis) to evaluate similarity. This analysis
refers to the MAT-SGT method.

between input parameters and RMMAT scores for RT computed for both methods (MAT-SG
and MAT-SGT) and input trajectories. The results in Table 5 offer valuable insights into how
threshold parameters influence the accuracy of computed representative trajectories. Positive
coefficients indicate that higher threshold values correspond to higher RMMAT scores, while
negative coefficients suggest the opposite.

Table 5 — Impact of Input Parameters on the Representativeness Measure of RT

correlation MAT-SG MAT-SGT
coefficient | threshold RC threshold RV | threshold RC threshold RV
User 185 -0.568 -0.526 0.408 -0.788

User 708 -8.770 -0.966 -0.154 -0.829

User 730 -0.378 0.027 -0.817 -0.243

For MAT-SG, user 185 exhibits a negative correlation (-0.568) between RMMAT scores
and threshold RC, indicating that increasing threshold RC leads to a decrease in RMMAT
scores. User 708, characterized by a greater SD in similarity scores and displayed the one with
a more consistent pattern, shows a high negative correlation (-8.770), suggesting that higher
threshold RC values consistently lead to lower RMMAT scores. For user 730, a negative corre-
lation (-0.378) implies that higher threshold RC values result in lower RMMAT scores. Across
all users in MAT-SG, the negative correlation pattern highlights that higher threshold RC values
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lead to less representative RT .

For MAT-SGT, user 185 exhibits a positive correlation (0.408) between RMMAT scores
and threshold RC. The RMMAT scores increase as threshold RC values increase. User 708,
characterized by greater SD in similarity scores, shows a slight negative correlation (-0.154),
indicating that increasing threshold RC leads to a minor decrease in RMMAT scores. For user
730, who displays more consistent patterns, a negative correlation (-0.817) suggests that higher
threshold RC values lead to lower RMMAT scores.

This analysis provides nuanced insights into the dynamics of RMMAT concerning
similarity information. It comprehensively explains how different parameter configurations in-
fluence the computed RT and its representativeness. Notably, in MAT-SG, higher threshold RC
values consistently lead to less representative RT. Meanwhile, in MAT-SGT, the correlation pat-
terns reveal the nuanced impact of both threshold RC and RV values on RMMAT scores. The
threshold RC and RV significantly influence the behavior and accuracy of the computed rep-
resentative trajectory, necessitating careful consideration of their selection to capture relevant
input data patterns. This analysis underscores the improvements achieved through the RMMAT
measure, highlighting its efficacy in enhancing data comprehension. Overall, the results empha-
size the effectiveness of RMMAT as a valuable tool for better understanding complex trajectory
data.

5.5 ANALYZING RMMAT REGARDING COVERED INFORMATION

In the absence of a standardized strategy for evaluating the representativeness of a rep-
resentative MAT in the existing literature, our analysis extends beyond similarity to encompass
both similarity and cover components. To gauge the utility of RT, we employ the Average Re-
call (AR) metric, drawing inspiration from the experimental evaluation of the similarity measure
proposed by Petry et al. (2019). While aligning with their evaluation methodology and leverag-
ing their dataset for ground truth segmentation, our focus diverges. In Petry et al. (2019), the
primary objective was to validate their similarity measure, specifically assessing the similarity
between pairs of trajectories. While our foundation is rooted in their methodology, our focus
remains to quantify the quality of the summarization methods and representativeness of data
computation, evaluating the utility of R7 within the context of the input dataset. We aim to
evaluate the utility of RT within the context of the input dataset.

The AR metric becomes pivotal in this evaluation. This metric measures recall based on
the similarity between the RT computed by RMMAT and other trajectories within the dataset.
The recall is defined as the fraction of relevant trajectories that are successfully retrieved. In the
context of ranking trajectories within the same ground truth group, the ideal outcome is that the
top k most similar trajectories also belong to the same group, where k = [T, |. This provides
a robust measure of how effectively RT can rank trajectories within the same group.

The evaluation process involves computing the RT for each user in our sample of users

in our selected sample (users 185, 708, and 730). The idea is that the trajectories of the same
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user exhibit similarity. The goal is for each user of the RT to have high similarity values with
the trajectories in that group.

To analyze the impact of covered information in RMMAT, we assess the utility of RT
using the AR metric. The process begins by computing RT and calculating similarity over the
entire dataset. Trajectories are then ordered based on similarity scores. Subsequently, trajec-
tories are ranked according to these similarity scores, and the recall metric is computed. This
metric quantifies how effectively RT can accurately rank trajectories within the same group.

To assess the impact of covered information in RMMAT, we consider two scenarios
for both MAT-SG and MAT-SGT regarding the computation of representativeness: (A) without
covered information, which explores RT computation without considering covered information,
and (B) with covered information, where covered information is integrated into RT computa-
tion. We obtain evaluation results by computing RT for each user in our selected sample in
both MAT-SG and MAT-SGT with different threshold values for 7,. and 7,,. These threshold
values range from 0% to 25% (0, 1, 5, 10, 15, 20, 25), resulting in 49 runs for each user. By
varying combinations of these thresholds, we explore their impact. We calculate similarity us-
ing MUITAS and order trajectories based on similarity scores. Finally, we employ the recall
metric to measure the ability of RT to accurately rank trajectories within the same group. We
highlighted the differences between both methods, emphasizing the higher value between with
or without covered information.

Tables 6 (A) and (B) display the AR values for user 185 by MAT-SG in both scenarios,
respectively. Additionally, Table 7 compiles the results of the AR analysis, where both scenarios

yield the same outcomes for this specific situation.

Table 6 — The AR of User 185 by MAT-SG

(A) Without covered information (B) With covered information
. "< 1 0.00 | 0.01 | 0.05 | 0.10 | 0.15 | 0.20 | 0.25 . "< 10,00 | 0.01 | 0.05| 0.10 | 0.15 | 0.20 | 0.25
v Y
0.00 | 0.9 1 1 1] 1 1 1 0.00 | 0.9 1 1 1] 1 1 1
0.01 | 0.9 1 1 1] 1 1 1 0.01 | 0.9 1 1 1] 1 1 1
0.05 | 0.9 1 1]095]0.95]095 095 0.05 | 0.9 1 1]095]095]095 | 095
0.10 | 0.9 1 1 1] 1 1 1 0.10 | 0.9 1 1 1] 1 1 1
0.15] 0.9 [ 098 1 1] 1 1 1 015 | 09 [098 1 1] 1 1 1
0.20 | 0.9 1 1 1] 1 1 1 0.20 | 0.9 1 1 1] 1 1 1
025 09 098 1 1] 1 1 1 0.25 | 0.93 | 0.98 1 1] 1 1 1

Table 7 — AR Analysis regarding covered information in User 185 by MAT-SG

With Cover | Without Cover

Missing values 0 0
Best Value 1 1
Worse Value 0.9 0.9
AVG AR 0.988 0.988
Median AR 1 1

For the same user 185, the scenarios for MAT-SGT are respectively presented in Ta-
bles 8 (A) and (B), and the compiled results of the AR analysis are presented in Table 9. In-

stances with missing values, indicated by "-", denote situations where RT computation with
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specific parameter configurations is not feasible due to the particular data patterns present in the
input dataset.

Upon analyzing the summarized outcomes of the AR analysis in Table 9, some relevant
variations between including and excluding covered information for User 185 by MAT-SGT are
observed. Specifically, there is an average AR growth of 0.707 when analyzing the scenario

without covered information, compared to 0.771 when including covered information.

Table 8 — The AR of User 185 by MAT-SGT

(A) Without covered information (B) With covered information
. e 10,00 | 0.01 | 0.05| 010 | 0.15 | 0.20 | 0.25 . %1 0.00 | 0.01 | 0.05 | 0.10 | 0.15 | 0.20 | 0.25
rv v
0.00 | 0.9 [ 093|095 1] 1 1 1 0.00 | 0.9 [ 093095 1] 1 1 1
0.01 | 09 | 093 | 0.93 1 1 1 1 0.01 | 09 | 093 | 0.93 1 1 1 1
0.05 | 0.9 | 0.95 | 0.98 1 1 |098]098 0.05 | 0.9 | 0.95 | 0.98 1098098 0.98
010 | 0 00381 0] - B B 010 | 0 0] 0.381 0] - - B
015 0 | 098 - B . N B 015| 0 | 098 - -
0.20 | 0.02 1 - e - - 0.20 | 0.02 1
0.25 | 0.02 | 0.83 - e - B 0.25 | 0.02 | 0.83

Table 9 — AR Analysis regarding covered information in User 185 by MAT-SGT

With Cover | Without Cover

Missing values 18 18
Best Value 1 1
Worse Value 0 0
AVG AR 0.771 0.707
Median AR 0.93 0.93

In the case of User 708, computed by MAT-SG, Tables 10 (A) and (B) show the AR
values, and Table 11 compiles the results of the AR analysis, where for this situation, both

scenarios present the same results.

