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RESUMO

Os materiais ferromagnéticos apresentam magnetizacao e deformacdo de magnetos-
tricdo que dependem fortemente do campo magnético e da tensdo mecanica. Esse compor-
tamento acoplado pode ser utilizado para projetar sensores magnéticos para avaliagdo nao-
destrutiva, e maquinas elétricas de alta eficiéncia. Algumas caracteristicas do comportamento
magnético sao a histerese, a anisotropia e a sensibilidade ao estado mecanico. Medicoes experi-
mentais evidenciam a influéncia dos carregamentos mecanicos na magnetizacao e na deformacao
de magnetostri¢do, e diferentes comportamentos sao observados quando se aplicam cargas
magneto-eldsticas estdticas ou dinamicas. Este trabalho tem como objetivo propor um modelo
de histerese magneto-elastica no qual as limitagdes normalmente encontradas em modelos da
literatura sdo tratadas. A modelagem ¢€ feita pela associagdo de um modelo anisterético multies-
cala com uma abordagem energética da histerese magnética. Os parametros do modelo para os
comportamentos reversiveis e irreversiveis sao identificados a partir da caracteriza¢ao uniaxial
sob tensdes mecanicas. Além disso, sdo apresentados resultados experimentais sob diversos
carregamentos magneto-eldsticos de forma a testar as capacidades preditivas da modelagem. O
modelo € inicialmente desenvolvido para representar o comportamento magneto-eldstico sob
tensdo mecanica constante, levando em conta o carater multiaxial dos carregamentos, os efeitos
da textura cristalogréfica, o efeito da tensdo mecéanica no campo coercitivo, 0 comportamento
nao-monotdnico da permeabilidade em funcao da tensdo mecanica, e a queda das perdas por his-
terese sob campo girante proximo a satura¢ao. O modelo é analisado em diversas configuracdes
complexas com resultados satisfatorios. Uma abordagem semelhante € desenvolvida para repre-
sentar a histerese magneto-eldstica sob campo magnético constante e tensdo mecanica variavel.
Esses dois modelos baseados no balancgo energético sao termodinamicamente consistentes, com
parametros identificados a partir de medicdes uniaxiais, € podem representar o comportamento
magnético em configuracdes complexas (3D). Por fim, dois modelos sdo propostos para con-
siderar variacOes simultdneas no campo magnético e na tensdao mecanica. Suas limitacdes sao

discutidas, e possiveis melhorias sdo apresentadas como perspectivas para este trabalho.

Palavras-chave: Modelo de histerese, Acoplamento magneto-eldstico, Modelagem multies-

cala, Tensdo mecanica multiaxial



RESUMO EXPANDIDO

Introducao

Materiais magnéticos sdo essenciais em diversas aplicacoes, incluindo sensores para
avaliacdo ndo-destrutiva Bouterfas et al. [2023], Eslamlou et al. [2023], captura de energia (do
inglés energy harvesting) Daniel et al. [2023], Liu et al. [2024], Zangho et al. [2024] e maquinas
elétricas Krings et al. [2017]. Ainda que diferentes em relacdo ao respectivo uso - sensores
magnéticos, sistemas de recuperacdo de energia, ou conversao eletromecanica - em comum a
todas as aplicacdes o desenvolvimento de modelos que descrevam o comportamento de materi-
ais magnéticos € essencial no projeto de dispositivos de alta confiabilidade e eficiéncia.

O comportamento de materiais magnéticos € complexo devido a efeitos como a ani-
sotropia magnética Jiang et al. [2018], Tolentino et al. [2022], a histerese ou comportamento
dissipativo, a dependéncia da frequéncia do carregamento aplicado de La Barriere et al. [2012],
e efeitos acoplados, os quais resultam em modificacdes no comportamento magnético devido a
aplicacdo de tensdes mecanicas Li et al. [2024] ou temperatura Banu et al. [2023].

O efeito de tensdes mecanicas em materiais magnéticos resulta em efeitos positivos
ou negativos, dependendo da aplicacdo. Por exemplo, processos de fabricacio podem induzir
tensOes mecanicas nas partes magnéticas de maquinas elétricas, podendo resultar em aumento
das perdas magnéticas, e por consequéncia, afetar a eficiéncia do dispositivo. Por outro lado,
sistemas de captura de energia e sensores magnéticos beneficiam-se desse comportamento aco-
plado.

O principal objetivo dessa tese € a andlise e desenvolvimento de um modelo de histe-
rese magneto-eldstico no qual as limitagdes presentes em modelos da literatura sao parcialmente
ou totalmente removidas. Trés fatores chaves sdo considerados no desenvolvimento de uma
relacdo constitutiva: (a) a possibilidade de considerar carregamentos magneto-mecanicos mul-
tiaxiais, (b) a consisténcia termodinamica, de forma que as perdas possam ser calculadas com
precisd@ao em qualquer ponto de operagao, e (c) o custo computacional de forma que o modelo

possa ser implementado em ferramentas de analise numérica.

Capitulo 2: Modelagem do comportamento magneto-elastico

Os conceitos fisicos e expressoes relacionadas ao comportamento desacoplado mecanico



e magnético sdo introduzidos nesse capitulo. Os conceitos de deformacdo e tensdo mecanica
sdo definidos a partir de uma abordagem de mecanica dos meios continuos sob a hip6tese de
deformacdes infinitesimais. As no¢Oes de magnetiza¢do, campo magnético e inducao sao esta-
belecidas por meio das equacdes de Maxwell restritas ao regime quase-estatico.

A modelagem do comportamento acoplado magneto-eldstico pode ser separada em
duas classes: comportamento reversivel ou anisterético (efeitos dissipativos ndo sdo consi-
derados), e comportamento irreversivel ou histerese. O processo de magnetizacdo envolve
fendmenos complexos observados em diferentes escalas. Dessa forma, uma abordagem multi-
escala Daniel et al. [2008] é apresentada na literatura. Essa abordagem permite a aplicagcao de
carregamentos multiaxiais e o protocolo de identificacdo dos parametros € claro.

Em relacdo a histerese magnetoeléstica, a modelagem geralmente € definida na escala
macros-copica. Embora diversos modelos sdo apresentados na literatura, como por exemplo
Jiles-Atherton, Preisach e Armstrong, nenhum desses atende simultaneamente os trés fatores
chaves mencionados na Introducdo. Uma abordagem que atende os requisitos de consisténcia
termodinamica e baixo tempo de simulagcdo, mas inicialmente desenvolvida apenas para o caso

sem tensao mecanica é a modelo baseado na energia (do inglés, energy-based).

Capitulo 3: Caracterizacao experimental do comportamento magne-

toelastico

Evidéncias experimentais do comportamento magneto-eldstico sao apresentadas nesse
capitulo, de forma que medidas sdo realizadas em dispositivo uniaxial. O material ensaiado €
um aco de baixo carbono (DC04) utilizado na industria automotiva. O aparato experimental
para a caracterizacdo magneto-eldstica € apresentado na Fig. 0.0.1. A parte mecanica con-
siste de uma méquina de tracdo/compressdo. A parte magnética € composta por dois nucleos
magnéticos de Fe-Si para assegurar o caminho do fluxo magnético. Um amplificador fornece
corrente para uma bobina de excitagdo. O campo magnético é medido por meio de uma sonda
de efeito Hall. A indugdo € obtida por meio da integragdo numérica da tensao induzida em uma
bobina de medicao disposta em torno da amostra (observe a drea de medidas na Fig. 0.0.1). A

magnetostri¢do é medida utilizando um sensor de deformacdo colado na amostra.
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Figura 0.0.1: Bancada experimental para caracterizagdo magneto-eldstica sob tensdes
mecdnicas uniaxiais.

Medidas do comportamento anisterético sob tensdes mecanicas uniaxiais sdo realiza-
das. Além disso, o comportamento da histerese magnética ¢ medido sob diversas configuracdes
de carregamento magnetoeldstico: considerando campo magnético varidvel e tensdo mecéanica
estdtica, considerando tensdo mecénica varidvel e campo magnético estatico, e considerando

que ambos campo magnético e tensdo mecanica variam ao mesmo tempo.

Capitulo 4: Modelo de histerese magnetoelastico baseado na energia

com aplicacoes sob tensao mecanica estatica

Modelagem reversivel - Modelo multiescala simplificado

O comportamento anisterético ¢ modelado utilizando uma abordagem multiescala
simplificada Daniel et al. [2015]. As escalas consideradas sdo ilustradas na Fig. 0.0.2. Nesta
tese, o interesse € a modelagem do comportamento material na escala RVE. As seguintes pre-
missas sdao consideradas: (a) o material ¢ inicialmente isotrépico, (b) efeitos demagnetizantes
internos sdo despreziveis e (c) o campo magnético e a tensdo mecanica sao homogéneos na

escala do volume elementar representativo.
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Figura 0.0.2: Escalas envolvidas na abordagem multiescala.

Por meio de um balancgo energético na escala do dominio magnético, o qual consiste
de termos de densidade de energia magnética e magneto-mecanica, a fragdo voluméltrica corres-
pondente a cada orientagdo de dominio € calculada utilizando uma distribui¢do Boltzmann. A
magnetizacdo e magnetostricdo na escala macroscopica sio entdo calculadas por meio da média
ponderada das fra¢cdes volumétricas.

E observado na literatura que o efeito de carregamentos mecinicos na magnetizagio
¢ ndo mondtono. O modelo simplificado multiescala ndo reproduz tal tendéncia. Esse compor-
tamento pode ser descrito na modelagem adicionando um termo de segunda ordem na defini¢do
da energia magnetoeldstica Hubert [2019]. Dessa forma, uma nova proposi¢do de energia mag-
netoeldstica ¢ definida nesse trabalho, em termos de um tnico pardmetro, o qual ¢ identificado

a partir de medidas de permeabilidade magnética sob carregamentos mecinicos uniaxiais.
Modelagem irreversivel

A histerese magnética ¢ modelada utilizando uma abordagem termodindmica e o con-
ceito de varidveis internas. Tais varidveis sdo uma escolha de modelagem no qual complexos
processos microscopicos que resultam em dissipacdo sdo unificados em uma ou mais grande-
zas. Na abordagem baseada na energia Henrotte et al. [2006], a magnetizacao ¢ escolhida como
varidvel interna. A dissipa¢do € modelada por meio da analogia da histerese magnética com um
sistema de atrito seco. Nesse caso, um pardmetro de dissipagdo € introduzido, e € relacionado
diretamente com o campo coercitivo do laco de histerese. Além disso, o campo magnético é
descrito pela soma de uma parte reversivel, relacionada com processos termodinamicamente
reversiveis, e uma parte irreversivel, relacionada com a dissipagdo. Efeitos de tensdo mecéanica
sdo levados em conta por meio do comportamento anisterético, no qual o modelo multiescala

¢ utilizado. Além disso, ¢ experimentalmente observado que o campo coercitivo ¢ fortemente
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influenciado pelo estado mecanico, dessa forma, uma descricdo fenomenolédgica do efeito de

tensdes mecanicas no campo coercitivo € proposta.
Validacao sob tensao mecanica uniaxial e campo magnético alternado

O comportamento magnético anisterético sob tensdes mecanicas uniaxiais € apresen-
tado na Fig. 0.0.3, e o modelo descreve corretamente o comportamento medido, especialmente
sob compressao. Por meio da Fig. 0.0.4, € possivel observar que a inclusao do termo de segunda
ordem permite capturar o efeito nio mondtono dos carregamentos mecanicos na permeabilidade
magnética relativa. Diferencas sdo mais expressivas sobretudo no caso de tracao de 100 MPa,

no qual o modelo subestima a permeabilidade para baixos campos magnéticos.

0 MPa 100 MPa [ ™0 MPa 100 MPa
L5F N T AT 151
\-100 MPa
— = 80 MPa
=
= 1 = 1y -60 MPa
& X
0.5 0.5}
0 | ot ! : . |
0 1000 2000 3000 0 1000 2000 3000
Hanh (A/m) H(mh (A/m)

Figura 0.0.3: Efeito de carregamentos uniaxiais no comportamento anisterético: medicgoes (es-
querda) e modelo (direita).

8000
6000}
. 4000}
2000}
0 | | | ,2000 A/m|
-120 -60 0 Om 60 120

Figura 0.0.4: Comparagdo entre a permeabilidade magnética relativa medida (barra de erro) e
modelada (linha sélida) para diferentes valores de campo magnético. A permeabilidade maxima
¢ observada em o;, = 40 MPa.

Uma validacdo independente das medidas utilizadas para identificacdo dos parametros
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¢ apresentada na Fig. 0.0.5, na qual a forma de onda do campo magnético € especificada com
conteido harmonico. E observado que o modelo representa com boa acurdcia o comportamento

medido para dois niveis de tensdo mecanica.

9 Medidas 9 Modelo 9 Medidas 9 Medidas
-80 MPa -80 MPa 80 MPa 80 MPa
1 1 1 1
) 2o ) )
Q Q Q Q
-1 -1 -1 -1
-2 -2 -2 -2
-2000 0 2000 -2000 0 2000 -2000 0 2000 -2000 0 2000
H (A/m) H (A/m) H (A/m) H (A/m)

Figura 0.0.5: Lacos de histerese sob carregamentos mecanicos uniaxiais e forma de onda do
campo magnético com contetido harmonico.

