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RESUMO

Nos últimos anos, houve um aumento significativo na coleta de dados de mobilidade, impul-
sionado pela proliferação da Internet das Coisas. Esses dados abrangem uma ampla gama de
fontes, fornecendo informações detalhadas sobre movimento e localização ao longo do tempo,
formando o que é denominado como trajetória de objetos móveis. Esses dados de mobilidade
não se limitam apenas à sequência de movimentação no espaço e tempo, mas também englobam
uma variedade de aspectos relacionados ao objeto em movimento, ao ambiente e ao trajeto em
si, originando as chamadas trajetórias de múltiplos aspectos. Por exemplo, ao rastrear a trajetó-
ria de movimento de um indivíduo ao longo do dia, é possível capturar não apenas informações
sobre sua localização, mas também dados relacionados à sua saúde, condições climáticas, locais
visitados e modos de transporte utilizados. Essa abundância de dados de mobilidade proporci-
ona perspectivas promissoras para análises mais aprofundadas e compreensão das dinâmicas
de movimento em diferentes domínios de aplicação, incluindo controle de tráfego, previsão
de eventos extremos (como furacões e tsunamis), sistemas de recomendação, entre outros. No
entanto, lidar eficientemente com esses vastos volumes de dados heterogêneos representa um
desafio considerável, dificultando a extração de insights valiosos, tanto devido à complexidade
dos dados quanto ao seu processamento. Nesse contexto, a sumarização de trajetórias gerando
dados representativos emerge como uma potencial solução para minimizar esses desafios na
manipulação de dados de trajetórias com múltiplos aspectos. Os métodos atuais de sumari-
zação de dados de trajetórias frequentemente se concentram apenas nas dimensões espacial e
temporal, ignorando os múltiplos aspectos semânticos dos dados. Neste contexto, este trabalho
propõe o desenvolvimento de novos algoritmos para sumarizar dados de trajetórias de múlti-
plos aspectos. Duas abordagens são apresentadas: MAT-SG, baseada na densidade espacial dos
dados, e MAT-SGT, baseada na densidade espacial e temporal. Resultados experimentais de-
monstraram a eficácia das abordagens propostas em diferentes conjuntos de dados, destacando
sua capacidade de fornecer uma representação significativa das trajetórias de mobilidade. Além
disso, uma medida de representatividade é introduzida neste trabalho para avaliar a qualidade
dos dados representativos gerados.

Palavras-Chave: Trajetória de Múltiplo Aspecto. Sumarização de Dados. Sumarização de Tra-

jetórias. Trajetória representativa.





RESUMO ESTENDIDO

Introdução

Nos últimos anos, a proliferação da Internet das Coisas tem impulsionado um aumento signi-
ficativo na produção e coleta de dados da mobilidade de objetos, como pessoas, animais ou
veículos. Esses dados, conhecidos como trajetória de objetos móveis, oferecem uma visão do
movimento e posição ao longo do tempo. Com o avanço das pesquisas nesta área, foi reco-
nhecido o potencial de enriquecer esses dados espaço-temporais com informações semânticas,
resultando no conceito de trajetórias semânticas. Mais recentemente, observou-se o potencial
de enriquecer um ou mais pontos das trajetórias com diversos aspectos semânticos, conhecido
hoje como a noção de trajetórias de múltiplos aspectos (MELLO et al., 2019). A Figura 1 ilustra
a evolução ao longo dos anos dessas categorizações associadas a trajetórias.

Figura 1 ± Evolução histórica dos tipos de Trajetórias

A Figura 1(a) ilustra a trajetória de um indivíduo ao longo do dia por meio de uma trajetória
denominada bruta, que inclui informações sobre sua mobilidade, sua posição geográfica e o
tempo. Na Figura 1(b), é apresentada a mobilidade desse indivíduo por meio de uma trajetória
semântica, enriquecida com informações sobre sua mobilidade espaço-temporal e os locais por
ele visitados. Por fim, a Figura 1(c) demonstra a mobilidade desse indivíduo por meio de uma
trajetória de múltiplos aspectos, que também incorpora informações sobre suas postagens em
redes sociais, como avaliações dos locais visitados, condições climáticas e meio de transporte
utilizado.
Essa vasta quantidade de dados gerados continuamente e a complexidade desses dados de múl-
tiplos aspectos introduzem desafios na sua gerência e análise. Neste contexto, a sumarização
de trajetórias surge como uma potencial solução para lidar com dados de trajetórias de múlti-
plos aspectos. A sumarização de dados de trajetórias pode ser definida como uma técnica para
resumir os dados de trajetórias, com o objetivo de evidenciar informações mais relevantes e ge-
renciar melhor o volume de dados (ETIENNE et al., 2016). Esta técnica visa reduzir o volume
de dados (FENG; ZHU, 2016) enquanto preserva os padrões principais da mobilidade original
(AHMED, 2019). Um dado representativo é considerado aquele que captura o movimento prin-
cipal de um conjunto de trajetórias (LEE; HAN; WHANG, 2007; AYHAN; SAMET, 2015).
Portanto, a sumarização de dados com o intuito de computar uma informação representativa
pode beneficiar diversas aplicações, como sistemas de recomendação, previsão de fenômenos
naturais e detecção de anomalias.
O principal desafio na sumarização de dados de trajetórias de múltiplos aspectos está na com-
plexidade desses dados, que envolve uma grande quantidade de informações e heterogeneidade
nas dimensões associadas a cada ponto da trajetória. Por exemplo, um ponto de interesse (POI)
pode agregar vários contextos semânticos do local visitado, como dimensões espaciais (latitude
e longitude) e dados como categoria (um hotel, por exemplo), preço e avaliação do local. Além



disso, os pontos da trajetória podem conter informações sobre o indivíduo naquele momento,
como batimentos cardíacos, e informações ambientais, como condição climática. Portanto, a
sumarização desses dados apresenta desafios significativos.

Objetivos

O objetivo desta tese é desenvolver um framework composto por novos métodos para suma-
rizar dados de trajetórias de múltiplos aspectos, visando reduzir dados e capturar informações
essenciais, computando um dado representativo para um conjunto de trajetórias similares.
Para atender a este objetivo principal foram propostos os seguintes objetivos específicos:

• Propor e implementar algoritmos de identificação de densidade de trajetórias de múltiplos
aspectos para serem sumarizadas;

• Propor e implementar métodos para sumarizar todos os aspectos das trajetórias de entrada
visando tratar a individualidade de cada aspecto, crucial para garantir que todos os aspec-
tos das trajetórias sejam adequadamente considerados durante o processo de sumarização,
permitindo uma representação mais completa e precisa dos dados;

• Propor uma nova medida de representatividade permitindo avaliar quantitativamente a
qualidade de uma trajetória de múltiplos aspectos representativa.

Metodologia

A seguinte metodologia é adotada neste trabalho para alcançar os objetivos propostos:

1. Realizar revisão de literatura em sumarização de dados de trajetórias, com foco em traba-
lhos que resultam em dados representativos em dados de trajetórias multiplos-aspectos;

2. Propor um modelo conceitual para representação do dado representativo, visando manter
o mapeamento entre as trajetórias originais e o dado representativo computado;

3. Propor e implementar algoritmos para identificação de densidade dos dados, focando na
densidade espacial (MAT-SG) e densidade espaço-temporal (MAT-SGT);

4. Propor e implementar um novo método para sumarização de dados de trajetória de múlti-
plos aspectos baseado na densidade espacial, tratando os aspectos em sua individualidade;

5. Propor e implementar um novo método para sumarização de dados de trajetória de múltiplo-
aspecto baseado na densidade espacial e temporal, tratando todos os aspectos em sua
individualidade, resultando na sequência temporal do comportamento da trajetória;

6. Realizar uma série de experimentos utilizando conjuntos de dados de diferentes tipos e
características.

7. Propor uma medida de representatividade visando mensurar a qualidade do dado repre-
sentativo em função do conjunto de trajetórias originais, baseado na sua similaridade e
informações cobertas pelo dado representativo;

8. Avaliar o comportamento dos métodos propostos usando conjuntos de dados reais e sin-
téticos, por meio de cálculos estatísticos. Avalia-se o desempenho dos métodos propostos
em relação à capacidade de fornecer representações significativas das trajetórias;



9. Escrever artigos descrevendo as lacunas identificadas no estado-da-arte em relação a su-
marização de trajetórias de múltiplos aspectos, bem como acerca dos novos métodos pro-
postos visando computar a trajetória representativa;

10. Escrever a redação da tese descrevendo os principais conceitos necessários de dados de
trajetória, o problema de sumarização, o estado da arte, a descrição das soluções propos-
tas, avaliações experimentais e as conclusões obtidas.

Esta tese possui algumas limitações, as quais faz-se nessário estabelecê-las para uma melhor
compreensão. Primeiro, seu foco é o desenvolvimento de novos métodos de sumarização de
dados de trajetórias de múltiplos aspectos. Tal delimitação permite explorar a complexidade
associada a estes dados. Segundo, utiliza-se o termo redução de dados de trajetórias nesta tese
para se referir unicamente ao conceito de sumarização, compreendendo que a versão sumari-
zada dos dados minimiza o volume de dados. Terceiro, assume-se que os conjuntos de dados a
serem sumarizados já se encontram filtrados por algum critério, exibindo assim algum grau de
similaridade definida pelo analista. Desse modo, esta tese não lida com questões de limpeza de
dados ou pré-processamento, concentrando-se nas atividades de sumarização.

Resultados e Discussão

Esta tese possui como principal contribuição um framework composto por dois novos métodos
para sumarizar dados de trajetórias de múltiplos aspectos: MAT-SG e MAT-SGT, e uma me-
dida de representatividade (RMMAT). Ambos os métodos são desenhados para prover dados
representativos do conjunto original.
Em contraste com o estado-da-arte, que muitas vezes negligencia o tratamento dos múltiplos
aspectos dos dados, ou mesmo suas particularidades, esses dois métodos visam abstrair cada
uma das dimensões de acordo com sua própria singularidade, bem como capturar a sequência
temporal dos dados. Além disso, os métodos propostos distinguem-se por manter um mape-
amento claro entre os dados originais e os dados sumarizados, por meio de uma modelagem
de fácil compreensão. Isso permite a persistência dos dados, facilitando a busca por padrões e
insights. Ainda, uma vez que não encontramos na literatura uma forma de quantificar o quanto
esse dado representativo reflete do conjunto original, como uma contribuição secundária esta
tese também apresenta uma medida de representatividade (RMMAT) para avaliar a qualidade
do dado representativo em relação à similaridade da trajetória representativa e sua cobertura de
informação em relação ao conjunto original de trajetórias.
Experimentos foram conduzidos em quatro conjuntos de dados, incluindo conjuntos de dados
abertos (Foursquare-NYC, Gowalla Location-Based Social Network e Brightkite) e um con-
junto de dados privado (dataset Pisa). Todos os conjuntos de dados consistiam em trajetórias
de usuários, e em todos os casos, foram filtrados os dados por usuário, calculando a trajetória
representativa por usuário. Para avaliar a eficácia dos métodos propostos, foram utilizadas duas
métricas: (i) Average Recall (AR), que avalia a capacidade dos métodos em ranquear correta-
mente as trajetórias do mesmo usuário como mais similares à trajetória representativa; e (ii) a
métrica RMMAT para avaliar a qualidade do dado representativo em relação à similaridade e
cobertura de informação das trajetórias do mesmo usuário.
Os resultados experimentais revelaram a eficácia das abordagens propostas em diversos cenários
de dados. Tanto o método baseado em densidade espacial (MAT-SG) quanto o método que
considera densidade espacial e temporal (MAT-SGT) demonstraram ser capazes de fornecer
representações significativas das trajetórias com múltiplos aspectos. Além disso, a introdução
da medida de representatividade permitiu uma avaliação mais precisa da qualidade dos dados
representativos gerados.



Para superar algumas limitações identificadas nesta pesquisa, sugerem-se trabalhos futuros: (i)

o desenvolvimento de estratégias de sumarização que considerem possíveis dependências entre
diferentes aspectos dos dados, como a avaliação ou preço de um local visitado em detrimento
ao local visitado em si; e (ii) a investigação de novas estratégias de segmentação espacial para
reduzir a complexidade dos métodos.

Considerações Finais

Este trabalho contribui significativamente para o campo da sumarização de dados de trajetórias
de múltiplos aspectos, fornecendo um framework composto por novos métodos para lidar com
dados de mobilidade complexos. Os resultados obtidos sugerem que os métodos propostos são
promissores e podem ser aplicados em uma variedade de domínios de aplicação.

Palavras-Chave: Trajetória de Múltiplo Aspecto. Sumarização de Dados. Sumarização de Tra-
jetórias. Trajetória representativa.



ABSTRACT

In recent years, the widespread adoption of the Internet of Things has led to a significant in-
crease in the production and collection of mobility data. Various sources have provided this data,
which provides comprehensive details about data movement and position over time, commonly
referred to as the trajectory of moving objects Mobility data not only encompasses space and
time but also includes multiple aspects related to the movement object, the environment, and
the trajectory, resulting in multiple-aspect trajectories. For instance, by analyzing the trajectory
movement of an individual during one day, it is possible to identify information about her/his
position, time occurrence, health, weather conditions, visited places, and transportation modes.
This large volume of data provides diverse perspectives for analyzing and understanding move-
ment dynamics across various application domains, such as traffic control, forecasting extreme
events (such as hurricanes and tsunamis), recommendation systems, and more. However, man-
aging trajectory data poses challenges, making it difficult to efficiently extract valuable insights
due to data complexity and processing requirements. In this context, trajectory summarization,
which computes representative data, emerges as a potential solution to mitigate these challenges
in handling multiple-aspect trajectory data. State-of-the-art methods often focus only on spatial
and temporal dimensions, overlooking multiple semantic aspects. Hence, the objective of this
thesis is to develop new algorithms for summarizing multiple-aspect trajectories by comput-
ing representative data. Our main contributions involve two novel methods: MAT-SG, based
on spatial density, and MAT-SGT, based on both spatial and temporal density. Experimental
results have demonstrated the efficacy of both proposed methods across different dataset types,
highlighting their ability to provide a significant representation of input data. Additionally, a
representative measure is introduced to evaluate the quality of computed data representatives.

Keywords: Multiple-Aspect Trajectory. Data Summarization. Trajectory Summarization. Rep-

resentative Trajectory.
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τrv A rate of representativeness value for ranking values by data frequency for summa-

rization step

τs minimum spatial threshold

τt threshold of temporal time - used to define when the difference of two tss is consid-

ered an sti
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1 INTRODUCTION

The rapid proliferation of the Internet of Things (IoT) has given rise to diverse tech-

nologies, including portable and wearable devices, embedded computing, and Location-Based

Social Networks (LBSNs) like Facebook, Twitter, and Instagram (MUZAMMAL et al., 2017;

CESARIO; COMITO; TALIA, 2014). These technologies yield valuable information on mov-

ing objects, such as people or animals. The collection of spatial position sequences over time

forms the basis of a raw trajectory (BOGORNY; HEUSER; ALVARES, 2010). In the evolving

geography of trajectory data, we recently encountered the concept of Multiple Aspect Trajectory

data (MAT), where trajectories encapsulate additional aspects such as visited places, health con-

ditions, transportation modes, and weather conditions (MELLO et al., 2019). The accumulation

of such data resulting from the movement of numerous objects can generate massive volumes

of data.

Trajectory data has emerged as a focal issue in diverse domains, including data man-

agement (RICHLY, 2018; SU et al., 2020; WANG et al., 2021), data mining (FENG; ZHU,

2016; GEORGIOU et al., 2018; BIAN et al., 2018; da SILVA; PETRY; BOGORNY, 2019),

privacy (FIORE et al., 2020), and monitoring (AHMED et al., 2019). Regarding trajectory

management, the challenges are primarily associated with the large volume of continuously

generated data and their diverse nature deriving from different devices and sources. Effective

management and analysis of these data are critical for extracting valuable insights. Another

challenge of complexity is related to the three dimensions inherent to MAT data (spatial, tem-

poral, and semantic), where the third dimension is composed of multiple and heterogeneous

aspects. In this context, trajectory summarization emerges as a potential solution to mitigate the

complexity of manipulating MAT.

Trajectory summarization provides a promising route to address data management

challenges, facilitating the extraction of meaningful patterns with applications across various

domains. For instance, understanding individual behavior through trajectory data aids recom-

mendation systems in delivering personalized suggestions. Furthermore, discerning patterns in

weather conditions contribute to predicting and assessing the intensity of phenomena such as

hurricanes.

The summarization of trajectory data poses a recognized challenge, as emphasized in

various surveys (WANG et al., 2021; GEORGIOU et al., 2018; FIORE et al., 2020). However,

there is a notable scarcity of literature that comprehensively presents and analyzes studies on

trajectory summarization, particularly those that provide representative data, with a specific

focus on MAT.

A representative trajectory refers to a compact yet informative representation of a

set of trajectories, given typical patterns that capture the essential characteristics of the original

dataset while minimizing information loss. For instance, the analysis of an individual’s behavior

is relevant to several application domains such as LBS recommendations and criminal investi-

gations (FENG; ZHU, 2016). Despite the importance of this concept, there is a noticeable gap
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in the literature, with only one identified summarization approach that provides representative

data focusing on MAT (SEEP; VAHRENHOLD, 2019).

1.1 PROBLEM STATEMENT

For accurate trajectory summarization in high-dimensional trajectory datasets, the main

challenge is to discover, in a feasible way, the most representative data considering their dimen-

sions and aspects that better characterize the input data. By doing so, we can ensure that the

trajectory data is summarized effectively.

Given a dataset T of trajectories, the problem of compute representative data (RT ) can

be formulated as follows

Problem 1 (Representative Trajectory Computation). A representative trajectory RT is a com-

pact and informative representation of T that aims to strike a balance between quality and utility,

ensuring that RT retains enough information about the original elements while minimizing data

loss.

Let T be a set of trajectories. Given the large size of T, it is often necessary to sum-

marize the trajectories to obtain a compact and informative representation of the original data,

which makes less complex analysis or decision-making tasks. The problem of computing rep-

resentative data can be formulated as the task of computing representative information from T

that captures the essential characteristics of the original data while minimizing information loss.

It is important to note that the concept of representativeness and capturing essential characteris-

tics can be broad and generic. In this thesis, we specifically consider essential characteristics to

be present in trajectories that exhibit a certain data density and show certain tendencies in their

aspects.

Despite the importance of this issue, there is a noticeable gap in the literature, with only

one summarization method providing representative data focused on MAT (SEEP; VAHREN-

HOLD, 2019). However, it is limited in the sense that all attributes of the points are treated as

spatial or non-spatial data, i.e., semantic data are not analyzed individually as categorical or

numeric data. It also does not provide details about the proposed method, as it is a short paper.

In order to better address this problem, this thesis reviews and categorizes relevant research,

aiming to provide a comprehensive understanding of trajectory summarization methods that

yield representative data. This problem leads to our research question: "Can we develop new

methods for computing representative data for a set of MATs to discover relevant infor-

mation and deal with gaps in related work by considering all aspects in MATs regarding

their individuality?". We hypothesize that we can compute representative MAT by identifying

patterns regarding some data density, summarizing all aspects considering their individuality,

and providing utility data.

In order to tackle this question, we propose a framework composed by MAT-SG and

MAT-SGT as novel trajectory summarization methods. MAT-SG is designed to address the
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challenges associated with MATs by segmenting trajectories into a spatial grid and perform-

ing summarization within each relevant cell. This method aims to identify movement patterns

specific to each spatial area, addressing multiple aspects and treating each one individually.

In contrast, MAT-SGT expands upon the methodology of MAT-SG by incorporating

temporal sequence information into the summarization process. This enhancement allows MAT-

SGT to provide a more comprehensive representation of the temporal evolution of movement

patterns, thus capturing additional nuances in the data that may be overlooked by spatial-only

data density.

The choice of summarization method depends on the intended use case. When priori-

tizing spatial areas and understanding the actions occurring in specific regions, such as in vessel

trajectories, where it is essential to identify regions related to specific activities, like fishing or

cargo handling, MAT-SG is the preferred method. On the other hand, when temporal sequence

and the associated aspects are the focus, such as in recommendation systems where individ-

ual trajectories reveal patterns like daily routines and preferences based on weather conditions,

MAT-SGT offers a more suitable solution.

Moreover, introducing these summarization methods prompted a secondary research

question: "How much of the representative trajectory captures and reflects the original

MATs’ essence within an input dataset?". This question underscores the need for a represen-

tativeness measure (RMMAT), motivated by the lack of quantitative measures comprehensively

evaluating the quality of representative trajectory data. With RMMAT we aim to fill this gap by

providing a multifaceted measure that assesses both the similarity and coverage of the represen-

tative trajectory in relation to the complete input dataset.

1.2 OBJECTIVES

The main objective of this thesis is to propose a framework composed of new methods

for MAT summarization that address the gaps in the state-of-the-art, considering all aspects of

MAT regarding their individually, while maintaining a focus on reducing data and capturing

essential information from the input data. This thesis aims to contribute to the problem of sum-

marizing MATs, considering that the concept of MAT and their data management is a brand

new research topic. The main objective of this thesis is to propose a framework composed by

pioneering methods for MAT summarization that compute a representative MAT from a set of

similar MATs.

From this main objective, we can derive the following specific objectives:

• Propose and implement an algorithm for identifying the density of MATs to be summa-

rized;

• Propose and implement methods for summarizing all aspects of the input MATs aiming

to deal with their individuality;
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• Propose a new representativeness measure to evaluate quantitatively the quality of repre-

sentative MAT.

1.3 CONTRIBUTIONS

This thesis aims to contribute with state-of-the-art as follows:

• A survey related to state-of-the-art summarization of trajectory data focused on represen-

tative data computation;

• A conceptual model to represent the representative MAT, in the sense of defining mapping

data between the input MATs and the representative MAT;

• A novel method for summarizing MAT data based on spatial density, treating all aspect

data in its individuality;

• A novel method for summarizing MAT data based on spatial and temporal density, treat-

ing all aspect data in its individuality, providing the temporal sequence of the pattern.

• A multifaceted measure that assesses the quality of representative trajectory based on its

representativeness (similarity and coverage information) of the complete input dataset.

The research results yielded by this thesis are intended to assist researchers and ana-

lysts with different approaches related to the use of MATs. It empowers them to make informed

decisions about the quality and relevance of their data concerning the methods for summarizing

MATs according to their analytical goals. Additionally, it provides a powerful tool with a mea-

sure to make informed decisions regarding the quality and relevance of representative data for

analytical goals. With these contributions, researchers and analysts can analyze their data and

compute and use the representative data in other approaches, such as performing predictions.

It can also help in analyzing different sets of MATs and identifying their similarities, as well

as analyze the quality and relevance of the data, empowering them to make informed decisions

and achieve their analytical goals.

1.4 SCOPE DELIMITATION

To ensure a thorough understanding of this work, it is essential to establish some de-

limitations. These delimitations are crucial for the success of this research.

Firstly, our primary focus is on trajectories with multiple aspects. By considering vari-

ous and distinct aspects enriched in trajectory data, the goal is to provide a more comprehensive

analysis. This delimitation allows for a targeted exploration of the complexities associated with

multiple-aspect trajectories.
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Secondly, the term reducing trajectory data in this work refers only to the concept of

trajectory summarization approaches. We understand that this strategy minimizes the volume

of data, and our research delves into methodologies aimed at summarizing trajectories.

Thirdly, we assume that some criterion already filters the input trajectories and exhibits

a degree of similarity. This assumption streamlines the focus on the analysis aspect, emphasiz-

ing the exploration of summarization techniques without delving into data-cleaning processes.

Finally, we also assume that the input data is already pre-processed. This pre-processing

step ensures that the data is in a format ready for analysis. By making this assumption, the re-

search can concentrate on the core aspects of trajectory summarization without being encum-

bered by data formatting concerns.