Table 10 — The AR of User 708 by MAT-SG

(A) Without covered information (B) With covered information
. 10,00 | 0.01 | 0.05 | 0.10 | 0.15 | 0.20 | 0.25 . | 0,00 | 0.01 | 0.05 | 0.10 | 0.15 | 0.20 | 0.25
rv rv
0.00 1 1 09| 08|05 1] 05| 05 0.00 1 1| 09| 08| 05| 05| 05
0.01 | 1 1]09] 080505705 0.01 | 1 1] 09] 0805057105
0.05 | 1 1] 09] 0806 | 06 | 0.6 0.05 | 1 1] 09] 08|06 | 06 | 06
010 | 1 1] 09] 080606106 010 | 1 1] 09] 08[ 0606106
0.15 1 1 09] 07|07 | 07 | 05 0.15 1 1| 09| 07| 07 | 07 | 05
020 | 1 1109 070710706 020 | 1 1109 07070706
025 1 1] 09] 0806 | 06 | 0.6 025 1 1] 09] 08|06 | 06 | 06

Table 11 — AR Analysis regarding covered information in User 708 by MAT-SG

With Cover | Without Cover

Missing values 0 0
Best Value 1 1
Worse Value 0.5 0.5
AVG AR 0.81 0.81
Median AR 0.7 0.7

By MAT-SGT, both scenarios for user 708 are respectively presented in Tables 12 (A)
and (B), and the compiled results of the AR analysis are presented in Table 13. While there were
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some minor variations in the specific values, the overall assessment presented in Table 13 does
not indicate a substantial difference. The AR values for this user are relatively stable, regardless

of whether the covered information was included or excluded during the analysis.

Table 12 — The AR of User 708 by MAT-SGT

(A) Without covered information (B) With covered information
. e | 0.00 | 0.01 | 0.05 | 0.10 | 0.15 | 0.20 | 0.25 . e | 0.00 | 0.01 | 0.05 | 0.10 | 0.15 | 0.20 | 0.25
000 09 09| 09 09| 09 09| 09 000 08 08| 09 08| 09 09| 09
0.01 09| 09| 09| 09| 09| 09| 09 0.01 0.8 08| 09| 08| 09| 09| 09
005 08| 08| 08| 08| 08| 08 038 005 08| 08| 08| 08| 08| 08 08
010 09| 09| 09| 09| 09| 09| 09 010 09| 09| 09| 09| 09| 09| 09
0.15 | 0.8 08| 0.8 08| 0.8 0.8 | 0.9 0.15 | 0.8 08| 0.8 08| 0.8 08| 0.8
020 09] 09 09| 09| 09| 09 09 020 09] 09 09| 09| 09| 09 09
025 09| 09| 09| 09| 08| 08 038 025 09| 09| 09| 09| 08| 08 038

Table 13 — AR Analysis regarding covered information in User 708 by MAT-SGT

With Cover | Without Cover

Missing values 0 0
Best Value 0.9 0.9
Worse Value 0.8 0.8
AVG AR 0.862 0.87
Median AR 0.9 0.9

For the user 730, computed by MAT-SG, both scenarios are respectively presented in
Tables 14 (A) and (B), and the compiled results of the AR analysis are presented in Table 15.
In this situation, a slight variation can be observed when including or excluding covered in-
formation, showing in underlying value. Additionally, the average AR growth of 0.927 when

analyzing the scenario without covered information, compared to 0.940 when including covered

information.
Table 14 — The AR of User 730 by MAT-SG
(A) Without covered information (B) With covered information

z Tre 0.00 | 0.01 | 0.05 | 0.10 | 0.15 | 0.20 | 0.25 'r Tre 0.00 | 0.01 | 0.05 | 0.10 | 0.15 | 0.20 | 0.25

rv v
0.00 1 1 1 1| 09 |083|0.83 0.00 1 1 1 1| 093  0.83 | 0.83
0.01 | 1 1 1 11093087087 0.01 | 1 1 1 11093 [087] 087
0.05 1 1 1 11093087 | 0.87 0.05 1 1 1 1| 093|087 | 0.87
010 | 1 1 1 1]093]0.87 | 0.87 0.10 | 1 1 1 1] 093 087 | 0.87
0.15 1 1 1 1] 09 | 083 0.83 0.15 1 1 1 1 0.9 | 0.83 | 0.83
020 | 1 1 1 11093087087 020 | 1 1 1 1] 093 0.87 | 0.87
025 | 1 1 1 11093087087 025 | 1 1 1 1] 093 087|087

Table 15 — AR Analysis regarding covered information in User 730 by MAT-SG

With Cover | Without Cover

Missing values 0 0
Best Value 1 1
Worse Value 0.83 0.83
AVG AR 0.940 0.927

Median AR 1 1
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The AR values for user 730 computed by MAT-SGT in both scenarios are presented
in Tables 16 (A) and (B). Additionally, Table 17 compiles the AR analysis outcomes for this
user. It is evident that there is a substantial variation in AR values across different scenarios,
which highlights the significant impact of covered point data on the AR measure. This disparity
emphasizes how the inclusion of covered information can significantly influence the outcomes

of a representativeness measure.

Table 16 — The AR of User 730 by MAT-SGT

(A) Without covered information (B) With covered information
T Fre 0.00 | 0.01 | 0.05 | 0.10 | 0.15 | 0.20 | 0.25 z Tre 0.00 | 0.01 | 0.05 | 0.10 | 0.15 | 0.20 | 0.25
v rv
0.00 | 097 {097 | 09| 09| 09| 09 0.9 0.00 1 1 1 1 09| 09 0.87
0.01 | 093 | 093 | 0.87 | 0.87 | 0.87 | 0.87 | 0.87 0.01 1 1 1 1 093 | 093 | 0.87
0.05 | 093 [ 093 | 0.87 | 0.87 | 0.87 | 0.87 | 0.87 0.05 1 1 1 1 09| 09| 0.87
0.10 | 097 [ 097 | 0.83 | 0.83 | 0.83 | 0.83 | 0.83 0.10 1 1 1 1 0.87 | 0.87 | 0.83
015 09| 09|0.77 | 0.77 | 0.77 | 0.77 | 0.77 0.15 1 1 1 1 09 | 09 0.73
020 09| 090.83]0.83|0.83]0.83| 0.83 0.20 1 1 1 1 087087 | 09
0.25 | 0.87 [ 0.87 | 0.83 | 0.83 | 0.83 | 0.83 | 0.83 0.25 1 1 1 1 093|093 0.87

Table 17 — AR Analysis regarding covered information in User 730 by MAT-SGT

With Cover | Without Cover

Missing values 0 0
Best Value 1 0.97
Worse Value 0.73 0.77
AVG AR 0.94 0.878
Median AR 1 0.87

The analysis of RMMAT w.r.t. covered information, as well as the variation in AR
values between the inclusion and exclusion of covered point data, reveals consistent trends in
both MAT-SG and MAT-SGT scenarios. Overall, minimal differences are observed, suggesting
a stable pattern of minimal variation. In the case of MAT-SG, there is a slight growth when
covered information is included. Notably, User 730 in the MAT-SGT scenario exhibits the most
significant distinctions between scenarios, emphasizing the influence of covered point data.
However, it is intriguing to observe that, for the same user, trajectories retrieved with covered
point data fare better than computed RT trajectories, indicating a potential impact on RMMAT
scores and implying differences in underlying data patterns.

In summary, the AR analysis of User 708 by MAT-SG appears relatively unaffected by
the presence of covered point data, indicating limited influence on the outcomes. In contrast,
the analysis of User 730 by MAT-SGT underscores the substantial impact of aggregating cov-
ered information. This disparity underscores the importance of a nuanced consideration of each
component in RMMAT measure. It emphasizes the importance of considering each component
in the RMMAT calculation to create a customized configuration that suits specific datasets and

analysis objectives.
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5.6 PROPERTIES OF RMMAT

One of the notable strengths of RMMAT lies in its adaptability. The configurable nature
of its components permits analysts to tailor the evaluation process to match the unique demands
of different analytical scenarios, providing a versatile tool that aligns with varying objectives
and data characteristics.