Validacao sob tensiao mecanica multiaxial e campo magnético alternado

Utilizando medidas experimentais apresentadas na literatura Aydin et al. [2019b],
Singh et al. [2016], as capacidades do modelo sao testadas em configuragdes mecanicas mul-
tiaxiais € campo magnético alternado. Os parametros sdo identificados a partir de medidas
uniaxiais ao longo de apenas a dire¢do de laminagdo (RD). Além disso, efeitos da textura cris-
talogréfica sao levadas em conta por meio do comportamento anisterético, utilizando uma abor-
dagem multiescala. Considerando um carregamento mecanico biaxial e campo magnético apli-
cado na dire¢do RD, o comportamento magnético medido Aydin et al. [2019b] € apresentado na
Fig. 0.0.6 (esquerda). Os resultados do modelo na Fig. 0.0.6 (direita) mostram que o modelo
representa a degradacdo no comportamento magnético sob cisalhamento. Contudo, particular-
mente sob bi-compressao, o modelo superestima a degradacdo na magnetizagao. Uma possivel
razao para essa diferenca € devido a consideracdo de tensdo mecanica homogénea no modelo

multiescala, o que ndo € necessariamente o caso no material real.
Validacao sob tensao mecanica multiaxial e campo magnético rotativo

Utilizando o mesmo conjunto de parametros identificados a partir de medidas unia-
xiais, o modelo de histerese magnética é aplicado sob carregamentos de campos magnéticos

rotativos e tensdes mecanicas multiaxiais. As medidas experimentais sdo apresentadas em Ay-



14

Medidas Model

1 - - 1 3

05 / 1 [o11 022 012] 0.5 / 1
= [-30 -30 0] MPa =

- 0 [ 1 [-30 30 0] MPa ~ 0 i/ ]
R [0 0 0] MPa Q

0.5 ] [30 -30 0] MPa 0.5 / ]

[30 30 0] MPa M
-1 { | -1 |
-500 0 500 -500 0 500
H; (A/m) H; (A/m)

Figura 0.0.6: Comparagdo entre medidas Aydin et al. [2019b] (esquerda) e modelagem (direita)
dos lacos de histerese (em 1T) sob tensdo mecanica biaxial e campo aplicado na direcdo RD.

din et al. [2019a]. Contudo, o modelo de histerese baseado em energia ndo reproduz a queda de
perdas por histerese sob campos rotativos préximo da satura¢do Bergqvist [1997]. Para corrigir
essa limitagdo, uma adaptagdo do parametro de dissipagdo, proposta em Sauseng et al. [2022],
¢ utilizada.

Em uma configuracao desafiadora, no qual ¢ aplicado cisalhamento e um campo
magnético rotativo, conforme apresentado na Fig. 0.0.7, uma excelente concordancia entre
medidas e o modelo ¢ observada. O modelo representa a tendéncia de perdas por histerese
sob carregamentos mecanicos multiaxiais, conforme apresentado na Fig. 0.0.8. Utilizando a
adaptacdo no parametro de histerese € possivel modelar a queda das perdas por histerese na
regido de rotacdo dos dominios magnéticos. Uma colaboragdo estd em andamento com a Aalto

University para obter as medi¢cdes sob altos niveis de campo magnético.

Capitulo 5: Modelo de histerese magnetoelastico sob carregamentos
mecanicos quase-estaticos
Neste capitulo, duas abordagens para modelar o comportamento da histerese magnética
sob tensdes mecanicas quase-estaticas sdo apresentadas. A primeira, inspirada na decomposicao
do campo magnético apresentada anteriormente, introduz a decomposicido da tensdo mecanica
em partes reversivel e irreversivel. A defini¢do da tensdo mecdnica irreversivel € baseada na
descri¢do do campo magnético irreversivel, e um parametro de dissipa¢cdo mecénica € intro-
duzido. A identificacdo do parametro de dissipacdo mecanica € realizada utilizando medidas
piezomagnéticas. Além disso, efeitos de textura s@o levados em conta por meio da utilizagdo de

uma textura cristalografica simplificada no modelo anisterético multiescala.

Validacio sob tensao mecanica varidvel
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Figura 0.0.7: Comportamento magnético sob campo rotativo e cisalhamento. Comparagdo entre
medidas (linhas tracejadas) Aydin et al. [2019a] e modelo (linhas solidas).
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Figura 0.0.8: Comparagdo entre medidas Aydin et al. [2019a] (marcadores) e modelo (linhas
s6lidas) das perdas por histerese sob campos rotativos e tensdes mecanicas.

Aplicando um carregamento uniaxial do tipo tensdo mecénica varidvel e campo magné-
tico estdtico, o modelo reproduz o comportamento piezomagnético sob diversos niveis de campo
estatico, conforme ilustra a Fig. 0.0.9. O efeito conhecido como reversdo de Villari, relacionado
com a textura cristalografica, € representado por meio do comportamento aproximadamente
constante da induc¢@o sob alta tracdo, é reproduzido pelo modelo.

Um caso de validagdo complexo € obtido aplicando simultaneamente variagdes de
campo magnético e carregamento mecanico, conforme apresentado na Fig. 0.0.10 (a). A

inducdo magnética resultante € mostrada na Fig. 0.0.10 (b) em fun¢do do campo magnético,
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Figura 0.0.9: Comparagdo entre lagos piezomagnéticos medidos (esquerda) e modelados (di-

reita) sob incrementos de campo

estatico.

e na Fig. 0.0.10 (c) em termos do carregamento mecinico. Uma excelente concordincia entre

medidas e modelo é observada, destacando as capacidades do modelo em representar a histerese

magnética mesmo no caso de carregamentos complexos.
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A abordagem proposta para modelar a histerese magnetoelastica é termodinamica-
mente consistente no caso de carregamentos mecanicos estiticos e campo variavel, e na situacao
de campo estatico e carregamento mecanico varidvel. Contudo, uma anélise € apresentada in-
dicando que o modelo resulta em comportamento ndo-fisico dependendo do tipo de carrega-
mento magnetoeldstico. Dessa maneira, uma segunda abordagem de modelo € apresentada, na
qual as fracoes volumétricas de dominio sdo definidas como varidveis internas para descrever a
dissipacdo. Essa abordagem ¢ apresentada por meio de uma descri¢do energética, de forma que
a consisténcia termodindmica € garantida para qualquer configuracdo de carregamento magneto-
elastico. O modelo utiliza um processo de minimiza¢ao numérica para calcular as fragdes vo-
lumétricas para cada passo de tempo, resultando em um modelo computacionalmente custoso.
O modelo utilizando fra¢des volumétricas é um ponto de partida, no qual possiveis melhorias

sdo sugeridas para trabalhos futuros.

Conclusao

O objetivo deste trabalho foi o desenvolvimento de um modelo de histerese magnética
sob tensdes mecanicas no qual fatores-chave como consisténcia termodinamica, possibilidade
de carregamentos multiaxiais e tempo de simulacdo compativel para ser aplicado em elementos
finitos sejam atendidos. Medidas experimentais realizadas mostraram a influéncia de carrega-
mentos magneto-eldsticos — em diversas configuragcdes — no comportamento magnético de
um ac¢o de baixo carbono. O conjunto de dados experimentais obtidos durante esta tese repre-
senta uma base solida para o desenvolvimento e a validagdo de modelos de histerese magneto-
elasticos.

Os modelos magneto-elasticos desenvolvidos neste trabalho consistem em uma combi-
nacdo entre um modelo de histerese — utilizando uma abordagem energética com solugdo
explicita — e um modelo anisterético multiescala. Para carregamentos do tipo tensdo mecanica
constante e campo magnético varidvel, e tensdo mecanica varidvel e campo magnético cons-
tante, o0 modelo proposto é termodinamicamente consistente, e, a partir de parametros identifi-
cados por meio de medidas uniaxiais, foi validado para diversos carregamentos e configuracoes
multiaxiais magneto-eldsticas. Limitagdes na abordagem proposta sdo analisadas para o com-
plexo caso de simultaneas variagdes de campo magnético e tensao mecanica. Para determinados

carregamentos nessa configuracdo, o modelo pode resultar em comportamento nao-fisico.



Sugere-se para trabalhos futuros o acoplamento do modelo proposto em simulacao
por elementos finitos de uma mdquina elétrica, de maneira a se analisar o efeito do acopla-
mento magneto-mecanico nas propriedades magnéticas e perdas por histerese de um dispo-
sitivo, comparado a abordagens utilizadas comumente utilizadas na literatura. Para melhorar
a modelagem para qualquer carregamento magneto-eldstico, garantindo a consisténcia termo-
dinamica, sugere-se o estudo e desenvolvimento de uma solucao explicita para um modelo base-
ado em fragdes volumétricas, o qual parece ser uma abordagem promissora para a descri¢ao de
fendmenos dissipativos em materiais ferromagnéticos. Além disso, uma perspectiva promissora

para o trabalho € a inclusao de efeitos plasticos na modelagem da histerese magnética.



ABSTRACT

Ferromagnetic materials exhibit magnetization and magnetostriction strain that are
highly dependent on the magnetic field and mechanical stress loadings. This coupled beha-
vior can be used to design magnetic sensors for non-destructive evaluation and high-efficiency
electrical machines. Some features of the magnetic behavior are hysteresis, anisotropy, and
dependency on the mechanical state. Experimental measurements evidence the influence of
mechanical loadings on magnetization and magnetostriction strain, and different behaviors are
observed when applying static or variable magneto-elastic loadings. This work aims to pro-
pose a magneto-elastic hysteresis model in which limitations usually found in literature models
are covered. The modeling is made by associating an anhysteretic multiscale model with an
energy-based hysteresis approach. The material parameters for reversible and irreversible beha-
viors are identified from uniaxial characterization under mechanical stress. In addition, further
experimental results are presented for various magneto-elastic loadings to test the modeling
prediction capabilities. The model is first developed to represent the magneto-elastic behavior
under constant stress, taking into account the multiaxiality of the loading, the crystallographic
texture effects, the stress effect on the coercive field, the non-monotonic behavior of permea-
bility as a function of stress, and the vanishing of hysteresis losses under rotating field close
to saturation. The model is analyzed in several complex configurations with satisfactory re-
sults. A similar approach is developed to represent the magneto-elastic hysteresis at constant
field and variable stress. These two energy-based models are thermodynamically consistent,
with parameters identified from uniaxial measurements, and can represent the magnetic beha-
vior in complex (3D) configurations. Lastly, two models are proposed to consider simultaneous
variations in field and stress. Their limitations are discussed, but left as perspectives for this

work.

Keywords: Hysteresis model, Magneto-elastic coupling, Multiscale modeling, Multiaxial stress



RESUME

Les matériaux ferromagnétiques présentent une aimantation et une déformation de
magnétostriction qui dépendent fortement du champ magnétique et des contraintes mécaniques
auxquels ils sont soumis. Leur comportement magnéto-élastique peut étre utilisé pour conce-
voir des capteurs magnétiques pour 1’évaluation non destructive et des machines électriques
a haute efficacité. Certaines caractéristiques du comportement magnétique sont 1’hystérésis,
I’anisotropie et la dépendance a I’état mécanique. Les mesures mettent en évidence 1’influence
des chargements mécaniques sur I’aimantation et la déformation de magnétostriction, et différents
comportements sont observés lors de I’application de chargements magnéto-élastiques stati-
ques ou dynamiques. L’objectif de ce travail est de proposer un modele d’hystérésis magnéto-
élastique dans lequel les limitations classiques des modeles de la littérature peuvent étre dépassées.
La modélisation est réalisée par 1’association d’'un modele multi-échelle anhystérétique et d’un
modele d’hystérésis basé sur une approche énergétique. Les parametres de modélisation pour
les comportements réversibles et irréversibles sont identifiés a partir de la caractérisation unia-
xiale sous contrainte mécanique. De plus, d’autres résultats expérimentaux sont présentés pour
une variété de chargements magnéto-€élastiques permettant de tester la prédictivité des modeles.
Un modele est d’abord développé pour représenter le comportement magnéto-élastique sous
contrainte constante, prenant en compte la multiaxialité du chargement, les effets de texture,
I’effet des contraintes sur le champ coercitif, la non-monotonie de la perméabilité en fonction
de la contrainte ainsi que 1’annulation des pertes a saturation sous champ tournant. Ce modele
est analysé dans plusieurs configurations complexes et montre des résultats tres satisfaisants. Un
modele analogue est développé pour représenter 1’hystérésis magnéto-élastique a champ cons-
tant, sous contrainte variable. Ces deux modeles basés sur 1’approche énergétique présentent
la cohérence thermodynamique espérée, leur parametres peuvent étre identifiés a partir de me-
sures uniaxiales et ils sont capables de représenter le comportement dans des configurations
complexes (3D). Enfin, deux modeles permettant de prendre en compte des chargements avec
contrainte et champ variable sont proposés. Ceux-ci présentent chacun des points faibles dont

le traitement est laissé en perspective a ce travail.

