
UNIVERSIDADE FEDERAL DE SANTA CATARINA

CENTRO TECNOLÓGICO DE JOINVILLE

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE SISTEMAS

ELETRÔNICOS

SERGIO ARRIBAS GARCÍA

MAXIMIZING CACHE HITS RATIO THROUGH PLANNED CACHE EVICTION

POLICY SELECTION

DISSERTAÇÃO DE MESTRADO

Joinville

[2024]

Sergio Arribas García

MAXIMIZING CACHE HITS RATIO THROUGH PLANNED CACHE EVICTION

POLICY SELECTION

Dissertação submetida ao Programa de Pós-
Graduação em Engenharia de Sistemas
Eletrônicos da Universidade Federal de Santa
Catarina para a obtenção do título de mestre em
Engenharia de Sistemas Eletrônicos.
Supervisor: Dr. Giovani Gracioli

Joinville

[2024]

Ficha catalográfica gerada por meio de sistema automatizado gerenciado pela BU/UFSC.
Dados inseridos pelo próprio autor.

Arribas, Sergio
 MAXIMIZING CACHE HITS RATIO THROUGH PLANNED CACHE
EVICTION POLICY SELECTION / Sergio Arribas ; orientador,
Giovani Gracioli, 2024.
 126 p.

 Dissertação (mestrado) - Universidade Federal de Santa
Catarina, Campus Joinville, Programa de Pós-Graduação em
Engenharia de Sistemas Eletrônicos, Joinville, 2024.

 Inclui referências.

 1. Engenharia de Sistemas Eletrônicos. 2. Memórias
caches. 3. Políticas de substituição de linhas da cache. 4.
Otimização. I. Gracioli, Giovani. II. Universidade Federal
de Santa Catarina. Programa de Pós-Graduação em Engenharia
de Sistemas Eletrônicos. III. Título.

Sergio Arribas Garcia

Título do trabalho: MAXIMIZING CACHE HITS RATIO THROUGH PLANNED CACHE
EVICTION POLICY SELECTION

O presente trabalho em nível de Mestrado foi avaliado e aprovado por
banca examinadora composta pelos seguintes membros:

Prof. Dr. Rafael de San琀椀ago
UFSC

Prof. Dr. Anderson Wedderho昀昀 Spengler
UFSC

Cer琀椀昀椀camos que esta é a versão original e 昀椀nal do trabalho de conclusão que foi
julgado adequado para obtenção do 琀tulo de mestre em dezeseis de abril de dois mil e venite e

quatro.

Prof. Dr. Lucas Weihmann
Coordenador do Programa

Prof. Dr. Giovani Gracioli
Orientador

Joinville, 3 de junho de 2024.

RESUMO

Os processadores modernos estão continuamente avançando, criando uma diferença
de desempenho cada vez maior em relação às memórias disponíveis no mercado atual.
As memórias cache desempenham um papel fundamental na redução dessa diferença,
mitigando a latência de acesso à memória. No entanto, a eficácia dessas caches, que
possuem tamanho limitado, depende fortemente da política de substituição de cache,
impactando diretamente a taxa de hits na cache. As CPUs atuais empregam uma
política de substituição fixa determinada no momento do projeto, que pode não ser a
ideal durante toda a execução do programa, levando a um desempenho subótimo e
à redução da escalabilidade do sistema. Para abordar essa limitação, este trabalho
apresenta uma estrutura destinada a aumentar as taxas de hits, selecionando e alter-
nando dinamicamente as políticas de substituição de cache em tempo de execução.
Além disso, a estrutura inclui uma descrição abrangente de uma ferramenta de código
aberto para profiling, juntamente com quatro abordagens baseadas no reconhecimento
de padrões de acesso à memória, que são avaliadas. Os testes realizados com a es-
trutura demonstram possíveis melhorias na taxa de misses de cache de até 60% em
comparação com a utilização da política de substituição LRU. Esses resultados im-
pulsionaram melhorias adicionais na estrutura, incluindo a incorporação de políticas
de substituição mais sofisticadas e a implementação de abordagens adicionais para
alcançar resultados superiores

Palavras-chave: Memórias caches. Políticas de substituição de linhas da cache.
Otimização.

ABSTRACT

Modern processors are continually advancing, creating a widening performance gap
relative to current market-available memories. Cache memories play a pivotal role in
bridging this gap by mitigating memory access latency. However, the effectiveness of
these size-constrained caches heavily relies on the cache eviction policy, directly im-
pacting the hit rate. Current CPUs employ a fixed replacement policy determined at
design time, which may not be optimal throughout program execution, leading to sub-
optimal performance and reduced system schedulability. To address this limitation, this
work introduces a framework aimed at enhancing hit ratios by dynamically selecting and
switching cache eviction policies at runtime. Additionally, the framework includes a com-
prehensive description of an open-source tool for profiling, along with four approaches
based on memory access pattern recognition, which are evaluated. Benchmarks con-
ducted with the framework demonstrate potential cache miss rate improvements of up
to 60% compared to using the LRU replacement policy. These findings have spurred fur-
ther enhancements to the framework, including the incorporation of more sophisticated
eviction policies and the implementation of additional approaches to achieve superior
results.

Keywords: Cache memories. Eviction policies. Optimization.

RESUMO EXTENDIDO

Introdução: O texto discute a importância das memórias cache no desempenho dos
sistemas de computação modernos, destacando a necessidade de políticas de substi-
tuição de cache eficazes devido à capacidade limitada das caches. Tradicionalmente,
processadores usam uma única política de substituição de cache, mas pesquisas mos-
tram que variar essas políticas pode melhorar o desempenho. A tese explora novas
abordagens para otimizar essas políticas de forma dinâmica, adaptando-se a seções
específicas de código para aumentar a eficiência do sistema. Durante a preparação
deste trabalho, o autor contribuiu para várias publicações relevantes, abordando desde
a minimização do uso de cache em sistemas em tempo real até o desenvolvimento de
software embarcado para aquisição e calibração de dados em unidades de controle
eletrônico automotivas, e a melhoria do tempo de execução de aplicações industriais
através da seleção planejada de políticas de substituição de cache.

Objetivos: O principal objetivo do trabalho é identificar como o uso de diversas polí-
ticas de substituição em diferentes partes do código de um mesmo programa afeta a
taxa de acertos na cache e, consequentemente, o tempo de execução. O autor divide
a tarefa em objetivos específicos: propor quatro abordagens diferentes para simular
código compilado e selecionar a melhor política de substituição de cache para seções
específicas do código; implementar as quatro abordagens propostas como uma ex-
tensão de um framework de perfilamento de cache (Cachegrind) e disponibilizá-las
como um artefato de código aberto para futuras pesquisas sobre tópicos relacionados;
e avaliar e comparar as abordagens propostas em termos de falhas de cache e tem-
pos de execução, com base na implementação do framework, usando aplicações de
benchmark relevantes.

Metodologia: O documento revisa conceitos fundamentais sobre políticas de subs-
tituição de cache, investiga trabalhos anteriores e define as premissas e condições
iniciais do estudo, além de descrever detalhadamente o modelo de sistema conside-
rado. Apresenta quatro abordagens para otimizar políticas de substituição de cache,
explicando sua implementação e algoritmos. Desenvolve experimentos para avaliar
essas abordagens, executa simulações e coleta dados experimentais. Analisa os re-
sultados comparando as abordagens propostas com políticas tradicionais, discutindo
descobertas e tendências. Conclui com um resumo das conclusões baseadas nos
resultados e propõe áreas de pesquisa futura e possíveis melhorias nas abordagens.

Resultados: Os testes realizados com a estrutura demonstram possíveis melhorias
na taxa de misses de cache de até 60% em comparação com a utilização da po-
lítica de substituição LRU. Esses resultados impulsionaram melhorias adicionais na
estrutura, incluindo a incorporação de políticas de substituição mais sofisticadas e a
implementação de abordagens adicionais para alcançar resultados superiores

Palavras-chave: Memórias caches. Políticas de substituição de linhas da cache.
Otimização.

LIST OF FIGURES

Figure 1.1 – Fragment of cache hit ratio for pca-small benchmark considering

four cache eviction policies (LRU, FIFO, RANDOM, and BIP). . . . 25

Figure 2.1 – Example of cache hierarchy with private L1 and L2 caches and

shared L3 cache within a CPU architecture. 27

Figure 2.2 – Memory hierarchy. 29

Figure 2.3 – Cache associativity representation showing the blocks inspected

during cache read. 31

Figure 2.4 – Cache metadata example for a 32-bit memory. 33

Figure 2.5 – Example of wrong selection of eviction policy using the LRU policy. 37

Figure 2.6 – Diagram for eviction policies types classification. 38

Figure 2.7 – Example of an application of traditional eviction policies (LRU, RAN-

DOM and FIFO) in cache read. 39

Figure 2.8 – Example of use of BIP and LIP policies in a LRU friendly memory

access sequence. 40

Figure 2.9 – Policies metadata representation using an encoding system based

in arrays. 41

Figure 2.10 – Transformation of policies metadata encoded as array to a register. 42

Figure 3.1 – Set dueling mechanism for selection between LRU and BIP policies. 48

Figure 4.1 – Example of policy change in the naive approach. 53

Figure 4.2 – Overview of the naive search approach. 54

Figure 4.3 – Fixed-Window approach overview. 55

Figure 4.4 – Example of eviction policy transitions with the sliding-window ap-

proach. 57

Figure 4.5 – Overview of the online selection approach. 58

Figure 4.6 – Relation between probability of selecting best policy with Set Duel-

ing and the dedicated number of sets. 60

Figure 4.7 – Overview of the proposed framework for cache eviction policy se-

lection. 61

Figure 4.8 – Developer approach code implementation. 62

Figure 4.9 – Naive approach code section that selects the next eviction policy. . 63

Figure 4.10 – Fixed-window approach implementation overview. 64

Figure 4.11 – Fixed-widows approach pseudocode. 65

Figure 4.12 – Sliding-window approach implementation overview. 66

Figure 4.13 – Register usage for the aging implementation. 67

Figure 4.14 – Aging control pseudocode. 68

Figure 4.15 – Online approach implementation overview. 68

Figure 4.16 – Online approach pseudocode. 69

Figure 4.17 – Set dueling with 3 policies implementation overview. 70

Figure 4.18 – Set Dueling approach pseudocode. 71

Figure 5.1 – Miss rate evolution for several cache sizes using traditional policies

with the liblinear-tsmall benchmark. 77

Figure 5.2 – Miss rate evolution for several cache sizes using traditional policies

with the spc-small benchmark. 77

Figure 5.3 – Miss rate evolution for diverse cache sizes using traditional policies

with sphinx-small benchmark. 78

Figure 5.4 – Miss rate evolution for diverse cache sizes using traditional policies

with spc-small benchmark. 78

Figure 5.5 – Miss rate evolution for diverse cache sizes using traditional policies

with lda-small benchmark. 79

Figure 5.6 – Miss rate evolution for diverse cache sizes using traditional policies

with pca-small benchmark. 80

Figure 5.7 – Miss rate evolution for diverse cache sizes using naive approach

with pca-small benchmark. 81

Figure 5.8 – Miss rate evolution for diverse cache sizes using 3 executions of

naive approach with pca-small benchmark. 82

Figure 5.9 – Miss rate evolution for diverse cache sizes and windows configura-

tions using Fixed Windows approach with pca-small benchmark. . 83

Figure 5.10 – Miss rate evolution for diverse cache sizes and windows configura-

tions using Fixed Windows approach with rbm-small benchmark. . 83

Figure 5.11 – Miss rate evolution for diverse cache sizes and windows configu-

rations using Fixed Windows approach with spc-small benchmark

(low range of windows). 84

Figure 5.12 – Miss rate evolution for diverse cache sizes and windows configura-

tions using Fixed Windows approach with spc-small benchmark. . 84

Figure 5.13 – Miss rate evolution for diverse cache sizes and windows configura-

tions using Fixed Windows approach with liblinear-tsmall benchmark. 85

Figure 5.14 – Miss rate evolution for diverse cache sizes and windows configura-

tions using Fixed Windows approach with liblinear-tlarge benchmark. 86

Figure 5.15 – Miss rate evolution for diverse cache sizes and windows configura-

tions using Fixed Windows approach with pca-large benchmark. . 86

Figure 5.16 – Miss rate evolution for diverse cache sizes and threshold configu-

rations using Sliding Windows approach with pca-small, rbm-small,

spc-small benchmarks with a fixed size of windows. 98

Figure 5.17 – Miss rate evolution for several cache sizes and windows configura-

tions using Sliding Windows approach with rbm-small benchmark. 99

Figure 5.18 – Miss rate evolution for several cache sizes and windows configura-

tions using Sliding Windows approach with pca-small benchmark. 99

Figure 5.19 – Miss rate evolution for diverse cache sizes and windows configura-

tions using Sliding Windows approach with srr-small benchmark. . 100

Figure 5.20 – Miss rate evolution for diverse cache sizes and threshold configu-

rations using Online selection approach with pca-small, rbm-small,

spc-small benchmarks with a fixed size of windows. 101

Figure 5.21 – Miss rate evolution for diverse cache sizes and threshold configu-

rations using Online selection approach with pca-small, rbm-small,

spc-small benchmarks with a fixed size of windows, focusing in

small values of threshold. 102

Figure 5.22 – Miss rate evolution for diverse cache sizes and threshold configu-

rations using Online selection approach with pca-small, rbm-small,

spc-small benchmarks with a fixed size of windows, focusing in

small values of threshold. 103

Figure 5.23 – Miss rate comparison for Set Dueling approach when using different

memory line sizes (32 and 64 bytes). 104

Figure 5.24 – Miss rate evolution for diverse cache sizes configurations using Set

Dueling approach with kmeans benchmarks with a diverse size of

windows. 105

Figure 5.25 – Miss rate evolution for diverse cache sizes configurations using

Set Dueling approach with lda benchmarks with a diverse size of

windows. 106

Figure 5.26 – Miss rate evolution using Online with Cortex benchmarks (Cache

size 32768 bytes). 107

Figure 5.27 – Miss rate evolution using Fix Window with Cortex benchmarks

(Cache size 8192 bytes). 107

LIST OF TABLES

Table 3.1 – Related work overview. 50

Table 4.1 – Overview of the approaches features. 52

Table 5.1 – Parameters of the considered processors. 76

Table 5.2 – Number of sets depending on cache configuration. 90

Table 5.3 – Suboptimal percentage of memory, considering 32 sets per policy. . 90

Table 5.4 – Parameters used in every method for comparison with traditional

policies . 93

LIST OF ACRONYMS

BIP Bimodal Insertion Policy . 24

CPU Central Processing Unit . 27

SRAM Static Random-Access Memory . 28

DRAM Dynamic Random-Access Memory 28

LLC Last-Level Cache . 30

NINE Non-Inclusive Non-Exclusive . 30

PRNG Pseudo-Random-Number-Generator 38

LSFR Left Shift Forward Register . 38

LRU Last Recently Used . 38

MRU Most Recently Used . 39

BIP Bimodal Insertion Policy . 39

LIP LRU Insertion Policy . 39

mlp Minimal life span . 45

PVISAM Predictable Variable Isolation in Shared Antipodal Memory 46

ARC Adaptive Replacement Cache . 46

DIP Dynamic Insertion Policy . 46

SDMs Set Dueling Monitors . 47

SRRIP Static Re-Reference Interval Prediction 47

BRRIP Bimodal RRIP . 47

DRRIP Dynamic Re-Reference Interval Policy 47

BTB Branch target buffers . 48

HITL Human-In-The-Loop . 52

DIP-SD DIP Set Dueling . 58

CONTENTS

1 INTRODUCTION . 23

1.1 MOTIVATION . 24

1.2 OBJECTIVES . 24

1.2.1 Methodology . 25

1.2.2 Outline . 26

2 BACKGROUND . 27

2.1 MEMORY HIERARCHY . 28

2.2 CACHE MEMORIES . 29

2.2.1 Locality Principles . 29

2.2.2 Cache Hierarchy . 30

2.2.3 Cache Management . 30

2.2.3.1 Cache tags . 31

2.2.4 Cache Performance . 33

2.3 CACHE OPTIMIZATIONS . 34

2.4 ACCESS PATTERNS . 35

2.5 EVICTION POLICIES . 36

2.5.1 Traditional policies . 38

2.5.2 BIP . 39

2.6 POLICIES METADATA . 41

3 RELATED WORK . 45

3.1 OPTIMAL APPROACH . 45

3.2 LRU BASED APPROACHES . 45

3.3 HYBRID POLICIES . 46

3.4 AI APPROACHES . 47

3.5 OFFLINE APPROACHES . 48

3.6 POLICIES COMBINATION . 49

3.7 OVERVIEW . 49

4 SELECTION OF EVICTION POLICIES . 51

4.1 ASSUMPTIONS AND SYSTEM MODEL 51

4.2 PROPOSED APPROACHES . 52

4.2.1 Developer Approach . 52

4.2.2 Naive search approach . 53

4.2.3 Fixed-Window Approach . 54

4.2.4 Sliding-Window Approach . 56

4.2.5 Online Selection Method . 57

4.2.6 Set Dueling . 58

4.3 FRAMEWORK IMPLEMENTATION . 60

4.3.1 Developer Approach . 62

4.3.2 Naive Approach . 62

4.3.3 Fixed-Window Approach . 64

4.3.4 Sliding-Window Approach . 65

4.3.5 Online Selection Approach . 67

4.3.6 Set Dueling Approach . 69

4.4 CONCLUSION . 71

5 EVALUATION . 73

5.1 EXPERIMENTAL SETUP . 73

5.2 TRADITIONAL POLICIES . 75

5.3 DEVELOPER AND NAIVE APPROACHES 79

5.4 FIXED WINDOW EVALUATION . 81

5.5 SLIDING WINDOW EVALUATION . 85

5.6 ONLINE SELECTION EVALUATION . 87

5.7 SET DUELING EVALUATION . 89

5.8 COMPARATIVE ANALYSIS . 92

5.9 DISCUSSION . 95

6 CONCLUSION . 109

6.1 IMPLICATIONS AND RECOMMENDATIONS 109

6.2 LIMITATIONS AND FUTURE WORK . 110

BIBLIOGRAPHY . 111

APPENDIX A – COMPARISON OF MISS RATE FOR DIVERSE BENCHMARKS115

Chapter 1 23

1 INTRODUCTION

Cache memories play a crucial role in enhancing the performance of modern

computing systems by exploiting the temporal and spatial locality of memory accesses.

As caches have limited capacity, the decision of which data to retain in the cache dur-

ing a given time window becomes pivotal for system performance. This decision is

governed by a cache eviction policy, responsible for selecting a cache line to replace

upon encountering a cache miss (REINEKE et al., 2007). Commonly employed eviction

policies in commercial processors include the Least Recently Used (LRU) and its vari-

ants, such as First in First Out (FIFO), and Random, each offering distinct performance

profiles based on the memory access patterns of the target application and the cache

size (REINEKE et al., 2007; TOUZEAU et al., 2019; SEGARRA; Gran Tejero; VIñALS,

2021).

Traditionally, processors have been designed with a single cache eviction policy

per cache level, uniformly applied across all applications. However, several studies

have explored the performance implications and potential benefits of varying the evic-

tion policy (QURESHI et al., 2007; MANCUSO; YUN; PUAUT, 2019; ARAUJO et al.,

2021). Yet, none of these studies have delved into the optimization of eviction policies

tailored to specific code sections. This task is inherently challenging, requiring careful

consideration of the sequence of memory accesses and the status of cache lines.

Furthermore, the ability to dynamically adjust the eviction policy at runtime, adapt-

ing the cache configuration as the process executes, holds the potential to enhance

cache-hit rates and overall system performance. Such adaptability could enable the

cache policy to evolve in tandem with the execution phases of a process.

The aim of this thesis is to explore novel approaches for optimizing cache eviction

policies, with a focus on adapting policies to specific code sections dynamically. By

leveraging runtime insights into memory access patterns and cache behavior, we seek

to improve cache performance and overall system efficiency.

During the preparation of this document, the author has contributed to several

publications in the field of real-time systems, embedded software development, and

industrial electronics. These include "Minimizing Cache Usage for Real-time Systems"

presented at the 31st International Conference on Real-Time Networks and Systems

(RTNS ’23)(SUN et al., 2023), "Development of Embedded Software for Data Acquisi-

tion and Calibration of Automotive ECUs" presented at the 29th International Sympo-

sium of Automotive Engineering (SIMEA 2022)(ARRIBAS et al., 2022), "Improving the

Execution Time of Industrial Applications through Planned Cache Eviction Policy Se-

lection" presented at the 32nd International Symposium on Industrial Electronics (ISIE

2023)(GARCíA et al., 2023), and "Low-Cost Data Acquisition System for Automotive

Electronic Control Units" published in Sensors journal in 2023(BEDRETCHUK et al.,

24 Chapter 1

2023).

1.1 MOTIVATION

The cache-hit rate is an important metric to evaluate the efficiency of cache

eviction policies. In fact, the ability to keep relevant data blocks close to the processor

is key to preventing the need to retrieve data blocks from off-chip memory (i.e., cache

miss penalty), as accessing the latter is orders of magnitude slower than accessing

on-chip memory.

In the case of a cache miss, a cache line must be evicted to make space for the

insertion of the newly requested memory data block. Due to the significant cache-miss

penalty, selecting the line to be evicted is neither trivial nor without consequences for the

eventual execution time. Evicting a cache line that will be reused shortly afterward will

incur a performance penalty, as an extra cache miss penalty will have to be paid. On the

other hand, evicting a cache line that will not be reused afterward is more acceptable.

Using a fixed eviction policy during the execution of code is not a guarantee of

the best performance. As illustrated by Figure 1.1, an application presents different

performance in terms of cache hit ratio according to certain code sections and the used

eviction policy. This figure presents the cache hit rate (y-axis) for four different eviction

policies (LRU, FIFO, RANDOM, and BIP) and the number of executed instructions (x-

axis) for the pca-small benchmark issued from the Cortex Benchmark Suite (THOMAS

et al., 2014) running on top of Cachegrind (a cache profiler tool) (SEWARD; NETHER-

COTE; WEIDENDORFER, 2008). Each point represents the percentage of cache hits

in the last 1000 executed instructions. The benchmark’s execution is divided into six

segments (noted from a to f). Each segment is associated with the best-performing

policy with respect to the hit rate. For instance, in segment (c), BIP is selected as it

outperforms the other policies. This example highlights the potential achievable gains

that can be obtained by enabling and exploiting eviction policy changes during process

execution.

Moreover, choosing the best policy for specific code sections requires analyzing

the cache status and the behavior of the hit ratio after the policy change. Thus, the four

approaches to selecting cache eviction policies for code sections proposed in this work

can help with that process.

1.2 OBJECTIVES

The main objective of this work is to identify how the use of diverse eviction

policies in different parts of the code of the same program will affect the hit rate and,

consequently, the execution time. We divided the task into specific objectives:

Chapter 1 25

Figure 1.1 – Fragment of cache hit ratio for pca-small benchmark considering four
cache eviction policies (LRU, FIFO, RANDOM, and BIP).

Source: Author (2023).

• To propose four different approaches to simulate compiled code and to select the

best cache eviction policy for specific code sections. Three of the approaches

are offline (executed through simulations), and one of them is online (based on

cache-related information obtained at runtime);

• To implement the four proposed approaches as an extension of a cache profiler

framework (Cachegrind (SEWARD; NETHERCOTE; WEIDENDORFER, 2008))

and release it as an open-source artifact for future research on related topics;

• To evaluate and compare the proposed approaches in terms of cache misses

and execution times, based on the framework implementation, using relevant

benchmark applications.

1.2.1 Methodology

• Background Review:

– Exhaustive review of fundamental concepts related to cache eviction policies.

– Investigation of previous works and analysis of existing literature in the field

of study.

• Framework Definition:

– Establishment of assumptions and initial conditions of the study.

– Detailed description of the system model considered for the research.

• Development of Proposed Approaches:

26 Chapter 1

– Presentation of the four proposed approaches to optimize cache eviction

policies.

– Explanation of the implementation of each approach and the underlying

algorithms used.

• Experimental Evaluation:

– Design of experiments to evaluate the performance of the proposed ap-

proaches.

– Execution of simulations and collection of experimental data.

• Results Analysis:

– Interpretation of the experimental results obtained.

– Comparison of the proposed approaches with traditional cache eviction poli-

cies.

– Discussion of findings and trends observed in the results.

• Conclusions and Future Directions:

– Summary of conclusions reached based on the experimental results.

– Proposal of future research areas and potential enhancements to the pro-

posed approaches.

1.2.2 Outline

The remainder of this document is structured as follows.

Chapter 2 provides a comprehensive review of background concepts and dis-

cusses related work in the field of cache eviction policies.

Chapter 4 outlines the assumptions made in this study, presents the system

model considered, and introduces the four proposed approaches along with their imple-

mentation details.

Chapter 5 presents the evaluation of the proposed approaches, including experi-

mental results and analysis.

Finally, Chapter 6 serves as the conclusion, where the findings of the thesis

are summarized, and future research directions are proposed. This chapter discusses

the implications of the results obtained and suggests potential avenues for further

exploration in the field.

Chapter 2 27

2 BACKGROUND

In computer architecture, the Central Processing Unit (CPU) employs cache

memories to mitigate the latency associated with accessing slower memories. Cache

memories serve as a buffer between the CPU and main memory (RAM), providing

quick access to frequently accessed data and instructions. This design enhances CPU

performance by reducing the number of cycles required to fetch information from main

memory or secondary storage devices such as hard disks or solid-state drives (SSDs).

Figure 2.1 illustrates a typical cache hierarchy within a CPU architecture. At

the top level, the CPU contains a small but fast cache known as the Level 1 (L1)

cache, which is directly integrated into the CPU core. Below the L1 cache, there may be

additional levels of cache, such as Level 2 (L2) and Level 3 (L3) caches, which are larger

but slower than the L1 cache. These caches collectively form the cache hierarchy, with

each level providing progressively larger storage capacity but with increasing access

latency.