Addressing a critical gap, RMMAT introduces a quantitative metric for evaluating tra-
jectory summarization methods. This objective measurement approach overcomes the limita-
tions of previous subjective evaluation methods, paving the way for more accurate decision-
making, deeper insights, and overall advancements in trajectory analysis.

The effectiveness of RMMAT in computing a representative MAT depends on the spe-
cific purpose and requirements of a use case. Different applications may need varying levels
of granularity and information preservation. The evaluation of the summarization method is in-
herently tied to the specific objectives being analyzed. RMMAT focuses on assessing similarity
and covered information, providing a comprehensive measure of the quality of representative
data concerning the complete input dataset.

At last, RMMAT is not only a novel metric for trajectory data summarization. It also
provides a flexible measure that can be adapted to diverse analytical scenarios. This adaptabil-
ity, associated with the ability to objectively measure the quality of representative trajectories,

makes RMMAT a valuable tool for researchers and analysts in the field of mobility analysis.



87

6 EXPERIMENTAL EVALUATION

As identified in Chapter 3, given the lack of a compatible baseline in related works,
we opted to use datasets involving MATSs for a quantitative evaluation. This chapter presents
and details an experimental evaluation of both proposed summarization methods (MAT-SG and
MAT-SGT), shedding light on their utility and representativeness. In the following sections, we

describe the datasets, methodology, and the results of experiments over the proposed methods.

6.1 DATASETS

We evaluate the effectiveness of our methods using four datasets containing MATs.
Three of these datasets, Foursquare, Gowalla, and Brightkite, are publicly available'® . These
datasets, widely employed in other works (ZHOU et al., 2018; PETRY et al., 2019; da SILVA;
PETRY; BOGORNY, 2019; PORTELA; CARVALHO; BOGORNY, 2022), contribute to the
robustness of our evaluation. Additionally, we include a private dataset'® from Pisa, also uti-
lized in Petry et al. (2019). The diversity in these datasets ensures a comprehensive evaluation,
considering multiple dimensions and aspects of trajectory data.

The Foursquare NYC dataset is a well-established trajectory dataset encompassing
check-in data in New York City, spanning from April 2012 to February 2013. This dataset not
only includes spatial and temporal information but also incorporates some semantic aspects
such as weekday, weather conditions, and aspects like category, price, and rating of Points of
Interest (POIs). With a total of 3079 trajectories from 193 users, the dataset presents a rich set
of approximately 22 check-ins per trajectory, with an average of approximately 16 trajectories
per user.

The Gowalla Location-Based Social Network is a dataset collected worldwide between
February 2009 and October 2010. For our analysis, we used 300 random users and limited
the trajectory sizes between 10 and 50 check-ins, resulting in 5329 trajectories. This dataset
provides information about anonymized users, POls, spatial, and temporal details, along with
enriched semantic information about weekdays.

The Brightkite dataset, sourced from the Brightkite social media platform and col-
lected between April 2008 and October 2010 (CHO; MYERS; LESKOVEC, 2011), includes a
randomly selected subset of 300 users. The dataset comprises a total of 7911 trajectories, each
with a consistent range of 10 to 50 points. It comprises the exact dimensions of the Gowalla
dataset, including the enriched semantic information of the weekday.

The Pisa dataset, utilized in the evaluation of MUITAS (PETRY et al., 2019), was
collected by 157 volunteers in Pisa through a mobile app, collected in Pisa, Italy, between May

18 https://github.com/bigdata-ufsc/datasets_v1_0

19 The TagMyDay experiment data was collected under a non-disclosure agreement during a visit funded by the
SOBIGDATA Project in June 2023, so we cannot redistribute it. More information about it can be found at
http://kdd.isti.cnr.it/project/tagmyday.
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Table 18 — Datasets Vs attributes description

Attribute Type Dataset Description Range / Example
. . Coordinates
Spatial Numeric All (latitude and Tongitude) e.g.: lat: 40.83, long: -73.94
Time Temporal All Time of the day [00:00,23:59]
. . e.g.: {Residence, Food,

Pol Category Semantic: Categorical | Foursquare | The root type of category of Pol Transport,...}

Pol Price Semantic: Categorical | Foursquare | The evaluation of Price {-1,1,2,3,4}

Pol Rating Semantic: Numerical | Foursquare | The rating evaluation of Pol {-1} U [4.0, 10.0]

Weather Semantic: Categorical | Foursquare | Weather condition e.g.: {Clear, Clouds, Rain,...}

Weekday Semantic: Categorical | All Description of weekday e.g.: {Sunday, Monday,...}

Time duration Semantic: Numeric Pisa Time duration in Hours {Up to 1h, 1 to 2h,...}

Trip purposes Semantic: Categorical | Pisa activity perform during the trip | e.g.: {Going home, Refueling, ...}

Transportation means | Semantic: Categorical | Pisa transportation mode / type e.g: {Car, Train, Bike, ...}

Distance traveled Semantic: Numeric Pisa distance traveled in kilometers {Upto 1 km,Ito2km,..,
over 10 km}

Pol Semantic: Categorical Brightkite, the Pol definition ID do Pol

Gowalla

20, 2014 and September 30, 2014.

routines, annotated with transportation means, trip purposes, distance traveled, time duration,

It consists of movement segments representing users’ daily

and information of the weekday. After applying necessary transformations to ensure variability
and consistency, including the removal of small trajectories with less than three segments and
users with less than five trajectories, the final dataset comprises 9715 segments in 1617 daily
trajectories from 92 different users. The trajectories exhibit an average length of approximately
26 trajectories per user.

Tables 18 and 19 provide detailed information about the attributes and characteristics
of each dataset, respectively. Table 18 summarizes the datasets, including the attributes used in
each dataset and their descriptions. Table 19 presents the characteristics of each dataset, with
the average trajectory size, the number of trajectories, points, filtered data groups, and the filter

criteria used for each dataset.

6.2 METHODOLOGY

The methodology section outlines the approach taken to evaluate the utility and effec-
tiveness of the summarization methods (MAT-SG and MAT-SGT). We discuss the evaluation
metrics employed to assess the performance of the methods, including similarity measures and
the RMMAT metric. Additionally, we will detail the experimental setup, including parameter
configuration and settings for key parameters such as 7,, and 7., and their impact on the sum-
marization results. We will also address other setups required to perform this experiment. By
following a systematic methodology, we aim to provide a robust evaluation that captures the

nuances of trajectory summarization.

6.2.1 Evaluation Metrics

Our experimental evaluation adopts a thoughtful and systematic approach to assess the

utility of RT, employing two distinct strategies: (i) the Average Recall (AR) metric; and (ii) the
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Table 19 — Summary of the used datasets

Dataset Description Aspects
Traj Size: ~ 22
# of Traj.: 3079

Lat, Lon, Time,

k her Condition
Foursquare | # of Points: 66962 Weather Condit ons,
Pol - Category, Price,
# filtered data groups: 193 )
and Rating

Filter Criteria: User

Traj Size: ~ 18

# of Traj.: 5329

Gowalla # of Points: 98158

# filtered data groups: 300
Filter Criteria: User

Traj Size: ~ 16

# of Traj.: 7911

Brightkite | # of Points: 130494

# filtered data groups: 300
Filter Criteria: User

Lat, Lon, Time,
Pol, Weekday

Lat, Lon, Time,
Pol, Weekday

Traj Size: ~ 6 Lat, Lon, Time,

# of Traj.: 1617 Time Duration, Weekday,
Pisa # of Points: 9715 Transportation Means,

# filtered data groups: 92 | Trip Purposes,

Filter Criteria: User Distance Traveled

RMMAT.

The AR metric was inspired by the similarity measure work of Petry et al. (2019) and
previously utilized in Section 5.5, which serves as our primary evaluation strategy. It helps us to
evaluate the utility of RT’s within the context of the input dataset, thereby quantifying the qual-
ity of our summarization and representative data computation. AR measures the recall based on
the similarity between the RT computed by each proposed method and other trajectories in the
dataset.

Central to the AR metric is the computation of RT for each trajectory group filtered
based on specific criteria. By dividing the dataset (D) into multiple groups (7" € T € D) under
the assumption that trajectories within the same group exhibit similarity, we aspire for high
similarity values between the RT and trajectories within the same group. Indeed, we use the
trajectories of each user as the ground truth for all datasets, as trajectories of the same user are
more likely to be similar than the trajectories of other users.