Mots clés: Modele d’hystérésis, Couplage magnéto-élastique, Modélisation multi-échelle, Con-

trainte multiaxiale
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Operations

. . R 1 au,- du j
grad; Symmetric gradient, e.g. € = gradsu — §&;; = 3 | ax + Tx
j i

Double contraction, e.g. 6 =% : € — 0;; = G;ju

tr Trace, e.g. tr(€) = g;
. . .= OB
div Divergence of a vector field, e.g. divB = 5
Xi
curl  Curl of a vector field, e.g. curl H = g; jka—ka
Xj

1, if(i,j,k)=(1,2,3) or (2,3,1) or (3,1,2)
€ Levi-Civita permutation symbol: & = ¢ —1, if (i,j,k) = (3,2,1) or (1,3,2) or (2,1,3)

0 otherwise
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1 Introduction

Magnetic materials are essential in an extensive range of applications, including sen-
sors for non-destructive evaluation Bouterfas et al. [2023], Eslamlou et al. [2023], energy har-
vesting Daniel et al. [2023], Liu et al. [2024], Zangho et al. [2024], and electrical machines
Krings et al. [2017]. The industrial sector corresponds to about one-third of the total energy
consumed in the world, in which electrical machines correspond to more than 60 % of indus-
trial sector energy consumption Errigo et al. [2022]. The evolution of manufacturing processes
such as additive manufacturing Selema et al. [2023] and the development of materials including
soft magnetic composites Guo et al. [2023] open vast possibilities in researching new topolo-
gies of electrical machines for more sustainable options Fernandes et al. [2022]. Even different
in the respective utilization - magnetic sensors, energy recovery systems, or electromechanical
conversion - in common with all these applications and processes, developing models that des-
cribe the behavior of magnetic materials is essential in designing devices with high reliability
and efficiency.

The behavior of magnetic materials is complex due to anisotropy Jiang et al. [2018],
Tolentino et al. [2022], hysteresis or dissipative behavior, dependence on the frequency of the
applied loading de La Barriere et al. [2012], and coupled effects, which result in modifications in
the magnetic behavior due to the application of mechanical stress Li et al. [2024] or temperature
Banu et al. [2023].

Notably, the mechanical stress effect in magnetic materials can have positive or ne-
gative effects depending on the application. For instance, manufacturing processes can induce
mechanical stress in electrical machines, which can increase iron losses and thus affect effici-
ency and modify the magnetic permeability in certain magnetic parts of the device Takahashi
et al. [2008], Yamazaki and Takeuchi [2017]. Conversely, energy harvesting systems benefit
from the stress-dependence of the magnetization in magnetic materials Daniel et al. [2023].
The stress effect in magnetic materials can also be utilized in developing transducers, such as
force sensors Dapino [2004]. The coupled magneto-mechanical behavior also has an inverse
effect in magnetic materials: a magnetic field induces a strain, denoted by magnetostriction. A
negative impact of the magnetostriction is noted in the core of transformers, in which this strain
is one of the sources of vibration and noise Moses et al. [2016].

Several scales can be considered in modeling the coupled magneto-mechanical beha-
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vior of magnetic materials. Multiscale strategies with proper transition rules have been deve-
loped to define constitutive relations Bernard et al. [2019], Daniel et al. [2008]. Such approa-
ches successfully depict the coupled magneto-mechanical behavior and the anisotropy from an
energy description. However, these multiscale models do not usually describe the hysteresis
dissipation. The multiscale approaches can be combined with hysteresis models to describe the
irreversible behavior.

The main goal of this thesis is to analyze and develop a magneto-elastic hysteresis
model in which the limitations present in some models of the literature are partially or totally
covered. Three key features are defined in developing a constitutive relation: (a) the ability
to consider multiaxial magneto-elastic loadings, (b) thermodynamic consistency such that the
losses can be accurately evaluated at any operating point, and (c¢) low computational time such
that the model can be implemented into numerical analysis tools.

The manuscript is organized as follows:

The first chapter introduces the physical basis of the magneto-mechanical problem,
followed by the description of some hysteresis models under magneto-elastic loadings availa-
ble in the literature, detailing the main features and limitations. A thermodynamically consistent
model, developed for the stress-free case only, is then introduced, covering some of the limita-
tions of the previous approaches.

The second chapter presents experimental measurements performed on a DC04 low-
carbon steel, illustrating the coupled magneto-mechanical behavior of a magnetic material under
various loading conditions.

In the third chapter, an energy-based magnetic hysteresis approach is combined with
multiscale models to describe the dissipative hysteresis behavior under static mechanical loa-
dings and variable fields. The parameters of the proposed association are identified from uni-
axial measurements only, and the model is validated considering multiaxial stress states and
rotating fields.

In the fourth chapter, two approaches are presented to describe the piezomagnetic
behavior - under variations of stress and constant field - and under variations in both field and
stress. The modeling results are then compared to the measurements, allowing to discuss the

limitations and a route for the following works.
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2 Magneto-elastic behavior modeling

This chapter provides an overview of the existing models describing the magneto-
elastic behavior of ferromagnetic materials. In Section 2.1, the physics concepts and expressions
related to the mechanical and magnetic processes in matter are briefly recalled. The concepts
of strain and stress are defined from a continuum mechanics framework under the hypothesis
of small strains. The notions of magnetization, magnetic field, and induction are established th-
rough the Maxwell equations - here restricted to a quasi-static regime. Ferromagnetic materials,
studied in this work, are then introduced.

In Section 2.2, the strong coupling between magnetic and mechanical quantities in a
ferromagnetic material is observed from experimental measurements extracted from the litera-
ture. The magnetization process is strongly affected by the application of stress. In addition,
the magnetostriction, a strain related to the magnetic state of a matter, is another phenomenon
that emphasizes this coupled behavior. Such a coupled behavior can be explained by an energy
balance at a microscopic scale, further detailed.

The modeling of the coupled magneto-elastic behavior is a challenging task due to
the hysteretic and non-linear magnetic response. In the literature, macroscopic modeling can
be performed considering the assumption of no losses - resulting in a thermodynamic reversible
behavior - or considering the dissipation mechanism. In Section 2.3, two approaches to model
the anhysteretic behavior are presented, and in Section 2.4 macroscopic hysteresis models are

introduced. The main flaws of each approach are discussed.

2.1 Introduction of the uncoupled physics basis

2.1.1 Continuum mechanics

Continuum mechanics is a branch of Physics that deals with the interaction between
force and motion in a continuum media. In continuum mechanics, a body is defined as a col-
lection of elements - the material points. As exemplified in Fig. 2.1.1, at time #( - the reference
configuration - a body is denoted by %,. The vector X defines the position of a material point
P(to). After motion and deformation, at time ¢, the vector X characterizes the new material point
position. The deformation field i is introduced, linking the set of material points location on

both configurations Eringen and Maugin [1990]:
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—

i(X,t)=x—X, 2.1.1)

where a one-to-one relation for the position of each material point in the two configu-
rations is considered. Using a Taylor expansion of the neighborhood around X and %, results in

the second-order deformation tensor F defined as Eringen and Maugin [1990]:

F(X,1)= j—; with  detF #0, (2.1.2)

with det representing the determinant operator.

Reference Configuration at
configuration time ¢

e1,E1

Figura 2.1.1: Motion of a continuum body.

Information on the body strain can be obtained from the second-order tensors £ and

e, in Lagrangian and Eulerian descriptions, respectively. These tensors are defined by:
o1 (FTF 1) 1 (817)T+ oii (817)T Jii |
2 2 [\oX X \dX/) o9X

e_l<[_FTF1)_ @4_ di T_ g Ta_ﬁ_
2 | 9% dx dx/) dx|’

If the norm of the displacement gradient is small, the hypothesis of small strains can

(2.1.3)

be used. In this case, the description in the deformed configuration is approximately the same

as in the reference configuration. The tensors E and e, then, result in:

E~e=c¢

1l on oi\T B (2.1.4)
825 g—F g, :gradsu,

where the compact notation of symmetric gradient grads is introduced. From now on,

€ designates the second-order strain tensor.
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The mass m of a continuum does not depend on motion. This statement is defined
mathematically from the conservation of mass principle Kovetz [2000]:

m=0, with m= / p (%) dv, (2.1.5)
B

with p (¥,7) the volumetric mass density. From the balance of linear momentum pos-
tulate, the force F exerted on the body is introduced. This quantity comprises a volume f and
a surface 7 force components. The Cauchy hypothesis states that the surface forces depend on
the vector 7i, normal to the surface d.%. From this assumption, the second-order Cauchy stress

tensor o is introduced Kovetz [2000]:

ﬁ:/pfdv+/ 7ds  with 7=on. (2.1.6)
B 0%#

The balance of angular momentum and the Cauchy hypothesis lead to the symmetry

of the stress tensor Kovetz [2000]:

c=o0, (2.1.7)

with the superscript ¢ denoting the transpose operator. Volume forces, such as gravity
and electromagnetic forces, are not treated in this work in developing constitutive models. The
reader is referred to Eringen and Maugin [1990], Kankanala and Triantafyllidis [2004], Kovetz
[2000] for an extensive analysis of the electromagnetic forces contribution on a continuum

mechanics framework.

2.1.2 Linear elastic behavior

In addition to the mass conservation postulate and the balance laws, constitutive equa-
tions, which consider specific material properties, are defined to solve a mechanical problem. If
amaterial, under the hypothesis of small strains, deforms depending on the stress level, such that
it presents a thermodynamically reversible behavior, the material exhibits an elastic behavior.
Moreover, if the material deforms linearly under mechanical loading, the constitutive relation

between strain and stress is defined by the Hooke law:

c=%:¢, (2.1.8)
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with € the fourth-order stiffness tensor. The operator : represents the double-contraction
product. If the material is elastically isotropic, and considering the symmetries of the quantities,

the Hooke law can be written as:

_ : __E 2wy
0'—2[,L18-|-Al (tl‘(S))I with “1_2(1—|—V) and Al— —2v’

(2.1.9)

tr is the trace operator. The Lamé coefficients y; and A; can be evaluated from the

Young’s modulus E and the Poisson’s ratio v and vice-versa.

2.1.3 Introduction to magnetism and ferromagnetic materials

The Maxwell equations govern the interactions between magnetic and electrical quan-
tities. The magnetic set of the Maxwell equations under the assumption of quasi-static fields
linking the magnetic field H, the magnetic induction B, the current density J,, and the electric

field E are Bastos and Sadowski [2003]:

curlH = J; (Ampere law) (2.1.10)

divB=0 (Gauss law) (2.1.11)
. 0B

curlE = o (Faraday-Lenz law) (2.1.12)

with the operators curl and div representing the curl and the divergence, respectively.

The relationship of magnetic fields is:

E:M(H+M) (2.1.13)

where it is introduced the magnetization M, and Uo 1s the vacuum permeability. As
in the previous section, the definition of constitutive relations is necessary to solve a magnetic
problem. In the case of materials with linear anhysteretic magnetic behavior, the constitutive

equation writes:

B=puo(x+1)H = uH, (2.1.14)
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with ¥ and u the constant second-order tensors of susceptibility and permeability,
respectively. If the material is magnetically isotropic, ¥ = x/I, with y a scalar susceptibility.
Materials can be classified based on y, which can be measured from a magnetization M(H)
curve. Fig. 2.1.2 presents the susceptibility for some materials. Due to their excellent magnetic
response under an applied field, ferromagnetic materials are employed in constructing electrical

machines and magnetic transducers.

M M M
Mg
+Mg,
X > 0 Anhysteretic% First magnetization
H > - H
x <0
Diamagnetic Paramagnetic Ferromagnetic
| | | | _ | | | | | |
| | | | | | | | | | |
-1 -10* -10* -10° 10° 10 107 1 10° ‘ 10* 10°
I Air (~0) Aluminium (2.2 10°%) Nickel (600)

Iron (10°)

-6
Superconductor Water (-9.05 10°)

Figura 2.1.2: Classification of materials based on the magnetic susceptibility Frenea-Robin and
Marchalot [2022].

The magnetization process of ferromagnetic materials (see Fig. 2.1.2) can be des-
cribed as follows: considering a unidirectional field and starting from the demagnetized state
(M = 0 A/m), an increase on the magnetic field will increase the magnetization - following
the first magnetization curve - until the saturation is reached (M = M,). If the magnetic field
decreases until zero, the magnetization does not reach zero, but a remanent point (M = M,.).
Now, the demagnetized state can be reached when a field of the amplitude of the coercive field
H, is applied. Therefore, the magnetic behavior of ferromagnetic materials is non-linear and

hysteretic.

2.2 Magneto-elastic coupling in ferromagnetic materials

The magneto-elastic coupling lies in the interaction between magnetic and mechanical
quantities in a material. The origin of such a coupled behavior in ferromagnetism is explained

from a microscopic perspective, further detailed. Two primary examples that show the depen-
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dence of magnetic and mechanical quantities are the magnetostriction strain and the effects of

stress on magnetization.

2.2.1 Magnetostriction strain

Magnetostriction is the strain of a body due to the change in its magnetic microstruc-
ture. The Joule magnetostriction is represented by the second-order tensor € considering a
volume-conserving strain (tr(e") = 0) De Lacheisserie [1993]. For electrical steels, measure-
ments indicate (see Fig. 2.2.1) that this strain is of the order of 10©, so the small deformation
theory can be applied. Despite its magnitude, the magnetostriction strain is one of the sources
of noise and vibration of transformer cores Moses et al. [2016]. As shown in Fig. 2.2.1a, the
magnetostriction depends on the magnetization direction: an anisotropy effect is noted. Another
characteristic of this behavior is the non-monotonic evolution with the magnetization. In addi-
tion to the dependence of magnetostriction to magnetization, Fig. 2.2.1b depicts the influence
of constant mechanical stress on the relation between magnetostriction and magnetization.

ﬁs
10210 10,

=== un-loaded
i 10MPa
20MPa
=== 78MPa
intermediate stress levels

8 ™

(a)

o
B 45

RD

¥
€, (ppm)
3

0 ! h!