The research aims to provide a more focused and detailed investigation by establishing

these delimitations. This focused strategy is anticipated to produce more accurate and reliable

results, contributing to a fine understanding of multiple-aspect trajectory summarization.

1.5 THESIS STRUCTURE

The rest of this thesis is structured as follows. In Chapter 2, we discuss the primary

concepts that help to understand our work. These concepts include data summarization, trajec-

tory data, and trajectory summarization. We also analyze surveys on trajectory data to identify

gaps in the literature. Next, in Chapter 3, we present the main works related to trajectory sum-

marization to provide representative data.

In Chapter 4, we introduce two new methods for summarizing MATs. The first one is

called MAT summarization based on a spatial grid (MAT-SG), which segments the input MATs

into a spatial grid and performs summarization within each relevant cell. This helps to identify

movement patterns specific to each spatial area, addresses various dimensions, and treats each

semantic type individually. The second one is called MAT summarization based on a spatial

grid and Temporal Sequence (MAT-SGT), which is a data summarization method specifically

designed to compute representative MATs by identifying the temporal sequence associated with

the movement pattern. We provide a running example to illustrate both methods and highlight

their differences.

In Chapter 6, we present preliminary experiments. First, we introduce a multifaceted

measure, the Representativeness Measure for MAT (RMMAT), that assesses the quality of a

representative trajectory based on its representativeness (similarity and coverage information) of

the complete input dataset. Then, we evaluate the experimental evaluation in several trajectory

datasets using two different strategies: by Average Recall and by RMMAT. We then demonstrate

that MAT-SG and MAT-SGT achieve good results in different dataset types.

Finally, in Chapter 7, we summarize the findings of this thesis and discuss future re-

search opportunities in trajectory summarization that result in representative data.
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2 BASIC CONCEPTS

In order to clarify the problem of trajectory summarization, this chapter presents the

necessary concepts to understand the rest of this work. We start with an overview of data sum-

marization and the elements that compose a data summarization process. Next, we introduce

trajectories of moving objects, including MATs and some issues related to their summarization.

2.1 DATA SUMMARIZATION

Data summarization aims to provide data in a compact format, furnishing an informa-

tive version of a set of data. Providing a data summary is considered a descriptive task in data

mining. A key feature of summarization is that this summarized representation of data is still

informative, and a close inference (or sometimes the same inference) can be obtained from the

summarized data in the same way as the original data (HESABI et al., 2015).

Consider E = {e1,e2,...,en} a set E of n elements. Then, data summarization is formally

defined as follows.

Definition 2.1.1 (Data Summarization). A summary S of E is a set of summarized elements S =

{s1,s2,..,sk}, where: (i) S is a non-empty set, (ii) each si ∈ S represents a summarized element

of E, (iii) each element si ∈ S corresponds to at least one element e j ∈ E, and (iv) k ≤ n.

A good summary is characterized by a small size for the summarized version while

retaining enough information about all original elements. Each summary si essentially covers

a set of elements with minimal information loss. In other words, the elements of E are sum-

marized in a way that these elements are replaced by the corresponding summary that covers

them (CHANDOLA; KUMAR, 2007). A summarized element can be derived from either a se-

lected element e j ∈ E or through the computation of an element group, typically facilitated by

statistical functions such as maximum or average.

2.1.1 Data Summarization vs. Data Compression

It is crucial to distinguish data summarization from data compression. Data compres-

sion is used to reduce data volume, where they consider compression techniques using statistical

or dictionary-based methods, and they treat data as large byte sequences (AHMED, 2019). The

formal definition of Data Compression is as follows:

Definition 2.1.2 (Data Compression). A compressed data C of E is given by C = (CE , decoder),

where (i) CE is an encoded version of E, (ii) CE is a representation of E with fewer bits, and

(iii) decoder is an algorithm that reconstructs CE in E or some approximation of it.

Data compression entails encoding the original data, which converts the original data

into a compressed representation, and decoding it to recover the information that reconstructs
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the original data or an approximation from the compressed representation (BLELLOCH, 2013).

Although compression produces compact data, it often results in compact yet unintelligible data.

In contrast, data summarization offers an intelligible representation, facilitating further analysis

and decision-making (AHMED, 2019).

2.1.2 Data Summarization vs. Data Fusion

Another clarification point is the similarities and differences between data summariza-

tion and data fusion. Data fusion integrates data from multiple sources to enhance accuracy and

specificity compared to a single source (ESTEBAN et al., 2005). The formal definition is:

Definition 2.1.3 (Data Fusion). Given two sets A and B, the fused data of A and B is a set

F(A,B) = { f1, f2,.., fk}, where: (i) F(A,B) is a non-empty set, and (ii) each fi ∈ F(A,B) represents an

element matching pair (a,b).

Effective data fusion results in a smaller F(A,B) size than A∪B while preserving infor-

mation. In simpler terms, it means that when we combine two datasets, we can get a smaller

dataset with minimal information loss. This means that the original elements of A and B are

fused so that they are replaced by the fused element that covers them.

In summary, while both data summarization and data fusion produce representative

versions of datasets, they differ in terms of the nature of the input data. Data fusion involves

integrating data from multiple sources with similar information, while data summarization fo-

cuses on condensing a single dataset. In the context of this thesis, the emphasis is on data

summarization.

2.1.3 Classifying Data Summarization

Ahmed (2019) classifies data summarization techniques into two categories: structured

and unstructured data. Structured data refers to predefined formats featuring fixed fields or at-

tributes with well-defined data types and relationships, typically following a predefined schema

or model. Within structured data, subcategories include machine learning, statistical, and se-

mantics approaches. Unstructured data, however, lacks a predefined data model or organized

format. Examples encompass text documents, emails, social media posts, images, videos, and

audio files. Subcategories within unstructured data cover machine learning and other diverse

approaches.

Data summarization techniques can be categorized into two primary approaches based

on their output: extractive and abstraction (GHODRATNAMA et al., 2020; MOHSIN et al.,

2021). Extractive summarization entails selecting and presenting only the most pertinent infor-

mation from the source data, efficiently eliminating redundancy. The goal here is to preserve the

original data faithfully. Abstractive summarization, conversely, involves a deeper understand-

ing of the meaning of data sources and generates new information that captures critical insights.
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The emphasis is on creating a concise and coherent summary, even if it does not replicate the

exact data or order from the source.

2.1.4 The Effectiveness of Data Summarization

The effectiveness of summarization data depends on the purpose for which they are

used (GHODRATNAMA et al., 2020). Whether summarizing text (HEU; QASIM; LEE, 2015;

MOHSIN et al., 2021; MA et al., 2022), documents (BOUDIN; HUET; TORRES-MORENO,

2011; GHODRATNAMA et al., 2020), images (SREELAKSHMI; MANMADHAN, 2021), or

other data types, the chosen approach should align with the desired outcomes. For instance,

a text summary helps readers learn essential points within a vast text, while a network traffic

summary aids network administrators in understanding network activities (AHMED, 2019).

In essence, summarization can be viewed as a selection problem1 or as a way to con-

struct new data that represents the original source.

2.1.5 The Data Summarization Process

Data summarization, irrespective of data type, typically comprises four core compo-

nents: (i) input data, the raw data to be summarized; (ii) preprocessing, an optional step that

prepares the input data for summarization; (iii) summarization, the central task where vari-

ous methods and approaches are employed to generate summaries; and (iv) summarized data,

the result of the summarization process, presenting the reduced yet informative version of the

input data. This generic process is observed in several works (BOUDIN; HUET; TORRES-

MORENO, 2011; HEU; QASIM; LEE, 2015; MOHSIN et al., 2021; MA et al., 2022) and as

depicted in Figure 2.

input data preprocessing summarization
summarized 

data

Figure 2 ± Generic Process for Data Summarization

In conclusion, data summarization is a crucial tool for extracting valuable insights from

large datasets. By aligning the choice of approaches and techniques with the specific goal of the

summarization task, it is possible to empower decision-makers to navigate complexity effec-

tively. This, in turn, enhances their understanding of intricate information domains, ultimately

facilitating more informed and impactful decision-making processes.

1 The selection problem consists of selecting the most appropriate elements of a predefined set of elements, i.e.,
the best ones from a given collection (DESU, 1970).
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2.2 TRAJECTORY DATA

One of the foundational pillars of this work is the comprehensive exploration of tra-

jectories of moving objects. With the widespread adoption of geolocation technologies and the

ubiquity of tracking systems, trajectory data has become essential in various fields. In data

analytics, trajectory data holds significant importance as it is increasingly being collected for

mining, analysis, and decision-making (RENSO; SPACCAPIETRA; ZIMÁNYI, 2013).

Trajectory data, in essence, is a record of the movement of an object through the spatial

and temporal dimensions. It is encountered in its simplest form as the raw trajectory - a sequen-

tial representation of the movement of an object across geographic space over time (ERWIG et

al., 1999). This raw trajectory primarily consists of two fundamental dimensions:

• spatial dimension: This dimension encapsulates the geographic coordinates, such as lat-

itude and longitude, precisely identifying the location of the object at distinct time inter-

vals, i.e., its physical space;

• temporal dimension: This dimension refers to the timestamp, or a time intervals, as-

sociated with each spatial coordinate. This time information compose a chronological

sequence, providing insights into the temporal aspects of the movement of an object and

interactions.

Around 2007, the concept of semantic trajectory emerged, in which a third dimension

is aggregated into data trajectories, i.e., a raw spatiotemporal trajectory (x, y, t) is enriched

with semantic information. This third dimension is the semantic layer, which is infused with

contextual information, such as a point of interest (POI) (e.g., a restaurant) that the object had

visited along its trajectory (ALVARES et al., 2007; PARENT et al., 2013).

This additional semantic dimension adds depth to trajectory data analysis and enables

more meaningful insights. Consider Figure 3, which presents the trajectory of an individual

during a single day. In this example, the raw trajectory maintains the spatiotemporal informa-

tion about the individual (Figure 3(a)). Figure 3(b), in turn, shows a semantic trajectory with

contextual information (POIs) associated with its points (home, work, and restaurant).

With the typical use of IoT and social media, enriching trajectories with a vast amount

of semantic information has become possible. When trajectories or their individual points be-

come associated with multiple and heterogeneous semantic contexts, they transform into what

is known as multiple aspect trajectories (MAT) (MELLO et al., 2019). These MATs are charac-

terized by the fusion of three dimensions: spatial, temporal, and semantic, where the semantic

dimension may represent multiple and heterogeneous aspects.

Figure 3(c) shows the raw trajectory enriched with information like the mean of trans-

portation used by the individual, postings on social networks, weather conditions, and so on.

This example highlights that a multiple-aspect trajectory is a complex object whose attributes

can hold simple or complex objects according to the context of each described domain.
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Figure 3 ± An example of a raw trajectory (a), semantic trajectory (b), and a multiple aspect trajectory(c).

2.2.1 Applications and Challenges

Trajectory data finds its applications across various domains, including transportation

and logistics (MARKOVI ÂC et al., 2018; KONG et al., 2018), geographical phenomenons anal-

ysis (LEE; HAN; WHANG, 2007; ZHENG, 2015), location-based services (ZHENG, 2015;

YANG; WANG; ZHANG, 2019; WANG et al., 2021), and social sciences (NARA, 2021). While

trajectory data holds great promise, it also presents several challenges (MARTINEZ; CRISTO-

BAL; BELKOURA, 2018; GAO et al., 2019), such as:

• Data Volume and Velocity: Trajectory data can generate vast amounts of data, especially

in scenarios involving numerous moving objects. Effectively managing this high data

volume could be a complex task.

• Complex Analysis: Analyzing trajectory data demands advanced spatial, temporal, and

semantic analytics, including trajectory clustering, anomaly detection, and predictive mod-

eling. These analyses can be computationally intensive and require expertise in data sci-

ence.

In the face of these challenges, data reduction is an alternative method to reduce the

complexity of data management. The complexity of data management is mitigated by intelli-

gently reducing the volume of trajectory data through techniques like trajectory summarization.

This approach aims to combine similar trajectories and reduce the amount of data to be pro-

cessed, making it more manageable for analysis while preserving essential patterns and insights.

2.3 TRAJECTORY SUMMARIZATION

Trajectory data summarization is a vital process that condenses extensive and complex

trajectories into more manageable and informative summaries (ETIENNE et al., 2016). The

main goals of trajectory summarization are:
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• Reducing Data Volume: Managing large trajectory datasets can be challenging due to

their vast volume, making storage and processing difficult (FENG; ZHU, 2016; GEOR-

GIOU et al., 2018). Summarization techniques aim to reduce the volume of data while

retaining essential information, making it more manageable.

• Preserving Key Patterns: Summarization techniques focus on capturing and preserving

the key movement patterns and tendencies in the original data (AHMED, 2019). This

ensures that valuable insights are not lost in the summarization process.

In essence, trajectory summarization involves a process that derives representative in-

formation from a dataset, often given by a representative selection/computation problem.

2.3.1 Representative Trajectory Data

The concept of a representative trajectory is pivotal in trajectory summarization. Ac-

cording to (LEE; HAN; WHANG, 2007; AYHAN; SAMET, 2015), a representative trajectory

can be described as an imaginary trajectory that denotes the main behavior of a cluster of tra-

jectories. Alternatively, (PANAGIOTAKIS et al., 2012) suggests that a representative trajectory

can vary according to the considered focus, like interest, density, frequency, and pairwise dis-

tance.

Approaches to determining representative data from a trajectory dataset can be broadly

categorized into two types: those that compute a representative trajectory through mathemati-

cal computation (LEE; HAN; WHANG, 2007; ETIENNE et al., 2016; BORKOWSKI, 2017;

GAO et al., 2019) and those that select specific trajectories or segments to represent the entire

dataset (PANAGIOTAKIS; PELEKIS; KOPANAKIS, 2009; PANAGIOTAKIS et al., 2012), re-

ferred to as a selection problem.

Given a set of trajectories T, the challenge lies in summarizing these data to obtain

a compact yet informative representation, facilitating simplified analysis and decision-making

processes. Thus, the problem of computing representative data involves deriving a trajectory

that captures the essential characteristics of the original dataset while minimizing information

loss.

For example, Figure 4(a) showcases individual MATs capturing various actions over

several days (Sunday, Monday, and Tuesday). In contrast, Figure 4(b) illustrates a representative

MAT computed through a summarization process applied to these individual MATs. The rep-

resentative MAT effectively emphasizes frequently occurring actions (MACHADO; MELLO;

BOGORNY, 2022a).

Analyzing trajectory patterns offers valuable insights for data analysts, enabling better

decision-making. For instance, with representative trajectories, a recommendation system can

learn the patterns of an individual and provide personalized recommendations. As demonstrated

in Figure 4 (c), the system can identify a vegetarian restaurant along a new trajectory for the

individual and recommend it to him/her.
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Figure 4 ± An example of MATs (a), a representative MAT for them (b), and an example of recommendation based
on its representative MAT (c). Adapted from Machado, Mello e Bogorny (2022a).

In summary, trajectory summarization is pivotal in handling and extracting insights

from trajectory data, reducing their complexity while preserving essential information for vari-

ous applications, i.e., the problem can be formalized as finding RT , as stated in Problem 1. To

achieve this, resolving conflicts among similar data instances is essential, necessitating the ap-

plication of similarity measures to identify data similarities. These measures are essential for an-

alyzing trajectory data, including tasks such as clustering (LEE; HAN; WHANG, 2007), classi-

fication (PORTELA; CARVALHO; BOGORNY, 2022), and k-nearest neighbor search (SEEP;

VAHRENHOLD, 2021).

2.3.2 Similarity Measures

Similarity measures are essential tools in trajectory data analysis, providing a basis for

solving various analytical problems. These measures evaluate the similarity between trajecto-

ries and enable quantitative comparisons. There are several categories of similarity measures,

depending on the focus of the analysis. In the following, we explore some of the most prominent

ones.

• Similarity measure based on spatial dimension: The most popular category of similar-

ity measures that rely exclusively on the concept of space (WANG et al., 2013), involv-

ing computing the topology and geometry, like homotopy type (BUCHIN et al., 2013) or

computing distances between geographic coordinates, like Euclidean distance, Haversine

distance and/or the Hausdorff distance. They assess how close trajectories are in physical

space;
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• Similarity measure based on sequence data: Designed for sequence data, these mea-

sures can be adapted for trajectory analysis. Well-known examples include Dynamic

Time Warping (DTW) (BERNDT; CLIFFORD, 1994), Longest Common Subsequence

(LCSS) (VLACHOS; KOLLIOS; GUNOPULOS, 2002), as well as the Edit Distance

(ED) (SU et al., 2020). These measures focus on aligning trajectory points over time;

• Similarity measure based on Temporal dimension: Some measures are designed to

consider the temporal dimension. They align timestamped locations in trajectory con-

text, often associating spatial distance metrics with temporal similarity. Examples include

equal-time and similar-time distance (BUCHIN; KILGUS; KöLZSCH, 2018);

• Similarity Measure for Raw Trajectory: Tailored for raw trajectories, these measures

offer solutions that account for both spatial and temporal dimensions. Examples com-

prise the Discrete Fréchet distance (DF), as a discrete variant of Fréchet distance (EITER;

MANNILA, 1994), SDist (YING; XU; YIN, 2009), Minimum Euclidean Horizontal (MEH)

distance (FRENTZOS et al., 2007) and Uncertain Movement Similarity (UMS) (FUR-

TADO et al., 2018);

• Similarity Measure for multidimensional in trajectory data: These measures support

all three trajectory dimensions: space, time, and semantics. Examples include Multidi-

mensional Similarity Measure (MSM) (FURTADO et al., 2016), Stops and Moves Similar-

ity Measure (SMSM) (LEHMANN; ALVARES; BOGORNY, 2019), and Multiple aspect

trajectory similarity (MUITAS) (PETRY et al., 2019).

These similarity measures are crucial in summarizing trajectory data, as they allow for

the analysis of similar trajectories and the computation of representative data. This is necessary

to effectively summarize trajectory data. Such measures enable data analysts to gain insights

into the movement patterns of objects and individuals across various domains.
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3 RELATED WORK

To gain insight into the research issue, this chapter reviews existing surveys in the liter-

ature concerning trajectory data, specifically focusing on understanding the current challenges

and open issues in this domain. These surveys shed light on problems related to storing and

processing trajectory data, underscoring the need for effective solutions to mitigate these chal-

lenges. One such solution is reducing trajectory data by computing representative data using

summarization methods. However, these problems become more complex with MATs. There-

fore, we also review and analyze approaches related to trajectory data summarization, which

involves reducing trajectory data to compute representative data.

3.1 SURVEYS ON TRAJECTORY DATA

In recent years, trajectory data has gained significant attention, showing multiple sur-

veys exploring various topics. In this section, we analyze surveys published between 2016 and

2023 to identify trends and highlight the importance of understanding trajectory data. This anal-

ysis can guide future research. Table 1 depicts a comparison of these studies.

In our exploration, we have identified several surveys investigating trajectory data min-

ing, data management, visual analytics, privacy, and data analytics. Specifically, seven sur-

veys (ZHENG, 2015; FENG; ZHU, 2016; GEORGIOU et al., 2018; BIAN et al., 2019; da

SILVA; PETRY; BOGORNY, 2019; XIE et al., 2020) focus on trajectory data mining using

different methods, such as classification (BIAN et al., 2019; da SILVA; PETRY; BOGORNY,

2019), and prediction (GEORGIOU et al., 2018; XIE et al., 2020; HUANG et al., 2022; YIN;

WEN; LI, 2023). In contrast, three surveys focus on trajectory data management (RICHLY,

2018; SU et al., 2020; WANG et al., 2021), but only one (SU et al., 2020) of them mentions

query processing and similarity measurement. Additionally, one of them focuses on visual anal-

ysis (AHMED et al., 2019),

Privacy has emerged as a salient concern in trajectory data research, as noted in the

survey by (FIORE et al., 2020). It underscores the need for risk assessments regarding attribute

linkage and emphasizes anonymization as a pivotal process in trajectory data privacy protection.

Additionally, two surveys encompass data analytics (KONG et al., 2018; ALMEIDA

et al., 2020), offering a more comprehensive view of research conduct and identifying key

techniques and challenges in the field.

As we delve into the challenges and open issues identified across these surveys, tra-

jectory data management surfaces as a recurring topic (ZHENG, 2015; FENG; ZHU, 2016;

GEORGIOU et al., 2018; XIE et al., 2020; RICHLY, 2018; WANG et al., 2021; AMIGO et al.,

2021; ALMEIDA et al., 2020). Data volume, particularly in the context of Big Data, stands out

as a primary challenge (FENG; ZHU, 2016; GEORGIOU et al., 2018; AMIGO et al., 2021),

encompassing storage, processing, and transmission. Scalable solutions for handling vast tra-

jectory datasets remain a pivotal area of exploration (RICHLY, 2018; ALMEIDA et al., 2020).
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Table 1 ± Comparison of Surveys on Trajectory Data

Search

Area
Survey

Challenges and

Open Issues
Contributions

Data
Mining

(ZHENG, 2015)

- Big Data management
- Big data preparation
- Data representation
- Data mining

- Systematic review on data mining
- Analysis of methods to transform
trajectories into other data formats

(FENG; ZHU, 2016)

- Big Data management
- Understanding the behaviour of
trajectories
- Privacy-preserving methods

Framework architecture for data mining

(GEORGIOU et al., 2018) Big data management and Prediction

- Formal definitions related to prediction
- Taxonomy of the solutions
- Properties of the datasets for validation
purposes

(BIAN et al., 2019) Big data preparation and classification
Comparison of datasets using different
classifiers

(da SILVA; PETRY; BOGORNY, 2019) - Classification of clustering techniques

(XIE et al., 2020) Big data management and Prediction
Comparison of datasets using different
prediction techniques

(HUANG et al., 2022)
- Data limitation
- Prediction
- Ethical and Legal Considerations

- Analysis of popular prediction methods

(YIN; WEN; LI, 2023)
- Data limitation
- Prediction
- Ethical and Legal Considerations

- Analysis and comparison of prediction
methods

Data
Management

(RICHLY, 2018) Big Data management Framework architecture for data mining

(SU et al., 2020) ±
Classification and analysis of distance
measures

(AMIGO et al., 2021)
- Big Data management
- Understanding the behaviour of
trajectories

Overview of reduction trajectory data,
from compression to segmentation
techniques

(WANG et al., 2021) Big data preparation and management Data management overview

Visual
Analytics

(AHMED et al., 2019) Use of trajectory data in monitoring
Summary of trajectory data, public video
data sets and methods for reducing
footage

Privacy (FIORE et al., 2020)
- Risk assessments of attribute linkage
- Anonymizing trajectory data

Research on privacy of
trajectory micro-data

Data
Analytics

(KONG et al., 2018)
- Privacy-preserving methods
- Understanding the behaviour of
trajectories

Classification of trajectory data

(ALMEIDA et al., 2020)

- Big Data management
- Understanding the behaviour of
trajectories
- Privacy-preserving methods

Surveys on Big Data trajectory analytics
with a focus on integration, design, and
analysis

Several surveys highlight the importance of data reduction and data preparation tech-

niques (ZHENG, 2015; BIAN et al., 2019; GEORGIOU et al., 2018; FIORE et al., 2020; XIE

et al., 2020; WANG et al., 2021; AMIGO et al., 2021). These methods aim to enhance data

quality, reduce data volume, and automate tasks like data cleaning, ultimately facilitating more

efficient analysis.

Privacy protection for trajectory data emerges as a critical concern, emphasizing the

challenges related to anonymization (FIORE et al., 2020; KONG et al., 2018; ALMEIDA et

al., 2020). Understanding the behavior of trajectories is another recurring theme, as it directly

influences data analysis (ZHENG, 2015; FENG; ZHU, 2016; KONG et al., 2018; ALMEIDA

et al., 2020; AMIGO et al., 2021). In addition, Huang et al. (2022), Yin, Wen e Li (2023) have

identified data limitation as a significant challenge in the context of trajectory prediction. The

availability, quality, and diversity of historical data are critical factors in obtaining high-quality

training data. These studies emphasize the importance of obtaining representative trajectory
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data to ensure accurate predictions.