The evaluation process unfolds systematically: RT is computed for each group, i.e.,
for each user in each dataset; a similarity search is conducted over the dataset; trajectories are
ordered by similarity; and recall is calculated. The assessment hinges on the ideal scenario
where the top k& most similar trajectories align with the same group trajectories (k = |Tgroup))-
This metric effectively gauges the RT’s ability to rank trajectories within the same ground truth
group.

In our second evaluation strategy, we turn our attention to measuring the representative-
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ness of the representative MAT (RT) across the entire dataset. Our proposed representativeness
measure facilitates this assessment, RMMAT, which aims to gauge the quality of RT in terms
of both similarity and covered information.

The RMMAT measure involves the computation of RT for each group of filtered tra-
jectories. The dataset (D) is segmented into multiple groups (T € T € D). The RMMAT metric,
ranging between 0 and 1, signifies the degree to which the RT encapsulates the overall represen-
tativeness of the entire dataset. A value of 1 indicates that RT fully represents the dataset, while
a value of 0 implies that RT fails to encompass any information from the dataset. To balance
the consideration of both similarity and covered information, we adopt a strategy with equal
weights, setting g = Wcoper = % This ensures a comprehensive evaluation that accounts for

both components of representativeness.
6.2.2 Experimental Setup

We performed experiments by executing MAT-SG and MAT-SGT in each ground truth
(i.e., each user, as criteria definition to filter trajectories into groups). All experiments were im-
plemented in Java and conducted on a Dell Inspiron laptop with an Intel Core i5 processor and
16 GB memory. The method was repeated on each user with a different setting of the param-
eters T,, and T, with values varying from 5% to 25%, resulting in 25 runs for each user. We
chose to start the parameter configuration at 5% because, for this analysis, it is not meaningful
to consider lower information density when computing RT. The parameter 7,. influences cell
size, and consequently, the MAT points needed in each cell must be sufficiently dense and rel-
evant. Similarly, extremely low tendency values imply that all values in the tendency will be
considered representative. This parameter variation enables the evaluation of the sensitivity and
robustness of the methods.

To compute the similarity measure between trajectories, we rely on MUITAS (PETRY
et al., 2019), the state-of-the-art w.r.t. MAT similarity measure. Proximity functions are defined
to assess the similarity between trajectories 7 € T and RT, considering the distinct structure of
RT. The adopted functions are (i) spatial: Euclidean distance measure. We consider a match if
the distance between the spatial coordinates of the T and RT is within a predefined threshold
(2 x cellSize); (ii) temporal: a match function based on the temporal interval of RT. We consider
a match if the timestamp value of the 7 falls within that interval; and (iii) semantic: functions
for evaluating attribute matching for numeric and categorical types. We consider a match for
numerical types if the difference between attribute values is equal to or less than 10% of the RT
value. For categorical types, we determine a match if the attribute value of the 7 falls within the
range of attribute values of the RT. W.r.t., for the weights parameter of MUITAS, we consider
w = 1/3 for each dimension to balance all dimensions.

By adhering to established methodologies and introducing unique elements tailored to
the goals of this study, these strategies form a robust foundation for the subsequent experimental

evaluation, promising insightful findings into the performance of RT in representing diverse
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trajectory datasets.

6.3 RESULTS

In this section, we present the results of the evaluation of both the Average Recall (AR)
metric for ranking user trajectories within the same group and the RMMAT as the representa-
tiveness measure, based on a specified parameter configuration, as previously described in the

methodology.

6.3.1 AR Metric Strategy

The parameters 7., and 7,. are employed, representing the x-axis (each row in the
tables) and y-axis (each column), respectively. Higher values indicate better exactness, high-
lighted in bold, while the lowest values are underlined. We compare the performance of two
models: (A) MAT-SG and (B) MAT-SGT.

6.3.1.1 Foursquare-NYC dataset

Table 20 displays the results for ranking user trajectories using AR. For MAT-SG, the
highest value of 0.785 occurs with 7,, and 7,. both set to 0.05, while the lowest value (0.450) is
obtained with 7,, and 7,. both set to 0.25. MAT-SGT achieves the highest value of 0.848 with
both parameters set to 0.05, while the lowest value (0.372) is obtained with 7,, = 0.25 and 7.
= (.15 highlighting its effectiveness under the best parameter configuration.

Table 20 — AR of ranking user trajectories in Foursquare dataset

(A) MAT-SG (B) MAT-SGT
: e 005 01 015 02 025 X 005 01 015 02 025
0.05 0.785 0.643 0546 0498 0.472 0.05 0.848 0755 0.686 0.641 0634
0.1 0770 0.627 0534 0483 0475 0.1 0.809 0.680 0592 0.534 0.517
0.15 0743 0.600 0521 0471 0.460 0.15 0731 0573 0475 0431 0420
0.2 0742 0.609 0526 0478 0.456 02 0.656 0490 0410 0400 0.394
025 0734 0599 0524 0473 0.450 025 058 0432 0372 0377 0.388

6.3.1.2 Gowalla Location-Based Social Network dataset

Table 21 provides the corresponding results for the Gowalla dataset. For MAT-SG, the
highest value (0.871) is achieved with both 7,. and 7,, set to 0.05, while the lowest value (0.546)
is identified with both parameters set to 0.25. On the other hand, MAT-SGT achieves the highest
AR (0.888) with both 7, and 7,, set to 0.05, and the lowest value (0.509) is obtained with 7,. =
0.25 and 7,, = 0.2. Thus, in the Gowalla dataset, MAT-SGT demonstrates superior performance
under the best parameter configuration.



92

Table 21 — AR of ranking user trajectories in Gowalla dataset

(A) MAT-SG (B) MAT-SGT
N 005 01 015 02 025 N 005 01 015 02 025
0.05 0.871 0771 0729 0702 0.692 0.05 0.888 0.826 0.804 0799 0.795
0.1 0.838 0724 0.669 0.639 0.633 0.1 0865 0771 0732 0710 0.693
0.15 0.807 0.682 0.620 0.589 0.566 0.15 0794 0.664 0.608 0595 0.575
0.2 0753 0.646 0.601 0572 0.546 02 0.690 0558 0519 0513 0.509
0.25 0732 0.663 0.643 0.634 0.609 0.25 0.644 0537 0518 0515 0517

6.3.1.3 Brightkite dataset

Results for the Brightkite dataset are shown in Table 22. MAT-SG achieves the highest
AR (0.928) with both 7,. and 7,, set to 0.05, while the lowest value (0.819) is identified with
Ty = 0.15 and 7, = 0.25. MAT-SGT attains the highest AR (0.954) with both parameters set
to 0.05, and the lowest value (0.621) is obtained with 7,, = 0.25 and 7, = 0.05. MAT-SGT

showcasing superior performance under the best parameter configuration.

Table 22 — AR of ranking user trajectories in Brightkite dataset

(A) MAT-SG (B) MAT-SGT

N 005 01 015 02 025 N 005 01 015 02 025
rv TV

0.05 0928 0905 0898 0.884 0.869 0.05 0954 0935 0927 0915 0903
0.1 0920 0.897 0.890 0.873 0.860 0.1 0.881 0.866 0.863 0.855 0.843
0.15 0887 0871 0857 0838 0819 0.15 0756 0736 0750 0759 0.783
0.2 0.866 0.860 0.863 0.847 0.841 0.2 0.658 0.677 0.696 0716 0.754
025 0865 0859 0867 0854 0.845 025 0621 0628 0663 0698 0744

6.3.1.4 Pisa dataset

Table 23 displays results for the Pisa dataset. MAT-SG achieves the highest AR (0.687)
with both 7,. and 7,, set to 0.05, while the lowest value (0.397) is identified with both param-
eters set to 0.25. MAT-SGT attains the highest AR (0.737) with 7, = 0.05 and 7,,, = 0.2, and
the lowest value (0.487) is obtained with 7,, = 0.25 and 7, = 0.05. MAT-SGT consistently

demonstrates superior performance under the best parameter configuration.

Table 23 — AR of ranking user trajectories in Pisa dataset

(A) MAT-SG (B) MAT-SGT
X 005 01 015 02 025 X 005 01 015 02 025
Try Try
0.05 0.687 0.583 0497 0471 0452 0.05 0.707 0.638 0547 0527 0.511
0.1 0.659 0.547 0467 0452 0431 0.1 0.661 0.575 0482 0.444 0.425
0.15 0632 0.536 0466 0459 0413 0.15 0.608 0.533 0445 0416 0.399
0.2 0.610 0.554 0483 0460 0.399 0.2 0565 0486 0409 0399 0371

0.25 0.607 0.536 0472 0.448 0.397 0.25 0.539 0457 0.408 0.386 0.367
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In general, MAT-SG exhibits a linear AR result when ranking user trajectories for
each 7,. across a range of 7,,. As T,. decreases, AR tends to decrease due to the algorithm’s
minimum requirement of MAT points in each cell for relevance. Conversely, MAT-SGT displays
an inverse pattern, maintaining a linear AR result for each 7,, across a range of 7,., and as the
value of 7,, decreases, the AR also tends to decrease.