. S T,
(a) Anisotropy of the stress-free longitudinal (b) Longitudinal magnetostriction strain under
magnetostriction strain Daniel et al. [2014]. field and uniaxial stress applied along the lon-

gitudinal direction Hubert [2019].

Figura 2.2.1: Anhysteretic magnetic measurements on non-oriented electrical steels.

2.2.2 Stress effects on magnetization

Another remarkable example of the magneto-elastic coupling is the influence of the
mechanical state on magnetization. As observed in Fig. 2.2.2, static stress significantly modi-
fies the shape of hysteresis loops. Compared to the stress-free case, compression increases the
hysteresis losses and the coercive field of electrical steel for the same maximum induction level.

Moreover, under a magneto-elastic loading of static field and variable stress, the induction/s-
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tress relation also presents a hysteretic behavior, as shown in Fig. 2.2.3, with non-monotonic

branches under tension and compression.
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Figura 2.2.2: Compression effect on Figura 2.2.3: Magnetic behavior of a low-
the hysteresis behavior of a non- carbon steel under variable stress and constant
oriented electrical steel Dias and field Hubert and Rizzo [2008].
Landgraf [2020].

2.2.3 Magnetization process
2.2.4 Atomic origins

The magnetization is the macroscopic response of a material whose atomic origin is
related to the motion of electrons that generates a magnetic moment. Two primary sources of
the electrons magnetic moment are the orbital momentum and the spin. A simplified example
of the orbital motion of an electron, with position described by the vector 7 and speed v around
the nucleus, is presented in Fig. 2.2.4. In this configuration, the magnetic moment fi; is given

by Purcell and Morin [2013]:

____________________________ Negative

e > - charge

{ Nucleus b

. —e

""""""""""""""""" Electron l s

Figura 2.2.4: Orbital motion of an electron Figura 2.2.5: Spin of an electron (adapted
in an atom (adapted from Purcell and Mo- from Purcell and Morin [2013]).
rin [2013]).

I with L=m, (Fx7), 2.2.1)
2m,

fir= -

e 1s the electron charge (e = 1.602 1071 C), m, is the electron mass (m, = 9.109 10731

kg), and L is the orbital angular momentum. The second source of magnetic moment is the
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rotation of an electron around its own axis or spin. This motion is represented in Fig. 2.2.5. The

spin results in a magnetic moment given by Purcell and Morin [2013]:

e —
S 222
T (222)

ﬁs = —4

with § the angular momentum. g; is the Landé factor, a quantum mechanics factor
that depends on the atomic state, and g; = 2 under a pure electron spin. The total magnetic

moment [i of an electron is given by the sum of the contributions of orbital motion and spin:

e

(Z+g, §) . 2.2.3)

=i}

e

The total magnetic moment in a free atom - with several electrons - can be evaluated
from a vector sum of all magnetic moments of the electrons. The atomic magnetization is given
by the volumetric sum of the total magnetic moment. A much more detailed analysis of the
quantum state of an electron in an atom and its interaction with a magnetic field can be found in
Chikazumi [1997], Jiles [1991]. Here, we emphasize the influence of the magnetic moments -
at the atomic scale - on the macroscopic magnetic behavior of a material. For instance, as noted
in Fig. 2.1.2, diamagnetic materials have a minimal and negative susceptibility. This behavior
can be explained from an atomic perspective, where the electrons are so paired that the total
magnetic moment of the atom is zero. Moreover, under an applied field, the magnetization
generated by the electrons motion of a diamagnetic material opposes the increasing of the field,
resulting in a negative susceptibility Jiles [1991].

On the other hand, paramagnetic materials exhibit a total magnetic moment due to
unpaired electrons. Under an applied field, the magnetization proportionally increases with the
field (see Fig. 2.1.2). Below the Curie temperature, ferromagnetic materials manifest a much
more significant magnetic response under an applied field when compared to paramagnetic ones
(see Fig. 2.1.2). The atomic structure of ferromagnetic materials, with the magnetic moment
of adjacent atoms aligned in parallel - arranged in the so-called magnetic domains structure -

favors the magnetization changes with the applied field Jiles [1991].

2.2.5 Domains and grains

The magnetic domains are a large set of magnetic moments aligned in parallel - cha-

racteristic of ferromagnetic materials. At the domain scale (denoted by the index ) the mag-
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netization M of a domain is:

-

My = M@, (2.2.4)

with M, the saturation magnetization and & the unit vector that defines the domain
orientation. A region with uniform crystalline lattice is a grain or crystal. A simplified sche-
matic of a grain corresponding to the domains with < 100 > orientations is reproduced in Fig.
2.2.6 (a). The transition between two adjacent domains is a domain wall. The domain walls can
be classified according to the spatial change of the magnetic moments orientation - a rotation of

180° or a rotation of 90° Chikazumi [1997].

[om]L A bl — < -— —p — —

i (a) (b) (c) (d) (e)

Figura 2.2.6: Simplified schematic of the magnetization process in a grain with four domains
under a magneto-elastic loading. Material with positive magnetostriction.

The arrangement of a domain can be explained from a thermodynamics perspective.

The energy balance of a volume element is given by:

Wo = Wo + Wi+ wig® + wihe (2.2.5)

» Exchange energy density wi;: The exchange energy characterizes the atomic magnetic
moments interaction. This energy term is minimum when the magnetization is uniform.

we is given by Hubert and Schifer [2008]:

we = A (grad @)’ (2.2.6)

with A" a material parameter that characterizes the exchange, and grad is the gradient
operator. The exchange energy, together with the anisotropy and demagnetizing ener-
gies further detailed, is used in micromagnetic modeling to describe the formation of the

domain structure. Here, we assume the existence of the magnetic structure.

* Anisotropy energy density w{': The anisotropy energy describes the preference of a do-

main magnetization for specific orientations - the easy axes. This energy term is minimal
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when the magnetization is aligned with an easy axis. For materials with cubic crystal-
lographic symmetry, the magnetocrystalline anisotropy energy density is evaluated by

Hubert and Schifer [2008]:

Wi = K <a12a22 +otod+ oc%oc;%) +K (051205220532) , (2.2.7)

with K; and K, the anisotropy constants. As an example of a material with cubic sym-
metry, consider a grain of iron, whose easy axes are along the < 100 > directions. The
anisotropy constants for iron are K; = 42.7 kJ/m> and K, =15 kJ/m? Jiles [1991]. The
anisotropy energy density for a grain of iron - presented in Fig. 2.2.7 - is minimum for

the domain orientations aligned along the easy axes.

an 3
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Figura 2.2.7: Anisotropy magnetocrystalline energy density of a grain of iron.

» Magnetostatic energy wy, ¢: The magnetostatic energy is characterized by two contributi-
ons: the first one, the Zeeman energy ws,, describes the interaction between an externally
applied field and the magnetization. For a uniform magnetic field, w$, writes Hubert and

Schifer [2008]:

W, = —oH - M. (2.2.8)

The Zeeman energy w5, is minimum when the magnetization is parallel to the applied
field. The second contribution of the magnetostatic energy is due to demagnetizing effects
and is denoted by w‘é. From the Gauss law (2.1.11), spatial variations of magnetization

result in a magnetic field, denoted as demagnetizing Hy:

divH; = — div M. (2.2.9)
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The energy contribution due to demagnetizing effects is Hubert and Schifer [2008]:

The magnetostatic energy is then:

mag

d — —
Wq = = fo + Wy = _.uOHeff'Moc

1

d
Wo=—%
“ 2

with

UOFId'Ma-

- 5 15
Hegr = H + EHd

(2.2.10)

(2.2.11)

* Magneto-elastic energy wi,““: The arrangement of domains is altered by applying mecha-

nical loadings. Considering uniform stress within the grain and a linear dependence of

wi’¢ on the mechanical loading, the magneto-elastic energy can be defined as Hubert and

Schifer [2008]:

mec __
Wa

u

—_G:ga.

(2.2.12)

U

For materials with cubic crystallographic symmetry, the magnetostriction strain €y is

defined by:

Al11004

A1030

A10300

Ao o

A110203

1
A1oo (0632 —3

)

(2.2.13)

with the constants Ajog and A1 indicating the magnetostriction strain along the < 100 >

and < 111 > directions, respectively.

The magnetization process in a grain under a magneto-elastic loading is illustrated in

Fig. 2.2.8 for a Fe-Si material. Without field and under static tension, the volume fraction of the

domain orientations more favorably aligned to the tension direction will increase. By increasing

the field in the direction of the tension, the material almost reaches a magnetic saturation, with

most of the domains oriented along the direction of the magneto-elastic loading.

A simplified schematic of the domain arrangement under a magneto-elastic loading is

presented in Fig. 2.2.6. In this schematic, two main parts concerning the magnetization process

can be highlighted: under moderate loadings (Fig. 2.2.6 (b-d)), a domain wall motion takes
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place, resulting in a substantial increase in magnetization. Under a strong loading (Fig. 2.2.6
(e)), before the saturation, a rotation of the magnetization is observed, and so the orientation of
domains will tend to align with the loading direction. The rotation mechanism also can be ob-

served in Fig. 2.2.1b, in which the magnetostriction strain decreases under high magnetization

X
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(a) Grain distribution  (b) 0 kA/m

levels.
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(d) 0.15 kA/m

(e) 0.20 kA/m

Figura 2.2.8: Domain wall motion of a grain of a silicon steel sheet under a tension of 130 MPa
and increasing magnetic field Liu et al. [2019].

The irreversible (hysteretic) domain wall motion is attributed to the presence of de-
fects in ferromagnetic materials, such as impurities, dislocations, and grain boundaries, that
have different magnetic properties than the matrix material. For example, considering a non-
magnetic spherical defect, as shown in Fig. 2.2.9a, a free-poles distribution on its surface results
in a magnetostatic energy due to the demagnetizing effect. This magnetostatic energy is redu-
ced when a domain wall passes through the inclusion, as observed in Fig. 2.2.9b. In an isolated
defect, spike domains can be formed around it, as seen in Fig. 2.2.9c, which also reduces the
magnetostatic energy of the system. Therefore, the inclusions can be viewed as an energetic
local minimum that attracts the domain walls, pinning their motion. In this case, to continue
the magnetization process, it is necessary to increase the energy of the system for the domain
wall to escape from the defect. This threshold value can be related to the coercive field on a
hysteresis curve and notably characterizes the dissipative behavior of ferromagnetic materials
Cullity and Graham [2009].

In addition to the stress sensitivity and anisotropy, the magnetic hysteresis also stron-

gly depends on the loading frequency Appino et al. [2020] and on the temperature Sixdenier
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Figura 2.2.9: Influence of a defect on the domain wall motion (adapted from Jiles [1991]).

et al. [2015]. This work considers only quasi-static loadings, and isothermal processes. Mo-
reover, only mechanical stresses below the elastic limit are considered. However, it should be
noted that plasticity is another phenomenon that modifies the hysteretic behavior of ferromag-
netic materials Domenjoud and Daniel [2023].

The modeling of the coupled magneto-elastic behavior can be split into two classes:
reversible or anhysteretic behavior (the dissipation mechanisms are not considered) and the
irreversible or hysteresis behavior. In what follows, only the main approaches for the modeling

of the macroscopic magneto-elastic behavior are introduced.

2.3 Reversible modeling

2.3.1 Multiscale model

The magnetization process, as introduced in the previous section, involves complex
phenomena taking place at different scales. Consequently, a multiscale approach can be used
to model the macroscopic magneto-mechanical behavior of a volume element with a proper
definition of localization and homogenization schemes. The scales involved in the anhystere-
tic multiscale modeling are shown in Fig. 2.3.1. The minor scale considered is the magnetic
domain one (denoted by the index ), where the magnetic moments are aligned in the same
direction - with minimal domain exchange energy - so the magnetization and magnetostriction
strain are homogeneous. The following scale is the crystal or grain (denoted by the index g).
A grain comprises a group of domains with several orientations, and each domain orientation
is characterized by a volume fraction py. On the following scale, the polycrystalline represen-
tative volume element (RVE) is a continuum element that represents, on average, the material

behavior. The last scale is the structure, where the geometry and dimensions of a device are
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necessary - with the proper boundary conditions - to simulate its operation. The multiscale
approach presented here focuses on modeling the magneto-elastic behavior at the RVE (ma-

croscopic) scale Daniel et al. [2008].

10° 10° 10° e meters
Domain Single Representative Structure
scale crystal scale volume element scale
(RVE)

Figura 2.3.1: Scales involved in the multiscale modeling.