Notably, trajectory data management and mining domains have received significant

attention in recent surveys, with challenges related to data management. In this context, we

highlight the challenges pointed out as the efforts to reduce the volume of data stored by data

preprocessing tasks, aiming to improve data quality and minimize data size (RICHLY, 2018;

WANG et al., 2021; FENG; ZHU, 2016; BIAN et al., 2019; AMIGO et al., 2021).

While reducing trajectory data is widely acknowledged as a challenge in data manage-

ment, in-depth explorations are limited. Nevertheless, only two studies have explored this topic:

Almeida et al. (2020), which focuses on data integration, unifying different sources into a single

data format, and Amigo et al. (2021), which provides an overview of trajectory data compres-

sion. Amigo et al. (2021) consider several approaches to reducing a single trajectory into a

more compact version, focusing on analyzing compression techniques and computing semantic

knowledge. This thesis attempts to fill existing literature gaps, highlighting the data reduction

challenges. In this way, an under-explored yet crucial theme refers to the summarization of tra-

jectory data, so we also offer a comprehensive overview of the state-of-the-art in trajectory data

summarization. The subsequent section presents a detailed exploration of relevant literature on

this subject.

3.2 RELATED WORKS ON TRAJECTORY SUMMARIZATION

Trajectory data reduction is essential for refining complex trajectory datasets into man-

ageable and informative representations. Research in trajectory data reduction, aimed at gener-

ating representative data, has seen significant advancements over the years. By analyzing and

classifying related works, we have identified eleven studies focused on data summarization.

To provide a comprehensive understanding of the landscape, we begin with an overview

of the related works, followed by an analysis categorized into different topics. These topics en-

compass (i) representative data type, (ii) methods performed by the approach, and (iii) evalua-

tion of the approach.

Our research into trajectory summarization begins with related works dating back to

2007. A pioneering contribution by Lee, Han e Whang (2007) addressed the challenge of pro-

cessing trajectory data by proposing a partition-and-group framework for spatial trajectories.

Their approach involved two steps: partitioning trajectories using an approximation algorithm

and then clustering the segments using TRAjectory CLUStering (TRACLUS) density-based clus-

tering algorithm, which is based on the clustering algorithm Density-Based Spatial Clustering of

Applications with Noise (DBSCAN) (ESTER et al., 1996). The proposed TRACLUS algorithm

demonstrated its effectiveness in summarizing trajectory data by identifying common behaviors

among subtrajectories, i.e., a common subtrajectory is defined as the representative trajectory

for each cluster, which can be identified as the summarized data for this set of subtrajectories.

In 2012, Panagiotakis et al. (2012) contributed to this progress with their work.

Their study focused on spatiotemporal trajectory segmentation and sampling in Moving Object
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Databases (MOD) to capture shared portions between trajectories. They segmented trajectories

into subtrajectories, clustered them to identify shared ones, and selected the most representative

subtrajectory for each cluster based on density and similarity. The study proposed a method for

capturing shared subtrajectories and selecting representative subtrajectories, improving trajec-

tory data summarization. Their approach effectively represented trajectories by capturing shared

portions and selecting representative subtrajectories by both spatial and temporal dimensions.

In 2013, Buchin et al. (2013) made a noteworthy contribution to trajectory data sum-

marization. Their study aimed to compute the median trajectory in a set of input spatial tra-

jectories, considering both simple median and homotopic median approaches. They segmented

input trajectories into subtrajectories, arranged them, and determined the middle trajectory as a

representative using either simple or homotopic median computation. By considering obstacles

in the route, the study improved the understanding of trajectory paths, and introducing both

the simple median and homotopic median methods offered flexibility in trajectory summariza-

tion. The comparison of the two approaches revealed that the homotopic median outperformed

the simple median in most cases, highlighting its effectiveness in trajectory summarization and

demonstrating advancements in this field.

In 2015, a significant advancement was made by Ayhan e Samet (2015), who intro-

duced DICLERGE (Divide-Cluster-Merge), a novel clustering framework for spatiotemporal

trajectories designed explicitly for aircraft trajectory data. DICLERGE divides trajectories into

three major flight phases (climb, enroute, and descent) and clusters each phase separately. The

framework also includes the generation of a representative trajectory, achieved through lateral

and vertical smoothing processes. Lateral smoothing involves filtering and connecting the clus-

ter centroids of the trajectory points, while vertical smoothing determines the enroute altitude

by calculating the median altitude of all trajectory points. DICLERGE offers a tailored approach

to divide, cluster, and summarize aircraft trajectories into distinct flight phases, providing rep-

resentative data for this specific context.

In 2016, Etienne et al. (2016) made a notable contribution by introducing a novel

method for describing the typical movement of a cluster of homogeneous spatiotemporal trajec-

tories. The study addressed the challenge of summarizing the central tendency for such clusters

by the introduced method of Trajectory Box Plot (TBP). The TBP computes a representative

trajectory by selecting an initial reference trajectory and pairing positions within it with corre-

sponding positions in other trajectories within the same cluster. The central position for each

cluster point is computed, and these ordered central positions are connected to generate a new

reference trajectory. This iterative process repeats until the reference trajectory converges to a

central (representative) trajectory. The computation process is based on the work of Petitjean,

Ketterlin e Gançarski (2011). The study introduced the Trajectory Box Plot (TBP) to represent

the typical movement of homogeneous spatiotemporal trajectories by central tendencies.

In 2018, Agarwal et al. (2018) addressed the challenge of subtrajectory clustering

within spatial trajectories. The goal was to cluster subsequences of trajectories effectively to

capture shared portions, identify segments with shared characteristics among trajectories, and
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provide a summarized representation of the trajectories. The ultimate goal was to find the op-

timal set of subtrajectories that could effectively represent the entire input dataset. The study

utilized an approximation algorithm based on the Set-Cover problem (CORMEN et al., 2009),

an effective approach to this challenge to compute the representative trajectory for each cluster.

In 2019, Gao et al. (2019) presented a compression model for spatiotemporal trajec-

tories enriched with semantic information. Their study aimed to improve the representation and

compression of trajectory data by incorporating semantic aspects. The authors introduce a multi-

resolution synchronization-based clustering model called CascadeSync. This model identifies

delimited regions of geographic space, referred to as Region of Interest (ROI), by clustering raw

trajectory points. Gradually, these clusters are synchronized hierarchically, leading to the for-

mation of a hierarchical ROI network. This process reduces the number of ROIs as the area size

of each region increases. The study introduced a novel approach where each original trajectory

can be compressed into a sequence of ROIs, incorporating semantic information. The approach

of using CascadeSync for hierarchical ROI clustering and incorporating semantic information

into trajectory compression demonstrated advancements in handling spatiotemporal trajectories

enriched with semantics.

In 2020, the authors complemented their 2019 study by proposing a hierarchical em-

bedding model. This model allowed the incorporation of each ROI/trajectory as a continuous

vector in a semantic vector space. Significantly, it facilitated semantic similarity computation

between two ROIs/trajectories through Euclidean distance metrics (GAO et al., 2020).

Additionally, in 2019, Buchin, Kilgus e Kölzsch (2019) introduced a framework

called Group Diagram (GD) for representing spatiotemporal trajectories. The framework aims

to represent input trajectories with minimal subtrajectories while preserving their essential char-

acteristics. It generates a single representative trajectory called the minimal GD. The minimal

GD is computed through a segmentation step, where subtrajectories within the input trajecto-

ries are clustered. The representative subtrajectory was computed as the middle subtrajectory

for each cluster, considering a predefined maximum distance from all other subtrajectories.

These representative subtrajectories are then connected to form the representative trajectory.

The GD framework provides a novel data representation for spatiotemporal trajectories and of-

fers an approach to summarize trajectories while maintaining essential information. Using the

GD framework and the approximation algorithm based on the Set-Cover problem facilitated the

generation of representative trajectories, demonstrating advancements in trajectory summariza-

tion techniques.

Seep e Vahrenhold (2019) proposed a solution for generating representative semantic

trajectories also in 2019. Their study focused on identifying a sequence of transitions common

to most routes within trajectory data, aiming to capture essential trajectory patterns. The authors

considered a Finite State Machine (FSM) version called Extended FSM (EFSM) for their ap-

proach. In EFSM, each state represents a data point, and the sequence of states and transitions

constitutes a subtrajectory. The complete sequence of states and transitions generated the repre-

sentative trajectory, which captured common patterns among trajectories. The common pattern
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was defined by analyzing the routes along the time dimension, and each transition was defined

depending on the spatial and non-spatial aspects (SEEP; VAHRENHOLD, 2021). While spe-

cific findings and results were not mentioned in the short paper format, using EFSM to infer

representative semantic trajectories demonstrates advancements in trajectory analysis.

In 2021, the authors advanced their work by proposing a method called EFSMClust,

which extends the k-means algorithm to cluster trajectories with multiple aspects (SEEP; VAHREN-

HOLD, 2021). The clustering algorithm defines a similarity measure between a trajectory and a

graph-based representation of a cluster centroid. The computed representative trajectory based

on EFSM in the previous work is used to define the centroid of each cluster, and by using

the similarity measure, they define the trajectories nearest to each representative trajectory to

compute the final cluster. As this second work refers to another part and does not focus on rep-

resentative computation, this step is not detailed. Although the study does not provide specific

findings or results in the short paper format, it demonstrated advancements in trajectory analysis

by using representative trajectories to improve cluster computation.

In 2020, Rodriguez e Ortiz (2020) introduced an approach for generating a repre-

sentative trajectory from spatiotemporal trajectories. The study aimed to identify and represent

patterns within trajectory data, effectively summarizing the underlying information. The input

trajectories were initially segmented into subtrajectories, breaking them into more manageable

parts. Subtrajectories were grouped, and pattern detection was performed using the DBSCAN

algorithm, similar to the approach in the study by Lee, Han e Whang (2007). A representative

trajectory is identified for each cluster using an arrangement of the spatial data of these subtra-

jectories. The study contributed to the field by introducing an approach that relied on pattern

detection and spatial data arrangement to represent trajectories effectively.

Li (2021) proposed, in 2021, a method for extracting typical ship trajectories using

Automatic Identification System (AIS) data and trajectory clustering. The study aimed to iden-

tify and provide representative ship motion trajectories from a set of ship trajectories. The study

involved preprocessing AIS data and preparing it for trajectory analysis. Ship trajectories were

segmented into meaningful subtrajectories. The improved DBSCAN clustering algorithm was

applied to cluster trajectories to identify their typical mobility. The result is representative tra-

jectories using the center of the clusters. The study contributed to the field by introducing a

method for extracting and representing distinct ship trajectories using an improved DBSCAN

clustering algorithm.

Finally, in recent research, Pugliese et al. (2023) presented a novel approach for MAT

summarization by enriching raw trajectories with semantic context. However, their approach

does not consider input data trajectories with multiple aspects, as the raw trajectories are en-

riched during the process, and group representative data is created for each group rather than

just one representative information.
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3.2.1 Discussion

Based on the discussion in Section 2.2, the evolution of trajectory summarization for

trajectory data shows that semantic trajectories emerged in 2007. However, there is still a need

for further improvement in summarizing this data, especially within the context of MATs that

involve multiple and complex aspects. The challenge is to improve the summarization of the

semantic dimension, which only began in 2019. We present a comprehensive table (Table 2) to

compare related works regarding representative data. This table examines critical elements of

each study: (i) considered dimension; (ii) summarization type; and (iii) mapping information.

Table 2 ± Related work comparison

Study
Considered Dimensions2 Summarization

type

Mapping

informationSpace Time Semantic

TraClus

(LEE; HAN; WHANG, 2007)
X Computation

(PANAGIOTAKIS et al., 2012) X X Selection
Median Trajectory

(BUCHIN et al., 2013)
X Computation

DICLERGE

(AYHAN; SAMET, 2015)
X X Computation

TBP

(ETIENNE et al., 2016)
X X Computation

(AGARWAL et al., 2018) X * Computation
CascadeSync

(GAO et al., 2019)
X X Computation X

GD

(BUCHIN; KILGUS; KöLZSCH, 2019)
X X Selection

(SEEP; VAHRENHOLD, 2019) X * * Computation
(RODRIGUEZ; ORTIZ, 2020) X * Computation
(LI, 2021) X * * Selection
MAT-SG (ours) X X X Computation X
MAT-SGT (ours) X X X Computation X
2 In the Considered Dimension column, "X" indicates a completely resolved dimension, "*" indicates a

dimension that is not completely resolved, and an empty cell indicates a dimension that is not addressed
in the study or is not mentioned.

First, some studies, as marked with (*), do not encompass all dimensions provided in

the input trajectories within their methods. Observing the works that consider the semantic di-

mension, Seep e Vahrenhold (2019) consider a trajectory annotated with additional information

(a semantic trajectory), where all attributes of the points are treated as a spatial or non-spatial

value. Li (2021) refers to the vessel scenario and consider specific aspects of the semantic

dimension (vessel speed and direction) while reducing trajectory points and computing repre-

sentative data. Other works use semantic dimension only to enrich their final raw data, without

regarding it as input data or incorporating it into their summarization method, as observed in

Gao et al. (2019).

As expected, the spatial dimension is a consensus among all studies, and most of them

also include the temporal dimension. However, only some studies deal with semantic aspects in
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their processes to compute representative data, making this problem an open issue.

A notable observation is that while trajectory summarization can be categorized into

two types: computation of representative data through mathematical methods or selection of

specific trajectories or segments to represent the entire dataset, as described in Section 2.3.1,

most related works primarily focus on the computation task. Over the years, this emphasis

on computation has led to significant advancements in summarization techniques. However, it

is essential to recognize that the semantic dimension has been somewhat overlooked in these

computations, even in the most recent studies. While spatial and temporal dimensions are con-

sistently addressed, capturing and representing all semantic aspects remains an open issue.

Furthermore, mapping information, which pertains to understanding the relationship

between input trajectories and the summarized data, is another critical aspect that has received

limited attention. Notably, only one study (GAO et al., 2019) describes this topic explicitly.

Other related works do not perform mappings or do not provide any information about them.

In Gao et al. (2019), they propose a method to convert an input trajectory into an ROI

network. Each ROI represents the origin of an input trajectory, and the trajectory itself can be

represented as a sequence of ROIs within the ROI network. Furthermore, all trajectories passing

through a particular ROI are recorded. However, this mapping information primarily indicates

which input trajectory contributes to a particular ROI without specifying the specific points

within the trajectory that form the ROI.

3.2.2 Evaluation of the Representative Trajectory Data Computation Process

This section conducts a thorough analysis of evaluations presented in related works,

focusing on considered datasets and the evaluated factors. Special attention is given to the re-

duction process used for computing representative data, specifically in relation to the summa-

rization task, as indicated by bold highlighting in the Evaluated factor column of Table 3. Ad-

ditionally, for studies that explicitly evaluate the computation of representative data, we provide

an overview of their evaluation.

Only three works evaluate their approach regarding some factor of computation of rep-

resentative data (PANAGIOTAKIS et al., 2012; BUCHIN et al., 2013; SEEP; VAHRENHOLD,

2019), referring reduction process, as highlighted in bold in Table 3, and the evaluation of these

studies are detailed in the following.

Among the related works, only five ((PANAGIOTAKIS et al., 2012; BUCHIN et al.,

2013; SEEP; VAHRENHOLD, 2019), MAT-SG, and MAT-SGT) systematically evaluate their

approach concerning the computation of representative data, focusing on the reduction process,

as highlighted in bold in Table 3. The evaluations of these studies are detailed below.

In Panagiotakis et al. (2012), the approach undergoes a quantitative evaluation using

both real and synthetic databases. The process involves computing representative data as sub-

trajectories concentrated at the center of the cluster. The evaluation focuses on determining

optimal parameters for clustering trajectories. To construct the sub-trajectory sampling set, a
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Table 3 ± Comparative of the related works w.r.t. evaluated factor

Study Dataset Evaluated factor Compares to

TraClus (LEE; HAN; WHANG, 2007)
Hurricanes3 and
Animals4 (Elk and Deer)

Clustering process -

(PANAGIOTAKIS et al., 2012)
Synthetic dataset,
Transport5 (Athens trucks),
Transport6 (Milano)

Performance sampling

Representative data

standard sampling
(random and
stratified sampling)

Median Trajectory
(BUCHIN et al., 2013)

Synthetic dataset Computed medians -

DICLERGE (AYHAN; SAMET, 2015) Private dataset (Aircraft) Clustering process -
TBP (ETIENNE et al., 2016) Vessels7 (AIS Brest, France) - -

(AGARWAL et al., 2018)

Synthetic data, Geolife8

Urban Taxi
(Beijing) (LIAN; ZHANG, 2018),
Private dataset

Clustering process -

CascadeSync
(GAO et al., 2019)

Synthetic dataset,
Geolife, Hurricanes,
Urban Taxi9 (T-Drive)
and Animals10 (Barn Swallows)

Compression algorithm -

GD
(BUCHIN; KILGUS; KöLZSCH, 2019)

Animals11 (LifeTrack Geese)
Data representation
process

-

(SEEP; VAHRENHOLD, 2019) Hurricanes and Geolife Representative data
TRACLUS and
Median Trajectory

(RODRIGUEZ; ORTIZ, 2020) Private dataset (Transport) - -
(LI, 2021) Private dataset (Vessel) Clustering processing -

MAT-SG (ours)

Private dataset (Pisa),
Foursquare12,
Brightkite13,
Gowalla14

Representative data MAT-SGT

MAT-SGT (ours)

Private dataset (Pisa),
Foursquare,
Brightkite,
Gowalla

Representative data MAT-SG

* Highlighted in bold are the evaluated factors applied to the computation of the representative data.
3 http://www.nhc.noaa.gov/data/hurdat/
4 https://www.fs.usda.gov/research/pnw/forestsandranges/locations/starkey
5 http://www.chorochronos.org/Default.aspx?tabid=71&iditem=31
6 Milano dataset consists of GPS traces describing the movement of a set of 17K vehicles during one week at the beginning of

April 2007 (not available).
7 http://www.chorochronos.org
8 https://www.microsoft.com/en-us/research/publication/geolife-gps-trajectory-dataset-user-guide/
9 https://www.microsoft.com/en-us/research/publication/t-drive-trajectory-data-sample/
10 https://www.datarepository.movebank.org/handle/10255/move.655
11 https://zenodo.org/records/3508780
12 https://github.com/bigdata-ufsc/datasets_v1_0/tree/main/data/multiple_trajectories/Foursquare_NYC
13 https://github.com/bigdata-ufsc/datasets_v1_0/tree/main/data/multiple_trajectories/Brightkite
14 https://github.com/bigdata-ufsc/datasets_v1_0/tree/main/data/multiple_trajectories/Gowalla

proposed distance measure calculates the number of trajectories in the input dataset represented

in each sampling. For comparative analysis with other sampling techniques, the Root Mean

Square Error (RMSE) metric is employed, indicating which technique offers superior coverage

of the space-time within the input dataset.

In Buchin et al. (2013), two approaches, namely the simple median and homotopic

median, are systematically compared through both quantitative and qualitative analyses. The

quantitative evaluation involves considering metrics such as the number of vertices, total length,

and total turning angle of the median trajectory computed by both approaches, along with the

average of these measures for the input trajectories. Qualitative analysis is conducted through
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visual inspection, revealing that the homotopic median results better results.

In the work by Seep e Vahrenhold (2019), a comprehensive quantitative and qualitative

evaluation is conducted on its representative data, comparing results against TRACLUS and

Median Trajectory. The qualitative assessment involves visual analysis, while the quantitative

evaluation employs means and median distance (using Fréchet distance) between input and

representative data for each approach. This work demonstrates a more faithful representation in

both evaluations of the considered datasets.

3.2.3 Summary

Since summarizing trajectories is a vital process that condenses extensive and complex

trajectories into more manageable and informative summaries, and while MATs have emerged

as a promising data type, offering extensive possibilities for data analysis, it is noteworthy that

state-of-the-art approaches that summarize MATs tend to overlook the consideration of all se-

mantic aspects individually. Additionally, there is a lack of studies that summarize MATs and

provide mapping information regarding the relationship between the representative data and

corresponding input points. This information would allow us to understand the origin of each

part of our representative data.

In response to these observations, this thesis introduces two novel approaches, MAT-

SG and MAT-SGT, designed to address these challenges. In the following chapter, we delve into

the details of these approaches, elucidating their methodology and contributions to the trajectory

summarization field.

Furthermore, an examination of related works reveals that only one study (SEEP;

VAHRENHOLD, 2019) encompasses all three dimensions (spatial, temporal, and semantic)

in evaluating the representative trajectory computation process. However, it is crucial to note

that this evaluation primarily relies on visual analysis (qualitative evaluation), with quantitative

aspects limited to the spatial dimension. The authors mention the lack of a well-defined measure

for quantitative evaluation and assessing the degree to which the representative data genuinely

represents all the input data.

In response to this gap, we propose a novel representativeness measure (RMMAT)

detailed in Chapter 5. This measure aims to provide a robust quantitative evaluation measure,

addressing the identified need for a comprehensive assessment of how well representative data

truly represents all aspects of the input trajectory data. Only the study by Seep e Vahrenhold

(2019) compares their work with methods that encompass spatial dimensions (LEE; HAN;

WHANG, 2007; BUCHIN et al., 2013), but no quantitative comparison is performed. The

datasets used in Seep e Vahrenhold (2019) refer to spatial (Hurricanes) and semantic (Geo-

life) analysis. However, the analysis of the Geolife dataset is only qualitative, focusing on pat-

terns identified by specific user. Since no compatibility baseline is available, we choose to use

datasets involving MATs, providing quantitative evaluation as detailed in Chapter 6.
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4 METHODS FOR MULTIPLE ASPECT TRAJECTORY DATA SUMMARIZATION

In the fast-paced world of data management, the challenge of reducing trajectory data

to improve data processing and data mining is essential. As we explored in Chapter 2, this chal-

lenge remains a little explored, and in Chapter 3, we examined related works that emphasized

summarizing trajectories, observing that primarily their focus is based on spatial and tempo-

ral dimensions. However, the semantic dimension, which holds the key to opening a deeper

understanding of trajectory data, remains largely unexplored.

Considering that the semantic aspects provide context and meaning for both the ob-

ject and its movement regarding its raw trajectory, MATs, with their multidimensional nature,

possess the power to provide comprehensive insights into object movement and its associated

aspects. However, these aspects usually are not considered in representative data, leading to

a combinatorial explosion that requires additional summarization strategies, particularly for

MATs computing representative data. These strategies could provide insights into both object

movement and associated aspects.

In this chapter, we delve into strategies designed to confront this challenge head-on.

These strategies offer summarization for computing representative data from MATs, harness-

ing the full spectrum of information contained within these trajectories. We present two novel

methods developed during the Ph.D. research, each employing distinct strategies for reducing

trajectory data through summarization.

The first method, detailed in Section 4.1, is named MAT-SG (MACHADO; MELLO;

BOGORNY, 2022a), which computes representative data exploring the pattern involved in

each spatial area regarding input MATs, effectively summarizing all involved aspects. MAT-SG

stands as the pioneering trajectory summarization method explicitly tailored for MATs, address-

ing various dimensions while treating each aspect individually. However, it is important to note

that MAT-SG may not provide optimal solutions when preserving temporal sequences within

the representative data is crucial. For this reason, Section 4.2 introduces the second method,

MAT-SGT (MACHADO et al., 2023a), which aims to provide representative data that capture

the temporal sequences within input MATs, summarizing all related aspects.

These methods are presented to bridge the gap between MATs and the need for more

efficient and informative summarization, providing valuable tools for data analysts and re-

searchers in various fields.