As the minimum requirement increases, it becomes more challenging to accurately
rank user trajectories, leading to a decrease in the AR. When more MAT points are required
to compute the representative MAT (RT), the algorithms have less power to rank the user’s
trajectories accurately. Additionally, when no cell is identified as relevant, the algorithms do
not compute a p, for the points in that cell.

The analysis of the results shows that the best values for 7,. are around 0.05, with
decreasing values of AR as 7, increase, suggesting the effectiveness of larger cell sizes in
capturing group characteristics. Smaller cell sizes and stricter relevance criteria pose challenges
for computing an RT that performs well across different scenarios.

Our RT computation methods were evaluated in various scenarios and achieved an
overall AR score by observing the best parameter configuration. Results are presented in Table
24. In general, considering the best parameter configuration by each user, both methods (MAT-
SG and MAT-SGT) present high AR values, demonstrating the effectiveness of our methods
in summarizing user trajectories. MAT-SGT consistently outperforms MAT-SG in ranking user

trajectories across datasets.

Table 24 — The compiled results of AR across all experimental evaluations

Best By User All Results
Dataset Method AR yMe dian AR  Median SD Max. Min. Complete Incomplete
Forsquare MAT-SG  0.833 0.900 0.568 0.600 0.315 1.000 0.000 4800 0 + (2 users)
MAT-SGT 0.886 0.930 0.560 0.600 0.324 1.000 0.000 4581 219 + (1 users)
Gowalla MAT-SG  0.889 0.950 0.677 0.750 0.294 1.000 0.000 7375 0 + (5 users)
MAT-SGT 0.909 0.960 0.672 0.730 0.295 1.000 0.000 7044 331 + (5 users)
Brightkite MAT-SG  0.954 1.000 0.870 0.930 0.187 1.000 0.000 3850 0 + (146 users)
MAT-SGT 0.966 1.000 0.797 0.900 0.252 1.000 0.000 3162 688 + (146 users)
Pisa MAT-SG  0.752 0.800 0.508 0.500 0.313 1.000 0.000 2300 0 + (0 users)
MAT-SGT 0.742 0.755 0.498 0.500 0.319 1.000 0.000 2150 150 + (0 users)

The Incomplete column shows the number of parameter configurations that did not
yield an RT, where MAT-SGT has identified more incomplete RT.

6.3.2 RMMAT Strategy

The parameters 7,, and 7,. are utilized to represent the x-axis (each row in the tables)
and y-axis (each column), respectively. Higher values indicate better representativeness, and
we highlight them in bold. Conversely, the lowest values are underlined. We are comparing the
performance of two models: (A) MAT-SG and (B) MAT-SGT.

We also present the top 10 RT identified in each dataset, along with the user and pa-
rameter configuration of each computed R7T. These analyses can help identify the users who
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follow high patterns, and the high RMMAT score can highlight the power of each method in

covering the representativeness of trajectories concerning the user.

6.3.2.1 Foursquare-NYC dataset

Table 25 presents the average RMMAT results for RT computations with different
parameter configurations. The highest representativeness measures were obtained with MAT-
SG (0.692) and MAT-SGT (0.627), both with 7,,, and 7,. set to 0.05. Conversely, the lowest
values were recorded for both methods (0.201 for MAT-SG and 0.207 for MAT-SGT), with 7,
and 7,. both set to 0.25.

Table 25 — Average of RMMAT of user trajectories in Foursquare dataset

(A) MAT-SG (B) MAT-SGT
Tre 0.05 0.1 015 0.2 0.25 Tre 0.05 0.1 015 0.2 0.25

Try Ty

0.05 0.692 0.573 0.466 0.363 0.249 0.05 0.627 0.553 0.501 0.476 0.480
0.1 0.663 0.543 0.438 0.339 0.232 0.10 0.561 0479 0423 0.394 0.380
0.15 0.637 0.515 0412 0318 0.217 0.15 0.498 0403 0334 0.296 0.273
0.2 0.616 0.494 0393 0.303 0.207 0.20 0.443 0.346 0.277 0.248 0.238
0.25 0.600 0.481 0383 0.295 0.201 0.25 0.402 0.305 0.243 0.223 0.207

Table 26 shows the top 10 RT computed for each method. It is interesting to note that
MAT-SG achieved an RMMAT score of 0.96 for the best user (895) with its best parameter
configuration, while MAT-SGT achieved an RMMAT score of 0.94 for the best user (730).

Table 26 — The top 10 computed RT in Foursquare dataset

(A) MAT-SG (B) MAT-SGT
user Tpy Tre RMMAT user Tpy Tre RMMAT
895 0.05 0.05 0.96 730 0.10 0.05 0.94
730 0.10 0.05 0.94 895 0.10 0.05 0.87
754 0.05 0.25 0.94 207 0.05 0.10 0.87
207 0.05 0.10 0.93 754 0.05 0.25 0.87
1006  0.05 0.05 0.91 365 0.05 0.05 0.84
647 0.05 0.25 0.91 647 0.05 0.25 0.84
438 0.05 0.10 0.90 69 0.10 0.05 0.82
533 0.05 0.10 0.90 440 0.05 0.05 0.81
885 0.05 0.05 0.89 438 0.05 0.10 0.80
440 0.05 0.05 0.89 673 0.100  0.05 0.80

Interestingly, although some users are common in the top-10 RT scores for both meth-
ods, different users were highlighted, indicating the diversity in capturing representativeness.
Also, the best parameter configurations for each user vary between the two methods.

Furthermore, we can see that in these top-10 RT', 7, was set to 0.05 or 0.1, highlighting
the tendency to obtain the best RT with low values. On the other hand, for 7,., some RT were
identified with high values, for example, user 647 in MAT-SG or users 754 and 647 in MAT-
SGT.
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6.3.2.2 Gowalla Location-Based Social Network dataset

Table 27 insert shows results for the Gowalla dataset. The highest representativeness
measures were obtained with MAT-SG (0.693) and MAT-SGT (0.624), both with 7,, and 7, set
to 0.05. Conversely, the lowest values were recorded for both methods (0.238 for MAT-SG and
0.225 for MAT-SGT), with 7,, and 7,. both set to 0.25.

Table 27 — Average of RMMAT of user trajectories in Gowalla dataset

(A) MAT-SG (B) MAT-SGT
N 005 01 015 02 025 X 005 01 015 02 025
0.05 0.693 0576 0484 0403 0.322 0.05 0.624 0555 0524 0505 0.499
0.1 0.660 0539 0449 0373 0.298 0.1 0558 0474 0438 0407 0.391
0.15 0.627 0505 0418 0345 0275 0.15 0487 0391 0351 0319 0310
0.2 0592 0468 0385 0316 0251 0.2 0424 0320 0283 0256 0.248
025 0566 0444 0364 0300 0.238 0.25 0377 0283 0252 0228 0.225

The top-10 RT results are detailed in Table 28. MAT-SG achieves an RMMAT score of
0.97 for the best user (36712) with its best parameter configuration, while MAT-SGT achieves
an RMMAT score of 0.90 for the best user (113411). Similar to the Foursquare dataset, diverse
users are highlighted in the top-10 RT scores for each method, showcasing the ability of each

method to capture different patterns of representativeness.

Table 28 — The top 10 computed RT in Gowalla dataset

(A) MAT-SG (B) MAT-SGT
user Try Tre RMMAT user Try Tre RMMAT
36712  0.05 0.25 0.97 113411 0.10 0.05 0.90
18623  0.05 0.05 0.95 36712  0.05 0.25 0.89
124868 0.05  0.05 0.95 16931 0.05 0.25 0.89
49101  0.05 0.05 0.93 18623  0.05 0.05 0.86
12681  0.05 0.05 0.93 119314 0.05 0.05 0.86
107206 0.05  0.05 0.93 11205 0.05 0.25 0.86
119314 0.05 0.05 0.93 124868 0.05  0.05 0.85
19531 0.05 0.20 0.93 6321 0.05 0.25 0.85
11205 0.05 0.05 0.93 39547 0.05 0.15 0.85
113411 0.05 0.05 0.92 5980 0.05 0.25 0.83

It is noticeable that in the top 10 instances of repeated measures (RT), a value of 0.05
was frequently set for the 7,, parameter, indicating a preference for obtaining the best result

with low values. Conversely, for 7,., certain RT instances were identified with high values.