The purpose of this cache hierarchy is to exploit the principle of locality, which

refers to the tendency of programs to access data and instructions that are spatially or

temporally close to previously accessed items. By storing frequently accessed data and

instructions in the faster cache levels closer to the CPU, the cache hierarchy aims to

minimize the time spent waiting for data to be fetched from slower memory tiers, such

as main memory or secondary storage.

Figure 2.1 – Example of cache hierarchy with private L1 and L2 caches and shared L3
cache within a CPU architecture.

Core
1

Core
2

Core
n

Data Data DataInstr. Instr. Instr.

L2 Cache

Main memory

Instr.L1

CPU

L2 Cache L2 Cache

L1 L1

L3 Cache

Source: Author (2023).

Understanding the organization and operation of cache memories is crucial

for optimizing CPU performance. Effective cache management techniques, including

cache eviction policies, play a critical role in determining the hit rate of the cache,

which measures the proportion of memory accesses that are satisfied by the cache

28 Chapter 2

without requiring access to slower memory tiers. Maximizing the hit rate is essential for

achieving high CPU performance and minimizing the overall execution time of programs.

This chapter begins by introducing the main concepts about memories and then

proceeds to discuss cache memories, including their design principles and operational

concepts. The chapter concludes by explaining how caches are accessed and reviewing

cache replacement algorithms.

2.1 MEMORY HIERARCHY

Cache memories are an integral part of the typical memory hierarchy, which is

designed to manage memory resources efficiently in computer systems. The memory

hierarchy consists of multiple levels of storage, each optimized for specific tasks and

selected during system design to balance factors such as performance, cost per bit,

and power consumption (JACOB; WANG; NG, 2010).

At the top of the hierarchy are registers, which are small, extremely fast, and

expensive memory units located directly within the processor core. Registers are used

for storing data operands and intermediate results during computational tasks. They

are controlled directly by the compiler and provide the fastest access times but have

limited capacity due to their high cost per bit.

The next level in the hierarchy is the cache memory, typically implemented us-

ing Static Random-Access Memory (SRAM) technology. Cache memory is used to

store frequently accessed instructions and data, providing low latency, high bandwidth,

and relatively low energy consumption. It is integrated onto the processor chip and is

organized into multiple levels (L1, L2, etc.) with varying capacities and access speeds.

Below the cache memory is Dynamic Random-Access Memory (DRAM), which

is larger and less expensive than cache memory but slower in terms of access times.

DRAM serves as the main system memory, holding program instructions and data that

are not currently stored in the cache. Unlike cache memory, DRAM requires periodic

refreshing to maintain data integrity due to its internal structure.

Finally, secondary memory, such as hard disk drives (HDDs) or solid-state drives

(SSDs), represents the bottom tier of the memory hierarchy. Secondary memory pro-

vides permanent storage for programs, data, and operating system files at a low cost

per bit but with significantly slower access times compared to cache and DRAM.

The design of the memory hierarchy aims to exploit the principles of locality and

temporal and spatial locality to optimize memory access times. By storing frequently

accessed data and instructions in the faster and more expensive levels of the hierarchy

(registers and cache), the system can minimize latency and improve overall perfor-

mance. Less frequently accessed data is stored in slower and less expensive memory

tiers (DRAM and secondary memory), allowing the system to make efficient use of

available resources.

Chapter 2 29

Figure 2.2 provides a graphical representation of the memory hierarchy, illustrat-

ing the different types of memory and their positions within the hierarchy. This visual-

ization highlights the tiered structure of the hierarchy, with faster and more expensive

memories positioned at the top and slower and less expensive memories positioned at

the bottom.

Figure 2.2 – Memory hierarchy.

Registers

Cache
(SRAM)

DRAM

Secondary memory

Faster
access
time

Higher
capacity

Source: Author (2023).

2.2 CACHE MEMORIES

In modern computer systems, the speed disparity between CPU processing

speed and memory access latency poses a significant challenge to achieving optimal

performance. Cache memories play a crucial role in bridging this gap by providing fast

access to frequently used data and instructions, thereby reducing the overall latency of

memory accesses (HENNESSY; PATTERSON, 2011). However, the design of cache

memories involves trade-offs between latency, size, and cost. As cache memories are

more expensive per unit of storage compared to main memory, there is a trade-off

between the size of the cache and its latency-reducing effectiveness (AKANKSHA;

CALVIN, 2019).

2.2.1 Locality Principles

Cache memories exploit the principle of locality of reference to improve memory

access efficiency. This principle is based on the observation that memory references

tend to exhibit locality, meaning that accesses to memory locations are often clustered

together in time and space (JACOB; WANG; NG, 2010).

30 Chapter 2

Temporal Locality

Temporal locality refers to the tendency of programs to reuse recently accessed

memory locations in the near future. Cache memories exploit temporal locality by stor-

ing recently accessed data and instructions in the cache, allowing the CPU to access

them quickly without having to fetch them from slower main memory repeatedly (PAT-

TERSON; HENNESSY, 2017).

Spatial Locality

Spatial locality arises from the tendency of programs to access memory locations

that are close to each other in memory space. Cache memories take advantage of

spatial locality by fetching entire cache lines, which contain multiple adjacent memory

locations, into the cache when a single memory location is accessed. This prefetching

strategy reduces the latency of subsequent memory accesses to neighboring locations

(PATTERSON; HENNESSY, 2017).

Algorithmic Locality

Algorithmic locality refers to patterns in memory access that are not strictly

temporal or spatial but are characteristic of certain algorithms or program behaviors.

For example, some programs may exhibit access patterns where data scattered across

different memory regions are repeatedly accessed in a predictable manner. Prefetching

techniques, either implemented manually or by the compiler, can exploit algorithmic

locality to improve cache performance (HENNESSY; PATTERSON, 2011).

2.2.2 Cache Hierarchy

Cache memories in modern computer systems are organized into a hierarchy

of multiple levels, typically including L1, L2, and L3 caches. Each core in a multicore

processor usually has its own dedicated L1 cache, while the L2 and L3 caches are

shared among multiple cores or a cluster of cores (PATTERSON; HENNESSY, 2017).

The cache closest to the main memory, often referred to as the Last-Level Cache

(LLC), serves as a shared cache for all processor cores and is crucial for maintaining

coherence and reducing memory access latency (GRACIOLI et al., 2015).

The design of the cache hierarchy may incorporate different inclusion policies,

such as inclusive, exclusive, or NINE policies. Inclusive caches contain all memory

blocks present in lower-level caches, while exclusive caches only contain memory

blocks that are not found in lower-level caches. The NINE policy allows different blocks

in different cache levels after evictions, but new memory blocks fetched from DRAM or

the LLC cache are placed in both levels (PATTERSON; HENNESSY, 2017).

2.2.3 Cache Management

Cache memories operate by organizing memory blocks into sets of fixed size,

obtained from the logical partition of main memory. These memory blocks are stored in

Chapter 2 31

specific cache locations based on memory mapping strategies. Cache memory can be

categorized into different types of associativity:

• Direct-mapped: Each memory block is assigned to a specific cache location,

allowing for quick access but limiting flexibility.

• Fully associative: Any memory block can be stored in any cache location, pro-

viding maximum flexibility but requiring more complex search operations.

• Set associative: Cache memory is divided into equally-sized cache sets, with

each set containing a certain number of lines. Within each set, memory blocks

are mapped to specific lines, providing a balance between speed and flexibility.

The terms "block" and "line" are often used interchangeably when referring to

cache memories.

Figure 2.3 illustrates the three types of cache associativity. In a direct-mapped

cache, each memory block corresponds to a specific cache location. In a fully associa-

tive cache, any memory block can be stored in any cache location. In a set associative

cache (shown as a 2-way set-associative example in the figure), memory blocks are

mapped to specific lines within each set.

Figure 2.3 – Cache associativity representation showing the blocks inspected during
cache read.

Set associativeDirect-mapped Fully associative

Block number 0 1 2 3 4 5 6 70 1 2 3 4 5 6 70 1 2 3 4 5 6 7

Set number 0 1 2 3

Block search

Source: Author (2023).

2.2.3.1 Cache tags

Cache memories are smaller than other types of memory in systems, which

means that frequently accessed memory data needed by the CPU may not always

32 Chapter 2

be present in the cache. Cache tags serve as a mechanism to identify the lines, and

therefore the memory segments, stored in the cache. These tags, also known as cache

metadata, are stored alongside the cache data and are generated using the memory

address of the data.

Because accessing data quickly is crucial, devices need to know which locations

in the cache memory they should check to confirm whether data is stored there or not.

The position of the data in the cache memories depends on the cache associativity. In

fully associative memories, all metadata of the blocks in the cache must be verified and

compared with the searched memory address. However, this differs for other cache

associativities. In direct-mapped caches, the block to be checked is determined by the

operation shown in Equation 2.1, while in set associative caches, all blocks within the

set must be checked to identify if the searched data is stored there. The set where a

memory block could be stored is defined by Equation 2.2. When the processor needs

to search multiple locations in the cache memory for memory data, the verification of

the blocks is done in parallel.

(Block address in memory) modulo (Number of blocks in cache memory) (2.1)

Equation 2.1 – Calculation of cache block number

(Block address in memory) modulo (Number of sets in cache memory) (2.2)

Equation 2.2 – Calculation of cache set number

Because of the limitation in cache memories space and aiming for optimization

of hardware and power saving, metadata is stored together with the data as block

identification instead of the full memory address. The metadata is formed from the tag,

which is generated starting from the address of the memory block stored in the cache.

For example, considering a 32-bit physical memory address and a block size of 8 bytes,

the first 3 bits of the address represent the position of the byte inside the memory block

(referred to as the block offset) (HENNESSY; PATTERSON, 2011). The size of the block

defines the n bits used in the block offset. The next m bits after the n bits of the block

offset are determined by the number of sets in the cache memory (considering 0 for

a fully associative cache and the number of blocks of the cache for a direct-mapped

cache), known as the block ID (JACOB; WANG; NG, 2010). For instance, if the cache

memory has 32 sets, then the value of m is 5. The tag is obtained by removing the n +

m lower bits of the address from the 32-bit physical address, resulting in 24 bits in the

example, this is depicted in 2.4.

The tag is not the only part of the metadata in the cache memory. Normally, one

bit is added to the tag to indicate the status of the cache position (valid or invalid).

Chapter 2 33

Figure 2.4 – Cache metadata example for a 32-bit memory.

Memory address (32 bits)

Block ID (29 bits)
Block offset
(n = 3 bits)

Cache Tag (24 bits)
Set number
(m = 5 bits)

Cache Tag (24 bits)
Status

bit

Cache Block size =
8 bytes

7 6 5 4 3 2 1 0

Cache sets {0,1,2,...31} = 25 sets

Cache configuration

Block offset {0,1,2,...7} = 23 positions

Source: Author (2023).

The fixed size of the cache blocks allows the use of cache tags in the metadata,

reducing the data needed to determine if some data is stored in the cache memories,

and it is also responsible for the number of bits needed for the block size. Similarly,

increasing the associativity of the cache reduces the number of sets in the memory and

the number of bits needed to indicate the set number, affecting the cache tag size.

When the processor must perform a write operation, it should indicate the byte

of the block that must be modified, and then depending on the design of the cache:

• Write through: Both cache and RAM memories are written.

• Write back: Only the cache is written, and the cache block is marked to be written

in the RAM memory when replaced.

Because the low-level memories do not provide the same bandwidth as the

cache, some write buffers, faster than the memories, are used to avoid delays in Write

through caches. The Write back design is more interesting for embedded systems,

where power saving is a priority. In this type of design, an extra bit is used in the cache

metadata, known as the dirty bit, which indicates whether the block must be written to

the memory when replaced from the cache (HENNESSY; PATTERSON, 2011).

2.2.4 Cache Performance

When the CPU accesses a memory block, it checks if the block is in the expected

cache position using the metadata, resulting in a cache hit when found or a cache miss

34 Chapter 2

otherwise. During this comparison, the cache data is already loaded, so if the metadata

matches the searched block, the data is readily available for use without the need for a

new read operation.

Even though the processor can execute other instructions while waiting for the

data not found in the cache memory, the performance of the memory system is evalu-

ated based on the miss rate, miss penalty, and average access time. The miss rate is

defined as the percentage of memory accesses resulting in cache misses, while the hit

rate represents the opposite. Following a cache miss, the CPU experiences a stall for

several cycles, and the miss penalty accounts for the total number of cycles required

to store the memory block in the L1 cache and deliver it to the CPU.

The Average Access Time and CPU execution time are calculated as follows (KU-

MAR; SINGH, 2016):

AverageAccessT ime = HT × HR + MP × MR (2.3)

CPUExecutionT ime = (CCC + MSC) × CCT (2.4)

MSC = Misses × MP (2.5)

= IC × Misses

Instructions
× MP (2.6)

= IC × MemoryAccess

Instructions
× MR × MP (2.7)

Here, HT denotes the Hit Time, which is the time consumed when data is found

in the Cache. HR represents the Hit Rate, indicating the percentage of cache hits.

IC represents the number of instructions executed, MP stands for the Miss Penalty,

representing the time consumed when a cache miss occurs. MR denotes the Miss

Rate, indicating the percentage of cache misses. CCC refers to the CPU Clock Cycles,

MSC denotes the Memory Stall Cycles, and CCT is the Clock Cycle Time.

On state-of-the-art architectures, a cache miss may incur several hundred CPU

cycles, and it is anticipated that new architectures may exhibit even larger cache miss

penalties (REINEKE; GRUND, 2013). Given that the system’s performance is contin-

gent on the cache performance, minimizing the number of cache misses is essential.

2.3 CACHE OPTIMIZATIONS

Several optimization mechanisms have been proposed to enhance cache perfor-

mance:

a) Increase cache size: Expanding the cache’s storage capacity allows for

more memory blocks to be stored, thus reducing the miss rate. However, this

option is often costly and not always feasible due to hardware constraints.

Chapter 2 35

b) Multilevel caches: Introducing a second-level cache memory, typically larger

and slower than the first level cache, enables the system to leverage the

first level cache to minimize hit time and the second level cache to reduce

miss penalty time. Although a miss in both levels results in a larger penalty

compared to a single-level cache, overall performance improves.

c) Prefetching: Employing software or compiler techniques to predict which

memory addresses will be needed in the cache before the processor ac-

cesses them, thereby reducing the miss ratio.

d) Software blocking: For codes utilizing data structures larger than the cache,

such as large arrays, developers can optimize their code with algorithms that

prevent loading the same data into the cache multiple times. These algorithms

load part of the array, perform all necessary operations on that data, and then

repeat the process with other parts of the array, rather than applying a single

operation to the entire array before proceeding to the next operation.

e) Increase cache associativity: Enhancing cache associativity reduces con-

flicts after loading new data, as the new data can be stored in a set where the

evicted data may no longer be needed. However, a fully associative cache

model is suboptimal as it requires complex hardware and slows down the

process due to the need to check all cache blocks after a cache miss.

f) Increase cache block size: Larger cache blocks result in fewer blocks being

replaced in case of a cache miss. However, this may lead to cache misses

when the program lacks spatial locality.

g) Read priority: Allowing the processor to execute read operations without

waiting for a preceding write operation to complete can expedite memory

accesses, especially when a write buffer is employed. However, this approach

may generate conflicts when updated values of a memory address are stored

in the buffer and a read operation of those values is requested.

2.4 ACCESS PATTERNS

As discussed in Section 2.2, the performance of a system is closely linked to

the efficiency of the cache memory, which, in turn, depends on the number of cache

misses. Ideally, a cache memory would have no misses, which could be achieved with

either a large cache memory or the ability to predict future memory accesses requested

by the processor before program execution. However, in real systems, predicting future

memory accesses is not feasible. Nonetheless, studies (JALEEL et al., 2010) have

identified common access patterns exhibited by memory accesses:

36 Chapter 2

• Recency-friendly Access Patterns: In this pattern, a sequence of memory ac-

cesses is repeated N times. Within this sequence, accesses to blocks that were

recently used are repeated in a short period of time.

• Thrashing Access Patterns: This pattern involves a sequence of memory ac-

cesses of length k being repeated N times, where accesses are not repeated in

the same sequence.

• Streaming Access Patterns: Occurring when the length of the sequence of mem-

ory accesses is infinite.

• Mixed Access Patterns: This pattern combines sequences of memory accesses

with block reuses in both the near and distant future.

Identifying the access pattern allows for predicting which memory blocks will

be used, enabling the cache to retain them and evicting other blocks less likely to be

accessed. By selecting the cache line to be evicted based on the access pattern of the

code, it is possible to reduce the miss ratio by maintaining memory blocks that are likely

to be reused in the cache.

2.5 EVICTION POLICIES

When the processor requests data that is not present in the cache, this data is

loaded into the cache memory. However, when the cache is full, it must replace old data

previously stored. If the new blocks should be stored in an already full cache set, the

hardware has to choose which block should be evicted and sent to a lower-level cache

or removed from the cache. This process is not trivial because evicting blocks that will

be reused in the near future will result in cache miss penalties, affecting performance.

An example of suboptimal selection of an eviction policy is illustrated in Figure

2.5. The figure shows a cache set composed of 4 memory blocks and the memory

access sequence for that set. Each memory block in the set is assigned a number to

indicate its position in the eviction queue, with 1 being the block that was most recently

used and 4 indicating the next block to be evicted, as defined by the eviction policy

applied. In this example, a traditional eviction policy is used, the Least Recently Used

(LRU) policy. LRU stores memory blocks in the set in anticipation of their reuse in

the near future, based on temporal locality. However, due to the size of the working

set, the blocks are evicted before being reused, resulting in a low hit ratio, with all

memory accesses after the set is full resulting in cache misses. The use of another

policy for this access sequence would return a better hit ratio, reducing the number

of misses. For example the use of the bimodal insertion policy (BIP) or LRU insertion

policy (LIP), both explained in 2.5.2. We show a similar access sequence for the same

cache configuration in the figure 2.8, where better results are obtained.

Chapter 2 37

Figure 2.5 – Example of wrong selection of eviction policy using the LRU policy.

D

Cache set Memory accesses sequence

A

B

C

D

E

F

G

H

I

A

A B

A B C

A B C D

1

1 → 2 → 3 → 4MRU LRU

2

2

2 134

3

1

1

E B C
3 241

3 421
DE F C

4 312

DE F G
1 423

H
1

4

MISS

MISS

MISS

MISS

MISS

MISS

MISS

A

B

E F G
234

H
2

I F G
341

4
H

3
I A G

412

4
H

4
I A B

123

Source: Author (2023).

Various eviction policies could be employed in cache memories (AKANKSHA;

CALVIN, 2019), and they can be classified based on the granularity of the insertion

decision into:

• Coarse-Grained policies: All cache blocks are inserted in the cache identically,

with the same priority or the same position in the eviction queue.

• Fine-Grained policies: New cache blocks can be inserted with different priorities.

Figure 2.6 illustrates the classification of eviction policies. Within coarse-grained

policies, there are three groups: recency-based policies (such as LRU and its variants

(REINEKE et al., 2007)), frequency-based policies (like LRFU (LEE et al., 1997)), and

hybrid policies. The fine-grained policies are divided into two groups: classification-

based policies and reuse distance-based policies.

38 Chapter 2

Figure 2.6 – Diagram for eviction policies types classification.

Eviction policies

Coarse-grained policies Fine-grained policies

FrequencyRecency Hybrid Reuse value Classification

Source: Author (2023).

2.5.1 Traditional policies

In this section we review three commonly used eviction policies (REINEKE et

al., 2007): Least Recently Used (LRU), First In First Out (FIFO), and Random. Both

LRU and FIFO rely on intuitive heuristics based on the temporal locality of the data.

The LRU policy and its pseudo-LRU counter-part keep track of which way has been

accessed most recently. In the case of an eviction, the LRU policy will designate the

least recently accessed cache line of the set as the victim. In contrast, the FIFO policy

simply keeps track of how recently the cache lines in the set have been inserted and

keeps that value unchanged when the cache line is accessed. Upon eviction, the policy

will simply designate the cache line featuring the smallest value (i.e., the oldest line),

replaces it with the highest possible value (i.e., Ways − 1), and decrement the other

cache lines values in the set. Unlike the aforementioned policies, the Random eviction

policy does not rely on any temporal locality assumption. Instead, the designation of

the victim is dictated by a Pseudo-Random-Number-Generator (PRNG), often either a

Fibonacci or Galois Left Shift Forward Register (LSFR).

In the example of the figure 2.7 the three traditional policies, LRU, FIFO, and

RANDOM are applied to a memory accesses sequence. The figure shows a cache

memory set composed by two blocks. For the LRU and FIFO policies a white number

appears together with the blocks, this number represents the order of the block in

the eviction queue of the set. The biggest number indicates the block that must be

evicted when a cache miss occurs in the set. For instance, in the LRU policy when the

processor requests the block with the letter C a miss is detected and the block A is

evicted because it has the biggest number. The figure shows the transition between

states of the cache set, between every transition we show the result of the request

done by the processor, miss or hit. The first state of the set is the same for all the

three policies, because we consider the cache was empty before the processor start

requesting the data. For the RANDOM policy, the block evicted after every miss is

selected randomly, it results in only one hit for this example but this may change in

Chapter 2 39

Figure 2.7 – Example of an application of traditional eviction policies (LRU, RANDOM
and FIFO) in cache read.

LRU

FIFO

RANDOM

Memory accesses sequence

A B B BC D

A B

A B
2 1

A B
2 1

BC
1 2

BC
1 2

A C A B

BC
2 1

BC
1 2

BD
1 2

BD

C
2

D
1

BD
2 1

BD

B
1

D
2

MISS

MISS

MISS

HIT

HIT

MISS

MISS

MISS

MISS MISS

HIT

HIT

Source: Author (2023).

different executions of the same accesses sequence. For the LRU and FIFO policies,

the difference between them is emphasized in the forth transition, where in LRU is a

cache hit and in FIFO is a cache miss. This is a consequence of the second transition,

since, even when both policies are cache hits, the LRU changes the order of the blocks

in the eviction queue setting the block B as the in the MRU position and block C as the

next block to be evicted. For that reason in the third transition the FIFO evicts the block

B, which was inserted before block C but LRU evicts block C because B was the more

recently used (MRU) block.

2.5.2 BIP

The bimodal insertion policy (BIP) is a coarse-grained eviction policy able to

adapt itself to changes in the working set (QURESHI et al., 2007). The policy is an

evolution of the LRU insertion policy (LIP), that inserts new memory blocks into the

LRU position of the cache set, instead of into the MRU as the traditional LRU policy

does. The LIP can address access patterns that are not LRU-friendly, as streaming or

thrashing patterns. During working set changes between thrashing pattern and recency-

friendly patterns the LIP has a bad behavior increasing the miss rate because is not

able to store memory blocks in the cache that will be used in the short future. The BIP

evolves from LIP inserting new blocks in the MRU position with a low probability. This

low probability, which is a parameter call BIP throttle ϵ makes possible retain new values

in the cache. Frequent values of ϵ are 1/32 or 1/64, when this parameter is 0 the BIP

works as a LIP and with 1 as a LRU policy.

In the figure 2.8 we compared the behavior of LIP and BIP with a working set

40 Chapter 2

Figure 2.8 – Example of use of BIP and LIP policies in a LRU friendly memory access
sequence.

E

LIP BIP Memory accesses sequence

A

B

C

D

E

F

G

H

I

D

E

F

G

H

I

A

A B

A B C

A B C D

4

1 → 2 → 3 → 4MRU LRU

3

3

3 421

2

4

4

A B C
3 421

3 421
FA B C

3 421

GA B C
3 421

HA B C
3 421

IA B C
3 421

DA B C
3 421

EA B C
3 421

FA B C
3 421

GA B C
3 421

HA B C
3 421

IA B C
3 421

MISS E

A

A B

A B C

A B C D

4

3

3

3 421

2

4

4

A B C
3 421

3 421
FA B C

4 132
MISS

MISS

MISS

MISS

MISS

MISS

MISS

MISS

MISS

MISS

3 421
FA B G

4 132

MISS

MISS

MISS

MISS

MISS

MISS

MISS

HIT

MISS

MISS

HIT

3 421
FA B H

4 132

3 421
FA B I

1 243

3 421
FA D I

1 243

3 421
FA E I

2 314

3 421
FA E I

3 124

3 421
FG E I

3 124

3 421
FH E I

3 124

3 421
FH E I

1 234

Source: Author (2023).

LRU-friendly bigger than the cache size. The cache memories are represented like a

set of 4 blocks in both policies. The column named "Memory accesses sequence"

enumerates the blocks requested by the processor. And the white numbers in the

memory blocks of the sets represent the position of the memory blocks in the eviction

queue, the bigger the number the closer to the LRU block that would be evicted in both

cases after a cache miss. In the BIP policy the cache sets are surrounded by a green

square when the block inserted on them is stored in the MRU position. In the example

Chapter 2 41

the three first memory accesses are the end of a non-recency-friendly pattern and

starting from the block D comes a recency-friendly sequence that repeats only twice,

but it is possible to appreciate that if the sequence would continue repeating several

times LIP would always result in cache misses whereas BIP gives a better hit ratio

because store some of the blocks that are reused by the sequence.

2.6 POLICIES METADATA

The implementation of eviction policies for cache memories requires storing

some data (metadata) related to the aging and eviction order of the blocks inside the

cache sets, this information is used together with the logic of the policy to select which

blocks must be replaced in case of a cache miss in the set. The way of encoding this

metadata is crucial, it should be easy to use and reduced in size to avoid hardware

overhead in cache. As example, we present an LRU metadata encoding representation,

where the recency of every cache block of a set is stored. It is based in a NxN matrix

where N is the amount of cache blocks in a cache set, where x is used to define the

number of the rows and y the number of the columns. For instance, figure 2.9 shows

the encoding representation for a set with 4 memory blocks.

Figure 2.9 – Policies metadata representation using an encoding system based in ar-
rays.

1 1 1

00

0

Y

X

0

0

1

1

2

2

3

3

Source: Author (2023).

That matrix uses a 1 in [x][y] when the block x of the set is more recent than

the block number y. We consider that the matrix could be simplified, because [x][x]

positions in the matrix compare the recency of the same memory block, and [x][y] and

[y][x] represents the comparison of the same blocks. Therefore only the upper or lower

triangle matrix must be used, resulting in a size defined by Equation 2.8.