The first law of thermodynamics at the domain scale can be expressed as Hubert et al.
[2022]:

I is the domain internal energy density, the dot-product Hy, - By, represents the do-
main magnetic power density, the double-contraction ¢ : £q represents the domain mechanical

power, and G is the heat flux. The second-law of thermodynamics can be written as:

-

Tuse > —div(Ge) + grad Ty qT—"‘, (2.3.2)
(04

with T the temperature and s the entropy. From the Legendre transformations of

Uy, the Helmholtz f; and the Gibbs g free energy densities are introduced and defined as:

fazua_TaSa and ga:fa—ﬁa'ga—ca:é‘a. (233)

Combining (2.3.1), (2.3.2) and (2.3.3), neglecting spatial thermal variations (grad T, =

6), temporal thermal variations (T o = 0), and the dissipation, the power balance writes:

8o =—MoMq -Hy — €4 0g. (2.3.4)

The energy variation dg, for a time step dr is:

dgo = —UoMy -dHy — € 1 dG . (2.3.5)
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Considering small perturbations, the strain €, can be expressed as:

Eq =€ +eh=C" 0q+¢l, (2.3.6)

with €, the elastic strain at the domain scale, 85 is the magnetostriction strain tensor
of (2.2.13) for cubic crystallographic symmetric, and %, the domain stiffness tensor. The in-
tegration of (2.3.5) over the stress path gives the magneto-elastic part of the Gibbs free energy
Hubert [2019]:
1

gne = _Eaa:%—l Cq— €y Og. (2.3.7)

From the Helmholtz free energy, defined using a Taylor expansion of magnetization
Hubert [2019] and considering a cubic symmetry, the magnetic and the anisotropy parts of the

Gibbs free energy are written as:

g'(;cmg = _NOMOC 'Floc

(2.3.8)
¢ = Ki (oFog + afod + a3ad) + Ky (o oded).
To simplify the modeling, the field and stress are considered homogeneous within the

material (FI = ﬁa and 0 = o). The Gibbs free energy is then:

(

86" = —HoMo - H

ga=8a"*+8a° T8y  with 8o’ =—€q:0

g = K, (05120522 +oatad+ a22a32> + K> (afa%oc%) .
(23.9)

\

The heterogeneity of field and stress can be considered in a more complete multiscale
approach Daniel et al. [2008]. In this case, using localization schemes allows for modeling the
non-homogeneous distribution of the magneto-elastic loadings in a polycrystal.

As shown in Fig. 2.3.2 and in earlier works Daniel et al. [2014], Hubert [2019], the
effect of stress on magnetization is non-monotonic. The formulation of (2.3.9) does not capture
such a tendency. This drawback can be solved by adding a stress-dependent demagnetizing
term in the energy balance Daniel et al. [2014], or by adding a higher-order development of the

magneto-elastic Hubert [2019]. The magneto-elastic energy, including a second-order term -
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quadratic in stress - is proposed in Hubert [2019]. In da Silva et al. [2022], a development of

the magneto-elastic energy using an equivalent stress 0, is presented and defined as:

me(1 me(2 . 3 12 [ =2 o= 1 AT T
gne — ey gl >:_s‘o‘,.c—§zsoeq G@ad-—2I): hoh). (2.3.10)
= a0
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Figura 2.3.2: Uniaxial stress effect on the relative secant permeability of an electrical steel
Mailhé et al. [2020].

In (2.3.10) the second-order magnetostriction constant A, is introduced, and an equi-
valent stress Daniel and Hubert [2009], written in terms of 2 = H /||H|| and the deviatoric part

of 0, is used. O is:

3- 1 -
O == | 0—=tr(0) | h (2.3.11)
2 3
The magnetostriction constant A, can be identified as (see Appendix B) da Silva et al.
[2022]:
A
A= 2.3.12
TR (2.3.12)

where 0, is the value of the applied uniaxial stress corresponding to the maximum
magnetic permeability (obtained from a uniaxial characterization of permeability under stress).
As is the saturation magnetostriction, which can be evaluated considering the Reuss hypothesis

of uniform stress within an isotropic material Daniel et al. [2008]:

2 3
A = 511004’51111- (2.3.13)

The volume fraction py of a domain family with direction & is established using a
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Boltzmann relation Buiron et al. [1999]:
eXp <_As 8 Oc)

 Laexp(—As ga)’

with Ay a material parameter that is proportional to the initial susceptibility ) of the

(2.3.14)

o

stress-free anhysteretic curve Daniel et al. [2008]:

3
A= X0
HoM;

(2.3.15)

The set of possible domain orientations is defined through the nodes of an icosphere -
a geometric mesh that approximates a sphere using triangular faces Daniel and Galopin [2008].
With the definition of p, the magnetization ]\71g and the magnetostriction strain eif at the grain

scale are evaluated by:

My=Y paMy  and e =Y pueh. (2.3.16)
o (04

The macroscopic (see RVE in Fig. 2.3.1) magnetization M and magnetostriction strain

e" are then evaluated by an operation of volume average:

M=Y pM, and =Y pee (2.3.17)
8 8

where p, represents the proportion of each grain orientation, which can be defined
from crystallographic texture measurements of the sample.

Simplifications on this multiscale approach can be made, namely considering an equi-
valent simplified crystallographic texture with a reduced number of grain orientations, leading
to a simplified texture multiscale model (STMSM) Bernard et al. [2019]. A further simplifica-
tion consists in representing the macroscopic behavior using a fictitious single-crystal, leading
to the so-called simplified multiscale model (SMSM) Daniel et al. [2015] or even limiting the
number of possible domain orientations to six, resulting in analytical formulas for the magneto-
elastic behavior Daniel [2018], Daniel [2013].

Similarly to the approach introduced in this section, a multiscale modeling is also
presented in Ito et al. [2015]. First, this modeling defines a simplified six-domain structure, with
orientations corresponding to the easy axes of the cubic symmetry. A minimization procedure

of the total energy results in the magnetic state of this simplified structure domain. Then,
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the macroscopic response corresponds to the assembly of several simplified domain structures.

Such a minimization approach is also presented in Daniel [2003].

2.3.2 Thermodynamic macroscopic model

In this approach Dorfmann and Ogden [2003], Fonteyn et al. [2010], the induction B
and the strain € are independent variables. The magnetization M and mechanical stress ¢ are

calculated by:

M:——]: and O':—f, (2.3.18)
JoB de
f (S,E) represents the Helmholtz free-energy density. Considering an isotropic mate-

rial, f (S,E) can be expressed through six invariants Fonteyn et al. [2010]:

f:f(117]27l3714715716) with
(2.3.19)

h=u(e), h=3(w(e)? h=dei(e), L=FB ls=FeB ly=5¢ B
Analytical expressions for f (E,E) are presented in Aydin et al. [2017], Fonteyn et al.

[2010], Rasilo et al. [2019b]. This approach with invariants is flexible to changes in the state
variables - originally (&, B) - and so (H, &) could be chosen depending on the application, and
a new set of invariants is defined Rasilo et al. [2019b]. One drawback of this modeling is
identifying the parameters that define the energy density, which usually requires several measu-
rements Rasilo et al. [2019b]. A magneto-mechanical anhysteretic model based on the invariant

theory is also presented in Taurines et al. [2022].
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Despite its simplifications when compared to micromagnetics modeling, the multis-
cale approach has good prediction capabilities of the macroscopic anhysteretic magnetic
behavior of a ferromagnetic material under stress, as observed in Hubert et al. [2022].
Moreover, it accounts for a multiaxial loading condition with a clear parameters identi-
fication protocol. One drawback of the multiscale approach is the use of magnetic field
and stress as state variables, which implies the inversion of the model for application
with classical finite element formulations Bernard et al. [2019]. On the other side, in the
thermodynamic model, by using the invariant theory, the model is flexible to changes in

the state variables. However, the complexity of identifying the parameters increases by

increasing the number of invariants that express the energy density.

2.4 Irreversible modeling

Macroscopic hysteresis models are generally developed from a Physics or purely
mathematical description. In this section, models based on these two perspectives will be pre-

sented, detailing the main features and drawbacks of each approach.

2.4.1 Jiles-Atherton model

In scalar Jiles-Atherton (JA) approaches Sablik and Jiles [1993], Sablik et al. [1987,
1988], the magnetization M is defined by the sum of M, that represents the bending of domain

walls, and M;,., which denotes the irreversible domain wall motion:

M =My, + M,,, with M, =c (Man - Mirr) , (2.4.1)

with ¢ a material parameter and M, the anhysteretic magnetization. Often, the anhys-

teretic behavior is described by the Langevin function in Jiles-Atherton-Sablik approaches:

H
M,, = M, [coth (—6) _ 1] : 2.4.2)
a H,

where M, represents the saturation magnetization, and a is a material parameter that
controls the slope of the anhysteretic curve. An effective field H, is introduced, and its terms

are evaluated from an energy balance as presented in Sablik and Jiles [1993]. H, is then:
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. 30 (det (oM

where o is a material parameter, ¢ is a mechanical stress coaxial to H, and € is a
scalar magnetostriction strain - dependent of M and o. Expressions for e (o, M) are proposed
in Sablik and Jiles [1993], Sablik et al. [1987, 1988]. In the JA modeling theory, the energy

balance in a dissipative material can be written as Sablik and Jiles [1993]:

dMirr
dH,

,uO/MdHe = ,uO/MandHe — UpK dH,, 2.4.4)

with k a pinning parameter describing the dissipation. Differentiating (2.4.4) with

respect to H,, the evolution of M is then evaluated by:

dMirr
M = M, (H,) — 5k ( T ) , (2.4.5)

the direction coefficient & is introduced to enforce a positive dissipation:

-1, ifdH/dt <0
5— (2.4.6)

1, ifdH/dt>0.
An energy analysis of Jiles-Atherton approaches is presented in Zirka et al. [2012],
and it can be highlighted the inconsistency of the model when considering only a reversible
behavior. Particularly, the magnetic anhysteretic characteristic goes to the second quadrant on

a B— H curve (see Fig. 2.4.1) which is a non-physical behavior.

2
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Figura 2.4.1: Magnetic behavior simulated with a JA approach Zirka et al. [2012].

The limitation of mechanical stress coaxial with the magnetic field is addressed in
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Sablik et al. [1993]. To consider the influence of biaxial stress on magnetic behavior, in Sablik
and Jiles [1999], Sablik et al. [1999], two uniaxial magneto-mechanical energies corresponding
to the stresses applied along two perpendicular axes are introduced, and further added to the
effective field definition. The inclusion of 3-D fields in Jiles-Atherton approaches is addressed
in Bergqvist [1996]. Moreover, the non-physical representation of minor loops with classical
Jiles-Atherton approach (see Fig. 2.4.2) can be overcome by adapting the pinning parameter

Benabou et al. [2008], Leite et al. [2009].

154
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Figura 2.4.2: Comparison between measured and simulated stress-free hysteresis behavior of
Fe-Si 3% under harmonic excitation Leite et al. [2009].

Another possibility to extend the Jiles-Atherton modeling to the magneto-elastic beha-
vior consists of a combination approach: the reversible behavior is modeled with a magneto-
elastic anhysteretic model in place of the Langevin function, and the pinning parameter is adap-
ted to mechanical loadings. Examples of this strategy under a quasi-static field and constant
stress Bernard and Daniel [2015], Bernard et al. [2020], Ram et al. [2020], and under a quasi-
static stress and constant field Zhao et al. [2021], are presented in the literature, where a sim-
plified multiscale model (introduced in Section 2.3.1) represents the reversible behavior. Mo-
reover, the thermodynamic approach (introduced in Section 2.3.2) can also be coupled with a

Jiles-Atherton model, as shown in Rasilo et al. [2016].

2.4.2 Armstrong model

In the Armstrong approach, the dissipative behavior is described from irreversible
changes in the domain volume fraction. Considering a scalar field, an anhysteretic volume
anh

fraction py,"™ is evaluated from the Boltzmann distribution (2.3.14). The irreversible part of the

volume fraction is then evaluated by Armstrong [2003]:
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dpa = (P4" ~ pe) aH], (247)

with K a material parameter representing the domain walls pinning. This approach
is then applied to predict the magnetic behavior of Terfenol-D. However, it was pointed out in
Evans and Dapino [2010] that the Armstrong model exhibits non-physical behavior in the region
of asymmetric minor loops. A further development on the definition of the irreversible volume
fraction was presented in Evans and Dapino [2010], and the model showed its capabilities to

predict the magnetic response of Galfenol under a quasi-static field and under a quasi-static

stress.

2.4.3 Hauser model

The polycrystal hysteretic magnetic response of a ferromagnetic material is modeled
in Daniel et al. [2014], as a combination of a magneto-mechanical anhysteretic model Daniel
et al. [2008] with a magnetic hysteresis approach Hauser [2004]. The dissipative behavior is
captured from the definition of an irreversible field whose norm is evaluated at the grain scale

as:

-, k _, k., - ..
Hpl| =6 | —— +¢,|H ) 1—kpexp | ——2|[M — ™)) ) |, (2.4.8)
) =8 (o + ) 1= e (1 ||

with &, ¢,, k, and k, material parameters. 0 is a sign function of the loading. M)
is the value of M at the previous inversion of the loading direction Daniel et al. [2014]. The
parameter k, defines the coercive field and is adapted to a stress dependence. To avoid the
long-time simulation of a polycrystal, in Daniel et al. [2015], the RVE is represented by an
equivalent single-crystal - with anhysteretic behavior defined through a SMSM. This single-
crystal approach can also reproduce the magnetic behavior under a biaxial stress state. The
main drawback of this approach is the update of only the norm of the irreversible field at each
time step. This limitation may cause problems in the case of simulation with a rotating field.
The combination of multiscale model and the Hauser approach is also used to simulate
the piezomagnetic behavior, as presented in Ouaddi et al. [2019]. By analogy with the field

decomposition, piezomagnetic effects are considered through the definition of an irreversible
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stress Oj,r, Where a coercive stress captures the dissipative magnetostriction strain under variable
mechanical loading. However, the model proposed in Ouaddi et al. [2019] is limited to uniaxial

loadings.

2.4.4 Plasticity based models

A strategy to describe the magnetic hysteresis comes from the analogy of this pheno-
menon with plasticity. Some models of plastic behavior start from thermodynamics principles
with the definition of internal variables that describe the dissipation. These internal variables
are a modeling choice in a way that they unify in a single (or more) variable (or variables) the
complex microscopic process that manifests in the form of dissipation at the macroscopic scale
Maugin [2015]. Examples of internal variables are the irreversible magnetization in the Jiles-
Atherton approaches, the domain volume fraction in the Armstrong model, and the irreversible
field in the Hauser model.