4.1 MAT-SG: MULTIPLE ASPECT TRAJECTORY SUMMARIZATION BASED ON A SPA-

TIAL GRID

The method outlined in this section is a significant contribution to this Thesis. It intro-

duces a novel algorithm known as MAT-SG (Multiple Aspect Trajectory Summarization based

on a spatial Grid), which is designed to reduce the input dataset while aspiring to offer represen-

tative data that encapsulates the predominant patterns within MATs. MAT-SG extracts essential
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insights about the moving object, such as its spatial regions and relevant attributes associated

with these regions. Our method focuses on computing a representative MAT that accurately re-

flects the primary behavior and characteristics of the input MATs, taking into account the spatial

density and frequency of each attribute value. MAT-SG was developed to address the lack of

summarization methods for reducing input MATs while still resulting in representative data.

We assume the input MATs were already filtered by some criterion15. So, the repre-

sentative MAT denotes the primary behavior of these input MATs considering spatial density

and frequency of each aspect attribute value.

4.1.1 Data model

To maintain representative MAT generated by MAT-SG, we rely on a conceptual data

model shown in Figure 5. This conceptual model provides a standardized representation of the

input data and keeps the representative points and their mappings to the input points. Each point,

in turn, holds information about all dimensions: space (x and y coordinates), temporal aspects

(that could be represented by a timestamp or a time interval, denoting the start and end times),

and semantic aspects (a set of the attributes with their corresponding values). Each attribute

belongs to a categorical or numerical data type.

Figure 5 ± The conceptual model for MAT-SG.

This Thesis introduces a concept that contributes significantly to the model for repre-

sentative data. This model enables mapping data between input MATs and the resultant rep-

resentative MAT. The representative MAT is structured as a set of representative MAT points,

denoted as pr. The MAT-SG algorithm computes these points, and the representative MAT (RT )

is essentially composed of a sequence of pr’s.

15 These criteria are out of the scope of this paper, but examples could encompass operations like clustering
or straightforward filtering. For example, these criteria might involve tasks such as given MATs generated
by check-ins of different individuals to discern their patterns during specific time periods. A simple filter
could ensure that the dataset contains only the trajectories of a particular individual during these defined time
intervals.
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To compute RT , we summarize the information into pr’s. Each pr summarizes rele-

vant information derived from multiple input MAT points, and a relationship is established and

maintained between pr and its corresponding MAT points to ensure accurate representation. It

is important to note that pr is a specialized MAT point that preserves specific attributes, con-

tributing to its significance in the summarization process. This attribute-holding capacity of pr

further enhances its value in representing and maintaining crucial information within MATs.

Unlike input MAT points, each pr provides a set of Temporal Aspects, as the representative

point represents a representative spatial region and the usual activities in that region, including

the usual time that the object frequents each region.

4.1.2 Architecture

An overview of the MAT-SG method is presented in Figure 6, illustrating its core com-

ponent: Data Summarization, which comprises two main sub-components: (i) Data Segmenta-

tion and (ii) pr computation. The first one, Data Segmentation, aims to discern underlying data

patterns based on spatial density. The second one, pr Computation, is focused on summarizing

data by analyzing its frequency.

Figure 6 ± MAT-SG overview.

The process begins with an input set of filtered MATs (T) in step 1. These MATs are

selected based on specific criteria, although the specific details of these selection criteria are not

discussed in this thesis. We assume that T exhibit some degree of similarity among the selected

MATs. Step 2 involves segmenting the input MAT points into a spatial cell grid, facilitating the

identification of relevant cells. For each of these relevant cells, step 4 is performed to calcu-

late representative points that comprehensively summarize all dimensions and encapsulate the

essential characteristics of the input data within each cell.

The outcome is the group of all computed representative points within a MAT object,

resulting in the RT as the output data in steps 5 and 6. To refine the results, step 7 involves

the selection of the best among the computed RT s as the final output. MAT-SG provides a

comprehensive representation of the primary behaviors and characteristics demonstrated by the



56

input MATs, taking into account spatial density and the frequency of each aspect attribute value.

The following section will provide a detailed exploration of the MAT-SG process.

4.1.3 Algorithm

MAT-SG considers a set of input parameters besides the input MATs. They are detailed

in Table 4. τrc and τrv are optionally defined by the analyst; otherwise, default values are as-

sumed. MAT-SG starts by calculating rc = |T.points|× τrc, which is based on a proportion τrc.

For example, given τrc = 1% and |T.points|= 200, then rc= 2. In other words, only cells with a

minimum of 2 points are considered relevant for accommodating a pr. Subsequently, MAT-SG

proceeds through its steps, meticulously detailed in the following sections.

Table 4 ± Parameters of our summarization methods

Parameter Explanation Default

T Set of previously filtered input MATs -

τrc
Minimum proportion of all input MAT points |T.points|,
deciding if a cell is considered a relevant cell to compute pr

rc = 2

τrv A rate of representativeness value for ranking values* 10%
* Ranking values are computed by data frequency, specifically only for the temporal

dimension and categorical values of the semantic dimension.

The MAT-SG algorithm, detailed in Algorithm 1, is designed to compute an optimal

RT by identifying the most suitable spatial segmentation. It initiates by determining the mini-

mum spatial threshold (τs) to measure the dispersion among all input points. Subsequently, it

calculates the distance between the grid origin (0,0) and the farthest point from it (line 6). This

calculation helps establish the maximum grid size, assuming all points fall within a single cell.

The initial z value computed in this process is a multiplier for determining the cell size. Us-

ing this initial z value, the algorithm creates an initial grid with a single cell encompassing all

MAT points, configuring the start of the process (line 11 - more detailed in Algorithm 2). The

subsequent steps involve iteratively reducing the z value to analyze and compute an improved

RT (lines 10 to 25). This iterative approach aims to identify the optimal segmentation that

yields the most refined RT . Additionally, the option to reduce z value in 15% in each interaction

(line 25) was determined after conducting various tests to identify the most effective reduction

rate, considering both runtime efficiency and the sufficiency of information for generating a

new RT .

Within each iteration, the algorithm performs data spatial segmentation based on the

current z value, culminating in spatial allocation (Cell Grid allocation step). Subsequently, it

computes representative points for each group of points (lines 12 to 14). As previously men-

tioned, MAT-SG accomplishes MAT summarization through two key internal components: (i)

data segmentation; and (ii) pr computation.

To assess the quality of the computed RT , it is compared to the previously calculated

representative trajectory (betterRT ), with a stipulated margin of 10% improvement. If a superior
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RT is identified, the algorithm updates the betterRT and resets the counter-tracking iterations

without improvement. The best RT is determined by its similarity, coverage, and superiority

over others in two new computations. Section 4.1.3.3 provides a detailed explanation of the

selection process.

Algorithm 1: MAT-SG
input : T, τrc, τrv

output: RT /* representative trajectory */
1 rc← |T.points|× τrc;
2 τs← computeMinSpatialThreshold();
3 rt← /0
4 betterRT ← /0
5 count← 0;
6 z← computeMaxZValue();
7 betterRT measure← 0;
8 wsim← 0.5;
9 wcover← (1−wsim);

10 while z > 1 do

// component (i) - Fig. 6 (steps 2 and 3)
11 spatialCellGrid← cellGridAllocation(rc,z,T) // Algorithm 2

// component (ii) - Fig. 6 (step 4)
12 foreach eachGroupPoint ∈ spatialCellGrid do

13 pr ← computeRepPoint(eachGroupPoint, τrv);
14 rt← rt∪pr // Fig. 6 (step 5)

// analysis of better RT - Fig. 6 (step 7)
15 rtMeasure← RMMAT (rt,T,wsim,wcover);
16 if (rtMeasure×1.1)≥ betterRT measure then

17 betterRT measure← rtMeasure;
18 betterRT ← rt;
19 rt← /0
20 count← 0;
21 else

22 count ++;

23 if count > 1 then

24 break;
25 z← z×0.85;

26 return betterRT ;

The two components of the MAT-SG method are detailed next.

4.1.3.1 Data Segmentation Component

The initial step of the MAT-SG algorithm involves segmenting the points from the

input MATs into a grid of square cells. This process is illustrated in Figure 7, which depicts a

spatial grid with a highlighted cell. The size of each cell is determined by a threshold of spatial
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dispersion (τs), which specifies the maximum spatial distance between any two points within

the cell. In other words, this threshold represents the diagonal length of each cell.

Figure 7 ± Cell size computation

The calculation of τs (as shown in the equation in Figure 7) is performed dynamically

and automatically. It is computed based on the average minimum spatial distances between the

input MAT points. In the case of a given input set T with n points, we calculate the Euclidean

distance d() for each point pi ∈ T concerning its nearest neighbor pk ∈ T. The value of τs is

then obtained by multiplying a factor z with the average of these minimal distances.

The size of these grid cells (cell size) essentially determines the granularity of the

spatial segmentation. Once the cell size is established, the input MAT points are allocated to the

appropriate cells within the spatial grid. After this allocation, the process identifies the so-called

relevant cells, which contain a sufficient number of points (at least rc) to provide meaningful

representation and insights.

Algorithm 2 details the Data Segmentation step. An advantage of this approach is that

it only generates cells that contain points, optimizing memory usage. It allocates the points from

T to a spatial grid, implemented as an inverted index (or inverted list). In this implementation,

the key represents the identity of the cell position, while the value comprises a list of the T

points allocated within that cell.

Algorithm 2: MAT-SG:cellGridAllocation
input : rc, z, T
output: spatialCellGrid /* inverted list */

1 spatialCellGrid← /0;
2 τs ← computeτs(z);
3 cellSize← computeCellSize(τs);
4 foreach T ∈ T do
5 foreach p ∈ T do
6 key← getCellPosition(px, py,cellSize);
7 if spatialCellGrid.get(key) = /0 then
8 spatialCellGrid.new(key);
9 spatialCellGrid.get(key).put(p);

10 else
11 spatialCellGrid.get(key).append(p);

12 spatialCellGrid.updateByRelevantCells(rc);
13 return spatialCellGrid

The algorithm first computes the cell size of the spatial grid (lines 2 and 3) considering

that all cells in the grid have the same size. To determine the appropriate cell for each MAT

point, it calculates the grid position key for point p (line 6), considering the cell size defined by
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the getCellPosition function, which is calculated as ( px

cellSize
, py

cellSize
). Then, p is allocated into

the grid cell of this position (lines 6 to 11), provided that the cell already exists.

In cases where the designated cell does not exist, the algorithm creates a new key and

inserts the point into it (lines 8 and 9). This process of allocating points to grid cells ensures

efficient spatial segmentation and allocation of the input MAT points while optimizing memory

usage. The spatialCellGrid is updated to maintain only relevant cells (line 12). It identifies

cells containing sufficient points (at least rc) to offer meaningful representation and insights.

The spatial data segmentation is efficiently done with the allocation method, which

optimizes memory utilization by dynamically generating cells when necessary. Identifying rel-

evant cells ensures that the subsequent algorithm step focuses on regions of interest with suffi-

cient data density to provide valuable summarization and insights.

4.1.3.2 Representative Point Computation component

In the second component of MAT-SG, the aim is to summarize each group of points

(eachGroupPoint) obtained from the first component. This is depicted in Figure 6 (step 4). It

is important to note that cells containing less than rc points are considered weak representative

cells and are discarded from the group of points in the last component. In this component, a pr

is computed for each group. These representative pr’s together form the RT (Algorithm 1, lines

12 to 14). To generate a pr, the three MAT dimensions for all points in the cell, we summarize

the three MAT dimensions for all points in the cell: spatial, temporal, and semantic.

For spatial dimension, the centroid point is computed (WOOD et al., 1990), i.e., the av-

erage of the (x,y) coordinates in eachGroupPoint. For the temporal dimension, we compute the

Significant Temporal Intervals (STI) that accommodate all timestamps within the set of points

eachGroupPoint. The STI captures the time intervals during which these points are distributed.

Definition 4.1.1. Significant Temporal Intervals (STI). Let Time = ts1, ts2, . . . , tsm, where

each ts represents the temporal value of each point. An STI is a collection of time intervals

[tsi+1− tsi], . . . , [tsm−1− tsm] that encompasses all the tsi values within the points of each cell

grid (tsi ∈ eachGroupPoint). In this context, i denotes the initial index in the Time sequence,

and m represents the final index.

To identify the most relevant ST Is for the task of creating representative points (pr),

MAT-SG establishes a ranking based on the intervals (sti ∈ ST I) and their corresponding tem-

poral tendencies. We use the predefined threshold τrv to define which sti are considered repre-

sentative for pr. Specifically, sti intervals with a frequency rate greater than or equal to τrv are

considered representative.

To illustrate this process, Algorithm 3 outlines the computation of the ranking for

representative ST Is. This process is exemplified in a visual representation in Figure 8.

First, a Time list is generated to hold all ts’s ∈ eachGroupPoint. It is sorted for better

analyzing the time intervals (lines 1 to 3), as shown in Figure 8 (a). Then, we consider a com-
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Algorithm 3: MAT-SG:computeTemporalDimension
input : eachGroupPoint, τrv

output: rankST I /* ranking of representative STIs for eachGroupPoint */
1 foreach p ∈ eachGroupPoint do
2 Time.add(p.time);

3 Time.sort();
4 ∆Time← computeTimesDi f f erence(Time);
5 V∆Time

← computeValidValues(∆Time);
6 τt ← computeTimeT hreshold(V∆Time

);
7 ST Iaux← /0;
8 rankST I← /0;
9 foreach ts ∈ Time do

10 ST Iaux.append(ts);
11 if δi > τt and (|ST Iaux|/|Time|)≥ τrv then
12 rankST I.new(ST Iaux);
13 rankST I.get(ST Iaux).put(|ST Iaux|/|Time|);
14 ST Iaux← /0;

15 rankST I← normalizeRank(rankST I());
16 return rankST I

Figure 8 ± An example of temporal dimension summarization in a grid cell

puted threshold (τt) to define when a ts∈ Time is close to another and aggregate ts’s to generate

an sti, as explained in the following.

Consider δi as the time difference between two consecutive timestamps (δi = tsi+1−

tsi), and let ∆Time = {δ1;δ2; ...;δn−1} represent a set of δi values for all ts ∈ Time (line 4). It is

important to note that, according to our conceptual model (presented in Figure 5), each point in

the input dataset contains one Temporal Aspect, which could be either a single timestamp or a

temporal interval defined by timestamps for the start and end times. In the latter case, the time

difference is computed as two separate ts ∈ Time.

In line 5, we set the Valid Temporal Interval set V∆Time
as all δi ∈ ∆Time that fit into the

average ∆Time plus or minus the standard deviation σ∆Time, as defined by Equation 4.1.

V∆Time
=
{

δi ∈ ∆Time, 1≤ i≤ (n−1) |
(

∆Time−σ∆Time

)

≤ δi ≤
(

∆Time +σ∆Time

)}

(4.1)

To establish ST I that accurately represents the underlying patterns within each group
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of points (eachGroupPoint), it is imperative to create a robust definition of these intervals adapt-

able to various scenarios. This adaptability ensures that the methodology remains effective

across different datasets. To achieve this, we utilize a computational procedure to calculate

τt , aiming to define which are the sti’s in eachGroupPoint, by identifying when a ts ∈ Time

is in proximity to another and combining them to produce an sti. This procedure involves the

identification and removal of potential outliers from the analysis.

In line 6, τt is determined as the average of the set V∆Time
(V∆Time

). Its purpose is to

filter out δi ∈ ∆Time that differ significantly from the general trend, effectively removing outliers

from consideration. This is illustrated in Figure 8 (b), where all δi ∈ ∆Time are shown, along

with V∆Time
. Notably, in this example, 07:05 is identified as an outlier. The subsequent Figure 8

(c) demonstrates the computation of τt .

The construction of ST I is based on the calculated τt and is carried out in lines 9 to

14. We initially append to ST Iaux the values of ts ∈ Time (line 10), and while δi is less than τt ,

we consider ts part of a sti and continue to append subsequent timestamps. When δi exceeds τt ,

and the frequency rate of this interval is considered representative (line 11), it is identified as a

distinct sti ∈ ST I. This ST Iaux is then added as a new key to the inverted list of rankST I (line

12), with its frequency rate serving as the value associated with this key (line 13). It is worth

noting that a temporal interval sti may also represent a single timestamp when it is considerably

distant from its neighbors, meaning that the time differences δi to its adjacent points, regarding

temporal information, exceed τt . This process is illustrated in Figure 8 (d).

In the example, we have a first sti1 = {08:00, 08:30, 08:55} as all their δi ≤ τt . A sti2

= {16:00} holds a single sti as the time differences to its neighbors exceed τt . This process

is repeated to all the remaining ts ∈ Time. In Figure 8 (e), with a specified τrv of 25%, the

identified ST Is are {[08 : 00− 08 : 55], [19 : 30− 20 : 10]}. In the final step of the temporal

dimension computation, performed in line 15, the resulting ST Is are normalized to ensure that

their rate values sum to 100%. This normalization process is depicted in Figure 8 (f).

We summarize the semantic dimension in the final step of pr Computation. This di-

mension encompasses various aspects, which we categorize into two types: (i) categorical, such

as the mean of transportation and weather conditions, and (ii) numerical, such as air temperature

and humidity. For numerical types, we calculate the median value16.

We determine the representative mode values for categorical aspects, similar to the

temporal dimension. These mode values appear most frequently within each aspect of the data

grid cell and are identified based on a predefined threshold (τrv). Once identified, we normalize

the values to ensure the proportion values add up to 100%.

To illustrate this process with a practical example, consider a group of ten data points

associated with activities performed in each place. Among these points, four are labeled as

"tourism", four as "work", and two as "study". Initially, when applying MAT-SG, the mode val-

ues are "tourism" and "work", with each representing 40% of the data, while "study" accounts

16 We prefer the median value instead of the mean value when the data are not symmetrically distributed since it
is less sensitive to the influence of outliers (MCCLUSKEY; LALKHEN, 2007).
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for 20%. However, with a representative value threshold set at τrv = 25%, the "study" value

falls short of meeting the threshold and is consequently excluded as a representative value. In

this case, "tourism" and "work" are considered representative values, and their proportions are

adjusted to reflect the distribution of the most common activities in the dataset, with each now

representing 50% of the representative values. This reorganization ensures that the representa-

tion accurately reflects the distribution of the most common activities in the dataset, providing

an informative summary of the categorical data.

Overall, the pr computation step combines the computation of centroids, sti’s, and rep-

resentative values for numerical and categorical aspects. This step consolidates the summarized

information for each dimension, essential in determining the RT .

4.1.3.3 Computation of the Better Representative Trajectory

To analyze and compute the better RT (according to Figure 6 step 7), MAT-SG employs

a representativeness measure called RMMAT (details provided in Chapter 5). This measure is

based on a similarity measure and the covered MAT points.

The representativeness measure is computed using the RMMAT function (Algorithm 1,

line 15). This function calculates the representativeness measure between the input MATs (T)

and the computed RT . The chosen similarity measure for this implementation is MUITAS

(PETRY et al., 2019), recognized as a state-of-the-art similarity measure for MATs. MUITAS

quantifies the distance between points in two MATs to determine their similarity.

The RMMAT measure reflects the overall coverage of both MAT points and the infor-

mation in the RT . To ensure equal consideration of both similarity and covered information, we

employ a strategy with equal weights, setting ωsim = ωcover = 1
2 . The measure combines the sim-

ilarity measure and coverage proportion, aiming to identify the RT that achieves the maximum

coverage of both MAT points and their contained information.

In the MAT-SG method, spatial segmentation takes priority over other dimensions.

This means that even in scenarios where all points within the same cell exhibit temporal and

semantic differences, MAT-SG computes at least one representative point considering the spatial

dimension. This prioritization emphasizes the representativeness of specific locations in the

input MATs, thus ensuring that spatial information is adequately preserved in the RT .

4.2 MAT-SGT: MULTIPLE ASPECT TRAJECTORY SUMMARIZATION BASED ON A

SPATIAL GRID AND TEMPORAL SEQUENCE

MAT-SG stands out as a pioneering approach to generating representative data tailored

specifically for MATs. It accomplishes this by addressing all aspects of MATs individually,

which leads to a more comprehensive representation of the data. Moreover, MAT-SG introduces

a pivotal task by establishing a mapping between the input MATs and the resulting representa-



63

tive MAT. This mapping is instrumental in preserving the relationship between the original data

and its summarized representation.

It is worth emphasizing that the MAT-SG method involves spatial segmentation and

data summarization. This process is valuable for identifying movement patterns that are specific

to different spatial areas. Additionally, it comprehensively considers various dimensions and

treats each semantic type individually, which is beneficial for capturing the full spectrum of

MATs.

However, the effectiveness of trajectory data summarization should be viewed in the

context of the intended purpose of the representative data. In some scenarios, temporal infor-

mation is critical for understanding when and how events or movements occur over time. While

MAT-SG excels in various aspects of summarization, it may not fully capture the temporal di-

mension of the data. This limitation might be a crucial factor for certain applications or analyses

that heavily rely on temporal patterns within MATs.

In light of the importance of considering the intended purpose of representative data

and the significance of temporal information in some scenarios, a novel method for summarizing

MATs has been introduced, called Multiple Aspect Trajectory Summarization based on a Spatial

Grid and Temporal Sequence (MAT-SGT). This method is designed to address the limitation

of not fully capturing the temporal dimension of the data while still maintaining some of the

advantages of MAT-SG.

Similar to MAT-SG, MAT-SGT aims to reduce the input dataset while providing repre-

sentative data encapsulating the predominant patterns within MATs. However, MAT-SGT takes

a novel approach by specifically focusing on identifying the temporal sequences associated with

movement patterns. This is a crucial addition, as it ensures that the summarization method can

better reveal when and how events or movements occur over time within MATs.

In addition to capturing temporal sequences, MAT-SGT retains some key features from

MAT-SG, such as establishing mappings between input MATs and the representative MAT, as

well as incorporating spatial segmentation. This comprehensive approach allows MAT-SGT to

consider both spatial and temporal aspects in MAT summarization.

Analyzing and extracting meaningful insights from MAT data, which includes spa-

tial, temporal, and semantic aspects, can be challenging. Considering this issue, our method

analyzes the distribution of points over time and space to identify information values that best

represent the main behavior exhibited in the input MATs. By leveraging spatiotemporal analysis

techniques, we can capture patterns in movement, providing valuable insights into the overall

trajectory data with a focus on the spatiotemporal sequence.

4.2.1 Data model

In maintaining the representative MATs computed by MAT-SGT a conceptual data

model, illustrated in Figure 9, is employed.

This model provides a standardized representation of the input data and preserves the
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Figure 9 ± The conceptual model for MAT-SGT

relationships between representative points and their corresponding input points, similar to the

approach in MAT-SG. Each point in this model contains information related to spatial, temporal,

and semantic dimensions. The semantic dimension consists of a set of aspects along with their

respective values. The RT (representative MAT) is organized as a set of pr’s that effectively

summarizes the information from the MAT. Each pr summarizes relevant data derived from

input MAT points, and a robust relationship is maintained between each pr and its associated

MAT points to ensure the accuracy of the representation.

A notable distinction between MAT-SGT and MAT-SG lies in how they handle tem-

poral aspects related to representative points. In the MAT-SG method, a pr could potentially

encompass a set of Temporal Aspects. In contrast, MAT-SGT takes a different approach, where

each pr is associated with a single Temporal Aspect, which could be a single occurrence or a

temporal interval, maintaining only the relationship regarding the Point entity, as each pr is a

specialized MAT point that preserves specific attributes. In essence, RT in MAT-SGT is con-

structed as a temporal sequence of pr’s, highlighting the importance of temporal information

in this method. This emphasis on temporal sequences is a distinctive feature that sets MAT-

SGT apart from MAT-SG and enhances its capabilities for MAT summarization, especially in

capturing the temporal information of mobility activity.

4.2.2 Architecture

Figure 10 provides an overview of the MAT-SGT method, comprised of two core com-

ponents: (i) Data Segmentation and (ii) pr computation. The main objective of Data Segmenta-

tion is to reveal underlying data patterns focused on data density in both spatial and temporal

dimensions. In contrast, the pr Computation component summarizes data by analyzing attribute

value frequency.