Elements = ((NxN) − N)/2 (2.8)

42 Chapter 2

Upon a cache hit, wherein a block within the set is accessed by the processor,

it mandates promotion. Under the purview of the LRU policy, this block is transitioned

to the MRU (Most Recently Used) position. To illustrate, let’s consider the block m. Its

promotion is realized by updating all elements in row m to 1, while concurrently setting

all elements in column m to 0.

A scenario wherein every element in column x is 1 and every element in row x

is 0 is indicative of the block x of the set being in the LRU position. Thus, upon a cache

miss in that specific set, this block becomes the candidate for replacement.

Interestingly, this encoding paradigm extends its utility to MRU or FIFO policies

as well. In the FIFO policy’s context, a block’s promotion is reserved exclusively for its

insertion moment within the set, and it retains its position until eventual replacement,

never advancing to the MRU spot. For ascertaining the MRU position, applicable to the

BIP policy as well, it is imperative that all elements in the corresponding row bear the

value 1, while all elements in the associated column are set to 0. Figure 2.9 show this,

depicting block 0 of the set as the MRU block.

Transitioning to Figure 2.10, it’s discernible that the block recency within sets can

be encapsulated using a register. Every set within the cache necessitates a dedicated

register, the bit-count of which is derived from equation 2.8.

However, the adoption of multiple eviction policies within a singular cache is

not without its intricacies, particularly in relation to metadata. Transitioning between

policies can lead to metadata that may not intuitively align with the underlying logic of

all adopted policies. For example, when LRU is in action, metadata is reflective of the

block accessed furthest back in time, given that blocks are elevated to MRU status upon

utilization. This phenomenon is absent in the FIFO policy. Consequently, a switch from

LRU to FIFO might result in a scenario where the eviction policy begins targeting more

recently accessed blocks. This is due to the older blocks having been promoted during

the LRU’s use.

Figure 2.10 – Transformation of policies metadata encoded as array to a register.

1 1 1

0 0

0

0 1 2 3

0

1

2

3

Y

X 1 1 1 0 0 0

Metadata register

Source: Author (2023).

Chapter 2 43

In this chapter we went through the main concepts of memory hierarchy and

cache memories. We discussed the bases of the cache memories and how they are

controlled and operated. The space limitation of the cache memories forces the hard-

ware designers and developers to search for improvements in this kind of memory. The

frequent cache optimizations presented in this work are related to cache configuration

or software methods to load the cache memories with data that would be used in a

short future. We lately presented some of the more frequent memory access patterns

that could be found in code and some of the traditional eviction policies used in cache

memories, some of them designed for specific access patterns. Finally, we explained

how this policies are managed by the processor to decide the data that must be evicted

from the memory when new data must be inserted in the cache and the memory is

already full.

Chapter 3 45

3 RELATED WORK

The capability of the system caches to keep hold of the adequate data and

provide a high cache hit rate depends on many architectural aspects such as the

number of sets, the number of ways, the write policy, and the hit latency. But since the

beginning of modern processor the eviction policies were in the focus of researchers

who look for optimization of cache memories.

3.1 OPTIMAL APPROACH

The eviction policies aim to minimize the number of misses, this could be done

retaining in the memory the blocks with highest probability of be reused in near future

and doing the opposite with those with lowest probability (BELADY, 1966). The analysis

of the sequence of address references of the program shows if a eviction policy has a

good behavior. When a block must be evicted, the selection of dead blocks, those that

never will be used, would be the result of good policy. Oppositely, the eviction of a block

that will be used in the short future indicates that the policy is improvable. Because in

runtime the next memory references are unknown, the optimal selection of the evicted

blocks is not possible. The only way to reach the optimal eviction is running the software

once, getting the memory reference sequence and using that information in a second

execution to evict the blocks that never will be used or will be used later than the others

when a cache miss occurs. Belady (1966) called this a two-pass job, and named the

algorithm as MIN. This algorithm, even when impracticable for most of the applications,

but according to the author could be used as base of comparison for other policies.

3.2 LRU BASED APPROACHES

As highlighted by Heckmann et al. (2003) and Reineke et al. (2007), amongst the

state of the art eviction policies such as FIFO, and LRU, all of them provide the soundest

resistance to "chaos", storing the aging of the data in a way that in case of lost metadata

the policies may recover it after some new updates in cache content (HECKMANN et

al., 2003). Unfortunately, in addition to requiring more local memory resources, the

LRU policy suffers from one notable aspect: the minimal life span (abbreviated mlp

in (REINEKE et al., 2007)). In other words, the minimal amount of time a cache line

stays in the cache without being accessed. In the case of LRU, the mlp is a function

of the number of ways. Qureshi et al. proposed three new cache line eviction policies

derived from LRU (QURESHI et al., 2007). Referred to as Adaptive Insertion Policies,

they differ by the way new cache lines are inserted in the cache set. The proposed

LIP borrows all the precepts of LRU except that new caches line are inserted at the

LRU position instead of the MRU position, addressing LRU’s mlp shortcoming. Newly

46 Chapter 3

inserted lines are promoted to the MRU position provided that they are accessed again

after their insertion.Alternatively, Qureshi et al. (2007) proposed the BIP, an extension

of LIP where the insertion of each cache line at the LRU position instead of the MRU is

decided with a probability ϵ ∈ [0, 1].

In the work of Mancuso, Yun e Puaut (2019), the authors combine the Determin-

istic Memory (DM) concept with the LRU, creating an eviction policy named DM-LRU.

The authors showed, through simulations, that the approach reduces tasks WCETs with

less overhead than LRU and decache block-based approaches. For multicore systems

with unified share caches, Haque et al. (HAQUE; EASWARAN, 2018) presented the

Predictable Variable Isolation in Shared Antipodal Memory (PVISAM) eviction policy,

which reserves fixed parts of the cache for each processing core and assigns the rest

of the cache on demand among all remaining cores.

3.3 HYBRID POLICIES

Thy hybrid policies are based on the fact that some parts of the workload of a

program would work better with a policy while other parts would do it with a different

policy (JALEEL et al., 2010; QURESHI et al., 2007). Depending in the working set size

a recency friendly or an anti-thrashing policy could perform better. The hybrid policies

try to identify the changes in the working set and switch between different policies

adapting to the changes. The challenge of hybrid policies is the identification of the

changes in the working set without resulting in a high hardware cost. Diverse policies

were researched in this sense, like the Adaptive Replacement Cache (ARC) , where

the author create a policy that selects between recency-friendly and frequency-friendly

policies(MEGIDDO; MODHA, 2003). The hybrid policy works with 2 tag directories,

one for recency and another for the frequency, whose size is increasing or decreasing

according to the detected cache hits. The final size of both tag directories is twice as big

as the normal cache directory, but it only stores data for the same number of positions

as the normal cache does, the rest of the directory tags save only metadata.

Qureshi et al. (2007) proposed a dynamically adapting policy called Dynamic

Insertion Policy (DIP) that switches between the LRU and BIP policies, recency-friendly

and anti-thrashing policies. The decision to switch is taken by monitoring cache hits

trends, selecting the policy incurring the lower amount of misses. The selection is made

dynamically online and the authors propose some alternatives to get this. DIP-Global

implements two separated auxiliary tag directories for LRU and BIP and a counter

that informs which policy has less misses selecting the best policy. The DIP-DSS (DIP

Dynamic Set Sampling) reduces the hardware overhead of DIP-Global using two ATDs

with 32 sets instead. Although the authors claim that all DIP variants are practicable (in

terms of hardware implementation), only the DIP-Set dueling option does not imply in a

big hardware overhead or extra ATDs. DIP-Set dueling method still combines LRU and

Chapter 3 47

BIP policies as the other DIP solutions, but instead of using extra hardware or software

it applies the set-dueling technique for the detection of the best policy for the current

working set. DIP-Set dueling dedicates few sets to LRU and another few sets to BIP

(same number for both), these are the set dueling monitors (SDMs) . The sets selection

could be done randomly in runtime or fixed offline. Figure 3.1 depicts the set-dueling

policy, showing 4 sets for each policy (LRU and BIP) and 6 following sets. The sets that

are not part of the SDMs are called follower sets. The method uses a policy selector

counter (PSEL) that is incremented when the sets dedicated to LRU have a cache hit

and decreased when a hit is detected in the BIP SDMs. The counter is started to its

middle value, and the most significative bit of the PSEL is used to define the policy

used by the follower sets, when this bit is 1 LRU is used and when the MSB is 0 the BIP

is used. The only extra storage needed by DIP-Set dueling is the PSEL. The adaptive

insertion policies commented above were designed to work with recency-friendly and

thrashing-friendly access patterns, but they do not work properly with other patterns,

like the streaming access pattern, where data that will never be reused is accessed by

the program.

Jaleel et al. (2010) presented the dynamic re-reference interval policy (DRRIP),

an approach based on set-dueling where the LRU and BIP policies are replaced with

SRRIP and BRRIP , which are the streaming-resistant versions of LRU and BIP re-

spectively. The streaming-resistant policies organize the block in a set regarding the

prediction when a block is re-referenced. In the case of SRRIP the new blocks are in

the middle of the prediction queue and promoted when referenced to the beginning of

the queue. The queue is updated moving all the blocks to the end of the queue when a

cache miss is detected and the latest block in the queue is evicted. The BRRIP works

similarly to SRRIP, but as BIP has a throttle ϵ ∈ [0, 1] that defines the probability that

a new block would be inserted in the middle of the queue, normally the blocks are

inserted at the end of it and the aging and eviction follows the SRRIP logic.

Research focusing on the Real-time implications of Adaptive Insertion Poli-

cies (ARAUJO et al., 2021) have shown that DIP can improve the scheduling ratio

by up to 50% in comparison to LRU using a fixed-priority non-preemptive scheduler.

3.4 AI APPROACHES

The difficulty to assess the usefulness of a cache line at a given instant has

prompted researchers to rely on artificial intelligence (AI) techniques. These ap-

proaches train their classifiers using a sequence of eviction decisions generated by

the optimal eviction policy (i.e., Belady’s/Oracle’s policy (BELADY, 1966)). Tools such

as Hawkeye (JAIN; LIN, 2016) and Glider (SHI et al., 2019) train classifiers to guess

whether a line is "cache-friendly" or "cache-averse" and base any eviction decision on

this. These AI-based approaches, while successful at providing increased cache hit

48 Chapter 3

Figure 3.1 – Set dueling mechanism for selection between LRU and BIP policies.

Set0 Set1 Set2 Set3 Set4 Set5 Set6 Set7 Set8 Set9
Set
10

Set
11 PSEL

Hit in LRU

Hit in BIP

+

-

Set dedicated to LRU

Set dedicated to BIP

Following sets, policy selected by PSEL

Master tag directory

Source: Author (2023).

rates, are impractical to implement in real hardware as the network’s depth drives the

frequency down, and implementing extra memory, adders, and multipliers is expensive.

Similar approaches were used for instruction caches as describes in (AJORPAZ et al.,

2018), where prediction is shared for replacement policies used for caches and branch

target buffers (BTB).

3.5 OFFLINE APPROACHES

The static analysis of the memory accesses could be used to reduce the miss

ratio in the caches. The AI approaches are composed by a training phase where a

model is trained to get a predictor that will be use in run time to classify memory

block like cache-friendly or cache-averse, the eviction of the blocks perform by the

policy is based on this classification. There are some other researches focused on the

improvement of traditional eviction policies where a static compilation analysis is done

before to run the software. The analysis returns some information about when a block

is reused and allows the cache to improve eviction policies results (WANG et al., 2002).

Wang et al. (2002) developed a theoretical model that uses the compiler to separate

the memory blocks used in arrays of the software regarding their reuse level. They

determine static locality patterns in the code after a full trace of code. The classification

is then added to the cache LRU metadata of the blocks and use during a cache miss to

evict the blocks with biggest reuse level together with a LRU policy that is apply in case

of blocks having the same level. The hardware overhead generated by the 16 auxiliary

bits the author propose to classify the reuse levels makes the proposal impractical. The

author simplifies the solution reducing the 16 bits to a single bit called evict-me bit. This

Chapter 3 49

bit is set following an algorithm that checks the data processed between re-reference

of a block, number of references into the same cache set, and loop bounds of a nest in

code. The cache then uses LRU together with the bit to select the block to be evicted.

When the cache has a miss in a set first the blocks with the evict-me bit are candidates

to be evicted following the LRU metadata, and in case of none of the blocks have the

bit a standard LRU policy is applied to the set.

3.6 POLICIES COMBINATION

Researches have been done regarding the combined use of diverse eviction

policies in the same cache memory. The use of multiple policies for the same memory

was successfully implemented using set-dueling technique (QURESHI et al., 2007),

the limitation of this approach was that only 2 policies could be used at the same time.

In Srivatsa et al. (2020), the authors present a hybrid voting-based eviction policy for

caches (HyVE). The policy is composed with multiple standalone eviction policies that

work in parallel during the execution of the code, each policy uses it own metadata and

tag directory. The cache chooses the memory block to be evicted based on a ranking

system and using voting theory methodologies. The method has no learning subsys-

tem as the AI methods and resolve to a consensus to select the eviction block. Even

improving LRU results and almost reach AI approaches miss ratio, the proposed policy

present a big hardware overhead needing between 6 and 8% more resources than LRU.

This method was also applied to multicore architectures showing improvements and

reduction of miss rates when compared with LRU or DRRIP.

3.7 OVERVIEW

Table 3.1 summarizes the different approaches designed to improve the results

of eviction policies as LRU. The Belady approach (BELADY, 1966) is considered as

the optimal solution in the literature as it results in the minimal number of misses but is

not practicable, because it needs to use the future cache accesses to evict the lines in

the cache memory. The Hawkeye (JAIN; LIN, 2016) and the Glider (SHI et al., 2019)

approaches are both based on AI and have a considerable hardware overhead. They

provide better results when compared with the DIP-based approaches.

Our mechanism, listed in the last row, instruments the programs obtaining the

best combination of eviction policies for specific code sections. The offline versions

return the lines of code where a policy change is triggered in the CPU maximizing the

hit ratio of the code. This could be done using a special code instruction that triggers

the eviction policy switch in the MMU. We propose also two online mechanisms that

use three standard policies (LRU, FIFO and BIP). One of the online approaches uses

50 Chapter 3

a selection strategy based in a set-dueling strategy, and the second one is based in

counters and thresholds.

The difference of our offline approaches, when compared with the AI or Belady

methods is the simplicity of the implementation in hardware. Our proposals are based in

traditional policies that are frequently used in commercial CPUs and we switch between

policy according to the section of code executed by the CPU while the other methods

are complete policies, like LRU or BIP, rather than a policy selection method. The DIP

selects also between policies and could be compared with our methods. The DIP-Global

runs 2 policies in parallel and selects the policy with better hit ratio, we implemented

one offline approach able to work with more than 2 policies that implements also aging

strategy that improves the DIP-Global without hardware overhead and we also designed

an online approach based in counters that improves DIP-Global allowing to have more

than 2 policies. The DIP-Set Dueling is limited to the selection between two policies

and does not consider the aging of the misses used to compare the performance of

the policies. We implemented a set dueling based method that allows the use of more

than 2 policies for the selection of the best policy and implements an aging technique

to adapt itself faster to the changes of behavior of the code sections.

Table 3.1 – Related work overview.

Approach Practicable
in HW

Overhead Online/Offline Technique/Mechanism

DIP-Global Yes 2 ATDs Online Parallel execution + Counter
DIP-DSS Yes 2kB Online Parallel execution (some sets) +

Counter
DIP-Set dueling Yes 15 bits Online Some sets for each policy +

Counter
Hawkeye Yes 28kB Online AI, predictor based in previous

accesses
Glider Yes 62kB Both AI, predictor based in sequence

of PC
Belady No - - Optimal, based in future ac-

cesses
HyVE No 8% more

than LRU
Online Use of several policies and vot-

ing system
Evict-me Yes 1 bit Offline + Online Check code defining memory to

be evicted after miss
Proposed Work Yes 15 bits +Mul-

tiplexer
Offline or Online Detection of best policy for sec-

tion of code

Chapter 4 51

4 SELECTION OF EVICTION POLICIES

In this chapter, we start presenting the assumptions and system model we con-

sidered to allow the usability of the proposed approaches, then we present and discuss

the implementation of the approaches, creating a framework for cache eviction policy

selection in Sections 4.2 and 4.3, respectively. We close the chapter by discussing

relevant aspects of the proposed framework in Section 5.9.

4.1 ASSUMPTIONS AND SYSTEM MODEL

We consider a System-on-Chip (SoC) design that can feature any arbitrary

amount of cores. Each of these cores must be associated with private Level-1 (L1)

data and instruction caches. The cache hierarchy can be extended to an arbitrary num-

ber of levels before leading to the DRAM and can either be private, shared, or unified.In

addition, we do not consider non-blocking caches, the memory level parallelism they

offer and the predictability issues they introduce (VALSAN; YUN; FARSHCHI, 2016).

The main memory model does not take into account typical DRAM architecture and

memory transaction arbitration under saturation. This assumption is not constraining

as methods such as Memguard (YUN et al., 2013) are successful in preventing DRAM

saturation on MPSoCs. These assumptions ease the modelization of the platform and,

most importantly, help emphasize the benefits of the proposed approaches by removing

any source of noise.

These approaches are powered by a custom cache architecture that poses the

characteristics of being able to enforce different eviction policies following the software-

layer/end-user directive. In addition, the proposed cache architecture is capable of

providing a strict partition for every task of a given core, eliminating cache-related costs

during context switches. While nothing in the presented model prevents the proposed

cache architecture to be implemented at any level of the cache hierarchy we only

assume the proposed cache to be implemented at the L1 cache. This decision helps

greatly as each cache level takes independent decisions that influence subsequent

levels.

Realistically, the considered cache architecture can be deployed at any level

(L1, L2, LLC). It has the same configuration regardless of its level in the memory

sub-system hierarchy: (1) setting up the eviction policy; (2) setting the cache partition

size; and (3) indicating the currently running task on the core. The exact method may

differ from one implementation to another, but in general, it can be implemented using

memory-mapped registers. Alternatively, for more tightly integrated caches such as L1,

the configuration can be done via dedicated assembly instructions.

Regarding the application model, it is up to the system engineering to define

the best policy for each task or application, taking into consideration the criticality

52 Chapter 4

levels of the system. For instance, if a time-sensitive task is assigned to a cache

partition, then predictable and analyzable eviction policies, such as LRU, must be con-

sidered (REINEKE et al., 2007). If a task or application demands only performance,

then any eviction policy could be applied. We focus on the optimization of the aver-

age execution time by selecting and changing the cache eviction policy during code

execution.

4.2 PROPOSED APPROACHES

Identifying the right place to choose a new eviction policy in the code is not

trivial, even using automated mechanisms. The optimal selection should consider the

current status of the cache memories and the next memory addresses accessed by the

software. We consider offline and online methods to select the eviction policy. Table 4.1

presents the main features of the proposed approaches. In the developer approach,

the developer is involved in the process (Human-In-The-Loop - HITL) and relies on a

trial-and-error process, requiring experience and effort from the developer to obtain a

combination of policy transitions with good results. In the other approaches, which are

automated, the defined parameters determine the outcomes. For instance, the size of

the time window used to check the cache status after and before each cache access

has a notable impact. If the window is wider than the section of the code where a policy

returns a better hit ratio, the approaches may not be able to find the right place to switch

to that policy. On the other hand, if the window is too short, the approaches may request

constant policy transitions.

Table 4.1 – Overview of the approaches features.

Approach Execution Policy selection Extra space Parameters

Developer Offline HITL No -
Naive Offline Automated No -
Fixed-Window Offline Automated Yes Window size
Sliding-Window Offline Automated Yes Window size
Online Online Automated Yes Counter and threshold
Set Dueling Online Automated Yes Counters

4.2.1 Developer Approach

In the developer approach, the developer is responsible for deciding when a

cache eviction policy change must be performed by inserting a special instruction call

into the code. This special call informs the memory controller that a new eviction policy

should be used from that moment on. The chosen policy remains active until a new

call selects another policy. For instance, in Figure 4.1, (tn) indicates the moment the

instruction call changes the current policy (LRU to FIFO). The approach shares some

Chapter 4 53

similarities with cache prefetching, because the developer could indicate when should

be used, and it could be used in combination with it to improve the results. For instance,

in a recency-friendly part of the code the developer may load the cache with the data

that will be used and change the policy to LRU, this will retain the data in the cache and

will remove data that was previously used but is not needed any longer.

The selection of a policy using an instruction that will be ran in the processor,

is the same in the following approaches. The output of the offline approaches is a

instruction in the program that will be inserted in the code according to the results

obtained.

Figure 4.1 – Example of policy change in the naive approach.

Source: Author (2023).

Simplicity is one advantage of this approach since it leverages the developer

the decision to perform a policy change. However, it relies on the developer’s knowl-

edge and experience with the program memory access pattern and cache architecture,

which complicates its usage in practice. An inexperienced developer may need several

attempts to select the place in the code for the policy-changing call (mostly a trial-and-

error process). Thus, a downside of the approach is its coarse granularity, the fact

of being sub-optimal, and the required time to adjust the calls. It is a HITL (Human-

In-The-Loop) process, without any algorithm or automation behind it. The framework

exclusively changes the policy used in the next instruction after the inserted call in the

code.

4.2.2 Naive search approach

In the naive search approach, depicted in Figure 4.2, the framework chooses the

policy used for every memory access. It uses a variable seed to run a random function

that chooses between all the eviction policies and applies it to the cache memory. With

this approach, the policy selected could change constantly along the execution of the

code without any logic. The results obtained with the approach are different in every

execution and it could be used as a baseline to compare the improvements of other

approaches. The current implementation allows the Naive search approach to select

between LRU, FIFO, RANDOM, and BIP, and as input parameter, it allows the developer

to restrict the minimum number of memory accesses before to change the policy. The

54 Chapter 4

results expected with this method are not close to the optimal ones. Because it has no

verification of the hit ratio during the execution nor the historic use of policies it might

trigger a policy change even when the current one is giving acceptable hit ratios.

Figure 4.2 – Overview of the naive search approach.

New memory
access

Select random
 policy

LRU / FIFO /
RANDOM / BIP

Hit? Increase counter

NO

YES

Source: Author (2023).

4.2.3 Fixed-Window Approach

This is the first automated method presented in this work, contrary to the naive

and developer approaches it searches for access patterns in the memory accesses.

The idea behind the offline automated approaches is to check the memory accesses

sequences during the execution of the code and analyse the behavior of the traditional

policies with them, selecting the best policy for each sequence. As is not possible to

know the optimal size of a memory access sequence that works better with a policy, the

approaches face this inconvenient in different ways. For instance, the Fixed-Window

method checks a fixed number of memory accesses, that considers as unique se-

quences, whereas the Sliding-Window or the Online approaches process some previ-

ous memory accesses that incrementally are tested with traditional policies, triggering

the change of policy in the cache when a defined threshold is reached.

The Fixed-Window approach works offline, cloning the cache memory structure

selected in the framework for each traditional policy. The presented version of the

framework handles 4 policies LRU, BIP, FIFO, and RANDOM. The Cachegrind has as

result 4 virtual cache memories with the same characteristics. After the generation of

the caches the framework runs the code simulating the memory accesses in all the

cache memories simultaneously. This method offers a parameter to fix the windows size,

the window represents the number of memory accesses considered as a sequence

to be examined. During the computation of the memory accesses within the window,

every cache memory copy will count the number of hits and misses generated regarding

its eviction policy. The process will conclude when the number of memory accesses

defined by the parameter are reached, in that moment the hit counters of the 4 policies

Chapter 4 55

are compared and the framework selects the policy with the greatest performance

(i.e, the one with the highest cache hit ratio) as the policy to be used in the code

inserting the instruction in the line executed at the beginning of the current window.

Figure 4.3 presents an overview of the Fixed-Window approach for the process of a

window. Whenever there is new data access during the window, it is applied to each

eviction policy individually, considering their current status of the caches tag directory.

If the memory access is a cache hit, then a counter for the current eviction policy is

increased. When the window finalizes, then the counters are compared and the one with

the highest value is chosen. The size of the window is smaller than the overall number

of memory accesses, hence several windows will be processed during the execution of

the code. After every single window, the Fixed-Window approach copies the cache of

the selected policy to every other cache memories clones, starting the process again

having 4 exact copies of the cache memory. The operation is repeated until the code is

finalized, having at the end a traditional policy selected for every window in the code.

The Fixed-Window approach could be implemented online, but it would lead

to a substantial hardware overhead because every traditional policy, 4 policies for the

current implementation, needs a tag directory and a hit counter bounded to it. It also will

be partially divergent in relation to the moment the policies are switched, in the offline

mode the policy change is done before the window and in the online mode it should be

changed after the window is processed. The online use of the approach will have also

an execution overhead due to the copy of the tag directories to the not selected policies

and the updating work of the 4 directories while the window is processed.

Figure 4.3 – Fixed-Window approach overview.

Source: Author (2023).

In this approach, the size of the window is the only parameter the developer

must set and tweak. This represents the biggest disadvantage of this method as this

parameter directly impacts the quality of the eviction decisions and it cannot be changed

during the offline process execution. While coarser granularity may include code blocks

that could work better with another policy different from the policy selected for the whole

window, small window sizes are likely to result in many policy changes. The window size

56 Chapter 4

has another restriction, it must be smaller than the policy counter to avoid overflows

during the execution of the method. For instance, if the windows has the maximal

allowed size, i.e. the maximal value of the counter, and all the memory accesses result

in hits, the counter will reach its maximal value. Having a window size bigger than the

counter and having a policy with only cache hits could result in the selection of a policy

which is not the recommended for the processed sequence.

4.2.4 Sliding-Window Approach

The Sliding-Window method is an evolution of the previously presented Fixed-

Window approach. It is also an offline and automated approach based on windows

and handling of memory accesses sequences. Contrary to the Fixed-Window, the

Sliding-Window does not compare behavior of policies in memory accesses sequence,

it compare hit ratio trends.