6.3.2.3 Brightkite dataset

Table 29 displays the average RMMAT results for the Brightkite dataset. The highest
representativeness measures were obtained with MAT-SG (0.875) and MAT-SGT (0.738), both



96

with 7,, and 7,. set to 0.05. Conversely, the lowest values were obtained by MAT-SG (0.551)
with 7,, and 7,. both set to 0.25, and by MAT-SGT (0.298) with 7,, = 0.25 and 7, = 0.15.

Table 29 — Average of RMMAT of user trajectories in Brightkite dataset

(A) MAT-SG (B) MAT-SGT
N 005 01 015 02 025 N 005 01 015 02 025
0.05 0.875 0.834 0797 0771 0.723 0.05 0.738 0716 0.693 0.675 0.648
0.1 0.820 0774 0735 0709 0.662 0.1 0564 0518 0495 0481 0.457
0.15 0771 0722 0681 0.656 0.609 0.15 0447 0399 0385 0390 0.393
02 0726 0.676 0.636 0.612 0.566 02 0366 0341 0334 0349 0.354
0.25 0705 0.656 0.618 0.594 0.551 025 0329 0299 0298 0317 0.320

The top 10 RT results are detailed in Table 30. MAT-SG achieved an RMMAT score of
0.99 for the best user (7528) with its best parameter configuration, while MAT-SGT achieved
an RMMAT score of 0.98 for the same user. Here, we identify that five users are the same in

both method computations, all with the same parameter configuration.

Table 30 — The top 10 computed RT in Brightkite dataset

(A) MAT-SG (B) MAT-SGT
user Try Tre RMMAT user Try Tre RMMAT
7528  0.05 0.25 0.99 7528  0.05 0.25 0.98
662 0.05 0.25 0.97 22820 0.05 0.25 0.92
22820 0.05 0.25 0.97 9548  0.05 0.10 0.92
49030 0.05 0.05 0.96 29673 0.05 0.25 0.90
8921 0.05 0.05 0.96 8921 0.05 0.05 0.88
18841 0.05 0.25 0.96 11756 0.05 0.20 0.88
26004 0.05 0.15 0.96 20249 0.05 0.25 0.87
29673 0.05 0.25 0.96 13679 0.05  0.05 0.87
7226  0.05 0.25 0.95 18841 0.05 0.25 0.86
1952  0.05 0.05 0.95 43 0.05 0.25 0.86

Furthermore, we can see that in these top 10 RT, 7,,, was set as 0.05, highlighting the
tendency to obtain the best RT with low values. On the other hand, for 7,., different values are
achieved. Again, the diversity in users and parameter configurations in the top 10 RT scores
highlights the distinct capturing capabilities of MAT-SG and MAT-SGT.

6.3.2.4 Pisa dataset

Results for the Pisa dataset are shown in Table 31. The highest representativeness mea-
sures were obtained with MAT-SG (0.595) and MAT-SGT (0.621), both with 7,, and 7, set to
0.05. Conversely, the lowest values were recorded for both methods (0.211 for MAT-SG and
0.327 for MAT-SGT), with 7,, and 7,. both set to 0.25.

The top 10 RT results are detailed in Table 32. MAT-SG achieved an RMMAT score of
0.90 for the best user (130) with its best parameter configuration, while MAT-SGT achieved an
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Table 31 — Average of RMMAT of user trajectories in Pisa dataset

(A) MAT-SG (B) MAT-SGT
N 005 01 015 02 025 X 005 01 015 02 025
0.05 0.595 0495 0390 0294 0.231 0.05 0.621 0543 0471 0457 0452
0.1 0584 0483 0381 0287 0226 0.1 0589 0504 0429 0405 0.402
0.15 0573 0471 0369 0276 0217 0.15 0551 0463 0404 0386 0.372
0.2 0565 0461 0360 0271 0214 0.2 0506 0422 0360 0363 0344
025 0559 0455 0355 0267 0211 025 0476 0416 0355 0340 0.327

RMMAT score of 1.00 for the best user (195). Here, we identify that eight users are the same

in both method computations, all with the same parameter configuration.

Table 32 — The top 10 computed RT in Pisa dataset

(A) MAT-SG (B) MAT-SGT
user Try Tre RMMAT user Try Tre RMMAT
130 025 0.25 0.90 195 0.25 0.10 1.00
439 0.25 0.25 0.90 130 0.25 0.25 1.00
443 0.25 0.25 0.90 439 0.25 0.25 1.00
99 0.25 0.25 0.88 443 0.25 0.25 1.00
480 0.25 0.10 0.85 506 0.25 0.10 0.99
543 0.10 0.10 0.85 99 0.25 0.25 0.98
744 0.20 0.10 0.84 162 0.25 0.05 0.96
195 0.25 0.10 0.84 480 0.25 0.10 0.93
672 0.25 0.15 0.84 543 0.10 0.10 0.92
191 0.25 0.10 0.83 672 0.25 0.15 0.92

In the top-10 RT results, we can observe that 7,, was set at 0.25, indicating a preference
for high values to obtain the best RT. However, for 7,., different values were achieved. The top
10 results for RT demonstrate the effectiveness of both methods in capturing the representative-
ness of trajectories concerning users, although the identified users and parameter configurations
differ between MAT-SG and MAT-SGT.

We evaluated our computation methods for RT in various scenarios and obtained an
overall RMMAT score by observing the best parameter configuration. The results are presented
in Table 33. Overall, both methods (MAT-SG and MAT-SGT) exhibited high RMMAT scores
when considering the best parameter configuration by each user, indicating the effectiveness
of our methods in summarizing user trajectories. Additionally, in most cases, MAT-SG outper-
formed MAT-SGT regarding the representativeness value across input data.

We can observe that in some cases, there is insufficient density to determine a behav-
ioral pattern (Incomplete column), where MAT-SGT has identified more incomplete RT across

some parameter configurations.
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Table 33 — The compiled results of RMMAT across all experimental evaluations

Best By User All Results
Dataset Method AR yMe dian AR Median SD Max. Min. Complete Incomplete
Forsquare MAT-SG  0.691 0.720 0.425 0.470 0.267 0.96 0.000 4800 0 + (2 users)
MAT-SGT 0.637 0.640 0.390 0.400 0.201 0.940 0.000 4581 219 + (1 users)
Gowalla MAT-SG  0.693 0.710 0.435 0.480 0.270 0.970 0.000 7375 0 + (5 users)
MAT-SGT 0.632 0.630 0.395 0.400 0.207 0.900 0.000 7044 331 + (5 users)
Brightkite MAT-SG  0.874 0.890 0.699 0.720 0.166 0.990 0.000 3850 0 + (146 users)
MAT-SGT 0.739 0.745 0.475 0.500 0.243 0.980 0.000 3162 688 + (146 users)
Pisa MAT-SG  0.595 0.590 0.383 0.380 0.264 0.900 0.000 2300 0 + (0 users)
MAT-SGT 0.624 0.615 0.443  0.420 0.262 1.000 0.000 2150 150 + (0 users)

6.4 DISCUSSION

We conducted a comprehensive set of experiments to assess the performance of our
two trajectory summarization methods, MAT-SG and MAT-SGT, across diverse datasets with
varying characteristics and parameter configurations. Our evaluation focused on their dual ca-
pabilities: effectively ranking filtered trajectories using the AR Metric and ensuring the repre-
sentativeness of the computed representative data for each input dataset using the RMMAT.

The AR metric results indicated high values, particularly with the optimal parameter
configurations in both MAT-SG and MAT-SGT. Values ranged between 0.687 (for MAT-SG on
the Pisa dataset) and 0.954 (for MAT-SGT on the Brightkite dataset). Notably, lower values of
T, yielded better AR metric results, suggesting that RT excelled in ranking trajectories when
computed with larger cells, capturing more input data characteristics.

Based on the AR metric results, MAT-SGT outperformed MAT-SG in ranking user tra-
jectories across different datasets. It achieved higher AR values than MAT-SG across various
parameter configurations (Tables 20 - 23). Although MAT-SGT exhibited superior performance,
the marginal overall difference emphasizes the effectiveness of both methods in ranking trajec-
tories.