The method receives as input a set of filtered MATs (T) based on specific criteria (step

1). Subsequently, the input MAT points are segmented into a spatial cell grid (step 2) to identify

relevant cells. For each relevant cell, steps 4 to 6 are performed to compute representative points
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Figure 10 ± Overview of the MAT-SGT method.

pr that summarize all dimensions and capture the essential characteristics of the input data

within each cell.

All computed pr’s are ordered based on the temporal dimension (step 7), resulting in

the RT as the output data (step 8). The best of the computed RT ’s is then selected as the final

result (step 9). MAT-SGT provides a comprehensive representation of the main behaviors and

characteristics exhibited by the input MATs, considering the spatial and temporal density as

well as the frequency of each aspect attribute value. The next section details the MAT-SGT

process.

Notably, MAT-SGT focuses on temporal summarization and in-depth analysis of other

aspect attribute values. The temporal intervals defined in the Data Segmentation component

play a pivotal role in this analysis.

In essence, MAT-SGT builds upon the MAT-SG methodology by incorporating tempo-

ral interval definition and temporal summarization. The overarching goal is to provide a richer

and more comprehensive representation of input MATs, taking into account spatial and tem-

poral density, the frequency of aspect attribute values, and a deeper understanding of temporal

aspects in the data analysis process.

4.2.3 Algorithm

MAT-SGT algorithm considers the same input parameters as MAT-SG, as detailed in

Table 4 (Algorithm 4). Like MAT-SG, it first computes the minimum spatial threshold (τs) to

measure the dispersion between input points. It then determines the initial z value by calculating

the distance between the grid origin (0,0) and the point that is furthest away from it (line 5).

Since the initial grid is based on the initial z value (lines 9 and 10), this cell size is iteratively

reduced, aiming to compute a better RT (lines 8 to 26).

Both MAT-SG and MAT-SGT algorithms aim to find the optimal segmentation for a

better RT . One of the main differences in MAT-SGT is in line 11, where it aims to find the

optimal segmentation for a better RT . Each iteration segments data spatiotemporally, based

on the current z value, providing spatial allocation (Cell Grid allocation step), and calculates

representative points by analyzing the temporal intervals for each group of points. The second

main difference in this method refers to the temporal sequence of representative points that
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generate the RT (line 15).

The MAT-SGT algorithm accomplishes MAT summarization through two internal com-

ponents: (i) data segmentation; and (ii) pr computation. The quality of the resulting RT is com-

pared to the previous (betterRT ). If it improves by at least 10%, betterRT gets updated (lines

17 to 21). The algorithm stops and returns the best RT if no improvements are found in two

iterations. The two components of the MAT-SGT method are detailed next.

Algorithm 4: MAT-SGT
input : T, τrc, τrv

output: RT /* representative trajectory */
1 rc← |T.points|× τrc;
2 τs← computeMinSpatialThreshold();
3 rt,betterRT ← /0
4 betterRT measure,count← 0;
5 z← computeMaxZValue();
6 wsim← 0.5;
7 wcover← (1−wsim);
8 while z > 1 do

// component (i) - Fig. 10 (steps 2 and 3)
9 cellSize← computeCellSize(τs,z);

10 relCells← cellGridAllocation(rc,cellSize);
// components (i) and (ii) - Fig. 10 (step 4 and 5)

11 setGroupPoints← STIdefinition(relCells,τrv);
// component (ii) - Fig. 10 (step 6)

12 foreach eachGroupPoint ∈ setGroupPoints do
13 pr← computeRepPoint(eachGroupPoint,τrv);
14 rt← rt ∪ pr

15 rt.sort(); // order by STI - Fig. 10 (step 7)
// analysis of better RT - Fig. 10 (step 9)

16 rtMeasure← RMMAT (rt,T,wsim,wcover);
17 if (rtMeasure×1.1)≥ betterRT measure then
18 betterRT measure← rtMeasure;
19 betterRT ← rt;
20 rt← /0
21 count← 0;
22 else
23 count ++;

24 if count > 1 then
25 break;
26 z← z×0.85;

27 return betterRT ;

4.2.3.1 Data Segmentation Component

This component performs data segmentation in two steps: (i) Cell Grid Allocation and

(ii) Temporal Intervals Definition. In the first step, the cell size is computed based on the value of

z and τs. This cell size determines the granularity of the spatial segmentation. Next, it allocates

the input MAT points into the corresponding cells of the spatial grid. This step is similar to

the spatial segmentation step of our previous method (MAT-SG). After allocating points, the

method identifies relevant cells with at least rc points for insights.

In the second step, MAT-SGT analyzes the relevant cells to compute Significant Tempo-

ral Intervals (STI). This step is similar to the computeTemporalDimension algorithm of MAT-

SG (Algorithm 3). However, MAT-SGT introduces an additional refinement, where this analy-
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sis serves both the purpose of data segmentation and the computation of representative points.

For data segmentation, the STI rank is computed for each relevant cell. It involves computing

and analyzing all temporal intervals within the cell and their tendency, determining which in-

tervals can be considered representative based on a frequency rate threshold of τrv. By applying

this procedure, MAT-SGT defines the STI within each relevant cell, capturing the temporal pat-

terns and characteristics of the input MATs. Then, it groups MAT points, each group defined by

each sti∈ ST I of its corresponding relevant cell (Algorithm 4, line 11). This grouping allows for

the identification and extraction of meaningful points that share similar temporal characteristics.

4.2.3.2 Representative Point Computation Component

The second component of MAT-SGT summarizes the groups of points obtained from

the initial component. This entails the computation of a representative point (pr) for each group,

and these pr’s are sorted into a temporal sequence, ultimately forming the RT . The pr generation

process comprehensively addresses the spatial, temporal, and semantic dimensions.

For the spatial dimension, the algorithm calculates the centroid of the points within

each group. In the temporal dimension, we utilize the sti as previously explained. Different

strategies are applied when dealing with semantic dimensions, which can include both categor-

ical and numerical aspects.

For numerical attributes, such as temperature or air humidity, MAT-SGT computes the

median value as the representative value. In contrast, categorical attributes like transportation

means or weather conditions rank the representative mode values. The mode signifies the most

frequently occurring value for each aspect within the group. To determine which values are con-

sidered representative, a predefined threshold (τrv) is applied, similar to our previous method.

After identifying the representative values, these values are normalized to ensure that they col-

lectively sum to 100%, effectively representing the distribution of these values within the group.

This normalization ensures an accurate reflection of the categorical data distribution, delivering

an informative summary.

In summary, the pr computation step combines centroid computation, utilization of sti,

and representative value determination for both numerical and categorical aspects. This com-

prehensive approach consolidates the summarized information for each dimension, contributing

to the computation of the RT .

4.2.3.3 Computation of the Better Representative Trajectory

To analyze and compute the better RT (according to Figure 10 step 9), MAT-SGT

employs a representativeness measure called RMMAT (details provided in Chapter 5) that re-

flects the overall coverage of both MAT points and the information in the RT . This measure

is computed in line 16 in Algorithm 4. This analysis sets wsim and wcover to equal values. The
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measure combines the similarity measure and coverage proportion, aiming to identify the RT

that achieves the maximum coverage of both MAT points and their contained information.

In the MAT-SGT method, spatiotemporal segmentation takes priority over other di-

mensions. It means that if all points within the same cell are semantically different, the algo-

rithm analyzes the temporal density of the points. It computes at least one representative point

that considers spatial and temporal dimensions. This approach highlights the representativeness

of a specific location at a particular time in the input MATs. By incorporating temporal den-

sity analysis, the method captures the significance of an area at a specific moment, taking into

account the dynamic nature of the data.

4.3 OUTPUT DATA

Both MAT-SG and MAT-SGT compute a representative MAT (represented by RT )

which is outputted as a CSV file. The structure of the CSV file is determined by: (i) the

configuration settings for the RT computation, and (ii) the information of each representative

MAT point. The configuration settings include: CellSize, τrc, τrv, |cell|, minPointRC, |RT |, and

|coverPoints|. Here is a breakdown of what each setting represents:

• CellSize refers to the final cell size of the spatial grid;

• |cell| refers to the number of cells that were computed in the model;

• minPointRC refers to the minimum number of points that are needed in each cell to be

considered relevant in the RT computation;

• |RT | refers to the size of RT , which is the number of pr’s;

• |coverPoints| refers to the number of input MAT points that the RT cover, as determined

by the mapping information.

The second element in the output file contains information about each representative

MAT point (pr). This information has the following structure: "lat_lon, time, #Semantic_Aspe-

cts#, mapping". The "lat_lon" refers to the spatial dimensions of the point made up of latitude

and longitude. The "time" refers to the temporal aspects of the point, which can be either an

interval or a single occurrence. In MAT-SG, the "time" information can be a rank, whereas in

MAT-SGT, each pr is represented by only one-time value. The "#Semantic_Aspects#" illus-

trated all the semantic aspects of the input MATs. These are categorical types that provide a

normalized rank of information. For example, weather conditions can be ranked as follows:

"{CLOUDS: 0.5; CLEAR: 0.4; RAIN: 0.1}". Numerical types are represented by their median

value. Finally, the "mapping" refers to the input MAT points that make up the referent pr. For

instance, in "127: 3; 127: 9; 129: 43; 134: 92; 137: 110; 137: 118; 138: 139," the present pr is

composed of points with ID #3 and #9 of the trajectory ID #127, along with other points.
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4.4 RUNNING EXAMPLE

This section provides an illustrative example of both methods, MAT-SG and MAT-SGT

in order to highlight their differences. We consider a set of input MATs, denoted as T = ⟨q,r,s⟩.

Each MAT, represented as q= ⟨pq1 , pq2 , ..., pqn
⟩, r = ⟨pr1 , pr2 , ..., prm⟩, and s= ⟨ps1 , ps2 , ..., pst ⟩,

corresponds to the trajectory of a same individual in the different days. Figure 11 presents these

MATs along with related aspects such as the price spent at PoIs, the visited PoIs, weather

conditions, and rain precipitation.

Figure 11 ± Sample data with point aspects information for trajectories q, r, and s.

In this example, we set the input values as τrc= 25% and τrv= 25%. Given that the

total number of points in T is 17, a relevant cell must contain more than 4 points. Additionally,

we define a cell size of 12.5 to ensure a consistent structure and facilitate understanding of the

summarization process in both methods.

4.4.1 MAT-SG

Figure 12 presents the resulting representative trajectory rt = ⟨prt1 , prt2⟩ from different

perspectives. In Figure 12 (a), the spatial distribution of the representative trajectory computed

from T is showcased. The input MATs are segmented into a grid of cells, and the red line denotes

the corresponding RT . Figure 12 (b) provides a detailed output, offering additional information

and insights about the RT . As previously mentioned, data summarization occurs within cells

containing more than 4 points.

For a more in-depth understanding of our summarization process, each step is illus-

trated in Figure 13. Let’s focus on the first cell, as shown in Figure 13 (a). In step (b), which

corresponds to the pr Computation step, each dimension is summarized. The temporal and

semantic dimensions are highlighted, considering τrv= 25%, and the values considered repre-

sentative for each aspect are identified, i.e., those with at least a τrv value. Subsequently, these
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Figure 12 ± Visualization of the resulting MAT-SG representative trajectory (RT ) from different perspectives: (a)
Spatial view; and (b) Detailed RT description of point aspects, providing additional insights.

representative values for each aspect are normalized, and the resulting values across all aspects

represent the pr of this cell. In this instance, prt1 serves as the referent MAT point for the first

cell, derived from pq1 , pq2 , pq3 , pq6 , pr1 , pr2 , pr6 , ps1 , and ps5 , as illustrated in Figure 15 (c).

Figure 13 ± A step-by-step perspective of the summarization process in MAT-SG, illustrated by the analyzed cell
(a), the pr Computation step (b), and the final representative points computed (c).

In this scenario, insightful observations can be made, such as the individual’s tendency

to check in at home in the morning (between 05:45 and 05:50) and during the night period

(between 22:15 and 23:30), likely corresponding to the times of leaving and returning to her/his

residence.

4.4.2 MAT-SGT

Figure 14 shows the resulting rt = ⟨prt1 , prt2 , ..., prtk⟩ in different perspectives. Fig-

ure 14 (a) shows the spatial distribution of the representative trajectory computed from T. The
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input MATs are segmented into a grid of cells, and the red line indicates the corresponding

RT . Figure 14 (b) illustrates a spatiotemporal perspective displaying the evolution of the input

MATs and the computed RT , providing insights into how they unfold over time. Detailed output

is illustrated in Figure 14 (c), providing additional information and insights about the RT .

Figure 14 ± Resulting MAT-SGT in representative trajectory (RT ) visualization in different perspectives: (a) Spa-
tial perspective; (b) Spatiotemporal perspective; and (c) RT description of point aspects providing
additional details.

To gain a better understanding of our summarization process, we have illustrated each

step in Figure 15. Let’s focus on the first cell, as shown in Figure 15 (a). In step (b), which

refers to the Temporal Intervals definition step, we identify 5 temporal intervals, consisting

of 2 temporal intervals and 3 simple occurrences. Considering a τrv= 25%, only 2 temporal

intervals were considered as relevant sti ∈ ST I from the input MATs in this cell. The first sti

covers the time interval between 05:45 and 05:50, while the second covers 22:15 to 23:30.

These sti’s contain important MAT points that contribute to the computation of RT considering

spatiotemporal density. Moving on to step (c) in Figure 15, it illustrates the pr Computation

step, where the group of points in each relevant sti are summarized into a representative point.

Specifically, prt1 represents the referent MAT point for the first segment (derived from pq1 , pr1 ,

and ps1), and prt4 represents the referent MAT point for the second segment, as illustrated in

Figure 15 (d).

In this scenario, it is inferred that the individual typically leaves home between 05:45

and 06:50. After spending time during the day, he/she tends to have dinner near home, likely in

a more affordable restaurant, before returning home.

4.5 SUMMARY

This chapter addresses the challenges of summarizing trajectories, particularly focus-

ing on reducing trajectory data volume and preserving key patterns, as described on Section 2.3,

with a specific emphasis on the complexities highlighted in MATs, such as data volume, veloc-

ity, and complexity (as described in Section 2.2). Our main contribution are 2 novel methods,
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Figure 15 ± A step-by-step perspective of the summarization process in MAT-SGT, illustrated by the analyzed cell
(a), the Temporal Definition step (b), the pr Computation step (c), and the final representative points
computed (d).

MAT-SG and MAT-SGT, designed to generate a representative MAT for a given set of MATs

filtered by some criteria.

In essence, both MAT-SG and MAT-SGT methods aim to compute a representative

MAT (RT ) by delving into the distribution of MAT points. These approaches systematically

identify and prioritize significant segments and aspects within the input MATs, resulting in an

RT that comprehensively captures the main behaviors and characteristics of the input MATs.

This ensures a succinct summary of each aspect individually. Moreover, both methods establish

a coherent mapping between the input MATs and the resultant representative MAT, thereby pre-

serving the intrinsic relationship between the original data and its summarized representation.

While MAT-SG specializes in spatial segmentation/density and data summarization,

aiding in the identification of movement patterns across various spatial areas and addressing

various aspects, i.e., MAT-SG excelling in summarizing representative aspects within specific

spatial areas. This method is invaluable when understanding spatial patterns is crucial, regard-

less of temporal sequence relevance. For example, in the context of vessel trajectories, where

the purpose is to identify the region where each activity happens (cargo or fishing) and the

pattern aspects involved in each activity, MAT-SG works well.

In contrast, MAT-SGT focuses on emphasizing temporal sequences, providing detailed

insights into the chronology of events or movements over time. It focuses on computing a rep-

resentative MAT by identifying the temporal sequences associated with movement patterns. For

instance, in the context of a recommendation system, where understanding the sequence move-

ment over time, identifying the region, trend period, and aspects involved, MAT-SGT could be

better suited.

Despite serving distinct purposes, both methods share the common goal of identifying

and prioritizing significant segments and aspects, culminating in a representative MAT (RT )

that effectively captures the pivotal features of the input MATs. However, the choice between
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MAT-SG and MAT-SGT depends on the analysis objectives, with MAT-SG preferred for spatial

pattern comprehension and MAT-SGT for detailed temporal narratives.
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5 RMMAT: REPRESENTATIVE MEASURE FOR MULTIPLE ASPECT TRAJECTO-

RIES

This chapter presents another contribution of this Thesis. It introduces the Represen-

tativeness Measure for Multiple-Aspect Trajectories (RMMAT)17 , a standardized metric for

evaluating the effectiveness of representative data given by summarization methods, offering a

solution to the challenge of evaluating how effectively a representative trajectory reflects the

original dataset (MACHADO et al., 2023b). RMMAT leverages similarity metrics and covered

information to offer a comprehensive measure that quantifies the quality of representative data

concerning the complete input dataset. This score can be customized to align with the specific

requirements of different analytical scenarios, allowing analysts to tailor the evaluation process

accordingly.

The core question addressed in this section is: ’How much of the RT captures and

reflects the original MATs’ essence within an input dataset T (D = t1, t2, ..., tn )?’. The compu-

tation of RT should be customizable based on specific use case objectives and requirements, as

different applications may demand varying levels of granularity and information preservation.

Designed for big trajectory data with multiple aspects, this novel representativeness

measure aims to quantify the information coverage of RT from the input dataset T and estimate

its similarity to the entire dataset, i.e., it measures how well a representative trajectory captures

the essence of the original dataset, which is particularly useful given the increasing complexity

and growth of trajectory data. The objective is to simplify the evaluation of summarization

methods and extract valuable insights from extensive MAT datasets.

RMMAT is designed to provide a balanced and objective measure of two components:

(i) similarity metric and (ii) covered information. By assigning numerical values to similarity,

this measure offers a concrete and measurable way to assess how closely the RT reflects the

complex patterns in the input dataset. Additionally, the measure takes into account the covered

information, allowing us to evaluate whether the RT can accurately encapsulate specific points

from the dataset, thus reflecting the overall integrity of the RT concerning the entire dataset.

By combining these two components, RMMAT aims to address the limitations of evaluating

representativeness in summarized MAT, providing a rigorous and objective evaluation of how

well the RT captures the intricacies of the data. Both components are detailed next.

5.1 SIMILARITY METRIC COMPONENT

Trajectory similarity serves as a metric to measure the similarity between two trajec-

tories, considering the entire movement, involving attributes like spatial positions, temporal

sequences, and semantic aspects. This method helps in assessing how much common patterns

exist in the movement of two trajectories. While traditional similarity measures are effective for

comparing individual trajectories, computing the similarity of a particular trajectory, the RT ,

17 Source code available at https://github.com/RepresentantativeMAT/RMMAT.git
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against all other trajectories in a dataset is still an open issue.

To address this issue, we evaluate the similarity measure between RT and each tra-

jectory t1, t2, ..., tn in T, where both T and RT are non-empty elements. Recognizing the po-

tential presence of skewed distributions or outliers in the dataset, we decided to use the me-

dian value of the similarity measure across all pairs of MATs (RT and each t ∈ T), given that

0 ≤ Similarity ≤ 1. By using the median, a more robust measure of central tendency than the

average, we guard against the influence of outliers and skewed data distributions. It ensures that

extreme values or anomalies in similarity scores do not unduly impact the result, providing a

more balanced representation of central tendency. The equation is expressed as follows.

|Similarity(RT,T)|=

Me({Similarity(RT, t1),Similarity(RT, t2), ...,Similarity(RT, tn)})
(5.1)

The function Me calculates the median similarity score between RT and all t ∈ T by

computing the median of the similarity measures.

5.2 COVERED INFORMATION COMPONENT

Aiming to evaluate the accuracy on which RT encapsulates specific information from

T, the covered information within T by RT is computed. So, the covered MAT points by RT

in each t ∈ T are computed, i.e., the total MAT points in T that are mapped contribute to the

computation of RT . The resulting proportion represents the covered information, a non-negative

value indicating the overall integrity of the RT relative to the entire dataset. This computation

is defined as:

T c(RT ) =

(

∑
T
p∈t p⊆ RT

|T.points|

)

(5.2)

The mapping between the input MATs and the representative MAT allows determining

how much the computed RT covers the input MATs (T c(RT )). Equation 5.2 calculates the

proportion of covered MAT points by the RT concerning all t ∈ T, representing how well the

computed RT captures the points of the input MATs (T.points).

RMMAT is designed to provide a representativeness measure score that balanced both

components: (i) similarity metric and (ii) covered information, and it is calculated by the final

equation RMMAT, where RMMAT ∈ [0,1]:

RMMAT = ωsim×|Similarity(RT,T)|+ωcover×T c(RT ) (5.3)

Let W = ωsim,ωcover be a non-empty set of weights. The weights ωsim and ωcover rep-

resent the importance of each component for computing the representativeness between trajec-

tories for a specific scenario. It is assumed that ωsim +ωcover = 1.0. Components with higher

weights have a more pronounced impact on the final representativeness scores. The weights can
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be adjusted based on the specific scenario to prioritize either the covered information (ωcover)

or the similarity (ωsim).

5.3 RUNNING EXAMPLE

For the sake of understanding, this section introduces a running example to illustrate

the functionality of RMMAT. It consists of a set of input MATs T, each one representing a

trajectory attributed to a different individual.

For computing RMMAT, several key elements require definition: (i) the selection of

a summarization method responsible for deriving representative data; (ii) the establishment of

an appropriate similarity measure; (iii) the definition of weights (W ) to individual components.

Here, we opt to use the same Running Example presenting for MAT-SGT, disposed in Sec-

tion 4.4.2, one state-of-the-art MAT summarization method, and the widely recognized MAT

similarity measure MUITAS (PETRY et al., 2019). As exemplified in Chapter 4, both methods

MAT-SG and MAT-SGT establish a mapping between the input data and the resultant rep-

resentative trajectory, facilitating the inclusion of covered information in the computation of

representativeness. We employ a balanced weights strategy by setting ωsim = ωcover = 1
2 .

In order to compute similarity using MUITAS, settings must be defined, including

features, weight, and proximity functions. Each attribute in the input dataset is defined as a sin-

gle feature. Proximity functions consider spatial, temporal, and semantic aspects with weight-

balanced dimensions. Regarding the summarization method, we will use the setup of MAT-SGT

where τrc= 0.1 and τrv= 0.25.

The input MATs and their corresponding RT are shown in Figure 16. The trajectories

are depicted on the left side, and their corresponding RT calculated is shown on the right side.

The spatial and temporal information, along with the price and category of the PoIs, weather

conditions, and precipitation, represent the input trajectories and the RT .

Figure 16 ± Set of input MATs T = ⟨q,r,s⟩, where q = ⟨pq1 , pq2 , ..., pqn⟩, r = ⟨pr1 , pr2 , ..., prm⟩, and s =
⟨ps1 , ps2 , ..., pst ⟩ (left), and their correspondent RT (right).

For computing RMMAT, we first compute the similarity between each trajectory in
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T and RT , where MUITAS(q,RT ) = 0.686, MUITAS(r,RT ) = 0.835, and MUITAS(s,RT ) =

0.871. Then, according to Equation 5.1, the |Similarity(RT,D)|= 0.835. Regarding the covered

information, Equation 5.2, T c(RT ) = 10
17 = 0.5882.

Finally, considering the computation of RMMAT with balanced weights strategy by

setting ωsim = ωcover = 1
2 , and according to Equation 5.3, we have RMMAT = (0.5×0.835)+

(0.5×0.5882) = 0.7116. It means that RT has a representativeness of 0.7116 of T considering

both similarity and covered information.

5.4 ANALYZING RMMAT REGARDING SIMILARITY INFORMATION

This section delves into the analysis of RMMAT focusing on similarity information.

As (PETRY et al., 2019), we use the trajectories of each user as the ground truth, as trajectories

of the same user are more likely to be similar than the trajectories of other users. Then, to gain

insights into RMMAT behavior, we conducted an experiment using a sample of user trajectories

of the Foursquare dataset (see Section 6.1).