The Sliding-Window approach, similarly to the Fixed-Window, also uses ded-

icated caches for each policy and defines a window size from a input parameter.

However, here the window defines the number of previous memory accesses used

to calculate the average of cache hits, i.e. hit ratio. The framework executes the code

offline, simultaneously in the 4 cache memory clones, and uses the same 4 eviction

policies given in the Fixed-Window method (LRU, FIFO, RANDOM, and BIP), for every

single memory access the hit ratio of the previous window is calculated. The algorithm

in the framework compares the hit ratios of all the cache copies and selects the best

ratio between them. After that, it fixes the policy that will be used generating the out-

put that will be used in the hardware at a later stage. Figure 4.4 shows the result of

the Sliding-Window approach using a forged data example. The y-axis represents the

average of cache hits considering time windows and the x-axis represents the time.

The four colored lines represent the average of cache hits calculated for each data

access and policy (LRU, FIFO, RANDOM, and BIP). For instance, in the time instant t1,

there is a transition from LRU to FIFO, as the average of hits using FIFO in that data

access overtakes the averages of the other three policies. Likewise, in the time instant

t2, RANDOM is chosen over the other policies, and finally, in t3 there is a change from

RANDOM to BIP.

The technique is equivalent to run the same code parallel using all the traditional

policies and switching between them in the real cache memory. The framework uses 5

cache instances altogether, 4 of them with traditional policies but only saving metadata

and 1 with metadata and data where the policy is replaced. The difference between the

Sliding-Window and the Online approach is the aging of the information used to take

the decision of changing to a new policy, this approach applies aging to the process

while the Online approach does not. In the current method, only the hits occurred during

the processed window are compared, ignoring older hits and behaviors.

Chapter 4 57

Figure 4.4 – Example of eviction policy transitions with the sliding-window approach.

Source: Author (2023).

There are two parameters needed in this approach, the window size, and the

threshold necessary to change between policies. In contrast to the Fixed-Window ap-

proach, the Sliding-Window may change the eviction policy with a higher frequency.

This could be disadvantageous because it might cause an eviction policy change in

every single data access, to avoid this, we use the threshold to establish the boundaries

of policy changes. Moreover, the manner this approach works makes it a candidate to

be implemented online, even resulting in a big hardware overhead. In a online imple-

mentation, the method would need a tag directory for each traditional policy, together

with a hit counter that take aging in consideration. Since the comparison between poli-

cies is done using the same window size, it could be implemented comparing the hit

counters getting the best performing policy.

4.2.5 Online Selection Method

The Online Selection approach is an automated method, that despite its name,

may be used online or offline. The motivation of the method is the utilization of hits

trends but reducing the hardware overhead of the Sliding-Window technique. As con-

sequence, it does not consider the aging of the hits, but just the amount of them.

In this approach, each policy has its cache metadata directory and a counter

attached to it (similar to the DIP policy proposed by Qureshi et al. (2007)). The counter

is defined with a maximal, a minimal, and a starting value. During the program execu-

tion, each policy modifies its cache metadata simultaneously according to the executed

instruction. A cache hit increments the counter by one. Inversely, a cache miss decre-

ments the counter by one. The difference between our Online Selection method and

DIP (QURESHI et al., 2007) is that DIP is limited to only two policies, whereas our online

selection method can use more than two. This minor modification, however, completely

changes the way the counter is used. For instance, DIP has a unique counter that is

58 Chapter 4

shared by the two policies. Here, we have a dedicated counter per policy. DIP uses the

medium value of the counter (for example, 512 when the counter size is 1024), while

our method uses a pre-defined threshold.

The eviction policy is selected by taking the option with the greatest counter. To

avoid excessive changes among policies, a threshold-based mechanism is introduced

in the method. The current policy is replaced by another one only if the new one

surpasses the counter value of the current one by the threshold. Figure 4.5 shows

an overview of the online selection approach. Each eviction policy is applied for every

instruction causing data access. If a cache hit is encountered, then the corresponding

counter is incremented, otherwise, it is decrement. Then, the approach compares the

counters against the threshold to select the best policy.

Figure 4.5 – Overview of the online selection approach.

Source: Author (2023).

The advantage of this approach lays in the simplicity of its implementation and

the minor computing needed. The determination of the eviction policy can be done

offline (through simulation) as well as online in the CPU by having a per-policy counter.

It is an evolution of the DIP-Global proposed by Qureshi et al. (2007) that increase

the hardware overhead proportionally to the number of policies embedded on it. If we

implement the DIP-Global with more than 2 eviction policies and aging to the counters

we jump back to the already explained Sliding-Window approach.

4.2.6 Set Dueling

In (QURESHI et al., 2007) the authors present DIP Set-Dueling (DIP-SD) as

a solution to apply BIP and LRU to the same cache memory in runtime without a

considerable hardware overhead. This method allows the use of 2 eviction policies for

the same memory while the memory may switch between them automatically according

to the evolution of the working set. The limitation of this technique underlie in the

limitation of the number of eviction policies used. In this work the Set Dueling was

adapted to include a third eviction policy, LRU, BIP, and FIFO.

Qureshi et al. (2007) use the central limit theorem and statistic tables to demon-

strate that choosing between 32 and 64 sets is enough to determine in run time the best

Chapter 4 59

policy between two policies with a probability bigger than 95%. The authors expose

that considering the number of misses per set in a cache memory as a independent

random variable, exist a number n of sets small to avoid affecting the mean and stan-

dard deviation of the variable but at the same time sufficiently large such it could be

approximated to a Gaussian distribution by the central limit theorem. They consider that

it could be done with two subsets of the cache sets with the same size, and it could exist

a new Gaussian random variable that represent the difference between total number of

misses of the selected sets of both policies. The probability of choose the better policy

based in the difference of the total number of misses is calculated by:

P (Best) = 1 − P (Z >
√

n · r), where r =
∆

Ã
(4.1)

∆ = |µ1 − µ2| (4.2)

µ1 = Mean of number of misses in set using only first policy (4.3)

µ2 = Mean of number of misses in set using only second policy (4.4)

Ã =
√

Ã2

1 + Ã2

2 (4.5)

Ã1 = Standard deviation of number of misses in sets using only first policy (4.6)

Ã2 = Standard deviation of number of misses in sets using only second policy (4.7)

Figure 4.6 shows the probabilities of getting the best policy obtained from stan-

dard statistical tables depending on the number of sets used for each policy. The Y

axis shows the probability and the X axis the number of sets used by policy. Each line

in the graph represents the relation between the mean and standard deviation of the

difference between the number of misses per set when only one policy is used in the

code. Qureshi et al. (2007) claim that most of the benchmarks used in their experiments

have a relation, r, bigger than 0.2. Considering the worst case, r=0.2 and 32 sets, the

probability of choosing the best policy based on the number of misses of the selected

sets is bigger than 85%.

As we do with the Online Selection Method, we propose to use more than two

policies in the Set-Dueling approach. Following the same logic presented by Qureshi et

al. (2007), it is possible to admit that more policies may be added to the method choos-

ing between the best one using some sets dedicated to it. However, some restrictions

appear when the number of policies increases. New policies added to the Set-Dueling

method increment the number of sets dedicated to a single policy, and this affects the

final hit ratio of the cache, because it has more sets that are not following the best policy.

Furthermore, the number of sets dedicated to fixed policies should be small, since it

does not affect the mean and standard deviation of the number of misses obtained in

the following sets when compared with a cache where only a single policy is used.

We implement three policies in the Set-Dueling approach and we create three

60 Chapter 4

Figure 4.6 – Relation between probability of selecting best policy with Set Dueling and
the dedicated number of sets.

Source: Qureshi et al. (2007).

cache hit counters, one per policy. The counters show the number of hits that a policy

has in the latest memory accesses occurred in its memory sets. Because the counters

may overflow during the process, the counter only considers the n latest accesses. In

our approach, we compare the values of the counters, which returns the best policy.

The resulting best policy decides the policy that is used in the following sets. Because

we use the same logic as in (QURESHI et al., 2007) three times, the final probability

of choosing the best policy is the combination of the probability of each comparison,

P (BestOverall) = P (A−B)×P (C −B)×P (A−C). For instance, considering that r = 0.3

for the comparisons (A-B, C-B and A-C), and 32 sets per policy according to Figure 4.6,

P (A − B), P (C − B) and P (A − C) are 95% making the overall probability of choosing

the best policy 85.7%.

4.3 FRAMEWORK IMPLEMENTATION

We implement the approaches, described in Section 4.2, in a framework to se-

lect the best cache eviction policy (the one that maximizes the cache hit ratio). We

extended Cachegrind, one of the tools composing the instrumentation framework Val-

grind (SEWARD; NETHERCOTE; WEIDENDORFER, 2008), where we integrated all

the approaches explained in this work. Cachegrind is a cache profiler that allows the

user to simulate a program interacting with the cache memory. Parameters such as

the size, associativity, and line size of the cache levels can be parameterized. In our

extension, we consider the first level (L1) of both instruction and data caches, and the

Chapter 4 61

last-level of the cache memory (LLC). Because Cachegrind does not support third or

fourth-level caches these memories were excluded from our work. Cachegrind returns

the statistics related to the cache memory after simulating the execution of a program.

It determines the instruction and data cache memory reads status, providing the L1 and

LLC misses and the total number of reads, which allows the user to obtain the overall

memory hits and misses. Similarly, Cachegrind offers the statistics of the data cache

writes, giving the misses and hits generated during the writing process.

The original Cachegrind supports only the LRU cache eviction policy. We ex-

tended it by also implementing FIFO, RANDOM, and BIP policies, as well as the

described approaches. We added a command line parameter to select one of the

approaches described in Section 4.2 to be executed during the program simulation.

Figure 4.7 shows the internal structure and logic of the proposed framework extension.

Depending on the selected approach (1), it creates diverse temporary cache memories

(2) to be used individually by each eviction policy depending on the selected approach.

These caches are represented in Figure 4.7 as C1, C2, C3, and C4. The selected

approach also determines how the best policy is selected (3) based on the statuses

of the temporary caches (4). The final cache memory, C, is generated using the policy

selected by the policy selector during the execution of the code (5). The framework

uses the final cache C to generate the statistics and outputs at the end of the execution

of the program (6). The framework provides an overview of the process (7) depending

on the approach (8) to know which policy was chosen by the framework during the

execution of the program and to compare the performance of the outcome with the indi-

vidual policies. Our framework with the modified Valgrind/Cachegrind code is available

online.1

Figure 4.7 – Overview of the proposed framework for cache eviction policy selection.

Source: Author (2023).

In the next sections, we discuss the implementation details of each approach.

1 <https://github.com/donxergio/cachegrind.git>.

62 Chapter 4

We close the section by discussing the differences among the approaches, the output

generated by the framework, and implementation aspects.

4.3.1 Developer Approach

Valgrind provides an interface, named client request, that allows user programs

to pass queries and information to Valgrind and its current tool (Cachegrind in our case).

We extended the client request interface to support policy changing at run-time. We

added a new macro, CHANGE_EVICT_POLICY(policy_id), which passes the new chosen

policy to cachegrind, as exemplified in Figure 4.8 (lines 5 and 7).

Figure 4.8 – Developer approach code implementation.

1 # inc lude < v a l g r i n d . h>
2 # inc lude <cachegr ind . h>
3
4 i n t main () {
5 CHANGE_EVICT_POLICY(FIFO_POLICY) ;
6 . . .
7 CHANGE_EVICT_POLICY(RANDOM_POLICY) ;
8 }

Source: Author (2023).

To ensure smooth integration of this new approach within Cachegrind, we in-

troduced a control variable specifically designed to keep track of the currently active

eviction policy. This variable serves as a single point of truth within the program, dic-

tating which eviction policy should be applied at any given time. As Cachegrind runs,

it listens for incoming client requests. When a policy-changing request arrives via our

extended client request interface, the control variable is updated accordingly. This ef-

fectively switches the eviction policy to the newly specified one without requiring the

tool to be restarted or the profiled program to be relaunched. Every time Cachegrind

encounters a memory access operation while profiling the target application, it first

consults the control variable to determine the current eviction policy. Depending on the

value stored in this variable, Cachegrind selects the appropriate algorithm for cache

eviction. By doing so, we allow for dynamic, real-time changes to the cache eviction

policy without affecting the ongoing profiling session.

4.3.2 Naive Approach

The Naive Approach employs a pseudo-random number generator that comes

integrated with Valgrind. This generator utilizes stored data in memory and transforms it

into UINT (Unsigned Integer) values for subsequent use. While the memory addresses

from which the data are retrieved remain consistent, the UINT values can vary depend-

ing on the state of the memory during program execution.

Chapter 4 63

Figure 4.9 highlights the section of code responsible for calling Valgrind’s method

to procure a pseudo-random number, which is notably executed at line 5. To obtain a

manageable output, the modulo operator is invoked to convert the UINT value into a

number range between 0 and 3. This numeric output then serves as an index to select

the next eviction policy that will be activated.

Figure 4.9 – Naive approach code section that selects the next eviction policy.

1 . . .
2 i f (cur rent_cache_replacement_pol icy == NAIVE)
3 {
4 / / Must be adapted to the number o f p o l i c i e s
5 cur rent_adapta t ive_cache_rep lacement_po l icy = VG_(random) (NULL) % 4;
6 }
7
8 swi tch (cur rent_adapta t ive_cache_rep lacement_po l icy)
9 {

10 case LRU_POLICY :
11 cachesim_setref_ is_miss = &caches im_set re f_ is_miss_ l ru ;
12 p o l i c i e s [0] . uses ++;
13 break ;
14 case RANDOM_POLICY:
15 p o l i c i e s [3] . uses ++;
16 cachesim_setref_ is_miss = &cachesim_setref_is_miss_random ;
17 break ;
18 case FIFO_POLICY :
19 p o l i c i e s [1] . uses ++;
20 cachesim_setref_ is_miss = &caches im_se t re f_ i s_miss_ f i f o ;
21 break ;
22 case BIP_POLICY :
23 p o l i c i e s [2] . uses ++;
24 cachesim_setref_ is_miss = &caches im_set re f_ is_miss_bip ;
25 break ;
26 d e f a u l t :
27 cachesim_setref_ is_miss = &caches im_set re f_ is_miss_ l ru ;
28 p o l i c i e s [0] . uses ++;
29 break ;
30 }
31 . . .

Source: Author (2023).

Once the policy index is determined, a switch statement in the code proceeds

to assign the function address responsible for the corresponding policy behavior. This

assignment targets a policy function, referred to as (cachesim_setref_is_miss). The

system is designed in a way that it can easily accommodate additional policies; one

would only need to update the switch statement and adjust the modulo operation ac-

cordingly.

This Naive Approach can be utilized in both online and offline modes, offering a

degree of flexibility. Moreover, it comes with the benefit of incurring zero hardware over-

head. However, its primary drawback lies in its unpredictable nature. The randomness

introduced by the pseudo-random number generator does not ensure any form of opti-

mization. The policies selected could, at times, be sub-optimal, leading to inconsistent

performance metrics.

64 Chapter 4

By employing this approach, developers are given a method that is easy to imple-

ment and adapt but must also grapple with the trade-off of unpredictability. Therefore,

while this approach offers simplicity and minimal resource requirements, it may not be

suitable for all scenarios.

4.3.3 Fixed-Window Approach

The Fixed-Window Approach represents a method for dynamic cache policy

selection, taking into consideration the real-time performance metrics of four well-known

cache management policies: LRU, FIFO, RANDOM, BIP.

Figure 4.10 offers a graphical representation detailing the internal mechanics

of this approach. Initially, incoming instructions (annotated as (1) in the figure) are

dispatched to specialized policy blocks. Each policy block comprises two counters

one for tracking hits and another for tracking misses. These counters are intricately

connected to separate, individual cache memories labeled as C1 for LRU, C2 for FIFO,

C3 for RANDOM, and C4 for BIP.

Figure 4.10 – Fixed-window approach implementation overview.

Source: Author (2023).

The framework is designed to continually monitor the status of these individual

caches during code execution. Specifically, it checks whether the requested data is avail-

able in the cache, updating the hit and miss counters as appropriate. An arrow marked

as (2) in Figure 4.10 illustrates the flow of this information to a central component called

the Policy Selector.

The role of the Policy Selector is twofold. Firstly, it amasses and scrutinizes the

performance metrics for each individual policy. Secondly, it manages the window, check-

ing if the pre-defined number of instructions has been processed. Once the window

concludes, the Policy Selector embarks on a comparative analysis of the miss counters

associated with each policy. The aim here is to identify the policy with the lowest number

of misses, thereby inferring it as the most efficient under the current conditions.

Chapter 4 65

After identifying the most efficient policy, the data corresponding to this "winning"

window is transferred to the final, operational cache, indicated as (3) in Figure 4.10.

Subsequently, all counters are reset to their initial state, thus setting the stage for the

next window to restart its operation.

This approach provides a dynamic and adaptive solution to cache management,

constantly adjusting to the optimal policy based on real-time performance metrics. How-

ever, it’s essential to note that the granularity of the window can have a significant impact

on the system’s adaptability and overall performance. Therefore, selecting an appropri-

ate window size parameter, which defines the number of instruction processed before

the selection of the best policy, is crucial for balancing adaptability and computational

overhead.

Figure 4.11 shows the pseudocode of the implementation of this approach.

Figure 4.11 – Fixed-widows approach pseudocode.

1 Process a l l p o l i c i e s ()
2 data_blocks ++;
3 IF (p o l i c y i s FIXED_WINDOW)
4 {
5 / / Check i f the window was al ready processed
6 IF (data_blocks == WindowSizeParameter)
7 {
8 / * Copy the best p o l i c y cache to a l l o ther caches * /
9 FOR a l l p o l i c i e s :

10 {
11 copy_cache (b e s t p o l i c y . Instruct ionMemory , o t h e r_po l i c y [x] .

Inst ruct ionMemory)
12 copy_cache (b e s t p o l i c y . DataMemory , o t he r_po l i c y [x] . DataMemory)
13 copy_cache (b e s t p o l i c y . LastLevelMemory , o t he r_po l i c y [x] .

LastLevelMemory)
14 }
15 / / Clean l a s t window to s t a r t a new one
16 b e s t p o l i c y . Memories = 0
17 / / Res ta r t processing
18 data_blocks =0;
19 }
20 }

Source: Author (2024).

4.3.4 Sliding-Window Approach

The Sliding-Window Approach is another methodology that we have integrated

into Cachegrind, alongside the previously described Fixed-Window Approach. This

approach also considers the four primary cache eviction policies: LRU, FIFO, RANDOM,

and BIP. Like its Fixed-Window counterpart, each policy block contains its unique cache

memory (C1 for LRU, C2 for FIFO, C3 for RANDOM, and C4 for BIP) and a fixed-

size status queue. The framework uses this queue to record the outcomes of cache

accesses, classified as either ’hit’ or ’miss.’

As illustrated in Figure 4.12, incoming instructions (labeled as (1) in the figure)

are dispatched to these specialized policy blocks. The Policy Selector is invoked for

66 Chapter 4

each executed instruction to both scrutinize the state of the window and examine the

status queues of individual policy blocks. For every instruction, the four policy queues

are compared, and the framework selects the policy with the least number of misses for

use in the final operational cache (labeled as (3) in the figure). Misses are visualized

as red squares with the letter ’M’ in the diagram. In case of a tie in the number of hits

across multiple policies, a default policy is employed.

Figure 4.12 – Sliding-window approach implementation overview.

Source: Author (2023).

Though the Fixed-Window and Sliding-Window Approaches share some com-

monalities, such as the usage of time windows for policy selection, they differ in signif-

icant ways. The Fixed-Window Approach waits for the entire window to elapse before

computing the most optimal policy, effectively introducing policy changes only at pre-

defined intervals. For example, if the time window is set at 5000 instructions, policy

modifications occur every 5000 instructions.

In contrast, the Sliding-Window Approach permits more frequent policy adjust-

ments within the same time window. It does so by evaluating the efficiency of each policy

on an instruction-by-instruction basis. When configured with identical time windows, the

Sliding-Window Approach is anticipated to outperform its Fixed-Window counterpart.

This is due to its ability to adapt more quickly to different sections of code, leading

to overall improved performance, albeit at the cost of additional overhead for frequent

policy switching.

A remarkable feature of the Sliding-Window Approach is its nuanced consider-

ation of the aging of the hits ratio. Unlike other approaches, the counters employed

here work together with a register tailored to match the window size. For instance, a

window of size 16 would necessitate a 16-bit register and a counter for each policy.

This counter-register configuration enhances the algorithm’s adaptability and respon-

siveness to temporal variations in code behavior.

Figure 4.13 depicts an example of use of the miss counter and register where we

implement the aging technique. Initially the register has all his bit to 0, which represents

Chapter 4 67

a hit. The blue arrow represents the bit position of the register where the aging is applied.

The bit pointed by the arrow will be updated with the result of the latest memory access.

Before the update of the register we compare the previous value of the register bit, a

change in the value of the register updates the miss counter. When the bit changes

from 0 to 1 (hit to miss) the counter is increased by 1, and when the bit changes from

1 to 0 (miss to hit) the counter is decremented by 1. This implementation limits the

counter between the number of bits of the register and 0.

Figure 4.13 – Register usage for the aging implementation.

Misses aging register Memory access Miss counter

0

Miss

Hit

Aging position

1

2

2

3

2

2

Source: Author (2023).

Figure 4.14 shows the pseudocode of the implementation of aging control.

4.3.5 Online Selection Approach

The Online Selection Method constitutes another enhancement that we have

engineered into Cachegrind. This method involves augmenting each policy block with

a specialized miss counter, as illustrated in Figure 4.15. Whenever Cachegrind pro-

cesses an incoming instruction, the corresponding policy blocks are activated, and their

associated miss counters are updated if a cache miss occurs.

As depicted in Figure 4.15, arrow (1) indicates the incoming instructions to the

policy blocks from Cachegrind. For every individual instruction, the Policy Selector then

68 Chapter 4

Figure 4.14 – Aging control pseudocode.

1 i n t temp = 0;
2 IF (Funct ion d isab le)
3 {
4 r e t u r n l as t_va lue ;
5 }
6 IF (l as t_va lue i s 1) {
7 Increase number o f misses
8 }
9 else {

10 Decrease number o f misses
11 }
12 IF (l as t_va lue != values [H i s t o r i c _ i n d e x])
13 {
14 / / The value to be re turned should be updated
15 IF (l as t_va lue i s 1)
16 {
17 Increase h i s to r i c_m iss_coun te r ; / / New miss
18
19 }
20 ELSE
21 {
22 Decrease h i s to r i c_m iss_coun te r ; / / New h i t
23 }
24 values [H i s t o r i c _ i n d e x] = las t_va lue ;
25 }
26 Increase H i s t o r i c _ i n d e x
27 IF (H i s t o r i c _ i n d e x >= h is to r i c_max)
28 {
29 H i s t o r i c _ i n d e x = 0;
30 }
31
32 r e t u r n h i s to r i c_m iss_coun te r ;

Source: Author (2024).

examines the four miss counters (indicated by arrow (2)). Subsequently, it selects for

the final cache (labeled as C in the figure) the policy corresponding to the smallest miss

counter (indicated by arrow (3)).

Figure 4.15 – Online approach implementation overview.

Source: Author (2023).

A distinctive feature of this method is the incorporation of upper and lower

bounds for the counters and a configurable threshold to modulate the frequency of

Chapter 4 69

policy changes. This threshold mechanism mitigates the risk of erratic policy switching

by requiring a substantial differential between counters before triggering a switch. In

other words, a new policy will only be activated if its counter value is not only smaller

than that of the current policy but also exceeds a predefined threshold.

To elucidate, let’s consider an example involving a threshold of 5 units. Suppose

after the execution of instruction n, the current selected eviction policy is BIP with a

miss counter value of 200, while FIFO, RANDOM, and LRU have miss counter values

of 250, 250, and 204 respectively. If instructions n + 1 through n + 5 result in misses for

BIP, its miss counter will increment to 205. Simultaneously, if these same instructions

are hits in the LRU policy block, its miss counter would decrement to 199. After the

execution of instruction n + 5, the differential between LRU and BIP counters is 6, which

surpasses the preset threshold of 5 units. Consequently, the Online Selection Method

would switch to the LRU eviction policy for subsequent instruction execution.

This mechanism, by dynamically adjusting to the program’s behavior, not only

optimizes cache performance but also minimizes the overhead introduced by frequent

policy changes. The Online Selection Method thus strikes a balanced trade-off between

adaptability and stability, making it particularly suitable for complex workloads.

Figure 4.16 shows the pseudocode of the implementation of Online approach.

Figure 4.16 – Online approach pseudocode.

1 check_misses ()
2 update h i s t o r i c values ()
3 / / Apply the th resho ld before sw i t ch ing
4 FOR a l l p o l i c i e s {
5 IF (Misses [Po l i cy] < Misses [Best_Pol icy] − Threshold)
6 {
7 Best_Pol icy = Po l i cy ;
8 }
9 }

Source: Author (2024).

4.3.6 Set Dueling Approach

In contrast to the original Set Dueling mechanism presented in (QURESHI et

al., 2007), our implementation within the Cachegrind framework focuses on selecting

among three specific policies: LRU, FIFO, and BIP. To accommodate this, we have

introduced unique counters for each policy, augmented with aging registers, akin to the

methodology used in the Sliding-Windows approach, as discussed in Section 4.3.4.

Initially, the cache memory is partitioned into four distinct sections. The first three

sections, each comprising 32 sets (totaling 96 sets), are individually linked to one of

the three eviction policies (LRU, FIFO, BIP). These sets are referred to as "policy sets."

The remaining sets in the cache memory serve as "following sets" that will adopt the

policy deemed most efficient at any given time.

70 Chapter 4

For each eviction policy, we maintain a miss counter paired with an aging register.

These counters and registers are responsible for tracking the number of cache misses

that occur when memory accesses are directed to the sets assigned to each policy. After

every memory access where a "policy set" is used, the aging registers are compared,

and the policy associated with the smallest counter value is selected for the "following

sets."