Some thermodynamically consistent plasticity approaches introduce a switching sur-
face, a quantity that controls the material behavior, whether reversible or dissipative. The swit-
ching surface is defined to ensure that the constraint of the second law of thermodynamics is
respected - namely, dissipation is always positive - and is a function of the internal variables.
In Landis [2002], a macroscopic thermodynamic framework for the ferroelectric hysteresis is
proposed, also considering stress effects. The remanent polarization and strain are chosen as
internal variables. Another example, presented in Kiefer et al. [2012], is applying the internal

variables approach to simulate the strain response of magnetic shape memory alloys.

2.4.5 Preisach model

In the classical Preisach model, first, it is introduced the notion of hysterons denoted
by 7. These hysteresis operators are represented by a rectangular loop, as presented in Fig.
2.4.3a, whose width is controlled by the fields H, and H;. The set of hysterons is defined by a

distribution @ (H,, H;). The hysteretic magnetization can be calculated by Mayergoyz [1991]:

—M,, ifH, H;jecT™
M) = [ [ 9(HuHa)Y(Hu Ho H(dHdHy - with 1 () =
M,, ifH, H;eT).

(2.4.9)
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(a) Hysteresis loop of a hysteron. (b) Hysteron state triangle.

Figura 2.4.3: Elements of Preisach hysteresis modeling.

The state of the hysterons is graphically represented by the Preisach triangle (Fig.
2.4.3b). For example, starting from the demagnetized state, consider the application of a scalar
magnetic field H, < Hg,, with Hy, the magnetic field in which saturation occurs. A set of
hysterons changes its states from negative to positive, so the region T increases. This process
continues for all time steps of the magnetic field, including minor loops Mayergoyz [1991].
Due to the mathematical nature of the Preisach approach, the identification of the distribution
¢ (H,,H;) can be complex. Some works in the literature propose using analytical distributions
to represent ¢ (H,,H;) Consolo et al. [2006], Sutor et al. [2010]. The inclusion of vector fields
can be achieved by considering vector hysterons Della Torre et al. [2006].

A uniaxial magneto-elastic extension of the Preisach model is proposed in Bergqvist
and Engdahl [1991] by including a stress-dependent equivalent field. This modification allows
the simulation of hysteresis loops under a constant stress and time-varying field or a constant fi-
eld and time-varying stress. Other uniaxial propositions Bolshakov and Lapovok [1996], Sipeky

and Ivanyi [2008] consider mechanical loadings through the distribution as a stress function.

2.4.6 Play model

The play operator is another popular mathematical hysteresis model. In magnetism,
the hysteretic response of induction B with the input of magnetic field H can be described by

Bobbio et al. [1997]:

N
B=Y f* <Pk[H]), (2.4.10)
k=1

considering a system made of N hysterons. PF the play operator that defines the state
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of the k hysteron, and fFa shape function. The scalar play operator P* is defined by Bobbio
et al. [1997]:

k R it |H =Py < ¢
P = H — pk (2.4.11)
H-¢* —(kp) otherwise,
[P

with § % the width of the k hysteron. As an example, consider the single hysteron
operator shown in Fig. 2.4.4. The induction remains constant for an increasing field before
reaching a threshold, as seen in Fig. 2.4.4 (a). After the threshold is reached, the induction
increases linearly with the field (Fig. 2.4.4 (b)). These steps continue when the field changes its
direction (Figs. 2.4.4 (c)-(d)). For this example, the play operator is illustrated in Fig. 2.4.4 (e).
Including a proper shape function allows the model to capture the saturation mechanism of the

magnetic hysteresis.

Example trajectory: B
B* B* BA B‘.
S O~ g~ 4 02 =4
|

@) 0 (© (d) (e)

Figura 2.4.4: An example of trajectory and the play operator Mérée and Leijon [2023].

An extension of the scalar play model to mechanical loadings is proposed in Ito et al.
[2018], and a decomposition of the field into reversible and irreversible parts is presented. The
reversible behavior is evaluated from a multiscale approach Ito et al. [2015], and a probability
distribution of pinning fields is introduced to evaluate the irreversible part of the field.

A superposition of scalar play-operators allows considering vector fields in the play
approach Matsuo and Shimasaki [2008]. In Matsuo et al. [2020, 2023], a vector play model,
including stress effects, is presented. In these approaches, the hysteresis mechanism is evaluated
at the grain scale, and the dissipation parameter is weighted by the volume fraction, which
results in a parameter identification with stress-free measurements only. However, the hysteresis
evaluation at the grain scale may increase the computational cost compared to the hysteresis

mechanism applied directly at the macroscopic scale.



2.4 Irreversible modeling 53

The magnetic response of a ferromagnetic material, as observed in the hysteresis curves,
is the result of a complex evolution of the domain structure. Usually, the magnetic hyste-
resis models are defined from either a macroscopic approach, a multiscale approach, or
a combination of both. Although many hysteretic magneto-elastic modeling approaches
are available in the literature, as described above, none of them simultaneously combines
three key features for the numerical analysis of electromagnetic devices. The first is the
ability to consider fully multiaxial loadings as encountered in practical applications, the
second is thermodynamic consistency to compute losses accurately, and the last is the
implementation into numerical analysis tools, which requires low computation time for
behavior evaluation. One modeling approach that checks the last two requirements is
the energy-based model. However, this approach, further detailed, was developed for the

stress-free case only.

2.4.7 Stress-free energy-based hysteresis model

In this stress-free energy-based approach, the magnetization is the internal variable
that describes dissipative effects. The Clausius-Duhem inequality at the macroscopic scale of a

ferromagnetic material can be written as Bergqvist [1997], Henrotte et al. [2006]:

.
—

D=poH -M—f>0, (2.4.12)

with D the dissipation and f the time-derivative of the Helmholtz free energy density.

In a reversible framework, a reversible magnetic field ﬁrev is introduced, and it is defined as:

- 1 0
= L9 (2.4.13)
Mo oM
Combining (2.4.12) and (2.4.13) yields:
D= (FI —Flm> M > 0. (2.4.14)

In a dissipative framework, an irreversible field Hj,, is introduced and defined by
Hj;, = H — Hye,. The dissipation is modeled by analogy with a mechanical dry-friction system
Henrotte et al. [2006]. The defects that pin domain walls at specific positions are represented

by a pinning field k, a positive scalar in the isotropic case. The dissipation writes:
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D = pok||M|| = poHirr - M. (2.4.15)

As in (2.4.13) - where a relation between H,., and f was defined - the irreversible
field FIm can be written as a function of the partial derivative of D. Since D is not differentiable
at ]\7[ = 6, the subdifferential of a convex function is considered Henrotte et al. [2006]. An
illustrative example of a subdifferential is presented in Appendix A. The subdifferential of D(]\7I )
is the set Prigozhin et al. [2016]:

ID(M) := {H eRS: k||§| > k||M|| + Hiyr - (F— M), vyeRj}. (2.4.16)

The elements H;,, € aD(M ) are the subgradients of D at M. At M =0, the subgradient

writes:

K51 = 0]+ Hirr- (5-0), vier? @417

From the inequality:

Hir -5 < |Hire|| |IF]l, VY ERS, (2.4.18)

the condition of (2.4.17) will hold when:

| Hipr|| < K. (2.4.19)

At M # 0, D is differentiable so:

oD M
— = KT = Hirr- (2.4.20)
oM [|M]|

The subdifferential of D(M) is then written as:

Hirra ||Hirr” S K, lfM: 6

oD .
= i 2.4.21)
oM Hipp = K——, otherwise.

1M]]

\
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This set implies that for HFI,-WH < & the magnetization M remains constant until a

threshold «x is reached. From the previous definitions:

H - Hye, — Hyy, = 0. (2.4.22)

The analogy of the magnetic hysteresis with a dry-friction mechanism is illustrated in
Fig. 2.4.5, with the magnetic field H representing the driving force, and the strain of the system

corresponding to variations on magnetization:

——>
H

S
Figura 2.4.5: Analogy of the magnetic hysteresis phenomena with a mechanical system Jacques

[2018].

When the threshold is reached (M = 0), and from the definitions of (2.4.13) and
(2.4.21), the relation of (2.4.22) can be written as:

g 1of b &5 . o Lo M g5 (2.4.23)
HooM 5y KoM )

Considering a scalar case, Fig. 2.4.6 illustrates this energy-based approach. Ne-
glecting the dissipation mechanism results in a magnetic anhysteretic behavior. The hysteresis
modeling essentially involves translating the anhysteretic curve along the pinning parameter x.
Therefore, K is the coercive field and can be identified from a standard magnetic characteri-
zation. This modeling has limitations in representing the first magnetization curve and minor

loops, as observed in Fig. 2.4.6.
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Figura 2.4.6: Application of the energy-based model to a scalar loading.

To solve the limitation of representing minor loops and the first magnetization curve,
the pinning field x can be represented by a discrete distribution of pinning fields Henrotte et al.
[2006]. In this case, the single dry-friction system of Fig. 2.4.5 is replaced by a series connec-

tion of dry-friction systems or cells. In Fig. 2.4.7, a structure with N cells is presented.

7N N—
HI‘CU HTE’U !
Hjeﬂ

-_— . _- 1
| g\“ ' H N -1 |
[ rr N : ¢ ﬂ’LTT > ! - 1
| MY ' MY N VA
1 1
1 1
M=) M* '

Figura 2.4.7: Analogy of the magnetic hysteresis phenomena with a mechanical system made
of N dry-friction cells Jacques [2018].

In this multicells context, the fields at each k-cell are defined as Jacques [2018]:

(

L LS =
afk HirraHHirr”SKkv itM" =0
— — — — 1 —.» .
H—gY —H =0 — H—————9DNM") e o
k - M
Ho oM HY =x*——,  otherwise.
\ 24|
(2.4.24)

The constant ¥ represents the pinning field at the k-cell. By using a weighted sum,

the total magnetization M is then:

N
M=Y oM, (2.4.25)
k=1

where the weight o of each cell is introduced. It verifies:
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N
Y of=1. (2.4.26)
k=1

Concerning the numerical implementation of the model, three approaches are usually
performed and detailed hereafter. The first one is an explicit solution of (2.4.24) or vector-play
approach. In this modeling, the unit vector that defines the direction of Hi, is approximated by

Henrotte et al. [2006], Jacques [2018]:

g Hmw _ H —ff, A (2.4.27)
S N . T 4
v EE ) H L) E A

Using this approximation, the explicit update procedure of erv at each cell is:

ik e WH_ gk
ZE it - | <
g — H— gk (2.4.28)
“ H—«* f:fv(m, otherwise.
(p)
The induction B then is evaluated by:
B=H+ Y Mu(Hy,), (2.4.29)

k=1

with My, (H*

“ev) @ function that defines the reversible behavior.

A second approach to evaluating the energy-based model consists of directly solving
(2.4.24) using a minimization procedure Francois-Lavet et al. [2013]. In this case, the functional

g(H, M) is introduced:

g(H,M*) = f*(M*) — uoH - M, (2.4.30)

with the partial derivative:

1ds _19f & 2.4.31)
Mo oMKk Lo OM*K

For sufficiently small time steps, the time-derivative of the dissipation is approximated
by:

”Mk_ﬂk
k—

N (|l
D =~ lyx A& , (2.4.32)
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with A7I£‘p) the magnetization at the previous time step. The subgradient of (2.4.32) is

given by the set:

Tk 7k k e Ak 7k
Hyy, || Hy || < K7, if M :M(p)

oD*(M*) e ¢ M — M (2.4.33)
Hikr, =kb—— P otherwise.

1a2% — M, |
(p)
Finally, (2.4.24) can be written as the unconstrained minimization problem:
J 5ok ok
= [g(H,M )+Ar DY) =0 -
(2.4.34)

it = min [ H) — o -0 a1 b ]

In another minimization procedure Prigozhin et al. [2016], the reversible field Flfev 1s
updated at each time step. As pointed out in Kaltenbacher et al. [2022], the implementations
presented in Prigozhin et al. [2016] and in Francois-Lavet et al. [2013] are mathematically
equivalent. A feature of the energy-based model presented in Prigozhin et al. [2016] is the
definition of k as a symmetric positive-definite matrix, which can employ different thresholds
when the field is applied along rolling or transverse directions, and results in a scalar parameter
in the isotropic case. Such an approach requires measurements along rolling and transverse
directions to identify the components of the matrix k, as shown in Upadhaya et al. [2020].

In Jacques [2018], a comparison between the vector-play approach Henrotte et al.
[2006] and the minimization procedure Frangois-Lavet et al. [2013] is presented, considering an
isotropic magnetic behavior. Both approaches lead to the same values under uniaxial magnetic
loading and under a purely circular rotating field. The two approaches show slight differences
when applying a 2D spiral field. Another difference between the two approaches is related to the
simulation time. The vector-play approximation results in an explicit model whose simulation
time is reduced compared to a minimization procedure.