Since there is no common strategy in the literature to evaluate a representative MAT

for benchmarking, we established our criteria. For each group, we choose the MAT ti with the

median similarity score as the baseline, computed across all group trajectories. It ensures that

the baseline serves as a reference point for comparison purposes.

We present illustrative examples of evaluations based on the standard deviation (SD)

of average and median similarity scores of each user’s baseline. Three users were selected for

in-depth analysis, each representing distinct characteristics in terms of SD: (i) user 185, show-

casing a lower SD for average similarity scores; (ii) user 730, featuring a lower SD for median

similarity scores; and (iii) user 708, displaying the highest SD for both average and median

similarity scores.

This evaluation uses ωsim = 1 and ωcover = 0 based on the MUITAS similarity measure.

The experiment involves assessing the representativeness of RT in similarity information with

different threshold values for relevant cell (RC) and representativeness value (RV), namely τrc

and τrv. The methods were repeated for each user with different parameter settings for τrv and

τrc, varying from 0% to 25% (0, 1, 5, 10, 15, 20, 25), to evaluate the sensitivity and robustness

of the RMMAT measure. This investigation explores the impact of varying combinations of

these thresholds on the computation of RT in both MAT-SG and MAT-SGT.

On using MUITAS, we considered proximity functions, including spatial, temporal,

and semantic functions, to assess the similarity between trajectories T ∈ T and RT with spec-

ified weights to balance all dimensions. The functions used are: (i) spatial: Euclidean dis-

tance measure. We consider a match occurs if the distance falls within a predefined threshold

(2×cellSize); (ii) temporal: we consider a match if the timestamp of T falls within the temporal

interval of RT ; (iii) semantic: for numeric types, a match occurs if the difference is equal to or

less than 10% of the RT value, and for categorical types, a match occurs if the attribute value

of T falls within the range of RT values.
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Figures 17 and 18 visually depict the results of the similarity evaluation for each user

under different input parameter configurations, compared to the baseline. These figures high-

light the variations in similarity scores while varying the temporal threshold.

Figure 17 ± This graph analyzes the similarity evaluation (Y-axis) by comparing varying threshold RC, the τrc,
shown as distinct lines, and the threshold RV, the τrv, concerning baseline for users 185, 708, and 730.
It explores different parameter configurations of the τrv (X-axis) to evaluate similarity. This analysis
refers to the MAT-SG method.

Our RMMAT consistently outperformed the baseline for low parameter configurations,

shedding light on the intricate interplay between different threshold parameters and their impact

on RT computed from MUITAS.

For MAT-SG, users 185 and 708 exhibit a specific RT behavior pattern across different

RV threshold values. Regarding the threshold RC, determining relevant cells for RT computa-

tion seems to influence RT changes significantly since, for these users, an increase in the value

of this parameter configuration results in a decrease in RMMAT. This underscores the sensitivity

of RMMAT to parameter choices and their implications for the representativeness of RT . The

behavior of user 730 highlights the importance of parameter configurations in RT computation.

For MAT-SGT, users 708 and 730 display specific RT behavior patterns across dif-

ferent RV threshold values. As the value of this parameter configuration increases, RMMAT

decreases, emphasizing the influence of parameter configurations on RT computation and its

subsequent impact on representativeness.

We employed correlation coefficients to quantify the impact of threshold values for

RC and RV in both methods on the RMMAT measure. The coefficients reveal relationships
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Figure 18 ± This graph analyzes the similarity evaluation (Y-axis) by comparing varying threshold RC, the τrc,
shown as distinct lines, and the threshold RV, the τrv, concerning baseline for users 185, 708, and 730.
It explores different parameter configurations of the τrv (X-axis) to evaluate similarity. This analysis
refers to the MAT-SGT method.

between input parameters and RMMAT scores for RT computed for both methods (MAT-SG

and MAT-SGT) and input trajectories. The results in Table 5 offer valuable insights into how

threshold parameters influence the accuracy of computed representative trajectories. Positive

coefficients indicate that higher threshold values correspond to higher RMMAT scores, while

negative coefficients suggest the opposite.

Table 5 ± Impact of Input Parameters on the Representativeness Measure of RT

correlation

coefficient

MAT-SG MAT-SGT

threshold RC threshold RV threshold RC threshold RV

User 185 -0.568 -0.526 0.408 -0.788
User 708 -8.770 -0.966 -0.154 -0.829
User 730 -0.378 0.027 -0.817 -0.243

For MAT-SG, user 185 exhibits a negative correlation (-0.568) between RMMAT scores

and threshold RC, indicating that increasing threshold RC leads to a decrease in RMMAT

scores. User 708, characterized by a greater SD in similarity scores and displayed the one with

a more consistent pattern, shows a high negative correlation (-8.770), suggesting that higher

threshold RC values consistently lead to lower RMMAT scores. For user 730, a negative corre-

lation (-0.378) implies that higher threshold RC values result in lower RMMAT scores. Across

all users in MAT-SG, the negative correlation pattern highlights that higher threshold RC values
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lead to less representative RT .

For MAT-SGT, user 185 exhibits a positive correlation (0.408) between RMMAT scores

and threshold RC. The RMMAT scores increase as threshold RC values increase. User 708,

characterized by greater SD in similarity scores, shows a slight negative correlation (-0.154),

indicating that increasing threshold RC leads to a minor decrease in RMMAT scores. For user

730, who displays more consistent patterns, a negative correlation (-0.817) suggests that higher

threshold RC values lead to lower RMMAT scores.

This analysis provides nuanced insights into the dynamics of RMMAT concerning

similarity information. It comprehensively explains how different parameter configurations in-

fluence the computed RT and its representativeness. Notably, in MAT-SG, higher threshold RC

values consistently lead to less representative RT . Meanwhile, in MAT-SGT, the correlation pat-

terns reveal the nuanced impact of both threshold RC and RV values on RMMAT scores. The

threshold RC and RV significantly influence the behavior and accuracy of the computed rep-

resentative trajectory, necessitating careful consideration of their selection to capture relevant

input data patterns. This analysis underscores the improvements achieved through the RMMAT

measure, highlighting its efficacy in enhancing data comprehension. Overall, the results empha-

size the effectiveness of RMMAT as a valuable tool for better understanding complex trajectory

data.

5.5 ANALYZING RMMAT REGARDING COVERED INFORMATION

In the absence of a standardized strategy for evaluating the representativeness of a rep-

resentative MAT in the existing literature, our analysis extends beyond similarity to encompass

both similarity and cover components. To gauge the utility of RT , we employ the Average Re-

call (AR) metric, drawing inspiration from the experimental evaluation of the similarity measure

proposed by Petry et al. (2019). While aligning with their evaluation methodology and leverag-

ing their dataset for ground truth segmentation, our focus diverges. In Petry et al. (2019), the

primary objective was to validate their similarity measure, specifically assessing the similarity

between pairs of trajectories. While our foundation is rooted in their methodology, our focus

remains to quantify the quality of the summarization methods and representativeness of data

computation, evaluating the utility of RT within the context of the input dataset. We aim to

evaluate the utility of RT within the context of the input dataset.

The AR metric becomes pivotal in this evaluation. This metric measures recall based on

the similarity between the RT computed by RMMAT and other trajectories within the dataset.

The recall is defined as the fraction of relevant trajectories that are successfully retrieved. In the

context of ranking trajectories within the same ground truth group, the ideal outcome is that the

top k most similar trajectories also belong to the same group, where k = |Tgroup|. This provides

a robust measure of how effectively RT can rank trajectories within the same group.

The evaluation process involves computing the RT for each user in our sample of users

in our selected sample (users 185, 708, and 730). The idea is that the trajectories of the same



82

user exhibit similarity. The goal is for each user of the RT to have high similarity values with

the trajectories in that group.

To analyze the impact of covered information in RMMAT, we assess the utility of RT

using the AR metric. The process begins by computing RT and calculating similarity over the

entire dataset. Trajectories are then ordered based on similarity scores. Subsequently, trajec-

tories are ranked according to these similarity scores, and the recall metric is computed. This

metric quantifies how effectively RT can accurately rank trajectories within the same group.

To assess the impact of covered information in RMMAT, we consider two scenarios

for both MAT-SG and MAT-SGT regarding the computation of representativeness: (A) without

covered information, which explores RT computation without considering covered information,

and (B) with covered information, where covered information is integrated into RT computa-

tion. We obtain evaluation results by computing RT for each user in our selected sample in

both MAT-SG and MAT-SGT with different threshold values for τrc and τrv. These threshold

values range from 0% to 25% (0, 1, 5, 10, 15, 20, 25), resulting in 49 runs for each user. By

varying combinations of these thresholds, we explore their impact. We calculate similarity us-

ing MUITAS and order trajectories based on similarity scores. Finally, we employ the recall

metric to measure the ability of RT to accurately rank trajectories within the same group. We

highlighted the differences between both methods, emphasizing the higher value between with

or without covered information.

Tables 6 (A) and (B) display the AR values for user 185 by MAT-SG in both scenarios,

respectively. Additionally, Table 7 compiles the results of the AR analysis, where both scenarios

yield the same outcomes for this specific situation.

Table 6 ± The AR of User 185 by MAT-SG

(A) Without covered information

τrv

τrc
0.00 0.01 0.05 0.10 0.15 0.20 0.25

0.00 0.9 1 1 1 1 1 1
0.01 0.9 1 1 1 1 1 1
0.05 0.9 1 1 0.95 0.95 0.95 0.95
0.10 0.9 1 1 1 1 1 1
0.15 0.9 0.98 1 1 1 1 1
0.20 0.9 1 1 1 1 1 1
0.25 0.9 0.98 1 1 1 1 1

(B) With covered information

τrv

τrc
0.00 0.01 0.05 0.10 0.15 0.20 0.25

0.00 0.9 1 1 1 1 1 1
0.01 0.9 1 1 1 1 1 1
0.05 0.9 1 1 0.95 0.95 0.95 0.95
0.10 0.9 1 1 1 1 1 1
0.15 0.9 0.98 1 1 1 1 1
0.20 0.9 1 1 1 1 1 1
0.25 0.93 0.98 1 1 1 1 1

Table 7 ± AR Analysis regarding covered information in User 185 by MAT-SG

With Cover Without Cover

Missing values 0 0
Best Value 1 1
Worse Value 0.9 0.9
AVG AR 0.988 0.988
Median AR 1 1

For the same user 185, the scenarios for MAT-SGT are respectively presented in Ta-

bles 8 (A) and (B), and the compiled results of the AR analysis are presented in Table 9. In-

stances with missing values, indicated by "-", denote situations where RT computation with
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specific parameter configurations is not feasible due to the particular data patterns present in the

input dataset.

Upon analyzing the summarized outcomes of the AR analysis in Table 9, some relevant

variations between including and excluding covered information for User 185 by MAT-SGT are

observed. Specifically, there is an average AR growth of 0.707 when analyzing the scenario

without covered information, compared to 0.771 when including covered information.

Table 8 ± The AR of User 185 by MAT-SGT

(A) Without covered information

τrv

τrc
0.00 0.01 0.05 0.10 0.15 0.20 0.25

0.00 0.9 0.93 0.95 1 1 1 1
0.01 0.9 0.93 0.93 1 1 1 1
0.05 0.9 0.95 0.98 1 1 0.98 0.98
0.10 0 0 0.81 0 - - -
0.15 0 0.98 - - - - -
0.20 0.02 1 - - - - -
0.25 0.02 0.83 - - - - -

(B) With covered information

τrv

τrc
0.00 0.01 0.05 0.10 0.15 0.20 0.25

0.00 0.9 0.93 0.95 1 1 1 1
0.01 0.9 0.93 0.93 1 1 1 1
0.05 0.9 0.95 0.98 1 0.98 0.98 0.98
0.10 0 0 0.81 0 - - -
0.15 0 0.98 - - - - -
0.20 0.02 1 - - - - -
0.25 0.02 0.83 - - - - -

Table 9 ± AR Analysis regarding covered information in User 185 by MAT-SGT

With Cover Without Cover

Missing values 18 18
Best Value 1 1
Worse Value 0 0
AVG AR 0.771 0.707
Median AR 0.93 0.93

In the case of User 708, computed by MAT-SG, Tables 10 (A) and (B) show the AR

values, and Table 11 compiles the results of the AR analysis, where for this situation, both

scenarios present the same results.

Table 10 ± The AR of User 708 by MAT-SG

(A) Without covered information

τrv

τrc
0.00 0.01 0.05 0.10 0.15 0.20 0.25

0.00 1 1 0.9 0.8 0.5 0.5 0.5
0.01 1 1 0.9 0.8 0.5 0.5 0.5
0.05 1 1 0.9 0.8 0.6 0.6 0.6
0.10 1 1 0.9 0.8 0.6 0.6 0.6
0.15 1 1 0.9 0.7 0.7 0.7 0.5
0.20 1 1 0.9 0.7 0.7 0.7 0.6
0.25 1 1 0.9 0.8 0.6 0.6 0.6

(B) With covered information

τrv

τrc
0.00 0.01 0.05 0.10 0.15 0.20 0.25

0.00 1 1 0.9 0.8 0.5 0.5 0.5
0.01 1 1 0.9 0.8 0.5 0.5 0.5
0.05 1 1 0.9 0.8 0.6 0.6 0.6
0.10 1 1 0.9 0.8 0.6 0.6 0.6
0.15 1 1 0.9 0.7 0.7 0.7 0.5
0.20 1 1 0.9 0.7 0.7 0.7 0.6
0.25 1 1 0.9 0.8 0.6 0.6 0.6

Table 11 ± AR Analysis regarding covered information in User 708 by MAT-SG

With Cover Without Cover

Missing values 0 0
Best Value 1 1
Worse Value 0.5 0.5
AVG AR 0.81 0.81
Median AR 0.7 0.7

By MAT-SGT, both scenarios for user 708 are respectively presented in Tables 12 (A)

and (B), and the compiled results of the AR analysis are presented in Table 13. While there were



84

some minor variations in the specific values, the overall assessment presented in Table 13 does

not indicate a substantial difference. The AR values for this user are relatively stable, regardless

of whether the covered information was included or excluded during the analysis.

Table 12 ± The AR of User 708 by MAT-SGT

(A) Without covered information

τrv

τrc
0.00 0.01 0.05 0.10 0.15 0.20 0.25

0.00 0.9 0.9 0.9 0.9 0.9 0.9 0.9
0.01 0.9 0.9 0.9 0.9 0.9 0.9 0.9
0.05 0.8 0.8 0.8 0.8 0.8 0.8 0.8
0.10 0.9 0.9 0.9 0.9 0.9 0.9 0.9
0.15 0.8 0.8 0.8 0.8 0.8 0.8 0.9
0.20 0.9 0.9 0.9 0.9 0.9 0.9 0.9
0.25 0.9 0.9 0.9 0.9 0.8 0.8 0.8

(B) With covered information

τrv

τrc
0.00 0.01 0.05 0.10 0.15 0.20 0.25

0.00 0.8 0.8 0.9 0.8 0.9 0.9 0.9
0.01 0.8 0.8 0.9 0.8 0.9 0.9 0.9
0.05 0.8 0.8 0.8 0.8 0.8 0.8 0.8
0.10 0.9 0.9 0.9 0.9 0.9 0.9 0.9
0.15 0.8 0.8 0.8 0.8 0.8 0.8 0.8
0.20 0.9 0.9 0.9 0.9 0.9 0.9 0.9
0.25 0.9 0.9 0.9 0.9 0.8 0.8 0.8

Table 13 ± AR Analysis regarding covered information in User 708 by MAT-SGT

With Cover Without Cover

Missing values 0 0
Best Value 0.9 0.9
Worse Value 0.8 0.8
AVG AR 0.862 0.87
Median AR 0.9 0.9

For the user 730, computed by MAT-SG, both scenarios are respectively presented in

Tables 14 (A) and (B), and the compiled results of the AR analysis are presented in Table 15.

In this situation, a slight variation can be observed when including or excluding covered in-

formation, showing in underlying value. Additionally, the average AR growth of 0.927 when

analyzing the scenario without covered information, compared to 0.940 when including covered

information.

Table 14 ± The AR of User 730 by MAT-SG

(A) Without covered information

τrv

τrc
0.00 0.01 0.05 0.10 0.15 0.20 0.25

0.00 1 1 1 1 0.9 0.83 0.83
0.01 1 1 1 1 0.93 0.87 0.87
0.05 1 1 1 1 0.93 0.87 0.87
0.10 1 1 1 1 0.93 0.87 0.87
0.15 1 1 1 1 0.9 0.83 0.83
0.20 1 1 1 1 0.93 0.87 0.87
0.25 1 1 1 1 0.93 0.87 0.87

(B) With covered information

τrv

τrc
0.00 0.01 0.05 0.10 0.15 0.20 0.25

0.00 1 1 1 1 0.93 0.83 0.83
0.01 1 1 1 1 0.93 0.87 0.87
0.05 1 1 1 1 0.93 0.87 0.87
0.10 1 1 1 1 0.93 0.87 0.87
0.15 1 1 1 1 0.9 0.83 0.83
0.20 1 1 1 1 0.93 0.87 0.87
0.25 1 1 1 1 0.93 0.87 0.87

Table 15 ± AR Analysis regarding covered information in User 730 by MAT-SG

With Cover Without Cover

Missing values 0 0
Best Value 1 1
Worse Value 0.83 0.83
AVG AR 0.940 0.927
Median AR 1 1



85

The AR values for user 730 computed by MAT-SGT in both scenarios are presented

in Tables 16 (A) and (B). Additionally, Table 17 compiles the AR analysis outcomes for this

user. It is evident that there is a substantial variation in AR values across different scenarios,

which highlights the significant impact of covered point data on the AR measure. This disparity

emphasizes how the inclusion of covered information can significantly influence the outcomes

of a representativeness measure.

Table 16 ± The AR of User 730 by MAT-SGT

(A) Without covered information

τrv

τrc
0.00 0.01 0.05 0.10 0.15 0.20 0.25

0.00 0.97 0.97 0.9 0.9 0.9 0.9 0.9
0.01 0.93 0.93 0.87 0.87 0.87 0.87 0.87
0.05 0.93 0.93 0.87 0.87 0.87 0.87 0.87
0.10 0.97 0.97 0.83 0.83 0.83 0.83 0.83
0.15 0.9 0.9 0.77 0.77 0.77 0.77 0.77
0.20 0.9 0.9 0.83 0.83 0.83 0.83 0.83
0.25 0.87 0.87 0.83 0.83 0.83 0.83 0.83

(B) With covered information

τrv

τrc
0.00 0.01 0.05 0.10 0.15 0.20 0.25

0.00 1 1 1 1 0.9 0.9 0.87
0.01 1 1 1 1 0.93 0.93 0.87
0.05 1 1 1 1 0.9 0.9 0.87
0.10 1 1 1 1 0.87 0.87 0.83
0.15 1 1 1 1 0.9 0.9 0.73
0.20 1 1 1 1 0.87 0.87 0.9
0.25 1 1 1 1 0.93 0.93 0.87

Table 17 ± AR Analysis regarding covered information in User 730 by MAT-SGT

With Cover Without Cover

Missing values 0 0
Best Value 1 0.97
Worse Value 0.73 0.77
AVG AR 0.94 0.878
Median AR 1 0.87

The analysis of RMMAT w.r.t. covered information, as well as the variation in AR

values between the inclusion and exclusion of covered point data, reveals consistent trends in

both MAT-SG and MAT-SGT scenarios. Overall, minimal differences are observed, suggesting

a stable pattern of minimal variation. In the case of MAT-SG, there is a slight growth when

covered information is included. Notably, User 730 in the MAT-SGT scenario exhibits the most

significant distinctions between scenarios, emphasizing the influence of covered point data.

However, it is intriguing to observe that, for the same user, trajectories retrieved with covered

point data fare better than computed RT trajectories, indicating a potential impact on RMMAT

scores and implying differences in underlying data patterns.

In summary, the AR analysis of User 708 by MAT-SG appears relatively unaffected by

the presence of covered point data, indicating limited influence on the outcomes. In contrast,

the analysis of User 730 by MAT-SGT underscores the substantial impact of aggregating cov-

ered information. This disparity underscores the importance of a nuanced consideration of each

component in RMMAT measure. It emphasizes the importance of considering each component

in the RMMAT calculation to create a customized configuration that suits specific datasets and

analysis objectives.
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5.6 PROPERTIES OF RMMAT

One of the notable strengths of RMMAT lies in its adaptability. The configurable nature

of its components permits analysts to tailor the evaluation process to match the unique demands

of different analytical scenarios, providing a versatile tool that aligns with varying objectives

and data characteristics.

Addressing a critical gap, RMMAT introduces a quantitative metric for evaluating tra-

jectory summarization methods. This objective measurement approach overcomes the limita-

tions of previous subjective evaluation methods, paving the way for more accurate decision-

making, deeper insights, and overall advancements in trajectory analysis.

The effectiveness of RMMAT in computing a representative MAT depends on the spe-

cific purpose and requirements of a use case. Different applications may need varying levels

of granularity and information preservation. The evaluation of the summarization method is in-

herently tied to the specific objectives being analyzed. RMMAT focuses on assessing similarity

and covered information, providing a comprehensive measure of the quality of representative

data concerning the complete input dataset.

At last, RMMAT is not only a novel metric for trajectory data summarization. It also

provides a flexible measure that can be adapted to diverse analytical scenarios. This adaptabil-

ity, associated with the ability to objectively measure the quality of representative trajectories,

makes RMMAT a valuable tool for researchers and analysts in the field of mobility analysis.
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6 EXPERIMENTAL EVALUATION

As identified in Chapter 3, given the lack of a compatible baseline in related works,

we opted to use datasets involving MATs for a quantitative evaluation. This chapter presents

and details an experimental evaluation of both proposed summarization methods (MAT-SG and

MAT-SGT), shedding light on their utility and representativeness. In the following sections, we

describe the datasets, methodology, and the results of experiments over the proposed methods.

6.1 DATASETS

We evaluate the effectiveness of our methods using four datasets containing MATs.

Three of these datasets, Foursquare, Gowalla, and Brightkite, are publicly available18 . These

datasets, widely employed in other works (ZHOU et al., 2018; PETRY et al., 2019; da SILVA;

PETRY; BOGORNY, 2019; PORTELA; CARVALHO; BOGORNY, 2022), contribute to the

robustness of our evaluation. Additionally, we include a private dataset19 from Pisa, also uti-

lized in Petry et al. (2019). The diversity in these datasets ensures a comprehensive evaluation,

considering multiple dimensions and aspects of trajectory data.

The Foursquare NYC dataset is a well-established trajectory dataset encompassing

check-in data in New York City, spanning from April 2012 to February 2013. This dataset not

only includes spatial and temporal information but also incorporates some semantic aspects

such as weekday, weather conditions, and aspects like category, price, and rating of Points of

Interest (POIs). With a total of 3079 trajectories from 193 users, the dataset presents a rich set

of approximately 22 check-ins per trajectory, with an average of approximately 16 trajectories

per user.

The Gowalla Location-Based Social Network is a dataset collected worldwide between

February 2009 and October 2010. For our analysis, we used 300 random users and limited

the trajectory sizes between 10 and 50 check-ins, resulting in 5329 trajectories. This dataset

provides information about anonymized users, POIs, spatial, and temporal details, along with

enriched semantic information about weekdays.

The Brightkite dataset, sourced from the Brightkite social media platform and col-

lected between April 2008 and October 2010 (CHO; MYERS; LESKOVEC, 2011), includes a

randomly selected subset of 300 users. The dataset comprises a total of 7911 trajectories, each

with a consistent range of 10 to 50 points. It comprises the exact dimensions of the Gowalla

dataset, including the enriched semantic information of the weekday.