It is worth noting that the assignment of cache sets to specific policies is per-

formed only once, at the beginning of the execution process. This ensures that all

experimental runs adhere to a consistent setup, thereby guaranteeing reproducibility.

Figure 4.17 illustrates the operational flow of our Set Dueling implementation.

Upon processing a new memory access (1), the cache set associated with the eviction

policy tied to the accessed set is triggered (2). If the accessed set is a "policy set"

(3), its corresponding counter is updated based on the logic elaborated in Figure 4.13.

Concurrently, the "following sets" have their eviction policies updated based on the

counter with the smallest value. On the other hand, if the accessed set is a "following

set" (4), the counters remain unaffected, and the most recently determined optimal

policy is applied for cache eviction.

Figure 4.17 – Set dueling with 3 policies implementation overview.

Set Dueling approach

Policy selector

Increase/Decrease
counters

1

2 Check
policies counters

3

4

LRU H H M H H M M M FIFO H H H H H H M M BIP H M M M H M M M

H

M

Hit

Miss

Cache memory

Following set
Following set

Following set

Following set
Following set

32 x Policy Sets per policy

No

Yes

Selects policy
for following sets

Source: Author (2023).

Figure 4.18 shows the pseudocode of the implementation of Set Dueling with 3

policies approach.

Chapter 4 71

Figure 4.18 – Set Dueling approach pseudocode.

1 IF set IS from Pol icy1
2 {
3 Check_miss_or_hit (Po l i cy1)
4 Update_Histor ic_Values (Po l i cy1)
5 }
6 IF set IS from Pol icy2
7 {
8 Check_miss_or_hit (Po l i cy2)
9 Update_Histor ic_Values (Po l i cy2)

10 }
11 IF set IS from Pol icy3
12 {
13 Check_miss_or_hit (Po l i cy3)
14 Update_Histor ic_Values (Po l i cy3)
15 }
16 IF set IS f o l l o w i n g _ s e t
17 {
18 IF (h i s to r i c_m iss_coun te r [1] > h i s to r i c_m iss_coun te r [2] && h is to r i c_m iss_coun te r

[1] > h i s to r i c_m iss_coun te r [3])
19 Check_miss_or_hit (Po l i cy1)
20 ELSE IF (h i s to r i c_m iss_coun te r [2] > h i s to r i c_m iss_coun te r [1] &&

h is to r i c_m iss_coun te r [2] > h i s to r i c_m iss_coun te r [3])
21 Check_miss_or_hit (Po l i cy2)
22 ELSE IF (h i s to r i c_m iss_coun te r [3] > h i s to r i c_m iss_coun te r [1] &&

h is to r i c_m iss_coun te r [3] > h i s to r i c_m iss_coun te r [2])
23 Check_miss_or_hit (Po l i cy3)
24 ELSE
25 Check_miss_or_hit (Po l i cy1)
26 }

Source: Author (2024).

4.4 CONCLUSION

In this chapter, we have laid the groundwork for our study on cache replacement

policy selection. We began by outlining the assumptions and system model (4.1), provid-

ing a clear framework within which our research will be conducted. Next, we introduced

the proposed approaches for cache policy selection (4.2), presenting each method

individually, including the Developer Approach, Naive Search Approach, Fixed-Window

Approach, Sliding-Window Approach, Online Selection Method, and Set Dueling.

Furthermore, we detailed the implementation of these methods within our frame-

work (4.3), offering technical insights into their integration and operation. By providing

a systematic overview of our methodology and the tools at our disposal, we have estab-

lished a solid foundation for our subsequent analysis and experimentation.

Moving forward, we will apply these methods within our experimental setup to

evaluate their effectiveness in improving cache performance. Through rigorous testing

and analysis, we aim to identify the most efficient cache replacement policy selection

strategies, ultimately contributing to advancements in system optimization and perfor-

mance enhancement.

Chapter 5 73

5 EVALUATION

This Chapter is devoted to the comprehensive evaluation of the four distinct

approaches to cache eviction policies investigated in this thesis: Fixed-Window, Sliding-

Window, Online Selection, and Set Dueling. The goal of this evaluation is multi-fold:

1. To assess the performance improvements these methods bring over traditional

eviction policies, focusing on various metrics such as execution time, cache hits,

and cache misses.

2. To understand the computational and memory overheads associated with each

method, thereby providing a holistic view of the trade-offs involved.

3. To compare the approaches against each other, highlighting their respective

strengths and weaknesses in different scenarios.

4. To explore how the efficiency of these methods varies with different benchmarks

and inputs, thereby providing insights into their adaptability and robustness.

All evaluations are conducted using a consistent methodology, defined bench-

marks, and a reproducible test environment. We also consider the statistical significance

of the results to ensure that the observations are robust and reliable.

The Chapter is organized as follows. Section 5.1 details the experimental setup,

including the benchmarks used and the hardware and software configuration. Sections

5.2 and 5.3 show how the traditional policies and the Naive and Developer approaches

are used in our research. Sections 5.4, 5.5, 5.6, and 5.7 provide in-depth evaluations

for the Fixed-Window, Sliding-Window, Online Selection, and Set Dueling approaches,

respectively. Finally, Section 5.8 offers a comparative analysis of the approaches, sum-

marizing key findings and implications.

5.1 EXPERIMENTAL SETUP

For the purpose of evaluating the four approaches proposed for cache eviction

policy selection (Fixed-Window, Sliding-Window, Online Selection, and Set Dueling), it

was crucial to employ benchmarks that are representative of real-world computational

tasks. To this end, we selected the San Diego CortexSuite benchmark suite as our pri-

mary testbed. CortexSuite is a comprehensive suite of benchmarks that encompasses

algorithms and datasets from diverse computing domains, such as machine learning,

natural language processing, and computer vision (THOMAS et al., 2014).

The benchmarks chosen for this study are designed to put significant pressure

on the memory hierarchy, thereby allowing us to comprehensively evaluate the perfor-

mance of our eviction policy selection framework. Specifically, we have included the

following benchmarks:

74 Chapter 5

1. Principle Component Analysis (PCA): A widely used technique in machine

learning for dimensionality reduction.

2. Singular Value Decomposition (SVD): Another method often used in machine

learning and data science for feature extraction.

3. Image Stitch: Commonly utilized in image processing to combine multiple over-

lapping images into a panoramic image.

4. Latent Dirichlet Allocation (LDA): A generative probabilistic model primarily

used in natural language processing.

5. SIFT (Scale-Invariant Feature Transform): An algorithm widely used for object

recognition in computer vision tasks.

These benchmarks are particularly relevant for embedded systems, where mem-

ory efficiency is crucial for performance. They are often employed in application domains

such as autonomous vehicles, robotics, and IoT devices.

To ensure the robustness and generalizability of our evaluation, we used multiple

input sets for each benchmark. CortexSuite provides various standard input sets that

differ in size and complexity. These are categorized as small, medium, and large for

general-purpose algorithms. For image processing related algorithms, the inputs are

categorized as CIF (Common Intermediate Format), QCIF (Quarter CIF), and HD (High

Definition).

By varying the input data size and complexity, we aim to simulate real-world

variability and to assess how adaptable each approach is under different memory

pressure conditions. This strategy also allows us to explore any performance variations

that might be attributable to the nature or size of the input data.

To conduct a comprehensive evaluation of our proposed framework, we executed

each benchmark on our modified Cachegrind simulator under various settings and

parameters. This allowed us to assess the sensitivity of our eviction policy selection

approaches to different cache configurations and operating conditions.

Cache Size Variations We experimented with multiple cache sizes to analyze

the impact of cache capacity on performance. Specifically, we considered cache sizes

of 4, 8, 16, 32 KB1.

Eviction Policies We evaluated the performance of four standard cache eviction

policies: LRU (Least Recently Used), FIFO (First-In, First-Out), RANDOM, and BIP

(Bimodal Insertion Policy). For the BIP policy, we followed the configuration in prior

work (QURESHI et al., 2007; ARAUJO et al., 2021), setting the bimodal probability

parameter (ϵ) to 1/64.

1 Cache size here refers to the size of the cache partition allocated to a particular task.

Chapter 5 75

Cache Line and Associativity The cache line size was set to 32 bytes, and we

used a 4-way set associative cache for all our experiments.

Window size For the Fixed-Window approach, we considered various window

sizes ranging from 128 to 16384 cache data accesses. These configurations are tested

to choose the best configuration.

Similarly, for the Sliding-Window approach, we used the same range of window

sizes as in the Fixed-Window approach.

For the online selection approach, we set the maximal counter values from 128

to 16384 and a minimum value of 0. We also varied the threshold settings, with values

ranging from 1 to 2048.

Baseline In our research, we adopted the LRU (Least Recently Used) cache

eviction policy as a foundational baseline. Given its widespread use and prominence in

processors, LRU provides a crucial frame of reference for our comparative analysis.

By systematically varying these parameters, we aimed to cover a broad spectrum

of potential real-world scenarios, thereby ensuring that our findings are both robust and

generalizable.

Using the obtained number of cache misses, together with extra information

available from the Cachegrind executions, it is possible to translate the obtained reduc-

tion on cache misses into gains in terms of execution time for each benchmark and

experiment configuration. For doing that, we used parameters of different processors

to calculate the execution times of the benchmarks as done in (ARAUJO et al., 2021):

Exec T ime = (I × CPI)+

(D_MISSES × MISS_PENALTY)+

((D_REFS − D_MISSES) × HIT_PENALTY)

(5.1)

Where I is the number of executed instructions, CPI is the cycles per instruc-

tion, D_MISSES is the number of data cache misses, MISS_PENALTY is the

cache miss penalty (in processor cycles), D_REFS the number of data references,

D_MISSES is the number of cache data misses, and HIT_PENALTY is the cache

hit penalty (in processor cycles). I, D_MISSES, and D_REFS are obtained from the

Cachegrind framework output, while the other parameters are defined according to the

processor cache memory architecture. Table 5.1 shows the cache-related parameters

of the considered processors in this evaluation.

5.2 TRADITIONAL POLICIES

Traditional eviction policies, such as LRU, FIFO, RANDOM, and BIP, have been

widely adopted in various computational systems due to their general efficacy across

diverse applications. To assess the efficacy of our proposed approaches, it’s imperative

76 Chapter 5

Table 5.1 – Parameters of the considered processors.

Processor Parameters

x86 bosch pentium (WONG; BETZ; ROSE, 2016) 2 instructions per cycle, 3 cycles for a cache hit, and
44 cycles for a cache miss

Intel i7 (HENNESSY; PATTERSON, 2011) 4 inst. per cycle, 4 cycles for L1 hit, 10 for L2 hit, 35
for L3 hit, 100 cycles for DRAM leading to 135 miss
penalty

ARM Cortex A8 (HENNESSY; PATTERSON,
2011)

2 instructions per cycle, 1 cycle for L1 hit, 11 cycles
for L1 miss, and 60 cycles for L2 miss

ARM Cortex A53 (BANSAL et al., 2018) 2 instructions per cycle, 4 cycles for L1 hit, 19 cycles
for L2 hit, and 181 cycles for L2 miss

Related work (QURESHI et al., 2007) 4 instructions per cycle, 6 cycles for a cache hit, and
270 cycles for a cache miss

to comprehend the memory access patterns and performance benchmarks set by these

traditional policies. In essence, they serve as a reference point, enabling us to discern

the effectiveness of our new methods.

Employing the same benchmarks as with our proposed approaches, we executed

the tests for each of the traditional policies. The cache size was varied, consistent with

the procedure detailed in Section 5.1. As anticipated, our results exhibited that as

cache size increased, the miss rate decreased across all benchmarks and policies.

This phenomenon is more pronounced at the start, with smaller cache sizes witnessing

higher miss rates, primarily due to their limited storage capacity.

Upon careful analysis, it was observed that beyond certain cache sizes, the

marginal reduction in the miss rate becomes negligible. Such points, as shown in

Figures 5.1 and 5.2, occur after 8KB and 16KB respectively. This can be attributed to

the intrinsic memory footprint of the benchmarks. When the cache is sufficiently large

to accommodate the benchmark’s working dataset, the miss rate remains to its minimal

value for that eviction policy.

An important observation from our results was the persistent, minimal miss rate,

irrespective of the eviction policy. This base miss rate stems from the inherent nature of

the benchmarks and their data manipulation routines. During execution, as benchmarks

rotate or replace their datasets, the cache contends with the need for renewal, leading

to inevitable misses. These misses, born out of the dynamics of data usage within

algorithms, are inherent and cannot be completely circumvented by any eviction policy.

Upon analyzing the benchmarks, we observed a clear pattern: some benchmarks

favor specific eviction policies over others. This relationship highlights how different

memory access patterns can influence the effectiveness of cache eviction methods.

Benchmarks such as those depicted in Figures 5.3 and 5.4 exhibit strong affinity

towards the LRU policy. This is evident from the fact that the LRU policy consistently

delivers the lowest miss rate throughout the evaluation, regardless of cache size varia-

tions. Such benchmarks are termed as "LRU-friendly" because they frequently access

Chapter 5 77

Figure 5.1 – Miss rate evolution for several cache sizes using traditional policies with
the liblinear-tsmall benchmark.

4096 8192 16384 32768
Cache Size [kb]

5

6

7

8

9

M
iss

 R
at

e
[%

]
Miss Rate by Cache Size and Policy for liblinear-tsmall benchmark

lru
bip
fifo
random

Source: Author (2023).

Figure 5.2 – Miss rate evolution for several cache sizes using traditional policies with
the spc-small benchmark.

4096 8192 16384 32768
Cache Size [kb]

9

10

11

12

13

M
iss

 R
at

e
[%

]

Miss Rate by Cache Size and Policy for spc-small benchmark
lru
bip
fifo
random

Source: Author (2023).

a relatively recent subset of their data, and thus, evicting the least recently used items

proves most efficient.

78 Chapter 5

Figure 5.3 – Miss rate evolution for diverse cache sizes using traditional policies with
sphinx-small benchmark.

4096 8192 16384 32768
Cache Size [kb]

0.35

0.40

0.45

0.50

0.55

0.60

M
iss

 R
at

e
[%

]

Miss Rate by Cache Size and Policy for sphinx-small benchmark
lru
bip
fifo
random

Source: Author (2023).

Figure 5.4 – Miss rate evolution for diverse cache sizes using traditional policies with
spc-small benchmark.

4096 8192 16384 32768
Cache Size [kb]

9

10

11

12

13

M
iss

 R
at

e
[%

]

Miss Rate by Cache Size and Policy for spc-small benchmark
lru
bip
fifo
random

Source: Author (2023).

Conversely, benchmarks like lda-small (see Figure 5.5) do not mirror the same

affinity towards LRU. Their memory access patterns might be less predictable or might

Chapter 5 79

not necessarily prioritize recently accessed data, making policies like LRU less optimal.

Moreover, certain benchmarks, such as pca-small in Figure 5.6, display marked

improvements with alternative eviction strategies like BIP, especially at specific cache

sizes. For instance, when the cache size is set to 32KB for the pca-small benchmark,

even though it is smaller than its working set, the BIP policy is adept at retaining

essential memory lines in the cache. This results in a significant performance boost

compared to the LRU policy.

Figure 5.5 – Miss rate evolution for diverse cache sizes using traditional policies with
lda-small benchmark.

4096 8192 16384 32768
Cache Size [kb]

1

2

3

4

5

M
iss

 R
at

e
[%

]

Miss Rate by Cache Size and Policy for lda-small benchmark
lru
bip
fifo
random

Source: Author (2023).

Given the performance metrics established by traditional policies, our overar-

ching goal remains clear: to surpass these benchmarks and further minimize cache

misses. Should our proposed methods not yield better results, it would lead us to

critically re-evaluate and potentially discard them as viable alternatives.

In the upcoming sections, we present a comparative analysis of our proposed

approaches against these traditional benchmarks, laying out a clear picture of their

relative strengths, weaknesses, and areas of potential improvement.

5.3 DEVELOPER AND NAIVE APPROACHES

The Developer and Naive approaches serve as interesting outliers in our eval-

uation methodology. The Developer approach leans on human expertise and insights

into specific sections of the code, thereby representing a best-case scenario of cache

policy tuning. The Naive approach, in contrast, symbolizes a worst-case scenario where

80 Chapter 5

Figure 5.6 – Miss rate evolution for diverse cache sizes using traditional policies with
pca-small benchmark.

4096 8192 16384 32768
Cache Size [kb]

18

20

22

24

26

28

30

M
iss

 R
at

e
[%

]

Miss Rate by Cache Size and Policy for pca-small benchmark
lru
bip
fifo
random

Source: Author (2023).

the selection is entirely random. Given the significant differences in their operational

mechanisms compared to automated approaches, we found it beneficial to separate

their evaluation from that of the Fixed-Window, Sliding-Window, Online, and Set Dueling

methods.

In our experiments, we selected policies for the Developer approach, paying

particular attention to three primary sections of the code:

1. The initial part of the benchmark, where cache warming occurs.

2. Looping statements, which are often the hotspots for cache misses.

3. Code blocks where arrays and matrices are manipulated.

By fine-tuning the policies for these specific segments, we achieved significant

reductions in cache misses. For example, running pca-small with a cache size of

128 KB, we were able to reduce cache misses by 10% compared to using LRU alone,

by alternating between LRU and BIP.

Though we did not include the Naive approach in our extensive evaluations,

it’s worth mentioning that its purely random selection of eviction policies makes it an

interesting case for establishing a lower-bound baseline. Since this approach doesn’t

involve any tuning or intelligent decision-making, any performance gain observed in

other methods over the Naive approach can be attributed to their randomness.

Chapter 5 81

In Figure 5.7, the naive approach’s performance is compared to traditional poli-

cies. While the naive method falls behind BIP for cache sizes of 4kb, 16kb, and 32kb,

it outperforms BIP at 8kb. The fluctuation of the miss rate obtained after the execu-

tion of the same benchmark using the Naive approach in Figure 5.8 highlights the

unpredictable nature of the naive approach due to its randomness.

Figure 5.7 – Miss rate evolution for diverse cache sizes using naive approach with pca-
small benchmark.

4096 8192 16384 32768
Cache Size [kb]

18

20

22

24

26

28

30

M
iss

 R
at

e
[%

]

Miss Rate by Cache Size and Policy for pca-small benchmark
lru
bip
fifo
random
naive

Source: Author (2023).

5.4 FIXED WINDOW EVALUATION

The Fixed Window approach offers a distinct methodology to assess mem-

ory access patterns. In this method, memory accesses are segmented into fixed-size

windows. Each window of memory accesses is concurrently executed using all four

traditional eviction policies (LRU, BIP, RANDOM, and FIFO). This concurrent execution

takes place in four separate cache clones. Once a window completes processing, the

results from the four policies are compared. The cache clone exhibiting the lowest miss

ratio is then replicated to the main cache memory and to the other three cache clones.

This ensures that subsequent memory access windows start from a consistent state.

This iterative process continues until the program execution concludes. Due to the in-

herent implementation structure of this approach, its online use is unfeasible, leading

to considerable overhead.

82 Chapter 5

Figure 5.8 – Miss rate evolution for diverse cache sizes using 3 executions of naive
approach with pca-small benchmark.

4096 8192 16384 32768
Cache Size [kb]

20

22

24

26

28

30

32

34

M
iss

 R
at

e
[%

]

Miss Rate by Cache Size and Policy for pca-small benchmark
1_naive
2_naive
3_naive

Source: Author (2023).

We subjected various benchmarks to this methodology, intending to juxtapose

the results across different window sizes. The aim was to ascertain the optimal configu-

ration and explore a universal parameter applicable across diverse cache sizes.

A clear correlation between the window size and the resultant miss rate was

observed. For window sizes spanning between 2 and 256, the outcomes closely main-

tain the miss ratio invariable as depicted in the figure 5.11. Yet, when window sizes

were within the 256 to 16384 range, discernible enhancements emerged. Notably, the

choice of optimal window size was intrinsically linked to the specific benchmark and its

respective working set. As showcased in Figure 5.9, a appreciable reduction in the miss

ratio was achieved when the window size exceeded 4096 memory accesses. In juxta-

position, Figure 5.10 reveals that peak results were realized at a window size of 1024.

Interestingly, in both instances, expanding the window further did not confer additional

benefits for a consistent cache size.

As highlighted in Section 5.2, there is an inverse relationship between cache

size and miss ratio, with larger cache sizes generally resulting in reduced miss ratios.

Through our research, we discerned that the window size parameter holds the potential

to further optimize these outcomes, trimming the miss ratio even in scenarios with the

largest cache sizes, as illustrated in Figures 5.12 and 5.9. However, it’s noteworthy that

when the cache size surpasses the working set, the window size parameter loses its

potency in influencing the miss ratio. This phenomenon is clearly exemplified in Figure

Chapter 5 83

Figure 5.9 – Miss rate evolution for diverse cache sizes and windows configurations
using Fixed Windows approach with pca-small benchmark.

Window Size

25
6
10

24
20

48

40
96

81
92

16
38

4

Cach
e S

ize
 [k

b]

4096
8192

16384

32768

M
iss

 R
at

io
 [%

]

18

20

22

24

26

28

20

21

22

23

24

25

26

27

Source: Author (2023).

Figure 5.10 – Miss rate evolution for diverse cache sizes and windows configurations
using Fixed Windows approach with rbm-small benchmark.

Window Size

25
6
10

24
20

48

40
96

81
92

16
38

4

Cach
e S

ize
 [k

b]

4096
8192

16384

32768

M
iss

 R
at

io
 [%

]

2

4

6

8

4

5

6

7

8

9

Source: Author (2023).

5.13.

In our experiments, we evaluated the efficacy of the Fixed Window approach

84 Chapter 5

Figure 5.11 – Miss rate evolution for diverse cache sizes and windows configurations
using Fixed Windows approach with spc-small benchmark (low range of
windows).

Window Size

2
16

32

64

Cach
e S

ize
 [k

b]

4096
8192

16384

32768

M
iss

 R
at

io
 [%

]

9.0

9.5

10.0

10.5

11.0

8.8

9.0

9.2

9.4

9.6

9.8

10.0

10.2

Source: Author (2023).

Figure 5.12 – Miss rate evolution for diverse cache sizes and windows configurations
using Fixed Windows approach with spc-small benchmark.

Window Size

25
6
10

24
20

48

40
96

81
92

16
38

4

Cach
e S

ize
 [k

b]

4096
8192

16384

32768

M
iss

 R
at

io
 [%

]

7.5

8.0

8.5

9.0

9.5

10.0

10.5

7.5

8.0

8.5

9.0

9.5

10.0

Source: Author (2023).

Chapter 5 85

Figure 5.13 – Miss rate evolution for diverse cache sizes and windows configurations
using Fixed Windows approach with liblinear-tsmall benchmark.

Window Size

25
6
10

24
20

48

40
96

81
92

16
38

4

Cach
e S

ize
 [k

b]

4096
8192

16384

32768

M
iss

 R
at

io
 [%

]

5.0
5.1
5.2
5.3
5.4
5.5
5.6
5.7

4.95

5.00

5.05

5.10

5.15

5.20

5.25

5.30

5.35

Source: Author (2023).

by employing benchmarks with larger working sets, including liblinear-tlarge, kmeans-

large, disparity-vga, and pca-large. The outcomes, particularly illustrated in Figure 5.14,

indicate that the benefits of the Fixed Window strategy diminish when the working sets

exceed the cache capacity.

However, this trend was not uniform. Certain scenarios, as highlighted in Figure

5.15, revealed that augmenting the window size could indeed confer modest enhance-

ments. Based on these insights, we adopted a window comprising 4096 memory ac-

cesses for subsequent analyses with other strategies. This decision was predicated on

the observed incremental improvements and the pragmatic considerations in orches-

trating the experiments with varying window dimensions.

5.5 SLIDING WINDOW EVALUATION

The Sliding Windows approach is grounded in two pivotal parameters: the

threshold and the window size. The former serves as a determinant for the minimum

disparity in miss counts between two eviction policies that must be met prior to initiating

a policy switch. For instance, consider a scenario where LRU has a lower miss ratio

compared to BIP, FIFO, and RANDOM, being LRU the designated active eviction policy.

If, during the program’s runtime, BIP’s miss ratio reduces, surpassing the others, the

transition to mark BIP as the active policy would only be triggered if the disparity

between BIP’s and LRU’s miss counters exceeds the predefined threshold.

86 Chapter 5

Figure 5.14 – Miss rate evolution for diverse cache sizes and windows configurations
using Fixed Windows approach with liblinear-tlarge benchmark.

Window Size

25
6
10

24
20

48

40
96

81
92

16
38

4
Cach

e S
ize

 [k
b]

4096
8192

16384

32768

M
iss

 R
at

io
 [%

]

12.50
12.75
13.00
13.25
13.50
13.75
14.00
14.25

14.50

12.8

13.0

13.2

13.4

13.6

13.8

14.0

Source: Author (2023).

Figure 5.15 – Miss rate evolution for diverse cache sizes and windows configurations
using Fixed Windows approach with pca-large benchmark.

Window Size

25
6
10

24
20

48

40
96

81
92

16
38

4

Cach
e S

ize
 [k

b]

4096
8192

16384

32768

M
iss

 R
at

io
 [%

]

31

32

33

34

35

36

37

33.5

34.0

34.5

35.0

35.5

36.0

36.5

37.0

Source: Author (2023).

Throughout our experimentation, we assessed how these parameters modulate

the miss ratio across diverse benchmarks. Our goal was to discern the configuration

Chapter 5 87

most apt for the majority of scenarios.

The threshold must inherently be less than the windows size. This is because

the tally of misses within the window is stored, setting the upper limit for the possible

number of misses to the window size. As a consequence, the threshold’s upper bound

becomes window size − 1.

Our findings affirmed that, while the window size’s primary role is to constrain the

threshold, the threshold itself is the pillar that predominantly influences the performance

of the Sliding approach. As depicted in Figure 5.16, lower threshold values notably

diminish the miss ratio for certain benchmarks (such as pca-small and rbm-small). In

contrast, larger thresholds commence underperforming beyond a specific point. On

assessing the entirety of our results, we concluded that, on average, a threshold of 512

offers the most optimal outcomes. Opting for an even lower threshold would theoretically

ensure a minimal miss ratio. However, it comes with the caveat of inducing frequent

policy shifts. Such volatility could inadvertently lead to the eviction of pertinent data.