Furthermore, the highest AR values achieved with the best parameter configurations in-
dicate the superior performance of MAT-SGT in representing diverse trajectory datasets. How-
ever, both methods produced high values, demonstrating their power to rank trajectories and
ensuring the robustness of both approaches. This highlights the utility of RT within the con-
text of the input dataset, providing insights into summarization quality and representative data
computation.

Based on the RMMAT results, MAT-SG demonstrates better performance in certain sit-
uations. For example, on the Brightkite dataset, MAT-SG achieved an average RMMAT score of
0.875, outperforming MAT-SGT 0.738. In general, results concerning the RMMAT showcased
positive outcomes, with average values between 0.595 (for MAT-SG on the Pisa dataset) and
0.875 (for MAT-SG on the Brightkite dataset). Lower values of 7,. consistently led to higher
RMMAT scores across all datasets, highlighting the effectiveness of larger cell sizes in captur-

ing representativeness.
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However, it is important to note that diverse parameter configurations for different
users underscore the need for adaptive parameter selection based on individual user behavior.
The analysis suggests that MAT-SG showcases the best values, particularly when considering
a parameter configuration around the pattern in the data. This suggests that MAT-SG may be
more effective in certain scenarios for capturing the representativeness of trajectories, leading
to better similarity and covered information.

One hypothesis is that, regarding similarity, using MUITAS that does not consider
the sequence in data may be positive in MAT-SG. At the same time, it may not be the best
measure in MAT-SGT since the temporal sequence is not considered in this measure. Currently,
no similarity measures are available to compare data sequences for MATs. Regarding covered
information, MAT-SG only considers the spatial dimension in segmentation, which means that
more data points are summarized in each representative point. In contrast, since MAT-SGT
considers two steps to segment data for spatial and temporal dimensions, the number of data
points considered for computing the representative point is lower, providing a straightforward
lower covered information.

The top 10 RT results demonstrate the effectiveness of both methods in capturing the
representativeness of trajectories concerning users, although the identified users and parameter
configurations differed between MAT-SG and MAT-SGT. This emphasizes the distinct capturing
capabilities of each method. Additionally, the variability in the optimal parameter configurations
highlights the importance of flexibility in parameter selection.

Both MAT-SG and MAT-SGT select parameter configurations for each user using spa-
tial (MAT-SG and MAT-SGT) and temporal (MAT-SGT) density segmentation, analyzing aspect
frequency in each segment. However, due to its dual-step density segmentation, MAT-SGT ex-
hibited more situations with insufficient density. Consequently, more information is needed to
analyze its representative data. The prevalence of different configurations is crucial since users
exhibit different behavioral patterns.

Trajectory data summarization demands tailored approaches based on the specific char-
acteristics of the data and analysis objectives. MAT-SG operates on the principle of spatial den-
sity, yielding superior results in summarizing representative aspects within specific spatial areas.
It proves instrumental in scenarios where understanding spatial patterns is crucial, irrespective
of the temporal sequence. For example, consider a scenario where we aim to discern the regions
an individual frequents and the corresponding patterns related to each region. MAT-SG would
provide insights into these spatial patterns, offering valuable information about the individual’s
movement across various spatial areas.

In contrast, MAT-SGT is purpose-built to solve movement patterns with a perceptive
emphasis on the temporal sequence. This method excels when temporal information is critical
to understanding the chronology of events or movements over time. Imagine a set of daily tra-
jectories depicting an individual’s movements on different days. Here, MAT-SGT would excel
in revealing the sequence of activities the individual typically follows. For example, it could

reveal that the user consistently departs from home between 7:00 am and 8:30 am on weekdays,
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heads to their business in the West area between 9:00 am and 12:00 pm, and then visits a restau-
rant in the Center area between 12:00 pm and 1:40 pm. In this nuanced example, MAT-SGT
provides a detailed temporal narrative, capturing the when and how of the routine of the user.

The choice between MAT-SG and MAT-SGT hinges on the specific objectives of the
analysis. If the goal is to comprehend spatial patterns independently of temporal nuances, MAT-
SG is the method of choice. On the other hand, when the temporal sequence is integral to un-
derstanding the dynamics of movements or events, MAT-SGT emerges as the preferred method.
The choice between these methods represents a strategic decision, allowing analysts to tailor
trajectory summarization to the unique requirements of their investigation.

These experimental evaluations provide a comprehensive and nuanced tool to under-
stand our methods and represent filtered trajectories. Both MAT-SG and MAT-SGT demonstrate
high effectiveness, and their flexibility in adapting to individual group behavior patterns is par-
ticularly valuable for personalized services and targeted interventions.

Our research has effectively demonstrated that MAT-SG and MAT-SGT are highly ef-
fective in capturing the representativeness of filtered trajectories. These methods can be applied
in practical scenarios such as LBS recommendation systems, urban planning, and transportation
management, where understanding filtered trajectories plays a critical role in decision-making
and service optimization.

The flexibility of our methods to adapt to individual group behavior patterns is partic-
ularly valuable for personalized services and targeted interventions. By utilizing these methods,
analysts can gain a deeper understanding of their data, and businesses can make more informed

decisions that benefit their customers and bottom line.

6.4.1 Limitations

Our investigation involved a systematic experimental evaluation across multiple datasets,
employing a range of parameter configurations and metrics to assess the effectiveness of our
methods. The experimental results indicate that both MAT-SG and MAT-SGT exhibit strong
performance in ranking filtered trajectories (AR Metric) and computing representative data for
input datasets (RMMAT). Despite the positive outcomes, it is important to acknowledge several

limitations of our research:

* Parameter Sensitivity: Our methods exhibit high sensitivity to parameter configurations,
particularly 7,. and 7,,,. Lower values of 7, generally yield better results, emphasizing the
critical role of parameter selection in capturing representativeness. This sensitivity neces-
sitates meticulous parameter tuning, which may pose challenges in specific scenarios and

could impact the generalizability of our methods across diverse datasets and behaviors.

* Temporal Sequence Deficient Analysis: The similarity analysis using MUITAS, as the

similarity measure for MAT, does not account for the temporal sequence between MAT
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points. The lack of consideration for temporal sequence may lead to less accurate rep-
resentativeness in scenarios where the temporal order of trajectory points is significant.
Based on RMMAT, MAT-SG generally demonstrates better performance in most situa-
tions. However, when comparing both methods in terms of representativeness, the use of
MUITAS for similarity analysis may not provide a comprehensive assessment of their

effectiveness.

* Scalability and Computational Overhead: The adaptability of our methods to indi-
vidual user behavior patterns comes with increased computational overhead. Extensive
experimentation with different parameter settings can be resource-intensive, potentially
limiting the scalability of our methods for large-scale applications. The requirement for
substantial computational resources may hinder the practical implementation of our ap-

proaches in real-time or resource-constrained environments.

» Dataset Specificity: While our methods perform well across the selected datasets, the
datasets used in our evaluation may not fully represent the diversity of real-world scenar-
ios. The effectiveness of our methods in other contexts requires further exploration. The
representativeness and ranking metrics might behave differently with datasets featuring
varying characteristics or noise levels, necessitating caution in extending conclusions to

different scenarios.

* Lack of Baseline Comparison: A comparative analysis with existing MAT summariza-
tion methods is crucial to identify specific limitations of both MAT-SG and MAT-SGT.
However, the absence of compatible baselines in related work hinders this comparative
analysis. Recognizing areas where our methods may fall short compared to established

techniques can offer valuable insights for refinement and future development.

In conclusion, while our methods show promise in trajectory summarization and rep-
resentativeness measurement, these limitations underscore the need for further research and de-
velopment. Addressing these challenges will be essential to enhance the robustness, scalability,

and generalizability of our approaches.






103

7 CONCLUSION

This thesis has introduced a framework composed by two innovative methods for
summarizing trajectories with multiple aspects, MAT-SG and MAT-SGT, designed to provide
representative data. The previous method, the FSM-based approach (SEEP; VAHRENHOLD,
2019), had limitations in capturing temporal sequences and dealing with different aspects in
their individual type. To address these shortcomings, MAT-SG and MAT-SGT consider spatial,
temporal, and semantic attributes that characterize MATs. Their contribution lies in abstract-
ing each of these dimensions according to their singularities. Another distinctive feature is
mapping input MATSs and representative data through a comprehensive data model, enabling
persistence, querying, and pattern identification. Additionally, MAT-SGT identifies temporal
sequences within movement patterns.