The Pisa dataset, utilized in the evaluation of MUITAS (PETRY et al., 2019), was

collected by 157 volunteers in Pisa through a mobile app, collected in Pisa, Italy, between May

18 https://github.com/bigdata-ufsc/datasets_v1_0
19 The TagMyDay experiment data was collected under a non-disclosure agreement during a visit funded by the

SOBIGDATA Project in June 2023, so we cannot redistribute it. More information about it can be found at
http://kdd.isti.cnr.it/project/tagmyday.
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Table 18 ± Datasets Vs attributes description

Attribute Type Dataset Description Range / Example

Spatial Numeric All
Coordinates
(latitude and longitude)

e.g.: lat: 40.83, long: -73.94

Time Temporal All Time of the day [00:00,23:59]

PoI Category Semantic: Categorical Foursquare The root type of category of PoI
e.g.: {Residence, Food,
Transport,...}

PoI Price Semantic: Categorical Foursquare The evaluation of Price {-1,1,2,3,4}
PoI Rating Semantic: Numerical Foursquare The rating evaluation of PoI {-1} U [4.0, 10.0]
Weather Semantic: Categorical Foursquare Weather condition e.g.: {Clear, Clouds, Rain,...}
Weekday Semantic: Categorical All Description of weekday e.g.: {Sunday, Monday,...}
Time duration Semantic: Numeric Pisa Time duration in Hours {Up to 1h, 1 to 2h,...}
Trip purposes Semantic: Categorical Pisa activity perform during the trip e.g.: {Going home, Refueling, ...}
Transportation means Semantic: Categorical Pisa transportation mode / type e.g: {Car, Train, Bike, ...}

Distance traveled Semantic: Numeric Pisa distance traveled in kilometers
{Up to 1 km,1 to 2 km,...,
over 10 km}

PoI Semantic: Categorical
Brightkite,
Gowalla

the PoI definition ID do PoI

20, 2014 and September 30, 2014. It consists of movement segments representing users’ daily

routines, annotated with transportation means, trip purposes, distance traveled, time duration,

and information of the weekday. After applying necessary transformations to ensure variability

and consistency, including the removal of small trajectories with less than three segments and

users with less than five trajectories, the final dataset comprises 9715 segments in 1617 daily

trajectories from 92 different users. The trajectories exhibit an average length of approximately

26 trajectories per user.

Tables 18 and 19 provide detailed information about the attributes and characteristics

of each dataset, respectively. Table 18 summarizes the datasets, including the attributes used in

each dataset and their descriptions. Table 19 presents the characteristics of each dataset, with

the average trajectory size, the number of trajectories, points, filtered data groups, and the filter

criteria used for each dataset.

6.2 METHODOLOGY

The methodology section outlines the approach taken to evaluate the utility and effec-

tiveness of the summarization methods (MAT-SG and MAT-SGT). We discuss the evaluation

metrics employed to assess the performance of the methods, including similarity measures and

the RMMAT metric. Additionally, we will detail the experimental setup, including parameter

configuration and settings for key parameters such as τrv and τrc, and their impact on the sum-

marization results. We will also address other setups required to perform this experiment. By

following a systematic methodology, we aim to provide a robust evaluation that captures the

nuances of trajectory summarization.

6.2.1 Evaluation Metrics

Our experimental evaluation adopts a thoughtful and systematic approach to assess the

utility of RT , employing two distinct strategies: (i) the Average Recall (AR) metric; and (ii) the
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Table 19 ± Summary of the used datasets

Dataset Description Aspects

Foursquare

Traj Size: ~ 22
# of Traj.: 3079
# of Points: 66962
# filtered data groups: 193
Filter Criteria: User

Lat, Lon, Time,
Weather Conditions,
PoI - Category, Price,
and Rating

Gowalla

Traj Size: ~ 18
# of Traj.: 5329
# of Points: 98158
# filtered data groups: 300
Filter Criteria: User

Lat, Lon, Time,
PoI, Weekday

Brightkite

Traj Size: ~ 16
# of Traj.: 7911
# of Points: 130494
# filtered data groups: 300
Filter Criteria: User

Lat, Lon, Time,
PoI, Weekday

Pisa

Traj Size: ~ 6
# of Traj.: 1617
# of Points: 9715
# filtered data groups: 92
Filter Criteria: User

Lat, Lon, Time,
Time Duration, Weekday,
Transportation Means,
Trip Purposes,
Distance Traveled

RMMAT.

The AR metric was inspired by the similarity measure work of Petry et al. (2019) and

previously utilized in Section 5.5, which serves as our primary evaluation strategy. It helps us to

evaluate the utility of RT ’s within the context of the input dataset, thereby quantifying the qual-

ity of our summarization and representative data computation. AR measures the recall based on

the similarity between the RT computed by each proposed method and other trajectories in the

dataset.

Central to the AR metric is the computation of RT for each trajectory group filtered

based on specific criteria. By dividing the dataset (D) into multiple groups (T ∈ T ∈ D) under

the assumption that trajectories within the same group exhibit similarity, we aspire for high

similarity values between the RT and trajectories within the same group. Indeed, we use the

trajectories of each user as the ground truth for all datasets, as trajectories of the same user are

more likely to be similar than the trajectories of other users.

The evaluation process unfolds systematically: RT is computed for each group, i.e.,

for each user in each dataset; a similarity search is conducted over the dataset; trajectories are

ordered by similarity; and recall is calculated. The assessment hinges on the ideal scenario

where the top k most similar trajectories align with the same group trajectories (k = |Tgroup|).

This metric effectively gauges the RT ’s ability to rank trajectories within the same ground truth

group.

In our second evaluation strategy, we turn our attention to measuring the representative-
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ness of the representative MAT (RT ) across the entire dataset. Our proposed representativeness

measure facilitates this assessment, RMMAT, which aims to gauge the quality of RT in terms

of both similarity and covered information.

The RMMAT measure involves the computation of RT for each group of filtered tra-

jectories. The dataset (D) is segmented into multiple groups (T ∈ T ∈D). The RMMAT metric,

ranging between 0 and 1, signifies the degree to which the RT encapsulates the overall represen-

tativeness of the entire dataset. A value of 1 indicates that RT fully represents the dataset, while

a value of 0 implies that RT fails to encompass any information from the dataset. To balance

the consideration of both similarity and covered information, we adopt a strategy with equal

weights, setting ωsim = ωcover = 1
2 . This ensures a comprehensive evaluation that accounts for

both components of representativeness.

6.2.2 Experimental Setup

We performed experiments by executing MAT-SG and MAT-SGT in each ground truth

(i.e., each user, as criteria definition to filter trajectories into groups). All experiments were im-

plemented in Java and conducted on a Dell Inspiron laptop with an Intel Core i5 processor and

16 GB memory. The method was repeated on each user with a different setting of the param-

eters τrv and τrc with values varying from 5% to 25%, resulting in 25 runs for each user. We

chose to start the parameter configuration at 5% because, for this analysis, it is not meaningful

to consider lower information density when computing RT . The parameter τrc influences cell

size, and consequently, the MAT points needed in each cell must be sufficiently dense and rel-

evant. Similarly, extremely low tendency values imply that all values in the tendency will be

considered representative. This parameter variation enables the evaluation of the sensitivity and

robustness of the methods.

To compute the similarity measure between trajectories, we rely on MUITAS (PETRY

et al., 2019), the state-of-the-art w.r.t. MAT similarity measure. Proximity functions are defined

to assess the similarity between trajectories T ∈ T and RT , considering the distinct structure of

RT . The adopted functions are (i) spatial: Euclidean distance measure. We consider a match if

the distance between the spatial coordinates of the T and RT is within a predefined threshold

(2×cellSize); (ii) temporal: a match function based on the temporal interval of RT . We consider

a match if the timestamp value of the T falls within that interval; and (iii) semantic: functions

for evaluating attribute matching for numeric and categorical types. We consider a match for

numerical types if the difference between attribute values is equal to or less than 10% of the RT

value. For categorical types, we determine a match if the attribute value of the T falls within the

range of attribute values of the RT . W.r.t., for the weights parameter of MUITAS, we consider

w = 1/3 for each dimension to balance all dimensions.

By adhering to established methodologies and introducing unique elements tailored to

the goals of this study, these strategies form a robust foundation for the subsequent experimental

evaluation, promising insightful findings into the performance of RT in representing diverse
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trajectory datasets.

6.3 RESULTS

In this section, we present the results of the evaluation of both the Average Recall (AR)

metric for ranking user trajectories within the same group and the RMMAT as the representa-

tiveness measure, based on a specified parameter configuration, as previously described in the

methodology.

6.3.1 AR Metric Strategy

The parameters τrv and τrc are employed, representing the x-axis (each row in the

tables) and y-axis (each column), respectively. Higher values indicate better exactness, high-

lighted in bold, while the lowest values are underlined. We compare the performance of two

models: (A) MAT-SG and (B) MAT-SGT.

6.3.1.1 Foursquare-NYC dataset

Table 20 displays the results for ranking user trajectories using AR. For MAT-SG, the

highest value of 0.785 occurs with τrv and τrc both set to 0.05, while the lowest value (0.450) is

obtained with τrv and τrc both set to 0.25. MAT-SGT achieves the highest value of 0.848 with

both parameters set to 0.05, while the lowest value (0.372) is obtained with τrv = 0.25 and τrc

= 0.15 highlighting its effectiveness under the best parameter configuration.

Table 20 ± AR of ranking user trajectories in Foursquare dataset

(A) MAT-SG

τrv

τrc
0.05 0.1 0.15 0.2 0.25

0.05 0.785 0.643 0.546 0.498 0.472
0.1 0.770 0.627 0.534 0.483 0.475
0.15 0.743 0.600 0.521 0.471 0.460
0.2 0.742 0.609 0.526 0.478 0.456
0.25 0.734 0.599 0.524 0.473 0.450

(B) MAT-SGT

τrv

τrc
0.05 0.1 0.15 0.2 0.25

0.05 0.848 0.755 0.686 0.641 0.634
0.1 0.809 0.680 0.592 0.534 0.517
0.15 0.731 0.573 0.475 0.431 0.420
0.2 0.656 0.490 0.410 0.400 0.394
0.25 0.586 0.432 0.372 0.377 0.388

6.3.1.2 Gowalla Location-Based Social Network dataset

Table 21 provides the corresponding results for the Gowalla dataset. For MAT-SG, the

highest value (0.871) is achieved with both τrc and τrv set to 0.05, while the lowest value (0.546)

is identified with both parameters set to 0.25. On the other hand, MAT-SGT achieves the highest

AR (0.888) with both τrc and τrv set to 0.05, and the lowest value (0.509) is obtained with τrc =

0.25 and τrv = 0.2. Thus, in the Gowalla dataset, MAT-SGT demonstrates superior performance

under the best parameter configuration.
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Table 21 ± AR of ranking user trajectories in Gowalla dataset

(A) MAT-SG

τrv

τrc
0.05 0.1 0.15 0.2 0.25

0.05 0.871 0.771 0.729 0.702 0.692
0.1 0.838 0.724 0.669 0.639 0.633
0.15 0.807 0.682 0.620 0.589 0.566
0.2 0.753 0.646 0.601 0.572 0.546
0.25 0.732 0.663 0.643 0.634 0.609

(B) MAT-SGT

τrv

τrc
0.05 0.1 0.15 0.2 0.25

0.05 0.888 0.826 0.804 0.799 0.795
0.1 0.865 0.771 0.732 0.710 0.693
0.15 0.794 0.664 0.608 0.595 0.575
0.2 0.690 0.558 0.519 0.513 0.509
0.25 0.644 0.537 0.518 0.515 0.517

6.3.1.3 Brightkite dataset

Results for the Brightkite dataset are shown in Table 22. MAT-SG achieves the highest

AR (0.928) with both τrc and τrv set to 0.05, while the lowest value (0.819) is identified with

τrv = 0.15 and τrc = 0.25. MAT-SGT attains the highest AR (0.954) with both parameters set

to 0.05, and the lowest value (0.621) is obtained with τrv = 0.25 and τrc = 0.05. MAT-SGT

showcasing superior performance under the best parameter configuration.

Table 22 ± AR of ranking user trajectories in Brightkite dataset

(A) MAT-SG

τrv

τrc
0.05 0.1 0.15 0.2 0.25

0.05 0.928 0.905 0.898 0.884 0.869
0.1 0.920 0.897 0.890 0.873 0.860
0.15 0.887 0.871 0.857 0.838 0.819
0.2 0.866 0.860 0.863 0.847 0.841
0.25 0.865 0.859 0.867 0.854 0.845

(B) MAT-SGT

τrv

τrc
0.05 0.1 0.15 0.2 0.25

0.05 0.954 0.935 0.927 0.915 0.903
0.1 0.881 0.866 0.863 0.855 0.843
0.15 0.756 0.736 0.750 0.759 0.783
0.2 0.658 0.677 0.696 0.716 0.754
0.25 0.621 0.628 0.663 0.698 0.744

6.3.1.4 Pisa dataset

Table 23 displays results for the Pisa dataset. MAT-SG achieves the highest AR (0.687)

with both τrc and τrv set to 0.05, while the lowest value (0.397) is identified with both param-

eters set to 0.25. MAT-SGT attains the highest AR (0.737) with τrv = 0.05 and τrv = 0.2, and

the lowest value (0.487) is obtained with τrv = 0.25 and τrc = 0.05. MAT-SGT consistently

demonstrates superior performance under the best parameter configuration.

Table 23 ± AR of ranking user trajectories in Pisa dataset

(A) MAT-SG

τrv

τrc
0.05 0.1 0.15 0.2 0.25

0.05 0.687 0.583 0.497 0.471 0.452
0.1 0.659 0.547 0.467 0.452 0.431
0.15 0.632 0.536 0.466 0.459 0.413
0.2 0.610 0.554 0.483 0.460 0.399
0.25 0.607 0.536 0.472 0.448 0.397

(B) MAT-SGT

τrv

τrc
0.05 0.1 0.15 0.2 0.25

0.05 0.707 0.638 0.547 0.527 0.511
0.1 0.661 0.575 0.482 0.444 0.425
0.15 0.608 0.533 0.445 0.416 0.399
0.2 0.565 0.486 0.409 0.399 0.371
0.25 0.539 0.457 0.408 0.386 0.367
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In general, MAT-SG exhibits a linear AR result when ranking user trajectories for

each τrc across a range of τrv. As τrc decreases, AR tends to decrease due to the algorithm’s

minimum requirement of MAT points in each cell for relevance. Conversely, MAT-SGT displays

an inverse pattern, maintaining a linear AR result for each τrv across a range of τrc, and as the

value of τrv decreases, the AR also tends to decrease.

As the minimum requirement increases, it becomes more challenging to accurately

rank user trajectories, leading to a decrease in the AR. When more MAT points are required

to compute the representative MAT (RT ), the algorithms have less power to rank the user’s

trajectories accurately. Additionally, when no cell is identified as relevant, the algorithms do

not compute a pr for the points in that cell.

The analysis of the results shows that the best values for τrc are around 0.05, with

decreasing values of AR as τrc increase, suggesting the effectiveness of larger cell sizes in

capturing group characteristics. Smaller cell sizes and stricter relevance criteria pose challenges

for computing an RT that performs well across different scenarios.

Our RT computation methods were evaluated in various scenarios and achieved an

overall AR score by observing the best parameter configuration. Results are presented in Table

24. In general, considering the best parameter configuration by each user, both methods (MAT-

SG and MAT-SGT) present high AR values, demonstrating the effectiveness of our methods

in summarizing user trajectories. MAT-SGT consistently outperforms MAT-SG in ranking user

trajectories across datasets.

Table 24 ± The compiled results of AR across all experimental evaluations

Dataset Method
Best By User All Results

Complete Incomplete
AR Median AR Median SD Max. Min.

Forsquare
MAT-SG 0.833 0.900 0.568 0.600 0.315 1.000 0.000 4800 0 + (2 users)
MAT-SGT 0.886 0.930 0.560 0.600 0.324 1.000 0.000 4581 219 + (1 users)

Gowalla
MAT-SG 0.889 0.950 0.677 0.750 0.294 1.000 0.000 7375 0 + (5 users)
MAT-SGT 0.909 0.960 0.672 0.730 0.295 1.000 0.000 7044 331 + (5 users)

Brightkite
MAT-SG 0.954 1.000 0.870 0.930 0.187 1.000 0.000 3850 0 + (146 users)
MAT-SGT 0.966 1.000 0.797 0.900 0.252 1.000 0.000 3162 688 + (146 users)

Pisa
MAT-SG 0.752 0.800 0.508 0.500 0.313 1.000 0.000 2300 0 + (0 users)
MAT-SGT 0.742 0.755 0.498 0.500 0.319 1.000 0.000 2150 150 + (0 users)

The Incomplete column shows the number of parameter configurations that did not

yield an RT , where MAT-SGT has identified more incomplete RT .

6.3.2 RMMAT Strategy

The parameters τrv and τrc are utilized to represent the x-axis (each row in the tables)

and y-axis (each column), respectively. Higher values indicate better representativeness, and

we highlight them in bold. Conversely, the lowest values are underlined. We are comparing the

performance of two models: (A) MAT-SG and (B) MAT-SGT.

We also present the top 10 RT identified in each dataset, along with the user and pa-

rameter configuration of each computed RT . These analyses can help identify the users who
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follow high patterns, and the high RMMAT score can highlight the power of each method in

covering the representativeness of trajectories concerning the user.

6.3.2.1 Foursquare-NYC dataset

Table 25 presents the average RMMAT results for RT computations with different

parameter configurations. The highest representativeness measures were obtained with MAT-

SG (0.692) and MAT-SGT (0.627), both with τrv and τrc set to 0.05. Conversely, the lowest

values were recorded for both methods (0.201 for MAT-SG and 0.207 for MAT-SGT), with τrv

and τrc both set to 0.25.

Table 25 ± Average of RMMAT of user trajectories in Foursquare dataset

(A) MAT-SG

τrv

τrc
0.05 0.1 0.15 0.2 0.25

0.05 0.692 0.573 0.466 0.363 0.249
0.1 0.663 0.543 0.438 0.339 0.232
0.15 0.637 0.515 0.412 0.318 0.217
0.2 0.616 0.494 0.393 0.303 0.207
0.25 0.600 0.481 0.383 0.295 0.201

(B) MAT-SGT

τrv

τrc
0.05 0.1 0.15 0.2 0.25

0.05 0.627 0.553 0.501 0.476 0.480
0.10 0.561 0.479 0.423 0.394 0.380
0.15 0.498 0.403 0.334 0.296 0.273
0.20 0.443 0.346 0.277 0.248 0.238
0.25 0.402 0.305 0.243 0.223 0.207

Table 26 shows the top 10 RT computed for each method. It is interesting to note that

MAT-SG achieved an RMMAT score of 0.96 for the best user (895) with its best parameter

configuration, while MAT-SGT achieved an RMMAT score of 0.94 for the best user (730).

Table 26 ± The top 10 computed RT in Foursquare dataset

(A) MAT-SG

user τrv τrc RMMAT

895 0.05 0.05 0.96
730 0.10 0.05 0.94
754 0.05 0.25 0.94
207 0.05 0.10 0.93
1006 0.05 0.05 0.91
647 0.05 0.25 0.91
438 0.05 0.10 0.90
533 0.05 0.10 0.90
885 0.05 0.05 0.89
440 0.05 0.05 0.89

(B) MAT-SGT

user τrv τrc RMMAT

730 0.10 0.05 0.94
895 0.10 0.05 0.87
207 0.05 0.10 0.87
754 0.05 0.25 0.87
365 0.05 0.05 0.84
647 0.05 0.25 0.84
69 0.10 0.05 0.82
440 0.05 0.05 0.81
438 0.05 0.10 0.80
673 0.10 0.05 0.80

Interestingly, although some users are common in the top-10 RT scores for both meth-

ods, different users were highlighted, indicating the diversity in capturing representativeness.

Also, the best parameter configurations for each user vary between the two methods.

Furthermore, we can see that in these top-10 RT , τrv was set to 0.05 or 0.1, highlighting

the tendency to obtain the best RT with low values. On the other hand, for τrc, some RT were

identified with high values, for example, user 647 in MAT-SG or users 754 and 647 in MAT-

SGT.
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6.3.2.2 Gowalla Location-Based Social Network dataset

Table 27 insert shows results for the Gowalla dataset. The highest representativeness

measures were obtained with MAT-SG (0.693) and MAT-SGT (0.624), both with τrv and τrc set

to 0.05. Conversely, the lowest values were recorded for both methods (0.238 for MAT-SG and

0.225 for MAT-SGT), with τrv and τrc both set to 0.25.

Table 27 ± Average of RMMAT of user trajectories in Gowalla dataset

(A) MAT-SG

τrv

τrc
0.05 0.1 0.15 0.2 0.25

0.05 0.693 0.576 0.484 0.403 0.322
0.1 0.660 0.539 0.449 0.373 0.298
0.15 0.627 0.505 0.418 0.345 0.275
0.2 0.592 0.468 0.385 0.316 0.251
0.25 0.566 0.444 0.364 0.300 0.238

(B) MAT-SGT

τrv

τrc
0.05 0.1 0.15 0.2 0.25

0.05 0.624 0.555 0.524 0.505 0.499
0.1 0.558 0.474 0.438 0.407 0.391
0.15 0.487 0.391 0.351 0.319 0.310
0.2 0.424 0.320 0.283 0.256 0.248
0.25 0.377 0.283 0.252 0.228 0.225

The top-10 RT results are detailed in Table 28. MAT-SG achieves an RMMAT score of

0.97 for the best user (36712) with its best parameter configuration, while MAT-SGT achieves

an RMMAT score of 0.90 for the best user (113411). Similar to the Foursquare dataset, diverse

users are highlighted in the top-10 RT scores for each method, showcasing the ability of each

method to capture different patterns of representativeness.

Table 28 ± The top 10 computed RT in Gowalla dataset

(A) MAT-SG

user τrv τrc RMMAT

36712 0.05 0.25 0.97
18623 0.05 0.05 0.95
124868 0.05 0.05 0.95
49101 0.05 0.05 0.93
12681 0.05 0.05 0.93
107206 0.05 0.05 0.93
119314 0.05 0.05 0.93
19531 0.05 0.20 0.93
11205 0.05 0.05 0.93
113411 0.05 0.05 0.92

(B) MAT-SGT

user τrv τrc RMMAT

113411 0.10 0.05 0.90
36712 0.05 0.25 0.89
16931 0.05 0.25 0.89
18623 0.05 0.05 0.86
119314 0.05 0.05 0.86
11205 0.05 0.25 0.86
124868 0.05 0.05 0.85
6321 0.05 0.25 0.85
39547 0.05 0.15 0.85
5980 0.05 0.25 0.83

It is noticeable that in the top 10 instances of repeated measures (RT ), a value of 0.05

was frequently set for the τrv parameter, indicating a preference for obtaining the best result

with low values. Conversely, for τrc, certain RT instances were identified with high values.

6.3.2.3 Brightkite dataset

Table 29 displays the average RMMAT results for the Brightkite dataset. The highest

representativeness measures were obtained with MAT-SG (0.875) and MAT-SGT (0.738), both
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with τrv and τrc set to 0.05. Conversely, the lowest values were obtained by MAT-SG (0.551)

with τrv and τrc both set to 0.25, and by MAT-SGT (0.298) with τrv = 0.25 and τrc = 0.15.

Table 29 ± Average of RMMAT of user trajectories in Brightkite dataset

(A) MAT-SG

τrv

τrc
0.05 0.1 0.15 0.2 0.25

0.05 0.875 0.834 0.797 0.771 0.723
0.1 0.820 0.774 0.735 0.709 0.662
0.15 0.771 0.722 0.681 0.656 0.609
0.2 0.726 0.676 0.636 0.612 0.566
0.25 0.705 0.656 0.618 0.594 0.551

(B) MAT-SGT

τrv

τrc
0.05 0.1 0.15 0.2 0.25

0.05 0.738 0.716 0.693 0.675 0.648
0.1 0.564 0.518 0.495 0.481 0.457
0.15 0.447 0.399 0.385 0.390 0.393
0.2 0.366 0.341 0.334 0.349 0.354
0.25 0.329 0.299 0.298 0.317 0.320

The top 10 RT results are detailed in Table 30. MAT-SG achieved an RMMAT score of

0.99 for the best user (7528) with its best parameter configuration, while MAT-SGT achieved

an RMMAT score of 0.98 for the same user. Here, we identify that five users are the same in

both method computations, all with the same parameter configuration.