This phenomenon, especially evident during transitions from policies like LRU or BIP to

FIFO, was further elaborated in Section 2.6.

Having established one variable in the Sliding Window approach, our attention

turned to the second parameter: the windows size. Our experimentation with varying

this dimension under the Cortex suite of benchmarks echoed the findings observed

with the Fixed Windows strategy. Specifically, we noted a consistent reduction in the

miss rate corresponding with increases in cache memory size. Furthermore, within

these conditions, the majority of benchmarks exhibited minimal fluctuation in miss rates

across different windows sizes, assuming the cache memory size was held constant.

This trend is exemplified in Figure 5.17, which demonstrates a uniform miss ratio across

various windows sizes when analyzed within the same cache memory parameter.

However, this was not a universal phenomenon. Certain specific benchmarks,

as outlined in Figures 5.18 and 5.19, bucked this trend, showing a tangible decrease in

miss ratios as the windows sizes expanded, albeit only up to a point beyond which the

rates stabilized.

Drawing from these analytical insights, we aligned on a windows size of 4096

for subsequent comparative evaluations with other strategies, mirroring our decision in

the Fixed Window methodology. Consequently, the optimal parameter configuration

identified for the Sliding Window approach, harmonizing performance efficiency and

operational pragmatism, comprised a threshold of 512 coupled with a windows size of

4096.

5.6 ONLINE SELECTION EVALUATION

Comparable to the Sliding Windows approach, the Online selection method

involves multiple parameters that influence the resultant outcomes. The underlying

88 Chapter 5

concept of this approach is to concurrently execute conventional cache eviction policies,

assess their miss ratios, and designate the policy that surpasses others in performance.

Although it bears resemblances to the sliding approach, there exist pivotal distinctions.

In the Online selection method, a counter is utilized to monitor cache hits and

misses. Unlike aging mechanisms used in the Sliding Windows approach, this method

confines the counter within predefined maximum and minimum thresholds. When com-

paring the efficacy of different eviction policies, the transition between selected policies

is triggered by a threshold applied to their respective counters, thus averting frequent

policy alterations.

The two parameters pivotal to this approach are the maximum and minimum

counter values, in conjunction with the threshold for policy transition. In our preliminary

experiments with the Online selection approach, our objective was to ascertain the

optimal combination of these parameters across a spectrum of benchmarks. Given its

resemblance to the Sliding Windows method, we employed the same benchmarks for

our investigation.

The graphs depicted in Figure 5.20 illustrate that larger thresholds yield results

comparable to or even worse than those obtained with smaller thresholds, a phe-

nomenon that was anticipated. Opting for a larger threshold compels the approach to

discern significant disparities in the behavior of two policies within a short span of mem-

ory accesses, rendering detection more intricate and thereby reducing the frequency of

policy changes. Conversely, smaller threshold values afford finer granularity, enabling

the Online selection to swiftly switch between policies in response to fluctuations in

miss ratio.

In light of these observations, we elected to conduct further experiments with

smaller threshold values, which had not been explored in the context of the Sliding

Windows approach. We incrementally varied the threshold from 1 to 512, doubling its

value in each iteration. The results are presented in Figure 5.21. Notably, the miss rate

exhibits significant variability across benchmarks and window sizes when the threshold

is less than 32, attributable to the frequent randomness of changes during code exe-

cution. Our investigations revealed that thresholds around 64 generally yielded optimal

performance.

Moreover, during the course of our experiments, we noted that the efficacy of the

Online selection method is contingent upon the maximum and minimum values of the

counter employed for selection, represented as "Window" in the graphs. To explore this

dependency further, we plotted the miss rate of benchmarks with the threshold fixed at

64 while varying the window size. This analysis, depicted in Figure 5.22, revealed that

employing a maximal counter value of 1024 yielded optimal results in most cases.

This circumstance can be attributed to the saturation of the counter. When cache

accesses favor one of the policies, its miss counter may reach the minimum. Even

Chapter 5 89

as memory accesses continue resulting in cache hits, the counter value remains un-

changed. Consequently, this constrains the disparity between policies exhibiting poor

and superior performance. For instance, with the selected parameters, the worst-case

scenario separates the best and worst policies by 1024 accesses. Furthermore, in the

event of a shift in memory access patterns, wherein a previously inferior policy becomes

more suitable, it would take 512 accesses plus half the threshold for it to become the

selected policy. The utilization of larger counter limits disregards policy changes in

memory access patterns where rapid policy transitions are necessary, as evidenced

in Figure 5.22 with small cache sizes, where larger maximum counter values distinctly

underperform.

5.7 SET DUELING EVALUATION

The Set Dueling method is designed to handle the complexities of managing

multiple eviction policies simultaneously. It accomplishes this by partitioning the cache

memory into distinct sets and assigning each set to a particular eviction policy. In our

analysis, we have chosen to allocate 32 cache sets per policy, leaving the remaining

sets available for the policy that exhibits the most favorable performance. This approach

allows us to dynamically adapt to changing access patterns and select the most appro-

priate eviction policy for each subset of memory.

However, it’s important to note that the number of sets allocated to each pol-

icy remains constant regardless of the size of the cache memory. This decision was

made intentionally to simplify the experimental setup and maintain consistency across

different configurations. However, this approach may lead to suboptimal performance,

especially in scenarios where the cache memory size is relatively small.

To illustrate, consider a cache memory size of 4 KB in our experimental setup.

With a line size of 32 bytes and 4 ways associativity, the cache is divided into a total of

128 sets. When we select the best-performing policy, we allocate 32 sets to it, along

with the subsequent 32 sets that follow the same policy. This leaves us with 64 sets

that are then allocated to the remaining two traditional eviction policies, which may

not necessarily be the most suitable choices for the current memory access patterns.

Consequently, in this scenario, only half of the cache memory is effectively optimized,

potentially resulting in suboptimal performance.

Table 5.2 provides a detailed breakdown of the number of sets allocated to each

policy across various memory configurations, ranging from 4 KB to 32 KB. This allows

for a comprehensive understanding of how the allocation of cache sets impacts the

overall performance of the Set Dueling method across different cache sizes.

Table 5.3 provides an insightful analysis of the percentage of memory that re-

mains unoptimized when employing the Set Dueling method across different cache

sizes. This metric underscores our observation that the effectiveness of the approach

90 Chapter 5

Table 5.2 – Number of sets depending on cache configuration.

Cache Size Number of Ways
Line Size

16 bytes/line 32 bytes/line 64 bytes/line

4 KB 4 256 sets 128 sets 64 sets
8 128 sets 64 sets 32 sets

16 64 sets 32 sets 16 sets
8 KB 4 512 sets 256 sets 128 sets

8 256 sets 128 sets 64 sets
16 128 sets 64 sets 32 sets

16 KB 4 1024 sets 512 sets 256 sets
8 512 sets 256 sets 128 sets

16 256 sets 128 sets 64 sets
32 KB 4 2048 sets 1024 sets 512 sets

8 1024 sets 512 sets 256 sets
16 512 sets 256 sets 128 sets

tends to improve with larger cache sizes.

Table 5.3 – Suboptimal percentage of memory, considering 32 sets per policy.

Cache Size Number of Ways
Percentage of suboptimal sets

16 bytes/line 32 bytes/line 64 bytes/line

4 KB 4 25% 50% -%
8 50% -% -%

16 -% -% -%
8 KB 4 12.5% 25% 50%

8 25% 50% -%
16 50% -% -%

16 KB 4 6.25% 12.5% 25%
8 12.5% 25% 50%

16 25% 50% -%
32 KB 4 3.125% 6.25% 12.5%

8 6.25% 12.5% 25%
16 12.5% 25% 50%

As cache sizes increase, the proportion of memory allocated to suboptimal poli-

cies decreases. This trend can be attributed to the greater flexibility afforded by larger

cache sizes, allowing for more sets to be allocated to the most effective eviction policies.

Consequently, with a larger percentage of memory dedicated to optimal policies, the

overall performance of the Set Dueling method tends to improve.

Conversely, in scenarios where cache sizes are smaller, a larger proportion of

memory may be allocated to suboptimal policies due to the limited number of available

cache sets. This can result in decreased performance efficiency as the method may

struggle to adapt to varying access patterns effectively.

Figure 5.23 delves into the influence of the number of sets on the miss rate

obtained with the same benchmark, shedding light on how this factor impacts the

performance of the Set Dueling method across different cache line sizes.

One notable observation from the Figure 5.23 is that implementing the Set

Chapter 5 91

Dueling method for a cache line size of 64 bytes poses challenges due to the insufficient

number of sets available. As a result, the method cannot be adequately implemented,

leading to random performance outcomes when compared with a cache line size of 32

bytes. However, for cache sizes of 8 KB, 16 KB, and 32 KB, the method is appropriately

implemented, allowing for a more accurate determination of the best policy.

When examining specific benchmarks such as kmeans-small, we notice a re-

versal in results between different cache line sizes, particularly evident in the 4 KB

cache. This highlights the sensitivity of the method to changes in cache configuration

and the intricate interplay between cache line size, number of sets, and benchmark

characteristics.

Similarly, in the case of pca-small and svd3-small benchmarks, we observe

instances where the Set Dueling method outperforms the expected performance based

solely on cache line size. This phenomenon underscores the ability of the method to

leverage a larger number of sets to overcome limitations posed by cache line size and

achieve superior performance outcomes.

In the Set Dueling method, the window size stands as the sole parameter open

for adjustment. This parameter delineates the number of preceding memory accesses

utilized to ascertain the policy exhibiting superior performance. We anticipate that alter-

ing the window size will yield varying results contingent upon the benchmark utilized.

Specifically, we expect the method to yield optimal outcomes when the window size is

smaller than the size of the memory access pattern best suited to a particular policy.

Consider, for instance, two consecutive memory access patterns, each compris-

ing 300 memory accesses, favoring BIP and LRU. If we set the window size to 300, the

method would transition from the previously selected policy to BIP upon reaching the

151st memory access within the BIP memory area. It would continue selecting BIP as

the optimal policy until reaching the 151st memory access within the LRU memory area.

In essence, it would accurately identify the correct policy for only 149 memory accesses.

Consequently, reducing the window size might not necessarily enhance performance.

This is because a minimum number of accesses is required to discern a memory ac-

cess pattern, and this requisite varies for each pattern. Opting for a smaller window

could lead to unnecessary policy changes.

Another crucial aspect to consider in this approach is the random allocation of

fixed policy sets and subsequent sets. In instances where the window size is small and

the pattern exclusively utilizes sets associated with a non-optimal policy, the method

may fail to identify the best policy accurately.

Determining the optimal parameter that strikes the best balance between its

value and resulting performance necessitates an empirical approach. In our case, we

opted to conduct extensive experimentation by employing the Set Dueling method

across a spectrum of benchmarks. We systematically varied the window size across

92 Chapter 5

different memory sizes and compared the resulting miss ratios to discern the most

effective configuration.

Following this rigorous experimentation, we discovered that a window size of 4096

consistently yielded favorable results across the majority of benchmarks, irrespective

of the cache size being tested. This window size demonstrated robust performance

characteristics, effectively capturing and adapting to diverse memory access patterns

present in the benchmarks.

Figure 5.24 illustrates a notable observation regarding the impact of window

size on the performance of the Set Dueling method, particularly in the context of

varying memory working set. This observation underscores the dynamic nature of the

relationship between window size and performance across different benchmarks and

memory sizes.

Specifically, we observed a distinct pattern in the performance of the kmeans

benchmark across different memory sizes and window sizes. For a memory size of 4096

bytes, the kmeans benchmark exhibited superior performance with smaller window

sizes when utilizing a smaller memory working set (kmeans-small). Conversely, for

larger memory working sets (kmeans-medium), the performance improved with larger

window sizes, up to a window size of 16384.

Figure 5.25 shows another intriguing aspect of the Set Dueling method’s perfor-

mance variability concerning window size, particularly in the context of the lda bench-

mark across various memory footprints.

When examining the lda benchmark with a cache size of 32 KB and three different

memory working sets (small, medium, and large), we made a noteworthy observation.

Specifically, for the medium memory working set case, we observed that changes in

window size resulted in discernible performance improvements. However, this effect

was not as pronounced or clearly detected for the other memory working sets.

These divergences in optimal window size highlights the nuanced interplay be-

tween memory access patterns, memory working sets, and the effectiveness of the Set

Dueling method. It underscores the importance of adaptability and flexibility in selecting

an appropriate window size to suit the specific characteristics of each benchmark and

memory configuration.

5.8 COMPARATIVE ANALYSIS

Once we have conducted experiments testing various parameter values for the

proposed methods, the next step involves comparing them with traditional policies. The

overarching goal is to showcase how these approaches enhance cache memory per-

formance by adaptively selecting the traditional policy that best aligns with the memory

access pattern of the benchmark under scrutiny.

To facilitate a comprehensive comparison, we executed the same set of bench-

Chapter 5 93

marks, specifically the Cortex suite benchmarks, across all presented policies. Subse-

quently, we utilized the results obtained from the LCU policy as a baseline for normaliza-

tion purposes. This standardized baseline allows for a fair and meaningful comparison

of the performance improvements achieved by the proposed methods relative to tradi-

tional policies.

By leveraging a common set of benchmarks and a normalized baseline, we can

effectively evaluate and quantify the efficacy of the proposed approaches in enhancing

cache memory performance. This comparative analysis enables us to discern the extent

to which adaptive policy selection strategies contribute to improved cache management

and overall system efficiency across diverse workloads.

The parameters utilized in this comparative analysis for each method are suc-

cinctly summarized in Table 5.4. This tabular representation provides a comprehensive

overview of the specific configurations employed for each method, facilitating a clear

understanding of the experimental setup.

Table 5.4 – Parameters used in every method for comparison with traditional policies

Method Windows size Threshold Min. Cache size Max. Cache size

Fixed Window 4096 - 4KB 32KB
Sliding Window 4096 512 4KB 32KB
Online selection 1024 64 4KB 32KB

Set Dueling 4096 - 4KB 32KB

The figures in the Annex A provide a comparative analysis of the miss ratio

normalized with respect to the LRU policy for both traditional eviction policies and the

proposed approaches for combining traditional policies based on the memory access

pattern.

Upon examining figures in Annex A, which compare LRU with Random, FIFO,

and BIP, respectively, it becomes apparent that LRU does not consistently outperform

other policies. Notably, the Random policy generally exhibits higher miss ratios com-

pared to LRU, although for the kmeans-large benchmark, it reduces the number of

misses for cache sizes of 4 KB and 8 KB. This anomaly aside, Random typically results

in a greater number of misses compared to LRU across most scenarios.

Similarly, while the FIFO policy generally performs worse than LRU, there are

instances, such as the me-large benchmark for a 4 KB cache and the me-medium bench-

mark for an 8 KB cache, where FIFO outperforms LRU. On the other hand, the BIP

policy demonstrates more cases where it performs better than LRU. Noteworthy in-

stances include the kmeans-medium and kmeans-small benchmarks for 4 KB memories,

lda-large, lda-medium, and lda-small for memories of 8 KB, 16 KB, and 32 KB, as

well as pca-medium and pca-small for 32 KB caches.

These results suggest that the proposed approaches have the potential to im-

prove the miss ratio of traditional policies by effectively detecting differences in perfor-

94 Chapter 5

mance among different policies for the same benchmark. Consequently, the correct

selection of policy has the potential to reduce the number of misses, thereby enhancing

cache memory performance overall.

In figures in Annex A, for Online, Set Dueling, Sliding Window and Fix Window,

we present the results obtained with the proposed approaches. Overall, all the proposed

approaches exhibit lower miss rates than LRU, indicating an improvement in cache

memory performance. However, there are some specific benchmarks where the miss

ratio is worse than that of LRU.

Figures in the Annex A for the Online approach demonstrate how the Online

approach effectively reduces the miss ratio of LRU across all studied cache sizes for

several benchmarks. Notably, there are cases for cache sizes of 32 KB where the

improvement compared with LRU exceeds 20%, this could be observed in Figure A.12.

This improvement is primarily attributed to the method’s capability to switch between

LRU and BIP dynamically. For instance, the benchmarks pca-large, pca-medium, and

pca-small exhibit miss ratios slightly better than those obtained with the traditional BIP

policy. Particularly intriguing is the case of the benchmark liblinear-medium for a 32

KB cache, where the Online method showcases around a 20% improvement compared

with LRU. Interestingly, this improvement is not observed when using the BIP policy

alone. This indicates that the method doesn’t merely switch between policies throughout

the entire execution of the benchmark but adapts dynamically, leading to improvements

in both LRU and BIP performance over the course of program execution.

These findings underscore the efficacy of the Online approach in enhancing

cache memory performance by dynamically selecting the most suitable policy based

on the prevailing memory access patterns. The ability to switch between policies at

different stages of program execution enables the method to adapt effectively to varying

workload characteristics, ultimately leading to improved cache utilization and reduced

miss rates.

The cases where the approach performs worse than LRU are located in caches

of 4 KB for the benchmarks liblinear-medium and liblinear-small. Curiously, this

combination results in miss ratios higher than those obtained with LRU for all the pro-

posed approaches. The BIP policy also encounters issues with the liblinear-large

benchmark for the same cache size. This could be explained by premature changes

to other policies with the approaches. If this occurs, cache addresses could be re-

placed following the newly selected policy, but these addresses would not be replaced

if LRU were used. A specific selection of windows and threshold parameters for the

approaches could potentially resolve the issues observed with the mentioned bench-

marks.

For the Set Dueling approach with 3 policies, we concluded that the results are

similar to those obtained with the Online method. However, for a cache size of 4 KB, the

Chapter 5 95

method performs worse than Online and, in several cases, even worse than LRU. This

discrepancy can be attributed to the number of sets used for policies that do not perform

well enough to be selected. Further details on this aspect can be found in section 5.7,

where we elaborate on how the cache size and cache line size impact the expected

results of this approach. Consequently, this method is not recommended for small

cache sizes, as it generally performs worse than Online despite having significantly

lower hardware overhead in its implementation. Thus, it may be considered a better

online method due to its reduced hardware complexity.

When compared with BIP, which is also a viable alternative to LRU in certain

benchmarks, we observe that Set Dueling is capable of mitigating some cases where

BIP performs significantly worse than LRU. For instance, in the benchmarks rbm-large

and rbm-medium with a cache size of 16 KB, where BIP performs 20% worse than LRU,

Set Dueling outperforms both traditional policies.

For the offline methods, Sliding Window and Fixed Window, our findings re-

vealed that the fixed version performs significantly better across the studied bench-

marks. It demonstrates the capability to reduce the miss rate of LRU by up to 40% in

certain cases, such as me-medium for a cache size of 8 KB, me-large for 16 KB caches,

or pca-medium for caches with 32 KB. This could be observed in Figure 5.27. Even

though Sliding Window occasionally yields better results than LRU, its improvement

is not comparable to the enhancements achieved by the fixed version of the Window

method. Moreover, the results of Sliding Window are comparable with those of online

approaches, rendering it a less favorable option due to the time required to execute it

before analyzing the software on real hardware.

The proposed experiments and their results highlight a significant disparity be-

tween the utilization of a single eviction policy and the optimal approach, wherein the

policy is dynamically switched based on the heuristic policy with the best result for each

data access. The approaches outlined in this work consistently yield superior results

compared to traditional policies across the majority of cases. In section 5.9, we provided

detailed insights into various factors that should be taken into account to achieve more

accurate outcomes, such as the effects of inputs and loops in the code. Although these

aspects were not the primary focus of the experiments, they represent potential areas

for exploration in future research endeavors.

5.9 DISCUSSION

When implementing dynamic cache eviction policies, several factors come into

play that can significantly impact both performance and resource utilization. These

include, but are not limited to, the nature of program inputs, the complexity introduced

by loop structures, the additional cache space required, and the overhead associated

with transitioning between policies. In this section, we delve into each of these aspects

96 Chapter 5

to provide a comprehensive understanding of the challenges and considerations.

Impact of Program Inputs

In our experimental evaluation, we found that different input sets for the same

benchmark programs could lead to varying performance metrics when using dynamic

eviction policies. For instance, our experiments indicated that the PCA benchmark exhib-

ited up to an 20% difference in miss ratio when run with medium-sized inputs compared

to small-sized inputs. The development of a specialized tool to systematically compare

these outcomes is earmarked for future work. This suggests that dynamic policy se-

lection can be influenced by the specific computational and memory access patterns

presented by different inputs.

Loop Complexity

Changing eviction policies within loop structures presents a unique set of chal-

lenges. While our framework does indicate the specific iteration at which a policy change

occurs, realizing this in hardware would necessitate additional counters within the CPU

architecture. One potential solution could be to treat loops as single computational

blocks and determine the most efficient eviction policy for the entirety of the loop,

thereby simplifying the hardware requirements.

Cache Space Considerations

Implementing multiple eviction policies inevitably increases the hardware foot-

print, particularly in terms of required cache space. However, policies like LRU, FIFO,

and BIP, which maintain meta-information about recently accessed cache lines, could

potentially share metadata structures, thereby minimizing the space overhead. In con-

trast, the RANDOM policy does not require any metadata storage. Additionally, cache

duplication for each eviction policy, while conceptually straightforward, is not resource-

efficient. Techniques like Set Dueling, as proposed in (QURESHI et al., 2007), can

significantly reduce this overhead. This technique allocates a small number of tag sets

to each candidate policy, and the policy that performs best on its assigned sets becomes

the global policy for all the other sets.

Overhead in Policy Transitions

A further consideration is the overhead incurred during policy transitions. In our

framework, transitioning from one policy to another entails copying over the metadata

and cache state. For example, switching from FIFO to LRU would involve transferring

all FIFO states and metadata to the LRU cache, this was explained in 2.6. While this

approach simplifies the switching process, it imposes a non-negligible CPU overhead.

For real hardware implementations, this overhead could be mitigated either by flushing

the cache and metadata with each switch or by maintaining the existing cache state

and metadata and merely updating the policy enforcement mechanism.

Simulations in offline methods The time required to execute the proposed

offline approaches poses a significant challenge for certain benchmarks. We observed

Chapter 5 97

that benchmarks like liblinear-large or lda-large demanded more than 6 hours

for analysis by the Fixed Window approach under certain configurations. Particularly

when the window size was small, the frequency of copying the entire cache memory to

simulate the next window became excessively high. This operation imposes a signifi-

cant computational burden on the CPU responsible for executing the simulation. One

potential solution to address this lengthy processing time would be to adjust the size of

the windows or to selectively apply our framework to specific portions of the codebase.

Selection of Right Parameters The results have demonstrated that obtaining a

universal set of parameters applicable to every method across all benchmarks is not a

straightforward task. This implies that even with real-world software, it is necessary to

utilize the framework to determine the optimal configuration. However, this process may

also present challenges due to the significant time required to execute the simulations.

98 Chapter 5

Figure 5.16 – Miss rate evolution for diverse cache sizes and threshold configurations
using Sliding Windows approach with pca-small, rbm-small, spc-small
benchmarks with a fixed size of windows.

4096 8192 16384 32768
Cache Size [kb]

0

5

10

15

20

25

30

M
iss

 R
at

e
[%

]

Miss Rate by Cache Size and Threshold for pca-small Benchmark (Window 65536)
Threshold: 1.0
Threshold: 32.0
Threshold: 128.0
Threshold: 256.0
Threshold: 512.0
Threshold: 1024.0
Threshold: 2048.0
Threshold: 4096.0
Threshold: 8192.0
Threshold: 16384.0
Threshold: 32768.0

4096 8192 16384 32768
Cache Size [kb]

0

2

4

6

8

10

M
iss

 R
at

e
[%

]

Miss Rate by Cache Size and Threshold for rbm-small Benchmark (Window 65536)
Threshold: 1.0
Threshold: 32.0
Threshold: 128.0
Threshold: 256.0
Threshold: 512.0
Threshold: 1024.0
Threshold: 2048.0
Threshold: 4096.0
Threshold: 8192.0
Threshold: 16384.0
Threshold: 32768.0

4096 8192 16384 32768
Cache Size [kb]

0

2

4

6

8

10

M
iss

 R
at

e
[%

]

Miss Rate by Cache Size and Threshold for spc-small Benchmark (Window 65536)
Threshold: 1.0
Threshold: 32.0
Threshold: 128.0
Threshold: 256.0
Threshold: 512.0
Threshold: 1024.0
Threshold: 2048.0
Threshold: 4096.0
Threshold: 8192.0
Threshold: 16384.0
Threshold: 32768.0

Source: Author (2023).

Chapter 5 99

Figure 5.17 – Miss rate evolution for several cache sizes and windows configurations
using Sliding Windows approach with rbm-small benchmark.

Window Size

10
24
40

96
81

92

16
38

4

32
76

8

65
53

6

Cach
e S

ize
 [k

b]

4096
8192

16384

32768

M
iss

 R
at

io
 [%

]

2

4

6

8

4

5

6

7

8

9

Source: Author (2023).

Figure 5.18 – Miss rate evolution for several cache sizes and windows configurations
using Sliding Windows approach with pca-small benchmark.

Window Size

10
24
40

96
81

92

16
38

4

32
76

8

65
53

6

Cach
e S

ize
 [k

b]

4096
8192

16384

32768

M
iss

 R
at

io
 [%

]

18

20

22

24

26

28

30

20

22

24

26

28

Source: Author (2023).

100 Chapter 5

Figure 5.19 – Miss rate evolution for diverse cache sizes and windows configurations
using Sliding Windows approach with srr-small benchmark.

Window Size

10
24
40

96
81

92

16
38

4

32
76

8

65
53

6

Cach
e S

ize
 [k

b]

4096
8192

16384

32768

M
iss

 R
at

io
 [%

]

4

5

6

7

8

9

10

6.0

6.5

7.0

7.5

8.0

8.5

9.0

9.5

Source: Author (2023).

Chapter 5 101

Figure 5.20 – Miss rate evolution for diverse cache sizes and threshold configurations
using Online selection approach with pca-small, rbm-small, spc-small
benchmarks with a fixed size of windows.