A common drawback of this energy-based approach is the limitation to reproducing
the hysteresis losses in the range of saturation, which can be attributed to the absence of the
rotation mechanism description in the model development. Correcting this drawback requires
adapting the pinning parameter to vanish the hysteresis losses under high induction Bergqvist

[1997], Sauseng et al. [2022].
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The energy-based approach is a rate-independent magnetic hysteresis model defined di-
rectly in a vector form. Its energetic description ensures a thermodynamic consistency.
Notably, the vector-play approximation results in a computational light version of the
complete minimization approach, which is mandatory for reasonable finite element si-
mulations. Moreover, symmetric and asymmetric minor loops can be modeled using a
pinning field distribution. Due to these improvements compared to classical approaches,
the energy-based model in a vector-play form is chosen in this study and extended to the

magneto-elastic case, further detailed in Chapter 4.
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3 Experimental characterization of the magneto-elastic beha-
vior

This chapter deals with the uniaxial magneto-elastic measurements performed on a
magnetic material. First, the experimental apparatus is detailed, specifying the main parts to
supply and measure the magnetic and mechanical quantities. The measurement methodology
is briefly introduced, considering different quasi-static loadings: static stress and varying field,
static field and varying stress, and varying both field and stress. The material used in the experi-
mental tests is a high-formability low-carbon steel (DC04) used in the automotive industry. The
experimental measurements are then presented, highlighting the magneto-mechanical coupling

in the material, and are related to results already presented in the literature.

3.1 Experimental setup

The apparatus used to carry out the magneto-mechanical characterization of a sample
under uniaxial stress is detailed in Domenjoud et al. [2019] and shown in Fig. 3.1.1. The
mechanical setup is composed of a tension/compression machine Zwick/Roell Z030 with the
possiblity to control in force or displacement. The resolution and accuracy are 0.2 N + 0.06%
in force control, and 1 um = 0.1% in displacement control. Force measurements are performed
using a 10 kN load cell (strain gauge sensor TC-LCO10kN).

The magnetic setup is composed of two U-shaped Fe-Si yokes to ensure the closure
of the magnetic flux. A Kepco 72-14MG amplifier, that can deliver 14 A and 72 V with 0.2%
accuracy, supplies current to an excitation coil (28 turns) positioned around the sample. The
current is measured with a LA 125-P transducer with 0.6% accuracy. A Teslameter FM302 and
a transverse Hall proble 20 mT AS-VTP, which can operate from DC to 1 kHz, measure the
magnetic field with accuracy of 0.5% and measured noise of 19 A/m in the range of 0 - 15.9

kA/m.



3.2 Characteristics of the sample 61

Tension/compression
machine

Sample Fe-Si yokes

Sample cross-
A/ .
section

hil | Bw
b
Coil

Measurement
area

Figura 3.1.1: Experimental setup for magnetic characterization under uniaxial stress.

From the Faraday-Lenz law, the measured induction is evaluated from the numerical

integration of the induced voltage v(¢) of a B-coil wound around the sample:

1

AB:—ﬁ ) v(t) dt, (3.1.1)

with N the number of turns (85) of the B-coil and S the cross-section of the sample.
The measured noise on induction is about 0.1 mT with accuracy of 0.2%. The magnetostriction
strain is measured with a strain gauge rosette glued on the measurement area surface (Fig.
3.1.1) of the sample. The signal is amplified with a 4-channel strain gauge conditioner Vishay
2120 B with about 0.5% of accuracy and measured noise of about 10 %, A DS 1006 dSPACE
processor board performs the acquisition and control of signals with a sampling frequency of
50 kHz. More information on the control and acquisition system can be found in Domenjoud
et al. [2019]. A measurement reproducibility error is found to be about 0.5% in the magnetic

field and 0.3% in the induction.

3.2 Characteristics of the sample

The material studied in this work is a low-carbon steel DC04. Crystallographic texture
measurements for this material are presented in Fig. 3.2.1. Such measurements are obtained
from the electron back-scattering diffraction (EBSD) techniquel. More details about this tech-

nique and the representation of pole figures are shown in Appendix C.

The author gratefully acknowledges Anne-Laure Helbert (ICMMO) for the EBSD measurements.
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Figura 3.2.1: Pole figures for a DCO04 steel obtained by stereographic projection.
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The chemical composition of this sample, according to the datasheet of the manufac-
turer, is shown in Table 3.2.1. The Young modulus £ and the Yield stress R, are estimated as

200 GPa and 120 MPa, respectively Domenjoud and Daniel [2023].

Tabela 3.2.1: Chemical composition of the DC04 low-carbon steel (wt%) ArcelorMittal [1996].

Fe C Mn Si

99.32 0.08 05 0.1

Under compression, a buckling analysis is necessary to determine the critical loading
that ensures the integrity of the sample. Using the classical Euler analysis, the critical stress

level o, can be evaluated as Ziegler [1953]:

with [ the free length, 7 the moment of inertia for the cross-section, and & a factor that
depends on the fixing conditions of the sample. The sample is fixed at both sides on the grips of
the machine (see the schematic of Fig. 3.1.1 - left), so k, = 4 Ziegler [1953]. The dimensions
of the sample and the critical buckling loading are presented in Table 3.2.2. However, it must be
noted that fixing yokes on both sides of the sample will reduce the free length, so it is expected

an increase in the critical loading. In what follows, the maximum applied compression is about

100 MPa.

Tabela 3.2.2: Critical buckling condition of the sample.

Material A (mm) b (mm) w(mm) [(mm) o, (MPa)

DC04 250 2 20 150 117
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3.3 Measurement methodology

In the experimental tests presented in this chapter, the uniaxial magneto-elastic lo-
adings are applied along the rolling direction of the sample. Following, the anhysteretic and

hysteresis measurement methodologies will be detailed.

3.3.1 Anbhysteretic tests

The procedure to measure the anhysteretic magnetic behavior is presented in Domen-
joud and Daniel [2023]. First, a sinusoidal current of amplitude /., 1s applied, describing a
major hysteresis loop. Then, the controlled current 7 is set as an exponentially decaying sine

wave superimposed to a bias level:

I = Lyaysin (2 f1)exp (—kg 1) + Ipigs (1 —exp(—ky t)) (3.3.1)

with k; a damping factor, I, the bias current, and f is the frequency. The damping
factor is set to 0.34 s~ ! for a frequency f = 1 Hz. After stabilization, the resulting magnetic
field and magnetization correspond to a point of the anhysteretic curve. Fig. 3.3.1 depicts the
anhysteretic measurement process. This approach is repeated at several bias levels and under

static uniaxial stresses, as summarized in Table 3.3.1.

| Man %
_ /\ _ 7
S/ an \/ V \/J Vv s
= =
° £ (5) ° H(A/m)

Figura 3.3.1: Representation for measuring a point of the anhysteretic curve.

3.3.2 Hysteresis tests

For the magnetic hysteresis measurements, first, the material is demagnetized. Thus,

the controlled current is set as an exponentially decaying sine wave (3.3.1) with zero bias current
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Tabela 3.3.1: Summary of the anhysteretic tests.

Static stress and quasi-static field

Loading Measurements

Uniaxial stress 6 = [—100: 20 : 100] MPa

Induction Bgy (Hgn, 0)
Bias H-field: 20 values between 0 A/m and

3000 A/m

Anbhysteretic

(Ipias = O A). After demagnetization, the controlled magnetic current is set as a sine wave to
reach the same maximum magnetic field values £H,,,,. The maximum magnetic induction

By (see Fig. 3.3.2) is evaluated as:

(Bt + B Hye]) - (3.3.2)

Bmax =

| =

The demagnetization process is imperfect, so a residual induction B,,; can be found

in the measurements. For each test, B, is evaluated by:

1
Bres =3 (BHya — 1B Hya|) - (3.3.3)

Following Domenjoud et al. [2019], the demagnetization process is successful if the

following condition is verified:
Bres < 0.02 By (3.3.4)

AB

BH ------------ A

maz

ABmam

Figura 3.3.2: Major loop obtained after the demagnetization process.

The hysteresis measurement procedure is repeated under several static uniaxial stress



3.3 Measurement methodology 65

levels. Table 3.3.2 summarizes the hysteresis measurements and loadings.

Tabela 3.3.2: Summary of the hysteresis tests.

Static stress and quasi-static field

Loading Measurements

Uniaxial stress o = [—100 : 20 : 100] MPa Induction B(H, G)

Longi. and transv.
magnetostriction 87 / (H,o0)
el (H,0)

Peak field Hp,pqx: 15 values between 140 A/m
and 6800 A/m

Hysteresis

3.3.3 Tests under variable stress

As seen in Chapter 2, the variation of magnetization due to stress variations, also
known as piezomagnetism, is another characteristic that highlights the magneto-elastic cou-
pling. The piezomagnetic behavior is measured as follows: the field is set as an exponentially
decaying sine wave superimposed to a bias level, as in the anhysteretic test. A quasi-static cy-
clic force is applied after stabilizing the field at the bias level. Fig. 3.3.3 (left) summarizes
the magneto-elastic loading conditions in a piezomagnetic test. After the mechanical cycle, the
resulting piezomagnetic loop is illustrated in Figure 3.3.3 (right). This test is repeated at several

bias field levels. Table 3.3.3 summarizes the loadings in the piezomagnetic tests.

£ /\ = )
m \/ S =
1 1 1 1 0
t (S) o (MPa)

Figura 3.3.3: Magneto-elastic loading conditions in a piezomagnetic test (left) and the corres-
ponding piezomagnetic loop (right).

A complex magneto-elastic test consists of setting both field and stress as quasi-static,
as illustrated in Fig. 3.3.4. Such an experiment is not usually performed in the literature, but the
magneto-mechanical setup allows the evaluation of the magnetic material response under this
loading condition, which can be further used for modeling validation. As in the hysteresis me-

asurements, first, the sample is demagnetized. Then, a quasi-static field and stress are applied.
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Tabela 3.3.3: Summary of the piezomagnetic tests.

Static field and quasi-static stress

Peak uniaxial stress 0peqr = 100 MPa

Bias H-field: 5 values between 0 A/m and
3000 A/m

Piezomagnetic

Induction B(H, )

Table 3.3.4 summarizes this test.

H (A/m)

o (MPa)

t (s)

Figura 3.3.4: Quasi-static field and quasi-static stress loadings.

Tabela 3.3.4: Summary of the varying field and stress tests.

Quasi-static field and quasi-static stress

Peak uniaxial stress Opeq = 100 MPa

Peak field Hp,qr = 1500 A/m

Hysteresis

Induction B(H, )
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According to the magneto-elastic loading, the experimental measurements are clas-

sified into three main categories: (a) Under static stress and quasi-static field, (b) Under static

field and quasi-static stress - leading to the piezomagnetic behavior - and (c) with both field and

stress quasi-static. The experimental results are presented in the following sections, with the

error bars representing the error in the previously described measurement process.

3.4 Measurements under static stress and quasi-static field

3.4.1 Magnetic anhysteretic behavior

The effect of uniaxial stress on the anhysteretic magnetic behavior is presented in Fig.

3.4.1a. Notably, it is observed an important degradation of magnetization under compression.
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Similar results for low-carbon steels are found in Dobranski et al. [1985], Hubert and Rizzo

[2008]. The anhysteretic relative secant permeabilit anh an be evaluated by:
y p y Hy y

anh __ iBan )
T o Han

(34.1)

The anhysteretic relative secant permeability as a function of the applied stress for
different field values is shown in Fig. 3.4.1b. In particular, it highlights the non-monotonic
effect of stress on the magnetization. The maximum anhysteretic permeability is reached under

O, = 40 MPa. Then, the permeability decreases under increments of tension.
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(a) Effect of uniaxial stress on the anhysteretic (b) Magnetic permeability for different values of ap-
behavior. plied magnetic field.

Figura 3.4.1: Anhysteretic measurements.

3.4.2 Magnetic hysteresis

The magnetic hysteresis is the behavior under a quasi-static regime. Such a regime is
defined as being independent of the loading frequency. An experimental analysis is presented to
define the conditions for which the magnetic material response is approximately independent of
the loading frequency. However, a drift may appear during the integration of the low frequency
voltage of the B-coil. A drift correction method is then addressed. Subsequently, experimental
measurements of the hysteresis behavior under static stress are presented. An explanation of

the coupled magnetic behavior from a microscopic perspective is detailed.
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3.5 Definition of the quasi-static regime

A characterization without stress indicates that a frequency of 1 Hz does not allow
a quasi-static assumption for this material sample, as seen in Fig. 3.5.1a, where a significant
change is observed in the coercive field H. when comparing measurements at 1 Hz and 25
mHz. The remanent induction (Fig. 3.5.1b) is less sensitive to changes in frequency for this
stress-free case. The hysteresis measurements under uniaxial stress are performed considering
that the frequency of 25 mHz allows reaching the quasi-static regime. Such a value cannot be
considered general since it is dependent on the prescribed waveform for the current, but it was

empirically determined as relevant for the measurements shown here.
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g ot
X i
— 400} = ] e
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T g00t FEE ] 05[+
|
L 1
LB
0 - - - - 0 . ' ' '
0 2000 4000 6000 8000 0 2000 4000 6000 8000
Hpeor(A/m) Hpyear(A/m)
(a) Coercive field. (b) Remanent induction.

Figura 3.5.1: Stress-free measurements at several frequency levels.

3.6 Correction of drift in magnetic induction

The integration DC drift - or a cumulative offset - in voltage measurements can be
related with thermal variation of electronic components Garcia and Rivas [2005]. This becomes
more problematic with the choice of the frequency of 25 mHz for the input waveform. The drift

in the measured induction B, is linearly corrected with:

t
Bcor = Bmes + A_l (Bl(ngx - ngx) s (361)

(1)

considering the difference between two peaks: in Fig. 3.6.1 they are taken as By, 4y at

t =0sand B,(,izx atr = 40 s, with time difference denoted by Ar.
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Corrected

— -~ Measured — — — Drift

Figura 3.6.1: Drift correction in induction after the first magnetization.