Table 30 ± The top 10 computed RT in Brightkite dataset

(A) MAT-SG

user τrv τrc RMMAT

7528 0.05 0.25 0.99
662 0.05 0.25 0.97
22820 0.05 0.25 0.97
49030 0.05 0.05 0.96
8921 0.05 0.05 0.96
18841 0.05 0.25 0.96
26004 0.05 0.15 0.96
29673 0.05 0.25 0.96
7226 0.05 0.25 0.95
1952 0.05 0.05 0.95

(B) MAT-SGT

user τrv τrc RMMAT

7528 0.05 0.25 0.98
22820 0.05 0.25 0.92
9548 0.05 0.10 0.92
29673 0.05 0.25 0.90
8921 0.05 0.05 0.88
11756 0.05 0.20 0.88
20249 0.05 0.25 0.87
13679 0.05 0.05 0.87
18841 0.05 0.25 0.86
43 0.05 0.25 0.86

Furthermore, we can see that in these top 10 RT , τrv was set as 0.05, highlighting the

tendency to obtain the best RT with low values. On the other hand, for τrc, different values are

achieved. Again, the diversity in users and parameter configurations in the top 10 RT scores

highlights the distinct capturing capabilities of MAT-SG and MAT-SGT.

6.3.2.4 Pisa dataset

Results for the Pisa dataset are shown in Table 31. The highest representativeness mea-

sures were obtained with MAT-SG (0.595) and MAT-SGT (0.621), both with τrv and τrc set to

0.05. Conversely, the lowest values were recorded for both methods (0.211 for MAT-SG and

0.327 for MAT-SGT), with τrv and τrc both set to 0.25.

The top 10 RT results are detailed in Table 32. MAT-SG achieved an RMMAT score of

0.90 for the best user (130) with its best parameter configuration, while MAT-SGT achieved an
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Table 31 ± Average of RMMAT of user trajectories in Pisa dataset

(A) MAT-SG

τrv

τrc
0.05 0.1 0.15 0.2 0.25

0.05 0.595 0.495 0.390 0.294 0.231
0.1 0.584 0.483 0.381 0.287 0.226
0.15 0.573 0.471 0.369 0.276 0.217
0.2 0.565 0.461 0.360 0.271 0.214
0.25 0.559 0.455 0.355 0.267 0.211

(B) MAT-SGT

τrv

τrc
0.05 0.1 0.15 0.2 0.25

0.05 0.621 0.543 0.471 0.457 0.452
0.1 0.589 0.504 0.429 0.405 0.402
0.15 0.551 0.463 0.404 0.386 0.372
0.2 0.506 0.422 0.360 0.363 0.344
0.25 0.476 0.416 0.355 0.340 0.327

RMMAT score of 1.00 for the best user (195). Here, we identify that eight users are the same

in both method computations, all with the same parameter configuration.

Table 32 ± The top 10 computed RT in Pisa dataset

(A) MAT-SG

user τrv τrc RMMAT

130 0.25 0.25 0.90
439 0.25 0.25 0.90
443 0.25 0.25 0.90
99 0.25 0.25 0.88
480 0.25 0.10 0.85
543 0.10 0.10 0.85
744 0.20 0.10 0.84
195 0.25 0.10 0.84
672 0.25 0.15 0.84
191 0.25 0.10 0.83

(B) MAT-SGT

user τrv τrc RMMAT

195 0.25 0.10 1.00
130 0.25 0.25 1.00
439 0.25 0.25 1.00
443 0.25 0.25 1.00
506 0.25 0.10 0.99
99 0.25 0.25 0.98
162 0.25 0.05 0.96
480 0.25 0.10 0.93
543 0.10 0.10 0.92
672 0.25 0.15 0.92

In the top-10 RT results, we can observe that τrv was set at 0.25, indicating a preference

for high values to obtain the best RT . However, for τrc, different values were achieved. The top

10 results for RT demonstrate the effectiveness of both methods in capturing the representative-

ness of trajectories concerning users, although the identified users and parameter configurations

differ between MAT-SG and MAT-SGT.

We evaluated our computation methods for RT in various scenarios and obtained an

overall RMMAT score by observing the best parameter configuration. The results are presented

in Table 33. Overall, both methods (MAT-SG and MAT-SGT) exhibited high RMMAT scores

when considering the best parameter configuration by each user, indicating the effectiveness

of our methods in summarizing user trajectories. Additionally, in most cases, MAT-SG outper-

formed MAT-SGT regarding the representativeness value across input data.

We can observe that in some cases, there is insufficient density to determine a behav-

ioral pattern (Incomplete column), where MAT-SGT has identified more incomplete RT across

some parameter configurations.
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Table 33 ± The compiled results of RMMAT across all experimental evaluations

Dataset Method
Best By User All Results

Complete Incomplete
AR Median AR Median SD Max. Min.

Forsquare
MAT-SG 0.691 0.720 0.425 0.470 0.267 0.96 0.000 4800 0 + (2 users)
MAT-SGT 0.637 0.640 0.390 0.400 0.201 0.940 0.000 4581 219 + (1 users)

Gowalla
MAT-SG 0.693 0.710 0.435 0.480 0.270 0.970 0.000 7375 0 + (5 users)
MAT-SGT 0.632 0.630 0.395 0.400 0.207 0.900 0.000 7044 331 + (5 users)

Brightkite
MAT-SG 0.874 0.890 0.699 0.720 0.166 0.990 0.000 3850 0 + (146 users)
MAT-SGT 0.739 0.745 0.475 0.500 0.243 0.980 0.000 3162 688 + (146 users)

Pisa
MAT-SG 0.595 0.590 0.383 0.380 0.264 0.900 0.000 2300 0 + (0 users)
MAT-SGT 0.624 0.615 0.443 0.420 0.262 1.000 0.000 2150 150 + (0 users)

6.4 DISCUSSION

We conducted a comprehensive set of experiments to assess the performance of our

two trajectory summarization methods, MAT-SG and MAT-SGT, across diverse datasets with

varying characteristics and parameter configurations. Our evaluation focused on their dual ca-

pabilities: effectively ranking filtered trajectories using the AR Metric and ensuring the repre-

sentativeness of the computed representative data for each input dataset using the RMMAT.

The AR metric results indicated high values, particularly with the optimal parameter

configurations in both MAT-SG and MAT-SGT. Values ranged between 0.687 (for MAT-SG on

the Pisa dataset) and 0.954 (for MAT-SGT on the Brightkite dataset). Notably, lower values of

τrc yielded better AR metric results, suggesting that RT excelled in ranking trajectories when

computed with larger cells, capturing more input data characteristics.

Based on the AR metric results, MAT-SGT outperformed MAT-SG in ranking user tra-

jectories across different datasets. It achieved higher AR values than MAT-SG across various

parameter configurations (Tables 20 - 23). Although MAT-SGT exhibited superior performance,

the marginal overall difference emphasizes the effectiveness of both methods in ranking trajec-

tories.

Furthermore, the highest AR values achieved with the best parameter configurations in-

dicate the superior performance of MAT-SGT in representing diverse trajectory datasets. How-

ever, both methods produced high values, demonstrating their power to rank trajectories and

ensuring the robustness of both approaches. This highlights the utility of RT within the con-

text of the input dataset, providing insights into summarization quality and representative data

computation.

Based on the RMMAT results, MAT-SG demonstrates better performance in certain sit-

uations. For example, on the Brightkite dataset, MAT-SG achieved an average RMMAT score of

0.875, outperforming MAT-SGT 0.738. In general, results concerning the RMMAT showcased

positive outcomes, with average values between 0.595 (for MAT-SG on the Pisa dataset) and

0.875 (for MAT-SG on the Brightkite dataset). Lower values of τrc consistently led to higher

RMMAT scores across all datasets, highlighting the effectiveness of larger cell sizes in captur-

ing representativeness.
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However, it is important to note that diverse parameter configurations for different

users underscore the need for adaptive parameter selection based on individual user behavior.

The analysis suggests that MAT-SG showcases the best values, particularly when considering

a parameter configuration around the pattern in the data. This suggests that MAT-SG may be

more effective in certain scenarios for capturing the representativeness of trajectories, leading

to better similarity and covered information.

One hypothesis is that, regarding similarity, using MUITAS that does not consider

the sequence in data may be positive in MAT-SG. At the same time, it may not be the best

measure in MAT-SGT since the temporal sequence is not considered in this measure. Currently,

no similarity measures are available to compare data sequences for MATs. Regarding covered

information, MAT-SG only considers the spatial dimension in segmentation, which means that

more data points are summarized in each representative point. In contrast, since MAT-SGT

considers two steps to segment data for spatial and temporal dimensions, the number of data

points considered for computing the representative point is lower, providing a straightforward

lower covered information.

The top 10 RT results demonstrate the effectiveness of both methods in capturing the

representativeness of trajectories concerning users, although the identified users and parameter

configurations differed between MAT-SG and MAT-SGT. This emphasizes the distinct capturing

capabilities of each method. Additionally, the variability in the optimal parameter configurations

highlights the importance of flexibility in parameter selection.

Both MAT-SG and MAT-SGT select parameter configurations for each user using spa-

tial (MAT-SG and MAT-SGT) and temporal (MAT-SGT) density segmentation, analyzing aspect

frequency in each segment. However, due to its dual-step density segmentation, MAT-SGT ex-

hibited more situations with insufficient density. Consequently, more information is needed to

analyze its representative data. The prevalence of different configurations is crucial since users

exhibit different behavioral patterns.

Trajectory data summarization demands tailored approaches based on the specific char-

acteristics of the data and analysis objectives. MAT-SG operates on the principle of spatial den-

sity, yielding superior results in summarizing representative aspects within specific spatial areas.

It proves instrumental in scenarios where understanding spatial patterns is crucial, irrespective

of the temporal sequence. For example, consider a scenario where we aim to discern the regions

an individual frequents and the corresponding patterns related to each region. MAT-SG would

provide insights into these spatial patterns, offering valuable information about the individual’s

movement across various spatial areas.

In contrast, MAT-SGT is purpose-built to solve movement patterns with a perceptive

emphasis on the temporal sequence. This method excels when temporal information is critical

to understanding the chronology of events or movements over time. Imagine a set of daily tra-

jectories depicting an individual’s movements on different days. Here, MAT-SGT would excel

in revealing the sequence of activities the individual typically follows. For example, it could

reveal that the user consistently departs from home between 7:00 am and 8:30 am on weekdays,
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heads to their business in the West area between 9:00 am and 12:00 pm, and then visits a restau-

rant in the Center area between 12:00 pm and 1:40 pm. In this nuanced example, MAT-SGT

provides a detailed temporal narrative, capturing the when and how of the routine of the user.

The choice between MAT-SG and MAT-SGT hinges on the specific objectives of the

analysis. If the goal is to comprehend spatial patterns independently of temporal nuances, MAT-

SG is the method of choice. On the other hand, when the temporal sequence is integral to un-

derstanding the dynamics of movements or events, MAT-SGT emerges as the preferred method.

The choice between these methods represents a strategic decision, allowing analysts to tailor

trajectory summarization to the unique requirements of their investigation.

These experimental evaluations provide a comprehensive and nuanced tool to under-

stand our methods and represent filtered trajectories. Both MAT-SG and MAT-SGT demonstrate

high effectiveness, and their flexibility in adapting to individual group behavior patterns is par-

ticularly valuable for personalized services and targeted interventions.

Our research has effectively demonstrated that MAT-SG and MAT-SGT are highly ef-

fective in capturing the representativeness of filtered trajectories. These methods can be applied

in practical scenarios such as LBS recommendation systems, urban planning, and transportation

management, where understanding filtered trajectories plays a critical role in decision-making

and service optimization.

The flexibility of our methods to adapt to individual group behavior patterns is partic-

ularly valuable for personalized services and targeted interventions. By utilizing these methods,

analysts can gain a deeper understanding of their data, and businesses can make more informed

decisions that benefit their customers and bottom line.

6.4.1 Limitations

Our investigation involved a systematic experimental evaluation across multiple datasets,

employing a range of parameter configurations and metrics to assess the effectiveness of our

methods. The experimental results indicate that both MAT-SG and MAT-SGT exhibit strong

performance in ranking filtered trajectories (AR Metric) and computing representative data for

input datasets (RMMAT). Despite the positive outcomes, it is important to acknowledge several

limitations of our research:

• Parameter Sensitivity: Our methods exhibit high sensitivity to parameter configurations,

particularly τrc and τrv. Lower values of τrc generally yield better results, emphasizing the

critical role of parameter selection in capturing representativeness. This sensitivity neces-

sitates meticulous parameter tuning, which may pose challenges in specific scenarios and

could impact the generalizability of our methods across diverse datasets and behaviors.

• Temporal Sequence Deficient Analysis: The similarity analysis using MUITAS, as the

similarity measure for MAT, does not account for the temporal sequence between MAT
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points. The lack of consideration for temporal sequence may lead to less accurate rep-

resentativeness in scenarios where the temporal order of trajectory points is significant.

Based on RMMAT, MAT-SG generally demonstrates better performance in most situa-

tions. However, when comparing both methods in terms of representativeness, the use of

MUITAS for similarity analysis may not provide a comprehensive assessment of their

effectiveness.

• Scalability and Computational Overhead: The adaptability of our methods to indi-

vidual user behavior patterns comes with increased computational overhead. Extensive

experimentation with different parameter settings can be resource-intensive, potentially

limiting the scalability of our methods for large-scale applications. The requirement for

substantial computational resources may hinder the practical implementation of our ap-

proaches in real-time or resource-constrained environments.

• Dataset Specificity: While our methods perform well across the selected datasets, the

datasets used in our evaluation may not fully represent the diversity of real-world scenar-

ios. The effectiveness of our methods in other contexts requires further exploration. The

representativeness and ranking metrics might behave differently with datasets featuring

varying characteristics or noise levels, necessitating caution in extending conclusions to

different scenarios.

• Lack of Baseline Comparison: A comparative analysis with existing MAT summariza-

tion methods is crucial to identify specific limitations of both MAT-SG and MAT-SGT.

However, the absence of compatible baselines in related work hinders this comparative

analysis. Recognizing areas where our methods may fall short compared to established

techniques can offer valuable insights for refinement and future development.

In conclusion, while our methods show promise in trajectory summarization and rep-

resentativeness measurement, these limitations underscore the need for further research and de-

velopment. Addressing these challenges will be essential to enhance the robustness, scalability,

and generalizability of our approaches.
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7 CONCLUSION

This thesis has introduced a framework composed by two innovative methods for

summarizing trajectories with multiple aspects, MAT-SG and MAT-SGT, designed to provide

representative data. The previous method, the FSM-based approach (SEEP; VAHRENHOLD,

2019), had limitations in capturing temporal sequences and dealing with different aspects in

their individual type. To address these shortcomings, MAT-SG and MAT-SGT consider spatial,

temporal, and semantic attributes that characterize MATs. Their contribution lies in abstract-

ing each of these dimensions according to their singularities. Another distinctive feature is

mapping input MATs and representative data through a comprehensive data model, enabling

persistence, querying, and pattern identification. Additionally, MAT-SGT identifies temporal

sequences within movement patterns.

Trying to answer our research question, "Can we develop new algorithms for comput-

ing representative data for a set of MATs to discover relevant information and address gaps in

related work by considering all aspects in MATs regarding their individually?" we tackled the

trajectory summarization problem by proposing accurate methods for computing representative

MAT. We propose a framework composed of two methods, called MAT-SG and MAT-SGT, that

have shown promising results.

Trajectory data summarization demands a tailored approach based on specific data

characteristics and analysis objectives. MAT-SG operates on spatial density, excelling in sum-

marizing representative aspects within specific spatial areas. This method is invaluable when

understanding spatial patterns is crucial, regardless of temporal sequence relevance. In con-

trast, MAT-SGT focuses on temporal sequence emphasis, providing detailed insights into the

chronology of events or movements over time. The choice between MAT-SG and MAT-SGT

depends on the analysis objectives, with MAT-SG preferred for spatial pattern comprehension

and MAT-SGT for detailed temporal narratives.

Once we proposed these methods, we achieved another research question: "How much

of the RT captures and reflects the original MATs’ essence within an input dataset?". Aiming to

answer this research question, we propose a representativeness measure RMMAT that refers to

a measure tailored for big trajectory data with multiple aspects, aiming to quantify how much

information the RT covers from the input dataset and how similar this RT is to the entire dataset.

Our exploration involved a systematic experimental evaluation across multiple datasets,

employing a range of parameter configurations and metrics to assess the effectiveness of our

methods. The experimental results indicate that both MAT-SG and MAT-SGT exhibit strong

performance in ranking filtered trajectories (AR Metric) and computing representative data for

input datasets (RMMAT).

The flexibility of our methods is highlighted by the adaptability of parameter config-

urations to individual user behavior. Lower values of the τrc consistently yielded better results,

emphasizing the importance of parameter configuration in capturing representativeness. User-

specific insights and diverse parameter configurations underscore the need for a nuanced and
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adaptive approach to trajectory summarization.

Our work contributes to the trajectory data analysis research area by providing tailored

methods that cater to the nuances of spatial and temporal considerations. The methods offer a

nuanced tool for analysts, allowing them to choose an approach aligned with the intricacies of

their data and the goals of their analysis.

As we conclude this thesis, it is evident that trajectory summarization is not a one-size-

fits-all endeavor. Instead, it requires a thoughtful consideration of the specific characteristics of

the data and the analytical objectives. Our methods provide a valuable step towards addressing

this challenge, offering a refined and adaptable approach to trajectory summarization that can

find application across diverse domains and scenarios.

It is crucial to emphasize that using a representative MAT helps data analysts gain

insights into the behaviors of trajectories with multiple aspects. This allows them to understand

the patterns and representative information that characterize input MATs. While our methods

have shown strong performance, there are areas for future improvement, and we propose some

potential future works.

The computation of a representative MAT depends on the specific purpose and re-

quirements of a use case. The evaluation of the summarization method is also dependent on the

purpose to be analyzed. Our representativeness measure RMMAT focuses on a view of simi-

larity and covered information. In future works, we intend to employ other views to assess the

representativeness of summarized MATs, such as reduced information.

Our summarization methods, MAT-SG and MAT-SGT, have effectively extracted rep-

resentative MATs from trajectories with multiple aspects. In the future, we intend to use repre-

sentative trajectories to analyze their impact in various scenarios. For example, we want to use

representative trajectories to measure the similarity between different groups of trajectories and

identify the closest group of trajectories. Additionally, we plan to use representative trajectories

as input data for certain approaches. This will help us analyze the impact of using less informa-

tion to be processed, like in prediction scenarios, and has potential applications in personalized

recommendations, like anomaly detection and urban planning. In terms of our methods, future

work aims to refine the parameter selection process to enhance the method’s performance in

diverse datasets and real-world scenarios.

Moreover, we acknowledge that some aspects could have relationships between them.

Therefore, as a future work, we intend to improve our methods by considering dependencies

between aspects, such as price depending on PoI in our running example.

Furthermore, efforts will be directed towards reducing the complexity of our meth-

ods, currently operating at O(n2) concerning the number n of input points in all MATs. This

complexity is primarily due to the computeMinSpatialThreshold function in Algorithm 1 and

Algorithm 4. We will optimize key functions and ensure scalability for larger datasets to achieve

this simplification.

In conclusion, trajectory summarization is a multifaceted challenge that demands pre-

cision and adaptability. Our methods provide a step forward, offering refined and adaptable
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approaches that align with the intricacies of diverse datasets and analytical goals. The represen-

tative MATs derived from these methods facilitate a deeper understanding of behavioral patterns

within multiple aspect trajectories, making them valuable tools for data analysts across various

domains.

7.1 PUBLICATIONS

During this Ph.D. research period, partial results have been published as journal articles

and conference papers, as follows:

• Conference Paper: DEXA 2022 - Database and Expert Systems Applications.

(MACHADO; MELLO; BOGORNY, 2022a)

Machado, V. L., Mello, R. D. S., & Bogorny, V. (2022, July). A method for summarizing

trajectories with multiple aspects. In International Conference on Database and Expert

Systems Applications (pp. 433-446). Cham: Springer International Publishing.

This paper refers to the MAT-SG method, our first contribution.

• Conference Paper: WTDBD 2022 - Workshop de Teses e Dissertações em Banco de

Dados.

(MACHADO; MELLO; BOGORNY, 2022b)

Machado, V. L., dos Santos Mello, R., & Bogorny, V. (2022, September). On Generat-

ing Representative Data for Multiple Aspects Trajectory Data. In Anais Estendidos do

XXXVII Simpósio Brasileiro de Bancos de Dados (pp. 98-104). SBC.

This workshop provided a forum to present the thesis and gain valuable insights for the

subsequent stages.

• Journal articles: Revista ComInG Ed. 2022 - Communications and Innovations Gazette

(LUZ; MACHADO; MELLO, 2022)

da Luz, T. O., Machado, V. L., & dos Santos Mello, R. (2022). Visual R-MAT: uma

ferramenta visual de apoio a análises sob dados representativos de trajetórias de multiplos

aspectos. Revista ComInG-Communications and Innovations Gazette, 6(1), 36-45.

This paper describes a tool developed by an undergraduate student during his initial sci-

entific research studies under my supervision.

• Conference Paper: GeoInfo 2023 - Brazilian Symposium on Geoinformatics.

(MACHADO et al., 2023a)

Machado, V. L., Portela, T. T., de Lara Machado, A., Schreiner, G. A., & dos San-

tos Mello, R. (2023). A method for computing representative data for multiple aspect
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trajectories based on data summarization. In Brazilian Symposium on Geoinformatics

(Geoinfo).

This paper refers to the MAT-SGT method, our second contribution.

• Conference Paper: GeoInfo 2023 - Brazilian Symposium on Geoinformatics.

(MACHADO et al., 2023b)

Machado, V. L., Portela, T. T., Renso, C., & dos Santos Mello, R. (2023). Towards a rep-

resentativeness measure for summarized trajectories with multiple aspects. In Brazilian

Symposium on Geoinformatics (Geoinfo).

This paper refers to the additional contribution regarding a representativeness measure

(RMMAT), allowing us to measure the representative data quality regarding the input

data.

• Journal paper: Geoinformatica - An International Journal on Advances of Com-

puter Science for Geographic Information Systems.

(MACHADO et al., 2024)

Machado, V. L., dos Santos Mello, R., Bogorny, V., & Schreiner, G. A. (2024). A Survey

on the Computation of Representative Trajectories. GeoInformatica. Springer. 1-26.

This paper presents a comprehensive survey and in-depth analysis of the state-of-the-art

regarding to this thesis research subject.

• Journal paper: JIDM - Journal of Information and Data Management.

(MACHADO et al., a)

Machado, V. L., Portela, T. T., de Lara Machado, A., Schreiner, G. A., & dos Santos

Mello, R. Towards Data Summarization of Multi-Aspect Trajectories Based on Spatio-

Temporal Segmentation. JIDM.

This document presents a MAT-SGT extended version, which was presented at the Geoinfo

conference in 2023. Currently, it is in the evaluation stage.

• Journal paper: JIDM - Journal of Information and Data Management.

(MACHADO et al., b)

Machado, V. L., Portela, T. T., Vanini, L., Renso, C., & dos Santos Mello, R. A Robust

Measure for Evaluating Representativeness of Summarized Trajectories with Multiple

Aspects. JIDM.

This document presents a RMMAT extended version, which was presented at the Geoinfo

conference in 2023. It was accepted in the evaluation stage, and it is currently in the

publication stage.
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