4096 8192 16384 32768
Cache Size [kb]

0

5

10

15

20

25

30

M
iss

 R
at

e
[%

]

Miss Rate by Cache Size and Threshold for pca-small Benchmark (Window 65536)
Threshold: 1.0
Threshold: 2.0
Threshold: 8.0
Threshold: 128.0
Threshold: 256.0
Threshold: 512.0
Threshold: 1024.0
Threshold: 2048.0
Threshold: 4096.0
Threshold: 8192.0
Threshold: 16384.0
Threshold: 32768.0

4096 8192 16384 32768
Cache Size [kb]

0

2

4

6

8

10

M
iss

 R
at

e
[%

]

Miss Rate by Cache Size and Threshold for rbm-small Benchmark (Window 65536)
Threshold: 1.0
Threshold: 2.0
Threshold: 8.0
Threshold: 128.0
Threshold: 256.0
Threshold: 512.0
Threshold: 1024.0
Threshold: 2048.0
Threshold: 4096.0
Threshold: 8192.0
Threshold: 16384.0
Threshold: 32768.0

4096 8192 16384 32768
Cache Size [kb]

0

2

4

6

8

10

M
iss

 R
at

e
[%

]

Miss Rate by Cache Size and Threshold for spc-small Benchmark (Window 65536)
Threshold: 1.0
Threshold: 2.0
Threshold: 8.0
Threshold: 128.0
Threshold: 256.0
Threshold: 512.0
Threshold: 1024.0
Threshold: 2048.0
Threshold: 4096.0
Threshold: 8192.0
Threshold: 16384.0
Threshold: 32768.0

Source: Author (2024).

102 Chapter 5

Figure 5.21 – Miss rate evolution for diverse cache sizes and threshold configurations
using Online selection approach with pca-small, rbm-small, spc-small
benchmarks with a fixed size of windows, focusing in small values of
threshold.

4096 8192 16384 32768
Cache Size [kb]

0

5

10

15

20

25

30

M
iss

 R
at

e
[%

]

Miss Rate by Cache Size and Threshold for pca-small Benchmark (Window 65536)
Threshold: 1.0
Threshold: 2.0
Threshold: 8.0
Threshold: 16.0
Threshold: 32.0
Threshold: 64.0
Threshold: 128.0
Threshold: 256.0
Threshold: 512.0

4096 8192 16384 32768
Cache Size [kb]

0

2

4

6

8

10

M
iss

 R
at

e
[%

]

Miss Rate by Cache Size and Threshold for rbm-small Benchmark (Window 65536)
Threshold: 1.0
Threshold: 2.0
Threshold: 8.0
Threshold: 16.0
Threshold: 32.0
Threshold: 64.0
Threshold: 128.0
Threshold: 256.0
Threshold: 512.0

4096 8192 16384 32768
Cache Size [kb]

0

2

4

6

8

10

M
iss

 R
at

e
[%

]

Miss Rate by Cache Size and Threshold for spc-small Benchmark (Window 65536)
Threshold: 1.0
Threshold: 2.0
Threshold: 8.0
Threshold: 16.0
Threshold: 32.0
Threshold: 64.0
Threshold: 128.0
Threshold: 256.0
Threshold: 512.0

Source: Author (2024).

Chapter 5 103

Figure 5.22 – Miss rate evolution for diverse cache sizes and threshold configurations
using Online selection approach with pca-small, rbm-small, spc-small
benchmarks with a fixed size of windows, focusing in small values of
threshold.

4096 8192 16384 32768
Cache Size [kb]

0

5

10

15

20

25

30

M
iss

 R
at

e
[%

]

Miss Rate by Cache Size and Windows for pca-small Benchmark (Threshold 64.0)
Windows: 128
Windows: 256
Windows: 512
Windows: 1024
Windows: 2048
Windows: 4096
Windows: 8192
Windows: 16384
Windows: 32768
Windows: 65536

4096 8192 16384 32768
Cache Size [kb]

0

2

4

6

8

10

M
iss

 R
at

e
[%

]

Miss Rate by Cache Size and Windows for rbm-small Benchmark (Threshold 64.0)
Windows: 128
Windows: 256
Windows: 512
Windows: 1024
Windows: 2048
Windows: 4096
Windows: 8192
Windows: 16384
Windows: 32768
Windows: 65536

4096 8192 16384 32768
Cache Size [kb]

0

2

4

6

8

10

M
iss

 R
at

e
[%

]

Miss Rate by Cache Size and Windows for spc-small Benchmark (Threshold 64.0)
Windows: 128
Windows: 256
Windows: 512
Windows: 1024
Windows: 2048
Windows: 4096
Windows: 8192
Windows: 16384
Windows: 32768
Windows: 65536

Source: Author (2024).

104 Chapter 5

Figure 5.23 – Miss rate comparison for Set Dueling approach when using different
memory line sizes (32 and 64 bytes).

4096 8192 16384 32768
Cache Size [bytes]

0.0

0.5

1.0

1.5

2.0

2.5

M
iss

 R
at

e
[%

]

Miss Rate by Cache Size for Set Dueling in kmeans-small benchmark
Line size 32 bytes
Line size 64 bytes

4096 8192 16384 32768
Cache Size [bytes]

0

5

10

15

20

25

30

M
iss

 R
at

e
[%

]

Miss Rate by Cache Size for Set Dueling in pca-small benchmark
Line size 32 bytes
Line size 64 bytes

4096 8192 16384 32768
Cache Size [bytes]

0

1

2

3

4

M
iss

 R
at

e
[%

]

Miss Rate by Cache Size for Set Dueling in svd3-small benchmark
Line size 32 bytes
Line size 64 bytes

Source: Author (2024).

Chapter 5 105

Figure 5.24 – Miss rate evolution for diverse cache sizes configurations using Set Duel-
ing approach with kmeans benchmarks with a diverse size of windows.

4096 8192 16384 32768
Cache Size [bytes]

0.0

0.5

1.0

1.5

2.0

M
iss

 R
at

e
[%

]

Miss Rate by Cache Size and Windows for kmeans-small Benchmark)
Windows: 256
Windows: 512
Windows: 1024
Windows: 2048
Windows: 4096
Windows: 8192
Windows: 16384
Windows: 32768
Windows: 65536

4096 8192 16384 32768
Cache Size [bytes]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

M
iss

 R
at

e
[%

]

Miss Rate by Cache Size and Windows for kmeans-medium Benchmark)
Windows: 256
Windows: 512
Windows: 1024
Windows: 2048
Windows: 4096
Windows: 8192
Windows: 16384
Windows: 32768
Windows: 65536

Source: Author (2024).

106 Chapter 5

Figure 5.25 – Miss rate evolution for diverse cache sizes configurations using Set Duel-
ing approach with lda benchmarks with a diverse size of windows.

4096 8192 16384 32768
Cache Size [bytes]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

M
iss

 R
at

e
[%

]

Miss Rate by Cache Size and Windows for lda-small Benchmark)
Windows: 256
Windows: 512
Windows: 1024
Windows: 2048
Windows: 4096
Windows: 8192
Windows: 16384
Windows: 32768
Windows: 65536

4096 8192 16384 32768
Cache Size [bytes]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

M
iss

 R
at

e
[%

]

Miss Rate by Cache Size and Windows for lda-medium Benchmark)
Windows: 256
Windows: 512
Windows: 1024
Windows: 2048
Windows: 4096
Windows: 8192
Windows: 16384
Windows: 32768
Windows: 65536

4096 8192 16384 32768
Cache Size [bytes]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

M
iss

 R
at

e
[%

]

Miss Rate by Cache Size and Windows for lda-large Benchmark)
Windows: 256
Windows: 512
Windows: 1024
Windows: 2048
Windows: 4096
Windows: 8192
Windows: 16384
Windows: 32768
Windows: 65536

Source: Author (2024).

Chapter 5 107

Figure 5.26 – Miss rate evolution using Online with Cortex benchmarks (Cache size
32768 bytes).

km
ea

ns
-la

rg
e

km
ea

ns
-m

ed
iu

m

km
ea

ns
-s

m
al

l

ld
a-

la
rg

e

ld
a-

m
ed

iu
m

ld
a-

sm
al

l

lib
lin

ea
r-t

la
rg

e

lib
lin

ea
r-t

m
ed

iu
m

lib
lin

ea
r-t

sm
al

l

m
e-

la
rg

e

m
e-

m
ed

iu
m

m
e-

sm
al

l

pc
a-

la
rg

e

pc
a-

m
ed

iu
m

pc
a-

sm
al

l

rb
m

-la
rg

e

rb
m

-m
ed

iu
m

rb
m

-s
m

al
l

sp
c-

la
rg

e

sp
c-

m
ed

iu
m

sp
c-

sm
al

l

Benchmark

0.0

0.2

0.4

0.6

0.8

1.0

M
iss

 R
at

e
no

rm
al

ize
d

wi
th

 L
RU

 [%
]

Miss Rate Comparison for onl (Cache Size: 32768 bytes)

Source: Author (2024).

Figure 5.27 – Miss rate evolution using Fix Window with Cortex benchmarks (Cache
size 8192 bytes).

km
ea

ns
-la

rg
e

km
ea

ns
-m

ed
iu

m

km
ea

ns
-s

m
al

l

ld
a-

la
rg

e

ld
a-

m
ed

iu
m

ld
a-

sm
al

l

lib
lin

ea
r-t

la
rg

e

lib
lin

ea
r-t

m
ed

iu
m

lib
lin

ea
r-t

sm
al

l

m
e-

la
rg

e

m
e-

m
ed

iu
m

m
e-

sm
al

l

pc
a-

la
rg

e

pc
a-

m
ed

iu
m

pc
a-

sm
al

l

rb
m

-la
rg

e

rb
m

-m
ed

iu
m

rb
m

-s
m

al
l

sp
c-

la
rg

e

sp
c-

m
ed

iu
m

sp
c-

sm
al

l

Benchmark

0.0

0.2

0.4

0.6

0.8

1.0

M
iss

 R
at

e
no

rm
al

ize
d

wi
th

 L
RU

 [%
]

Miss Rate Comparison for fix (Cache Size: 8192 bytes)

Source: Author (2024).

Chapter 6 109

6 CONCLUSION

The framework developed using the Cachegrind tool has proven to be robust

and versatile, effectively facilitating the testing of code using all proposed methods,

both online and offline. By leveraging this framework, researchers and developers can

gain valuable insights into how different cache replacement policies impact code perfor-

mance, enabling informed decisions on policy selection for specific code segments.

The alternative methods to traditional cache replacement policies proposed,

have demonstrated significant promise in reducing the total number of cache misses

across various benchmarks, mainly the Fixed-Window and Set Dueling. By considering

the unique characteristics of each code segment and dynamically selecting the most

suitable policy, these methods have showcased their ability to enhance cache efficiency

and optimize code execution.

In particular, the online methods, Set Dueling and Online Selection, have

shown exceptional potential for real-world implementation. Through comprehensive sim-

ulations, these methods have consistently outperformed LRU, indicating their viability

for improving cache performance in practical hardware environments. The framework’s

ability to assess the potential benefits of these methods, even considering the associ-

ated hardware overhead, underscores its utility in guiding policy selection decisions.

Similarly, the offline methods have yielded substantial improvements in cache

performance, surpassing 40% reduction in cache misses compared to LRU in cer-

tain scenarios. This highlights the importance of considering dynamic policy selection

strategies, as opposed to relying solely on static policies, to effectively manage cache

resources and optimize code execution.

6.1 IMPLICATIONS AND RECOMMENDATIONS

Despite the promising results, it is important to acknowledge certain limitations

and considerations. The time-intensive nature of simulating offline methods for cer-

tain configurations poses a challenge, suggesting the need for optimization strategies

to streamline simulation processes. Additionally, the fixed input nature of offline sim-

ulations may not fully capture the dynamic nature of real-world software execution,

emphasizing the importance of further research into adaptive offline methods capable

of responding to varying input data.

Furthermore, while some parameter configurations may exhibit universality

across benchmarks, our findings suggest the necessity of fine-tuning parameters to

optimize performance for specific code segments. Future research efforts could focus

on developing more sophisticated parameter selection strategies tailored to individual

benchmarks, thereby maximizing the effectiveness of the proposed methods in diverse

computing environments.

110 Chapter 6

6.2 LIMITATIONS AND FUTURE WORK

In conclusion, the findings of this study underscore the importance of dynamic

cache management strategies in optimizing code performance. By leveraging a combi-

nation of online and offline methods, developers can achieve significant improvements

in cache efficiency, ultimately enhancing overall system performance. However, ongoing

research is needed to address existing limitations and further refine these methods for

broader applicability across diverse computing contexts.

As future works we have identified:

• Integrating the generated framework into a more comprehensive framework that

allows for a broader range of operations on the studied codes. For example:

– Implementing functionality to detect memory access patterns and associate

them with the most effective method, storing this information in a database

for easier detection in future codes.

– Developing a subfunctionality to analyze loops in the code and determine

the method that performs best for them.

– Enhancing the framework to simulate diverse inputs in the code, enabling

more comprehensive testing and evaluation.

• Exploring additional factors and considerations that may influence cache man-

agement and code performance, such as cache hierarchies, multi-threading, and

varying hardware architectures. By expanding the scope of analysis, researchers

can gain deeper insights into the intricacies of cache behavior and develop more

sophisticated optimization techniques.

• Conducting empirical studies to validate the effectiveness and scalability of the

proposed methods in real-world computing environments. Collaborations with

industry partners and deployment in production systems can provide valuable

feedback and practical insights for further refinement and optimization.

These future research directions hold the potential to further advance the field

of cache optimization and contribute to the development of more efficient and resilient

computing systems. By addressing these challenges and embracing opportunities for

innovation, researchers can continue to drive improvements in code performance and

system efficiency.

BIBLIOGRAPHY

AJORPAZ, S. M. et al. Exploring predictive replacement policies for instruction cache
and branch target buffer. In: . [S.l.]: Institute of Electrical and Electronics Engineers
Inc., 2018. p. 519–532. ISBN 9781538659847. ISSN 10636897.

AKANKSHA, J.; CALVIN, L. Cache replacement policies. [S.l.]: Morgan & Claypool
Publishers, 2019. ISBN 1681735776, 9781681735771.

ARAUJO, B. A. et al. Implementation and evaluation of adaptive cache insertion
policies for real-time systems. In: Proc. of the XI SBESC. [S.l.: s.n.], 2021. p. 1–8.

ARRIBAS, S. et al. Development of embedded software for data acquisition and
calibration of automotive ecus. In: 29th International Symposium of Automotive

Engineering (SIMEA 2022). São Paulo: [s.n.], 2022.

BANSAL, A. et al. Evaluating the memory subsystem of a configurable heterogeneous
MPSoC. In: Proc. of the 14th OSPERT. [S.l.: s.n.], 2018. p. 55–60.

BEDRETCHUK, J. P. et al. Low-cost data acquisition system for automotive
electronic control units. Sensors, v. 23, n. 4, 2023. ISSN 1424-8220. Disponível em:
<https://www.mdpi.com/1424-8220/23/4/2319>.

BELADY, L. A. A study of replacement algorithms for a virtual-storage computer. IBM

Systems Journal, v. 5, n. 2, p. 78–101, 1966.

GARCíA, S. A. et al. Improving the execution time of industrial applications through
planned cache eviction policy selection. In: 2023 IEEE 32nd International Symposium

on Industrial Electronics (ISIE). [S.l.: s.n.], 2023. p. 1–6.

GRACIOLI, G. et al. A Survey on Cache Management Mechanisms for Real-Time
Embedded Systems. ACM Computing Surveys, ACM, v. 48, n. 2, 2015.

HAQUE, M. S.; EASWARAN, A. Predictability and performance aware replacement
policy pvisam for unified shared caches in real-time multicores. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, v. 37, n. 11, p. 2720–2731,
2018.

HECKMANN, R. et al. The influence of processor architecture on the design and the
results of wcet tools. Proceedings of the IEEE, v. 91, n. 7, p. 1038–1054, 2003.

HENNESSY, J. L.; PATTERSON, D. A. Computer Architecture, Fifth Edition: A

Quantitative Approach. 5th. ed. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 2011. ISBN 012383872X.

JACOB, B.; WANG, D.; NG, S. Memory Systems: Cache, DRAM, Disk. Elsevier
Science, 2010. ISBN 9780080553849. Disponível em: <https://books.google.com.br/
books?id=SrP3aWed-esC>.

JAIN, A.; LIN, C. Back to the future: Leveraging belady’s algorithm for improved cache
replacement. In: Proc. of 43rd ISCA. [S.l.: s.n.], 2016. p. 78–89.

JALEEL, A. et al. High performance cache replacement using re-reference interval
prediction (rrip). Proceedings - International Symposium on Computer Architecture, p.
60–71, 2010. ISSN 10636897.

KUMAR, S.; SINGH, P. K. An overview of modern cache memory and performance
analysis of replacement policies. In: 2016 IEEE International Conference on

Engineering and Technology (ICETECH). [S.l.: s.n.], 2016. p. 210–214.

LEE, D. et al. Implementation and performance evaluation of the lrfu replacement policy.
In: Proceedings 23rd Euromicro Conference New Frontiers of Information Technology -

Short Contributions -. [S.l.: s.n.], 1997. p. 106–111.

MANCUSO, R.; YUN, H.; PUAUT, I. Impact of DM-LRU on WCET: A Static Analysis
Approach. In: Proc. of the 31st ECRTS. Dagstuhl, Germany: [s.n.], 2019. v. 133, p.
17:1–17:25. ISBN 978-3-95977-110-8. ISSN 1868-8969.

MEGIDDO, N.; MODHA, D. S. ARC: A Self-Tuning, low overhead replacement cache.
In: 2nd USENIX Conference on File and Storage Technologies (FAST 03). San
Francisco, CA: USENIX Association, 2003. Disponível em: <https://www.usenix.org/
conference/fast-03/arc-self-tuning-low-overhead-replacement-cache>.

PATTERSON, D. A.; HENNESSY, J. L. Computer organization and design: The

hardware/software interface. [S.l.]: Morgan Kaufmann, 2017.

QURESHI, M. K. et al. Adaptive insertion policies for high performance caching. In:
Proc. of the 34th ISCA. [S.l.: s.n.], 2007. p. 381–391.

REINEKE, J.; GRUND, D. Sensitivity of cache replacement policies. Transactions on

Embedded Computing Systems, v. 12, 3 2013. ISSN 15399087.

REINEKE, J. et al. Timing predictability of cache replacement policies. Real-Time Syst.,
Kluwer Academic Publishers, USA, v. 37, n. 2, p. 99–122, nov. 2007. ISSN 0922-6443.

SEGARRA, J.; Gran Tejero, R.; VIñALS, V. A generic framework to integrate data
caches in the wcet analysis of real-time systems. Journal of Systems Architecture,
v. 120, p. 102304, 2021. ISSN 1383-7621.

SEWARD, J.; NETHERCOTE, N.; WEIDENDORFER, J. Valgrind 3.3 - Advanced

Debugging and Profiling for GNU/Linux Applications. [S.l.]: Network Theory Ltd., 2008.
ISBN 0954612051.

SHI, Z. et al. Applying deep learning to the cache replacement problem. In: Proc. of

the 52nd MICRO. [S.l.: s.n.], 2019. p. 413–425.

SRIVATSA, A. et al. Hyve: A hybrid voting-based eviction policy for caches. In: 2020

IEEE Nordic Circuits and Systems Conference (NorCAS). [S.l.: s.n.], 2020. p. 1–7.

SUN, B. et al. Minimizing cache usage for real-time systems. In: Proceedings of the

31st International Conference on Real-Time Networks and Systems. New York, NY,
USA: Association for Computing Machinery, 2023. (RTNS ’23), p. 200–211. ISBN
9781450399838. Disponível em: <https://doi.org/10.1145/3575757.3593651>.

THOMAS, S. et al. CortexSuite: A Synthetic Brain Benchmark Suite. In: Proc. of the

IISWC. [S.l.: s.n.], 2014.

TOUZEAU, V. et al. Fast and exact analysis for lru caches. Proc. ACM Program. Lang.,
Association for Computing Machinery, New York, NY, USA, v. 3, n. POPL, jan 2019.

VALSAN, P. K.; YUN, H.; FARSHCHI, F. Taming non-blocking caches to improve
isolation in multicore real-time systems. In: 2016 IEEE RTAS. [S.l.: s.n.], 2016. p. 1–12.

WANG, Z. et al. Using the compiler to improve cache replacement decisions. In:
Proceedings.International Conference on Parallel Architectures and Compilation

Techniques. [S.l.: s.n.], 2002. p. 199–208. ISSN 1089-795X.

WONG, H.; BETZ, V.; ROSE, J. Microarchitecture and circuits for a 200 mhz
out-of-order soft processor memory system. ACM Trans. Reconfigurable Technol. Syst.,
Association for Computing Machinery, New York, NY, USA, v. 10, n. 1, dez. 2016. ISSN
1936-7406.

YUN, H. et al. Memguard: Memory bandwidth reservation system for efficient
performance isolation in multi-core platforms. In: 19th RTAS. [S.l.: s.n.], 2013. p. 55–64.

APPENDIX A – COMPARISON OF MISS RATE FOR DIVERSE BENCHMARKS

Figure A.1 – Miss rate evolution using Random with Cortex benchmarks (Cache size
4096 bytes).

km
ea

ns
-la

rg
e

km
ea

ns
-m

ed
iu

m

km
ea

ns
-s

m
al

l

ld
a-

la
rg

e

ld
a-

m
ed

iu
m

ld
a-

sm
al

l

lib
lin

ea
r-t

la
rg

e

lib
lin

ea
r-t

m
ed

iu
m

lib
lin

ea
r-t

sm
al

l

m
e-

la
rg

e

m
e-

m
ed

iu
m

m
e-

sm
al

l

pc
a-

la
rg

e

pc
a-

m
ed

iu
m

pc
a-

sm
al

l

rb
m

-la
rg

e

rb
m

-m
ed

iu
m

rb
m

-s
m

al
l

sp
c-

la
rg

e

sp
c-

m
ed

iu
m

sp
c-

sm
al

l

Benchmark

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

M
iss

 R
at

e
no

rm
al

ize
d

wi
th

 L
RU

 [%
]

Miss Rate Comparison for random (Cache Size: 4096 bytes)

Source: Author (2024).

Figure A.2 – Miss rate evolution using Random with Cortex benchmarks (Cache size
8192 bytes).

km
ea

ns
-la

rg
e

km
ea

ns
-m

ed
iu

m

km
ea

ns
-s

m
al

l

ld
a-

la
rg

e

ld
a-

m
ed

iu
m

ld
a-

sm
al

l

lib
lin

ea
r-t

la
rg

e

lib
lin

ea
r-t

m
ed

iu
m

lib
lin

ea
r-t

sm
al

l

m
e-

la
rg

e

m
e-

m
ed

iu
m

m
e-

sm
al

l

pc
a-

la
rg

e

pc
a-

m
ed

iu
m

pc
a-

sm
al

l

rb
m

-la
rg

e

rb
m

-m
ed

iu
m

rb
m

-s
m

al
l

sp
c-

la
rg

e

sp
c-

m
ed

iu
m

sp
c-

sm
al

l

Benchmark

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

M
iss

 R
at

e
no

rm
al

ize
d

wi
th

 L
RU

 [%
]

Miss Rate Comparison for random (Cache Size: 8192 bytes)

Source: Author (2024).

Figure A.3 – Miss rate evolution using Random with Cortex benchmarks (Cache size
16384 bytes).

km
ea

ns
-la

rg
e

km
ea

ns
-m

ed
iu

m

km
ea

ns
-s

m
al

l

ld
a-

la
rg

e

ld
a-

m
ed

iu
m

ld
a-

sm
al

l

lib
lin

ea
r-t

la
rg

e

lib
lin

ea
r-t

m
ed

iu
m

lib
lin

ea
r-t

sm
al

l

m
e-

la
rg

e

m
e-

m
ed

iu
m

m
e-

sm
al

l

pc
a-

la
rg

e

pc
a-

m
ed

iu
m

pc
a-

sm
al

l

rb
m

-la
rg

e

rb
m

-m
ed

iu
m

rb
m

-s
m

al
l

sp
c-

la
rg

e

sp
c-

m
ed

iu
m

sp
c-

sm
al

l

Benchmark

0

1

2

3

4

5

6

M
iss

 R
at

e
no

rm
al

ize
d

wi
th

 L
RU

 [%
]

Miss Rate Comparison for random (Cache Size: 16384 bytes)

Source: Author (2024).

Figure A.4 – Miss rate evolution using Random with Cortex benchmarks (Cache size
32768 bytes).

km
ea

ns
-la

rg
e

km
ea

ns
-m

ed
iu

m

km
ea

ns
-s

m
al

l

ld
a-

la
rg

e

ld
a-

m
ed

iu
m

ld
a-

sm
al

l

lib
lin

ea
r-t

la
rg

e

lib
lin

ea
r-t

m
ed

iu
m

lib
lin

ea
r-t

sm
al

l

m
e-

la
rg

e

m
e-

m
ed

iu
m

m
e-

sm
al

l

pc
a-

la
rg

e

pc
a-

m
ed

iu
m

pc
a-

sm
al

l

rb
m

-la
rg

e

rb
m

-m
ed

iu
m

rb
m

-s
m

al
l

sp
c-

la
rg

e

sp
c-

m
ed

iu
m

sp
c-

sm
al

l

Benchmark

0

2

4

6

8

10

12

14

M
iss

 R
at

e
no

rm
al

ize
d

wi
th

 L
RU

 [%
]

Miss Rate Comparison for random (Cache Size: 32768 bytes)

Source: Author (2024).