Trying to answer our research question, "Can we develop new algorithms for comput-
ing representative data for a set of MAT's to discover relevant information and address gaps in
related work by considering all aspects in MATSs regarding their individually?" we tackled the
trajectory summarization problem by proposing accurate methods for computing representative
MAT. We propose a framework composed of two methods, called MAT-SG and MAT-SGT, that
have shown promising results.

Trajectory data summarization demands a tailored approach based on specific data
characteristics and analysis objectives. MAT-SG operates on spatial density, excelling in sum-
marizing representative aspects within specific spatial areas. This method is invaluable when
understanding spatial patterns is crucial, regardless of temporal sequence relevance. In con-
trast, MAT-SGT focuses on temporal sequence emphasis, providing detailed insights into the
chronology of events or movements over time. The choice between MAT-SG and MAT-SGT
depends on the analysis objectives, with MAT-SG preferred for spatial pattern comprehension
and MAT-SGT for detailed temporal narratives.

Once we proposed these methods, we achieved another research question: "How much
of the RT captures and reflects the original MATs’ essence within an input dataset?". Aiming to
answer this research question, we propose a representativeness measure RMMAT that refers to
a measure tailored for big trajectory data with multiple aspects, aiming to quantify how much
information the RT covers from the input dataset and how similar this RT is to the entire dataset.

Our exploration involved a systematic experimental evaluation across multiple datasets,
employing a range of parameter configurations and metrics to assess the effectiveness of our
methods. The experimental results indicate that both MAT-SG and MAT-SGT exhibit strong
performance in ranking filtered trajectories (AR Metric) and computing representative data for
input datasets (RMMAT).

The flexibility of our methods is highlighted by the adaptability of parameter config-
urations to individual user behavior. Lower values of the 7,. consistently yielded better results,
emphasizing the importance of parameter configuration in capturing representativeness. User-

specific insights and diverse parameter configurations underscore the need for a nuanced and
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adaptive approach to trajectory summarization.

Our work contributes to the trajectory data analysis research area by providing tailored
methods that cater to the nuances of spatial and temporal considerations. The methods offer a
nuanced tool for analysts, allowing them to choose an approach aligned with the intricacies of
their data and the goals of their analysis.

As we conclude this thesis, it is evident that trajectory summarization is not a one-size-
fits-all endeavor. Instead, it requires a thoughtful consideration of the specific characteristics of
the data and the analytical objectives. Our methods provide a valuable step towards addressing
this challenge, offering a refined and adaptable approach to trajectory summarization that can
find application across diverse domains and scenarios.

It is crucial to emphasize that using a representative MAT helps data analysts gain
insights into the behaviors of trajectories with multiple aspects. This allows them to understand
the patterns and representative information that characterize input MATs. While our methods
have shown strong performance, there are areas for future improvement, and we propose some
potential future works.

The computation of a representative MAT depends on the specific purpose and re-
quirements of a use case. The evaluation of the summarization method is also dependent on the
purpose to be analyzed. Our representativeness measure RMMAT focuses on a view of simi-
larity and covered information. In future works, we intend to employ other views to assess the
representativeness of summarized MATS, such as reduced information.

Our summarization methods, MAT-SG and MAT-SGT, have effectively extracted rep-
resentative MAT's from trajectories with multiple aspects. In the future, we intend to use repre-
sentative trajectories to analyze their impact in various scenarios. For example, we want to use
representative trajectories to measure the similarity between different groups of trajectories and
identify the closest group of trajectories. Additionally, we plan to use representative trajectories
as input data for certain approaches. This will help us analyze the impact of using less informa-
tion to be processed, like in prediction scenarios, and has potential applications in personalized
recommendations, like anomaly detection and urban planning. In terms of our methods, future
work aims to refine the parameter selection process to enhance the method’s performance in
diverse datasets and real-world scenarios.

Moreover, we acknowledge that some aspects could have relationships between them.
Therefore, as a future work, we intend to improve our methods by considering dependencies
between aspects, such as price depending on Pol in our running example.

Furthermore, efforts will be directed towards reducing the complexity of our meth-
ods, currently operating at O(n?) concerning the number n of input points in all MATSs. This
complexity is primarily due to the computeMinSpatialThreshold function in Algorithm 1 and
Algorithm 4. We will optimize key functions and ensure scalability for larger datasets to achieve
this simplification.

In conclusion, trajectory summarization is a multifaceted challenge that demands pre-

cision and adaptability. Our methods provide a step forward, offering refined and adaptable
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approaches that align with the intricacies of diverse datasets and analytical goals. The represen-
tative MATSs derived from these methods facilitate a deeper understanding of behavioral patterns
within multiple aspect trajectories, making them valuable tools for data analysts across various

domains.

7.1 PUBLICATIONS

During this Ph.D. research period, partial results have been published as journal articles

and conference papers, as follows:

* Conference Paper: DEXA 2022 - Database and Expert Systems Applications.
(MACHADO; MELLO; BOGORNY, 2022a)
Machado, V. L., Mello, R. D. S., & Bogorny, V. (2022, July). A method for summarizing

trajectories with multiple aspects. In International Conference on Database and Expert

Systems Applications (pp. 433-446). Cham: Springer International Publishing.
This paper refers to the MAT-SG method, our first contribution.
* Conference Paper: WTDBD 2022 - Workshop de Teses e Dissertacoes em Banco de
Dados.
(MACHADO; MELLO; BOGORNY, 2022b)

Machado, V. L., dos Santos Mello, R., & Bogorny, V. (2022, September). On Generat-
ing Representative Data for Multiple Aspects Trajectory Data. In Anais Estendidos do
XXXVII Simposio Brasileiro de Bancos de Dados (pp. 98-104). SBC.

This workshop provided a forum to present the thesis and gain valuable insights for the
subsequent stages.

¢ Journal articles: Revista ComInG Ed. 2022 - Communications and Innovations Gazette
(LUZ; MACHADO; MELLO, 2022)
da Luz, T. O., Machado, V. L., & dos Santos Mello, R. (2022). Visual R-MAT: uma

ferramenta visual de apoio a anélises sob dados representativos de trajetorias de multiplos

aspectos. Revista ComInG-Communications and Innovations Gazette, 6(1), 36-45.
This paper describes a tool developed by an undergraduate student during his initial sci-
entific research studies under my supervision.

* Conference Paper: Geolnfo 2023 - Brazilian Symposium on Geoinformatics.
(MACHADO et al., 2023a)

Machado, V. L., Portela, T. T., de Lara Machado, A., Schreiner, G. A., & dos San-
tos Mello, R. (2023). A method for computing representative data for multiple aspect
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trajectories based on data summarization. In Brazilian Symposium on Geoinformatics
(Geoinfo).

This paper refers to the MAT-SGT method, our second contribution.

Conference Paper: Geolnfo 2023 - Brazilian Symposium on Geoinformatics.
(MACHADO et al., 2023b)
Machado, V. L., Portela, T. T., Renso, C., & dos Santos Mello, R. (2023). Towards a rep-

resentativeness measure for summarized trajectories with multiple aspects. In Brazilian

Symposium on Geoinformatics (Geoinfo).

This paper refers to the additional contribution regarding a representativeness measure
(RMMAT), allowing us to measure the representative data quality regarding the input
data.

Journal paper: Geoinformatica - An International Journal on Advances of Com-

puter Science for Geographic Information Systems.
(MACHADO et al., 2024)
Machado, V. L., dos Santos Mello, R., Bogorny, V., & Schreiner, G. A. (2024). A Survey

on the Computation of Representative Trajectories. Geolnformatica. Springer. 1-26.

This paper presents a comprehensive survey and in-depth analysis of the state-of-the-art

regarding to this thesis research subject.

Journal paper: JIDM - Journal of Information and Data Management.
(MACHADO et al., a)

Machado, V. L., Portela, T. T., de Lara Machado, A., Schreiner, G. A., & dos Santos
Mello, R. Towards Data Summarization of Multi-Aspect Trajectories Based on Spatio-

Temporal Segmentation. JIDM.

This document presents a MAT-SGT extended version, which was presented at the Geoinfo

conference in 2023. Currently, it is in the evaluation stage.

Journal paper: JIDM - Journal of Information and Data Management.
(MACHADO et al., b)

Machado, V. L., Portela, T. T., Vanini, L., Renso, C., & dos Santos Mello, R. A Robust
Measure for Evaluating Representativeness of Summarized Trajectories with Multiple
Aspects. JIDM.

This document presents a RMMAT extended version, which was presented at the Geoinfo
conference in 2023. It was accepted in the evaluation stage, and it is currently in the

publication stage.
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