Figure A.5 – Miss rate evolution using FIFO with Cortex benchmarks (Cache size 4096
bytes).

km
ea

ns
-la

rg
e

km
ea

ns
-m

ed
iu

m

km
ea

ns
-s

m
al

l

ld
a-

la
rg

e

ld
a-

m
ed

iu
m

ld
a-

sm
al

l

lib
lin

ea
r-t

la
rg

e

lib
lin

ea
r-t

m
ed

iu
m

lib
lin

ea
r-t

sm
al

l

m
e-

la
rg

e

m
e-

m
ed

iu
m

m
e-

sm
al

l

pc
a-

la
rg

e

pc
a-

m
ed

iu
m

pc
a-

sm
al

l

rb
m

-la
rg

e

rb
m

-m
ed

iu
m

rb
m

-s
m

al
l

sp
c-

la
rg

e

sp
c-

m
ed

iu
m

sp
c-

sm
al

l

Benchmark

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
iss

 R
at

e
no

rm
al

ize
d

wi
th

 L
RU

 [%
]

Miss Rate Comparison for fifo (Cache Size: 4096 bytes)

Source: Author (2024).

Figure A.6 – Miss rate evolution using FIFO with Cortex benchmarks (Cache size 8192
bytes).

km
ea

ns
-la

rg
e

km
ea

ns
-m

ed
iu

m

km
ea

ns
-s

m
al

l

ld
a-

la
rg

e

ld
a-

m
ed

iu
m

ld
a-

sm
al

l

lib
lin

ea
r-t

la
rg

e

lib
lin

ea
r-t

m
ed

iu
m

lib
lin

ea
r-t

sm
al

l

m
e-

la
rg

e

m
e-

m
ed

iu
m

m
e-

sm
al

l

pc
a-

la
rg

e

pc
a-

m
ed

iu
m

pc
a-

sm
al

l

rb
m

-la
rg

e

rb
m

-m
ed

iu
m

rb
m

-s
m

al
l

sp
c-

la
rg

e

sp
c-

m
ed

iu
m

sp
c-

sm
al

l

Benchmark

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
iss

 R
at

e
no

rm
al

ize
d

wi
th

 L
RU

 [%
]

Miss Rate Comparison for fifo (Cache Size: 8192 bytes)

Source: Author (2024).

Figure A.7 – Miss rate evolution using FIFO with Cortex benchmarks (Cache size 16384
bytes).

km
ea

ns
-la

rg
e

km
ea

ns
-m

ed
iu

m

km
ea

ns
-s

m
al

l

ld
a-

la
rg

e

ld
a-

m
ed

iu
m

ld
a-

sm
al

l

lib
lin

ea
r-t

la
rg

e

lib
lin

ea
r-t

m
ed

iu
m

lib
lin

ea
r-t

sm
al

l

m
e-

la
rg

e

m
e-

m
ed

iu
m

m
e-

sm
al

l

pc
a-

la
rg

e

pc
a-

m
ed

iu
m

pc
a-

sm
al

l

rb
m

-la
rg

e

rb
m

-m
ed

iu
m

rb
m

-s
m

al
l

sp
c-

la
rg

e

sp
c-

m
ed

iu
m

sp
c-

sm
al

l

Benchmark

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
iss

 R
at

e
no

rm
al

ize
d

wi
th

 L
RU

 [%
]

Miss Rate Comparison for fifo (Cache Size: 16384 bytes)

Source: Author (2024).

Figure A.8 – Miss rate evolution using FIFO with Cortex benchmarks (Cache size 32768
bytes).

km
ea

ns
-la

rg
e

km
ea

ns
-m

ed
iu

m

km
ea

ns
-s

m
al

l

ld
a-

la
rg

e

ld
a-

m
ed

iu
m

ld
a-

sm
al

l

lib
lin

ea
r-t

la
rg

e

lib
lin

ea
r-t

m
ed

iu
m

lib
lin

ea
r-t

sm
al

l

m
e-

la
rg

e

m
e-

m
ed

iu
m

m
e-

sm
al

l

pc
a-

la
rg

e

pc
a-

m
ed

iu
m

pc
a-

sm
al

l

rb
m

-la
rg

e

rb
m

-m
ed

iu
m

rb
m

-s
m

al
l

sp
c-

la
rg

e

sp
c-

m
ed

iu
m

sp
c-

sm
al

l

Benchmark

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
iss

 R
at

e
no

rm
al

ize
d

wi
th

 L
RU

 [%
]

Miss Rate Comparison for fifo (Cache Size: 32768 bytes)

Source: Author (2024).

Figure A.9 – Miss rate evolution using BIP with Cortex benchmarks (Cache size 4096
bytes).

km
ea

ns
-la

rg
e

km
ea

ns
-m

ed
iu

m

km
ea

ns
-s

m
al

l

ld
a-

la
rg

e

ld
a-

m
ed

iu
m

ld
a-

sm
al

l

lib
lin

ea
r-t

la
rg

e

lib
lin

ea
r-t

m
ed

iu
m

lib
lin

ea
r-t

sm
al

l

m
e-

la
rg

e

m
e-

m
ed

iu
m

m
e-

sm
al

l

pc
a-

la
rg

e

pc
a-

m
ed

iu
m

pc
a-

sm
al

l

rb
m

-la
rg

e

rb
m

-m
ed

iu
m

rb
m

-s
m

al
l

sp
c-

la
rg

e

sp
c-

m
ed

iu
m

sp
c-

sm
al

l

Benchmark

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
iss

 R
at

e
no

rm
al

ize
d

wi
th

 L
RU

 [%
]

Miss Rate Comparison for bip (Cache Size: 4096 bytes)

Source: Author (2024).

Figure A.10 – Miss rate evolution using BIP with Cortex benchmarks (Cache size 8192
bytes).

km
ea

ns
-la

rg
e

km
ea

ns
-m

ed
iu

m

km
ea

ns
-s

m
al

l

ld
a-

la
rg

e

ld
a-

m
ed

iu
m

ld
a-

sm
al

l

lib
lin

ea
r-t

la
rg

e

lib
lin

ea
r-t

m
ed

iu
m

lib
lin

ea
r-t

sm
al

l

m
e-

la
rg

e

m
e-

m
ed

iu
m

m
e-

sm
al

l

pc
a-

la
rg

e

pc
a-

m
ed

iu
m

pc
a-

sm
al

l

rb
m

-la
rg

e

rb
m

-m
ed

iu
m

rb
m

-s
m

al
l

sp
c-

la
rg

e

sp
c-

m
ed

iu
m

sp
c-

sm
al

l

Benchmark

0.0

0.2

0.4

0.6

0.8

1.0

M
iss

 R
at

e
no

rm
al

ize
d

wi
th

 L
RU

 [%
]

Miss Rate Comparison for bip (Cache Size: 8192 bytes)

Source: Author (2024).

Figure A.11 – Miss rate evolution using BIP with Cortex benchmarks (Cache size 16384
bytes).

km
ea

ns
-la

rg
e

km
ea

ns
-m

ed
iu

m

km
ea

ns
-s

m
al

l

ld
a-

la
rg

e

ld
a-

m
ed

iu
m

ld
a-

sm
al

l

lib
lin

ea
r-t

la
rg

e

lib
lin

ea
r-t

m
ed

iu
m

lib
lin

ea
r-t

sm
al

l

m
e-

la
rg

e

m
e-

m
ed

iu
m

m
e-

sm
al

l

pc
a-

la
rg

e

pc
a-

m
ed

iu
m

pc
a-

sm
al

l

rb
m

-la
rg

e

rb
m

-m
ed

iu
m

rb
m

-s
m

al
l

sp
c-

la
rg

e

sp
c-

m
ed

iu
m

sp
c-

sm
al

l

Benchmark

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
iss

 R
at

e
no

rm
al

ize
d

wi
th

 L
RU

 [%
]

Miss Rate Comparison for bip (Cache Size: 16384 bytes)

Source: Author (2024).

Figure A.12 – Miss rate evolution using BIP with Cortex benchmarks (Cache size 32768
bytes).

km
ea

ns
-la

rg
e

km
ea

ns
-m

ed
iu

m

km
ea

ns
-s

m
al

l

ld
a-

la
rg

e

ld
a-

m
ed

iu
m

ld
a-

sm
al

l

lib
lin

ea
r-t

la
rg

e

lib
lin

ea
r-t

m
ed

iu
m

lib
lin

ea
r-t

sm
al

l

m
e-

la
rg

e

m
e-

m
ed

iu
m

m
e-

sm
al

l

pc
a-

la
rg

e

pc
a-

m
ed

iu
m

pc
a-

sm
al

l

rb
m

-la
rg

e

rb
m

-m
ed

iu
m

rb
m

-s
m

al
l

sp
c-

la
rg

e

sp
c-

m
ed

iu
m

sp
c-

sm
al

l

Benchmark

0.0

0.2

0.4

0.6

0.8

1.0

M
iss

 R
at

e
no

rm
al

ize
d

wi
th

 L
RU

 [%
]

Miss Rate Comparison for bip (Cache Size: 32768 bytes)

Source: Author (2024).

Figure A.13 – Miss rate evolution using Online with Cortex benchmarks (Cache size
4096 bytes).

km
ea

ns
-la

rg
e

km
ea

ns
-m

ed
iu

m

km
ea

ns
-s

m
al

l

ld
a-

la
rg

e

ld
a-

m
ed

iu
m

ld
a-

sm
al

l

lib
lin

ea
r-t

la
rg

e

lib
lin

ea
r-t

m
ed

iu
m

lib
lin

ea
r-t

sm
al

l

m
e-

la
rg

e

m
e-

m
ed

iu
m

m
e-

sm
al

l

pc
a-

la
rg

e

pc
a-

m
ed

iu
m

pc
a-

sm
al

l

rb
m

-la
rg

e

rb
m

-m
ed

iu
m

rb
m

-s
m

al
l

sp
c-

la
rg

e

sp
c-

m
ed

iu
m

sp
c-

sm
al

l

Benchmark

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
iss

 R
at

e
no

rm
al

ize
d

wi
th

 L
RU

 [%
]

Miss Rate Comparison for onl (Cache Size: 4096 bytes)

Source: Author (2024).

Figure A.14 – Miss rate evolution using Online with Cortex benchmarks (Cache size
8192 bytes).

km
ea

ns
-la

rg
e

km
ea

ns
-m

ed
iu

m

km
ea

ns
-s

m
al

l

ld
a-

la
rg

e

ld
a-

m
ed

iu
m

ld
a-

sm
al

l

lib
lin

ea
r-t

la
rg

e

lib
lin

ea
r-t

m
ed

iu
m

lib
lin

ea
r-t

sm
al

l

m
e-

la
rg

e

m
e-

m
ed

iu
m

m
e-

sm
al

l

pc
a-

la
rg

e

pc
a-

m
ed

iu
m

pc
a-

sm
al

l

rb
m

-la
rg

e

rb
m

-m
ed

iu
m

rb
m

-s
m

al
l

sp
c-

la
rg

e

sp
c-

m
ed

iu
m

sp
c-

sm
al

l

Benchmark

0.0

0.2

0.4

0.6

0.8

1.0

M
iss

 R
at

e
no

rm
al

ize
d

wi
th

 L
RU

 [%
]

Miss Rate Comparison for onl (Cache Size: 8192 bytes)

Source: Author (2024).

Figure A.15 – Miss rate evolution using Online with Cortex benchmarks (Cache size
16384 bytes).

km
ea

ns
-la

rg
e

km
ea

ns
-m

ed
iu

m

km
ea

ns
-s

m
al

l

ld
a-

la
rg

e

ld
a-

m
ed

iu
m

ld
a-

sm
al

l

lib
lin

ea
r-t

la
rg

e

lib
lin

ea
r-t

m
ed

iu
m

lib
lin

ea
r-t

sm
al

l

m
e-

la
rg

e

m
e-

m
ed

iu
m

m
e-

sm
al

l

pc
a-

la
rg

e

pc
a-

m
ed

iu
m

pc
a-

sm
al

l

rb
m

-la
rg

e

rb
m

-m
ed

iu
m

rb
m

-s
m

al
l

sp
c-

la
rg

e

sp
c-

m
ed

iu
m

sp
c-

sm
al

l

Benchmark

0.0

0.2

0.4

0.6

0.8

1.0

M
iss

 R
at

e
no

rm
al

ize
d

wi
th

 L
RU

 [%
]

Miss Rate Comparison for onl (Cache Size: 16384 bytes)

Source: Author (2024).

Figure A.16 – Miss rate evolution using Set Dueling with Cortex benchmarks (Cache
size 4096 bytes).

km
ea

ns
-la

rg
e

km
ea

ns
-m

ed
iu

m

km
ea

ns
-s

m
al

l

ld
a-

la
rg

e

ld
a-

m
ed

iu
m

ld
a-

sm
al

l

lib
lin

ea
r-t

la
rg

e

lib
lin

ea
r-t

m
ed

iu
m

lib
lin

ea
r-t

sm
al

l

m
e-

la
rg

e

m
e-

m
ed

iu
m

m
e-

sm
al

l

pc
a-

la
rg

e

pc
a-

m
ed

iu
m

pc
a-

sm
al

l

rb
m

-la
rg

e

rb
m

-m
ed

iu
m

rb
m

-s
m

al
l

sp
c-

la
rg

e

sp
c-

m
ed

iu
m

sp
c-

sm
al

l

Benchmark

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

M
iss

 R
at

e
no

rm
al

ize
d

wi
th

 L
RU

 [%
]

Miss Rate Comparison for duel (Cache Size: 4096 bytes)

Source: Author (2024).

Figure A.17 – Miss rate evolution using Set Dueling with Cortex benchmarks (Cache
size 8192 bytes).

km
ea

ns
-la

rg
e

km
ea

ns
-m

ed
iu

m

km
ea

ns
-s

m
al

l

ld
a-

la
rg

e

ld
a-

m
ed

iu
m

ld
a-

sm
al

l

lib
lin

ea
r-t

la
rg

e

lib
lin

ea
r-t

m
ed

iu
m

lib
lin

ea
r-t

sm
al

l

m
e-

la
rg

e

m
e-

m
ed

iu
m

m
e-

sm
al

l

pc
a-

la
rg

e

pc
a-

m
ed

iu
m

pc
a-

sm
al

l

rb
m

-la
rg

e

rb
m

-m
ed

iu
m

rb
m

-s
m

al
l

sp
c-

la
rg

e

sp
c-

m
ed

iu
m

sp
c-

sm
al

l

Benchmark

0.0

0.2

0.4

0.6

0.8

1.0

M
iss

 R
at

e
no

rm
al

ize
d

wi
th

 L
RU

 [%
]

Miss Rate Comparison for duel (Cache Size: 8192 bytes)

Source: Author (2024).

Figure A.18 – Miss rate evolution using Set Dueling with Cortex benchmarks (Cache
size 16384 bytes).

km
ea

ns
-la

rg
e

km
ea

ns
-m

ed
iu

m

km
ea

ns
-s

m
al

l

ld
a-

la
rg

e

ld
a-

m
ed

iu
m

ld
a-

sm
al

l

lib
lin

ea
r-t

la
rg

e

lib
lin

ea
r-t

m
ed

iu
m

lib
lin

ea
r-t

sm
al

l

m
e-

la
rg

e

m
e-

m
ed

iu
m

m
e-

sm
al

l

pc
a-

la
rg

e

pc
a-

m
ed

iu
m

pc
a-

sm
al

l

rb
m

-la
rg

e

rb
m

-m
ed

iu
m

rb
m

-s
m

al
l

sp
c-

la
rg

e

sp
c-

m
ed

iu
m

sp
c-

sm
al

l

Benchmark

0.0

0.2

0.4

0.6

0.8

1.0

M
iss

 R
at

e
no

rm
al

ize
d

wi
th

 L
RU

 [%
]

Miss Rate Comparison for duel (Cache Size: 16384 bytes)

Source: Author (2024).

Figure A.19 – Miss rate evolution using Set Dueling with Cortex benchmarks (Cache
size 32768 bytes).

km
ea

ns
-la

rg
e

km
ea

ns
-m

ed
iu

m

km
ea

ns
-s

m
al

l

ld
a-

la
rg

e

ld
a-

m
ed

iu
m

ld
a-

sm
al

l

lib
lin

ea
r-t

la
rg

e

lib
lin

ea
r-t

m
ed

iu
m

lib
lin

ea
r-t

sm
al

l

m
e-

la
rg

e

m
e-

m
ed

iu
m

m
e-

sm
al

l

pc
a-

la
rg

e

pc
a-

m
ed

iu
m

pc
a-

sm
al

l

rb
m

-la
rg

e

rb
m

-m
ed

iu
m

rb
m

-s
m

al
l

sp
c-

la
rg

e

sp
c-

m
ed

iu
m

sp
c-

sm
al

l

Benchmark

0.0

0.2

0.4

0.6

0.8

1.0

M
iss

 R
at

e
no

rm
al

ize
d

wi
th

 L
RU

 [%
]

Miss Rate Comparison for duel (Cache Size: 32768 bytes)

Source: Author (2024).

Figure A.20 – Miss rate evolution using Sliding Window with Cortex benchmarks
(Cache size 4096 bytes).

km
ea

ns
-la

rg
e

km
ea

ns
-m

ed
iu

m

km
ea

ns
-s

m
al

l

ld
a-

la
rg

e

ld
a-

m
ed

iu
m

ld
a-

sm
al

l

lib
lin

ea
r-t

la
rg

e

lib
lin

ea
r-t

m
ed

iu
m

lib
lin

ea
r-t

sm
al

l

m
e-

la
rg

e

m
e-

m
ed

iu
m

m
e-

sm
al

l

pc
a-

la
rg

e

pc
a-

m
ed

iu
m

pc
a-

sm
al

l

rb
m

-la
rg

e

rb
m

-m
ed

iu
m

rb
m

-s
m

al
l

sp
c-

la
rg

e

sp
c-

m
ed

iu
m

sp
c-

sm
al

l

Benchmark

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

M
iss

 R
at

e
no

rm
al

ize
d

wi
th

 L
RU

 [%
]

Miss Rate Comparison for slide (Cache Size: 4096 bytes)

Source: Author (2024).

Figure A.21 – Miss rate evolution using Sliding Window with Cortex benchmarks
(Cache size 8192 bytes).

km
ea

ns
-la

rg
e

km
ea

ns
-m

ed
iu

m

km
ea

ns
-s

m
al

l

ld
a-

la
rg

e

ld
a-

m
ed

iu
m

ld
a-

sm
al

l

lib
lin

ea
r-t

la
rg

e

lib
lin

ea
r-t

m
ed

iu
m

lib
lin

ea
r-t

sm
al

l

m
e-

la
rg

e

m
e-

m
ed

iu
m

m
e-

sm
al

l

pc
a-

la
rg

e

pc
a-

m
ed

iu
m

pc
a-

sm
al

l

rb
m

-la
rg

e

rb
m

-m
ed

iu
m

rb
m

-s
m

al
l

sp
c-

la
rg

e

sp
c-

m
ed

iu
m

sp
c-

sm
al

l

Benchmark

0.0

0.2

0.4

0.6

0.8

1.0

M
iss

 R
at

e
no

rm
al

ize
d

wi
th

 L
RU

 [%
]

Miss Rate Comparison for slide (Cache Size: 8192 bytes)

Source: Author (2024).

Figure A.22 – Miss rate evolution using Sliding Window with Cortex benchmarks
(Cache size 16384 bytes).

km
ea

ns
-la

rg
e

km
ea

ns
-m

ed
iu

m

km
ea

ns
-s

m
al

l

ld
a-

la
rg

e

ld
a-

m
ed

iu
m

ld
a-

sm
al

l

lib
lin

ea
r-t

la
rg

e

lib
lin

ea
r-t

m
ed

iu
m

lib
lin

ea
r-t

sm
al

l

m
e-

la
rg

e

m
e-

m
ed

iu
m

m
e-

sm
al

l

pc
a-

la
rg

e

pc
a-

m
ed

iu
m

pc
a-

sm
al

l

rb
m

-la
rg

e

rb
m

-m
ed

iu
m

rb
m

-s
m

al
l

sp
c-

la
rg

e

sp
c-

m
ed

iu
m

sp
c-

sm
al

l

Benchmark

0.0

0.2

0.4

0.6

0.8

1.0

M
iss

 R
at

e
no

rm
al

ize
d

wi
th

 L
RU

 [%
]

Miss Rate Comparison for slide (Cache Size: 16384 bytes)

Source: Author (2024).

Figure A.23 – Miss rate evolution using Sliding Window with Cortex benchmarks
(Cache size 32768 bytes).

km
ea

ns
-la

rg
e

km
ea

ns
-m

ed
iu

m

km
ea

ns
-s

m
al

l

ld
a-

la
rg

e

ld
a-

m
ed

iu
m

ld
a-

sm
al

l

lib
lin

ea
r-t

la
rg

e

lib
lin

ea
r-t

m
ed

iu
m

lib
lin

ea
r-t

sm
al

l

m
e-

la
rg

e

m
e-

m
ed

iu
m

m
e-

sm
al

l

pc
a-

la
rg

e

pc
a-

m
ed

iu
m

pc
a-

sm
al

l

rb
m

-la
rg

e

rb
m

-m
ed

iu
m

rb
m

-s
m

al
l

sp
c-

la
rg

e

sp
c-

m
ed

iu
m

sp
c-

sm
al

l

Benchmark

0.0

0.2

0.4

0.6

0.8

1.0

M
iss

 R
at

e
no

rm
al

ize
d

wi
th

 L
RU

 [%
]

Miss Rate Comparison for slide (Cache Size: 32768 bytes)

Source: Author (2024).

Figure A.24 – Miss rate evolution using Fix Window with Cortex benchmarks (Cache
size 4096 bytes).

km
ea

ns
-la

rg
e

km
ea

ns
-m

ed
iu

m

km
ea

ns
-s

m
al

l

ld
a-

la
rg

e

ld
a-

m
ed

iu
m

ld
a-

sm
al

l

lib
lin

ea
r-t

la
rg

e

lib
lin

ea
r-t

m
ed

iu
m

lib
lin

ea
r-t

sm
al

l

m
e-

la
rg

e

m
e-

m
ed

iu
m

m
e-

sm
al

l

pc
a-

la
rg

e

pc
a-

m
ed

iu
m

pc
a-

sm
al

l

rb
m

-la
rg

e

rb
m

-m
ed

iu
m

rb
m

-s
m

al
l

sp
c-

la
rg

e

sp
c-

m
ed

iu
m

sp
c-

sm
al

l

Benchmark

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
iss

 R
at

e
no

rm
al

ize
d

wi
th

 L
RU

 [%
]

Miss Rate Comparison for fix (Cache Size: 4096 bytes)

Source: Author (2024).

Figure A.25 – Miss rate evolution using Fix Window with Cortex benchmarks (Cache
size 16384 bytes).

km
ea

ns
-la

rg
e

km
ea

ns
-m

ed
iu

m

km
ea

ns
-s

m
al

l

ld
a-

la
rg

e

ld
a-

m
ed

iu
m

ld
a-

sm
al

l

lib
lin

ea
r-t

la
rg

e

lib
lin

ea
r-t

m
ed

iu
m

lib
lin

ea
r-t

sm
al

l

m
e-

la
rg

e

m
e-

m
ed

iu
m

m
e-

sm
al

l

pc
a-

la
rg

e

pc
a-

m
ed

iu
m

pc
a-

sm
al

l

rb
m

-la
rg

e

rb
m

-m
ed

iu
m

rb
m

-s
m

al
l

sp
c-

la
rg

e

sp
c-

m
ed

iu
m

sp
c-

sm
al

l

Benchmark

0.0

0.2

0.4

0.6

0.8

1.0

M
iss

 R
at

e
no

rm
al

ize
d

wi
th

 L
RU

 [%
]

Miss Rate Comparison for fix (Cache Size: 16384 bytes)

Source: Author (2024).

Figure A.26 – Miss rate evolution using Fix Window with Cortex benchmarks (Cache
size 32768 bytes).

km
ea

ns
-la

rg
e

km
ea

ns
-m

ed
iu

m

km
ea

ns
-s

m
al

l

ld
a-

la
rg

e

ld
a-

m
ed

iu
m

ld
a-

sm
al

l

lib
lin

ea
r-t

la
rg

e

lib
lin

ea
r-t

m
ed

iu
m

lib
lin

ea
r-t

sm
al

l

m
e-

la
rg

e

m
e-

m
ed

iu
m

m
e-

sm
al

l

pc
a-

la
rg

e

pc
a-

m
ed

iu
m

pc
a-

sm
al

l

rb
m

-la
rg

e

rb
m

-m
ed

iu
m

rb
m

-s
m

al
l

sp
c-

la
rg

e

sp
c-

m
ed

iu
m

sp
c-

sm
al

l

Benchmark

0.0

0.2

0.4

0.6

0.8

1.0

M
iss

 R
at

e
no

rm
al

ize
d

wi
th

 L
RU

 [%
]

Miss Rate Comparison for fix (Cache Size: 32768 bytes)

Source: Author (2024).

	Capa
	Title page
	Folha de Aprovação
	Resumo
	Abstract
	Resumo Extendido
	List of Figures
	List of Tables
	List of acronyms
	Contents
	Introduction
	Motivation
	Objectives
	Methodology
	Outline

	Background
	Memory Hierarchy
	Cache Memories
	Locality Principles
	Cache Hierarchy
	Cache Management
	Cache tags

	Cache Performance

	Cache optimizations
	Access Patterns
	Eviction policies
	Traditional policies
	BIP

	Policies metadata

	Related work
	Optimal approach
	LRU based approaches
	Hybrid policies
	AI approaches
	Offline approaches
	Policies combination
	Overview

	Selection of eviction policies
	Assumptions and System Model
	Proposed Approaches
	Developer Approach
	Naive search approach
	Fixed-Window Approach
	Sliding-Window Approach
	Online Selection Method
	Set Dueling

	Framework Implementation
	Developer Approach
	Naive Approach
	Fixed-Window Approach
	Sliding-Window Approach
	Online Selection Approach
	Set Dueling Approach

	Conclusion

	Evaluation
	Experimental setup
	Traditional policies
	Developer and Naive Approaches
	Fixed Window Evaluation
	Sliding Window Evaluation
	Online Selection Evaluation
	Set Dueling Evaluation
	Comparative Analysis
	Discussion

	Conclusion
	Implications and Recommendations
	Limitations and Future Work

	Bibliography
	Comparison of miss rate for diverse benchmarks

		2024-07-04T14:44:36-0300

		2024-07-04T15:26:05-0300