3.7 Hysteresis measurements

The magnetic hysteresis measurements under uniaxial stress are presented in Fig.
3.7.1. The stress effect on the macroscopic hysteresis loops are noted specially under high
compression. For example, at -100 MPa, the bowing of the hysteresis curves in the low field

region, also seen in Fe-Si LoBue et al. [2000], Singh et al. [2016], is observed.

2 ,
0 MPa\

100 MPa—_,

2 L L L
-5000 0 5000
H(A/m)

Figura 3.7.1: Hysteresis curves measurements under uniaxial stress.

The hysteresis losses are obtained by numerical integration of the surface of each
hysteresis loop. Fig. 3.7.2 shows the hysteresis losses under uniaxial stress as a function of
the maximum induction. Comparing the hysteresis losses for the same induction level is a
common presentation of these results. The hysteresis losses under uniaxial stress for the same
induction level are presented in Fig. 3.7.3. It can be noted that compression applied along
the magnetization direction strongly increases the quasi-static losses. Such a loss trend is also
observed in Fe-Si LoBue et al. [2000], Singh et al. [2016].

The effect of uniaxial stress on the magnetic hysteresis can also be analyzed at specific
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Figura 3.7.2: Measured hysteresis losses as Figura 3.7.3: Hysteresis losses as a func-
a function of peak induction for different tion of uniaxial stress.

uniaxial stress levels.

regions of the hysteresis loop. Figs. 3.7.4 and 3.7.5 present the coercive field H. under several
levels of peak magnetic field and peak induction, respectively. As observed in Fig. 3.7.5, the
coercive field follows the trend of the hysteresis losses under uniaxial stress.

The uniaxial stress effect in the remanent induction B, for several levels of peak mag-
netic field is presented in Fig. 3.7.6, and in Fig. 3.7.7 under several levels of peak induction.

Compression strongly affects the remanent induction.
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Figura 3.7.4: Measured coercive field as a function of uniaxial stress and under various peak
magnetic fields.
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Figura 3.7.5: Measured coercive field as a function of uniaxial stress and under various peak

induction levels.
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Figura 3.7.6: Measured remanent induction as a function of uniaxial stress and under various
peak magnetic fields.
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Figura 3.7.7: Measured remanent induction as a function of uniaxial stress and under various
peak induction levels.

The longitudinal and transverse magnetostriction strain under uniaxial stress are pre-
sented in Figs. 3.7.8 and 3.7.9, respectively. Despite the noisy measurements, the influence of

the stress state on the shape of the magnetostriction butterfly loops is notable. Moreover, by
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plotting the relation " (M), the hysteresis effects on the magnetostriction strain are significan-
tly reduced. These curves indicate that most of the hysteresis observed on €*(H) comes from
the one observed on the B(H) characteristic. Besides, the € (M) measurements highlight the
rotation mechanism: for example, taking the stress-free case, the longitudinal magnetostriction
strain increases until M ~ 1.3 MA/m, then starts to decrease. Such a behavior is characteristic

of the rotation mechanism present under high fields.
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Figura 3.7.9: Transverse magnetostriction strain under uniaxial stress.

Magnetic field with higher harmonics forming asymmetric minor loops increase the
hysteresis losses. By applying the magnetic field waveform of Fig. 3.7.10, the magnetic ma-
terial response under this magnetic field and uniaxial stress is presented in Fig. 3.7.11. The

asymmetric minor loops are notable, with the shape varying depending on the level of stress.
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Figura 3.7.11: Magnetic hysteresis under uniaxial stress and field with harmonic content.

3.8 Measurements under static field and quasi-static stress

As previously introduced, to measure the piezomagnetic behavior, the force is applied
after stabilizing the current at the bias level. In the results hereafter presented, the cyclic force is
applied with a speed of 0.5 mm/s. As in the magnetic hysteresis measurements, a drift correction
on induction is performed for each test.

The measured piezomagnetic behavior is shown in Fig. 3.8.1 considering several
levels of static field. It can be observed that under a high static field, the relation B(o) is almost
linear, which is an interesting behavior for designing force sensors. Another feature is related
to the shape of the piezomagnetic loops, for which the anhysteretic results under static stress
give some insights. In the region of domain rotation (for fields above 2000 A/m in Fig. 3.4.1a),
there is a crossing of the curves implying that the dependence of the magnetization on stress is
reversed: a compression leads to a relatively small increase in magnetization. This behavior is

also emphasized in the piezomagnetic results of Fig. 3.8.1. Such a mechanism is experimental
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evidence of the so-called Villari reversal Cullity and Graham [2009]. Similar observations are

made on Hubert [2019], Hubert and Rizzo [2008].
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Figura 3.8.1: Piezomagnetic behavior under several levels of static field.

3.9 Measurement under both varying field and stress

The configuration with both variations of magnetic field and stress is not usual in
characterizing ferromagnetic materials. However, the magneto-elastic setup allows for this kind
of test, which gives a challenging configuration for model validation. The applied magneto-
elastic loading is shown in Fig. 3.9.1 (top left), and the magnetic field waveform is set with
two times the frequency of the stress waveform. The resulting magnetic hysteresis loops as
a function of field and stress are depicted in Fig. 3.9.1 (top right) and Fig. 3.9.1 (bottom),
respectively. A magnetic field period in the first half-cycle of stress leads to a B(H ) loop similar
to the loops observed at constant stress but unsymmetric. In the half-cycle of compression,
an interesting phenomenon can be analyzed: the combination of decreasing the magnetic field
and increasing the compression (dashed lines region in 3.9.1 (top left)) results in a drop in

magnetization observed on both B(H) and B(c) loops.
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Figura 3.9.1: Magnetic hysteresis under quasi-static field and quasi-static stress.
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The experimental measurements presented here highlight the strong coupling between
magnetic and mechanical quantities in a ferromagnetic material and some of its particular
features, such as the Villari effect and the non-monotonic effect of stress on magnetiza-
tion. A good predictive modeling strategy should be able to reproduce such a complex

behavior, with a limited set of parameters that could be identified from standard material

characterizations.
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4 Energy-based magneto-elastic hysteresis model under cons-
tant stress

This chapter presents a magneto-elastic hysteresis model under static mechanical
stresses, mainly based on the papers da Silva et al. [2022, 2023]. As discussed in Chapter 2, an
hysteretic magneto-elastic model is sought considering fully multiaxial loadings, thermodyna-
mic consistency, and the implementation into numerical analysis tools. For the stress-free case,
the hysteresis energy-based model Henrotte et al. [2006], Jacques [2018] fulfills these require-
ments. Therefore, this chapter presents an extension to the magneto-elastic case by combining
the energy-based hysteresis approach with a multiscale anhysteretic model. Such an association
results in an hysteresis model allowing multiaxial magneto-elastic loadings. Three situations
under static stress are presented to validate the proposed approach: first, the model is applied to
represent the magnetic behavior of a low-carbon DC04 steel - previously introduced in Chapter
3 - under uniaxial stress and alternating field. Then, using experimental data from the litera-
ture, the model is applied to a Fe-Si electrical steel under multiaxial stress configurations and

alternating and rotating fields.

4.1 Thermodynamic formulation

In the framework of continuum thermodynamics, the energy balance - or first law of
thermodynamics - in a ferromagnetic material at the macroscopic scale is composed of mecha-
nical, magnetic, and thermal components. As detailed in Appendix D, the first law of thermody-

namics can be written as Kovetz [2000]:

u=H-B+0o:e—divg, 4.1.1)

it is the time-derivative of the internal energy density, the dot product H-B represents
the magnetic power density, the double-contraction product o : £ represents the mechanical
power density, and g the heat flux. The second law of thermodynamics can be expressed as

Houlsby and Puzrin [2000]:

75> —divg+erad T - (%) 4.1.2)
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with s the entropy and T the temperature. Defining the Helmholtz free energy as:

=

f(e,B,T) =u(e,B,s)—Ts, (4.1.3)

combining (4.1.1), (4.1.2) and (4.1.3), and neglecting spatial and temporal thermal

variations, the Clausius-Duhem inequality (CDI) for the magneto-mechanical case writes:

D=H-B+o:é—f>0, (4.1.4)

with D the dissipation, which can also be written in terms of the Gibbs free energy g
defined by:

4.1.5)
The dissipation is then:

D=-H-B-G:e—g>0. (4.1.6)

The irreversible behavior is described through the evolution of internal variables. The

magnetization M is introduced as an internal variable, such that the time-derivative of the Gibbs
free energy g is given by:

o, H.M e . M. 4.1.7
& ) oH " am @10
Replacing (4.1.7) into (4.1.6):

- dgl o 8g] . dg >
D=—-|B+—=|-H—- —|:0——=-M>0. 4.1.8
{ +8H} [€+86 o i ( )

The following relationships are defined and are considered as sufficient conditions to
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respect the constraint of the second law of thermodynamics:

B=--2, (4.1.92)

E=—— (4.1.9b)

D=——73=-M2>0. (4.1.9¢)

To characterize the irreversible behavior in terms of the internal variables, first, a
dissipation function ¢, (1\71 ) is introduced such that ¢, : R, — R,. The dissipation function can

be non-smooth - or non-differentiable at some points - and per definition is characterized by

Miehe et al. [2011]:

d d
—a—‘?,:i,d. (4.1.10)
M an
From (4.1.9¢), the dissipation inequality can be written as:
d °,
p=2% 10 4.1.11)
oM

and the following constraints in defining ¢; are necessary conditions to respect the

restrictions of the second-law of thermodynamics:

¢4(0)=0  and ¢d(1\.2) > 0. (4.1.12)

In the case of rate-independent dissipation functions, which is the interest here, ¢, is

assumed to be positively homogeneous of degree one and therefore Miehe et al. [2011]:

(pd(TA:/}) :T‘Pd(A;/I) with  TER,,. (4.1.13)

Using the chain rule and the positively homogeneous of degree one property, the

following identity is obtained:

994 i — o,(h). (4.1.14)
oM

Therefore, the dissipation function ¢4 (M) defines the evolution of dissipation D by:
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D:¢d(ﬁ)zo. (4.1.15)

From (4.1.10) it can be noted that a minimization procedure can be defined if the
energy density g and the dissipation function ¢, are identified. Particularly, the definition of
Oq (M ) needs to take into account the constraints of (4.1.12). As discussed in Chapter 2, in this
energy-based approach the magnetic hysteresis is modeled by analogy with a mechanical dry-
friction system Bergqvist [1997], Henrotte et al. [2006]. The dissipation function ¢, is given
by:

¢a(M) = pox||M||, (4.1.16)

with K a pinning parameter, a positive scalar. k can be defined as a symmetric
positive-definite matrix to consider the anisotropy Prigozhin et al. [2016]. As presented in
Francois-Lavet et al. [2013], to formulate a minimization from (4.1.10), first, for small enough

time-steps, the dissipation ¢, is approximated by:

|M — M|

—_— 4.1.17
YR ( )

¢a(M) ~ ok

with A7I( p) the magnetization at the previous time-step. Taking into account the appro-

ximation for ¢, into (4.1.10):

8‘7’_0’ ~ qa‘p‘ﬁ = At a—")f. (4.1.18)
aM a M—M(p) 8M
At

The magnetization M can be calculated from a minimization given by:

d S ~ — : =~ o oo
i g(o,H,M)+ At ¢d(M)] =0 — M =argmin [g(G,H7M)+LLoK||M—M(p)|| :
(4.1.19)
The energy density g(o,H, M) can be chosen as:
g(G,H,M)Zf(()',M)—u()?—],LOH-M—E(CK G) .o, (4.1.20)

with f (G,M ) a free energy density that can be obtained from the partial numerical
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inversion of a magnetic anhysteretic model. The time-derivative fN"is:

rev-

: . Lo 1 of
oM)=—¢e":0o Hyp-M ith =M d — =
f(o,M) + toH ey wi 35 an o M
4.1.21)
and the reversible field H,, is introduced. With the choice of g(o H.M ), (4.1.92) and

(4.1.9b) are:

dg L S
- S (H+M> — B
g H It 4.1.22)
_%8 _ ——f+<€*16:£“+ee =€,
do do
supposing small strains, with & the stiffness tensor and €° the elastic strain. From
(4.1.9¢):
dg  Iof - L _
%8 9 e = <—H, +H> = UoHiyy, 4.1.23
Y7, o Mot = Ho ev HoH, ( )

and is introduced the irreversible field FI,-,, such that the field decomposition is high-
lighted H = Hye, + Hjy.r.
Combining (4.1.19) and (4.1.20), the minimization can be established by:

—

M = arg min [f(c,ﬂ)—Hoﬁ'M+HOK||M_M(p)H}
(4.1.24)
subject to  ||M|| < M

by considering that ¥ does not depends on M, so the term (%’1 G) : O is constant,
and it can be neglected in evaluating M. The term ,LLOH -H also is constant, and can be neglected
in the minimization. For the stress-free case, (4.1.24) returns the same formulation as presented
in Francois-Lavet et al. [2013].

A summary of the thermodynamics laws and approximations considered is presented

in Table 4.1.1.

4.2 Reversible behavior and simplified multiscale model

The reversible behavior is modeled using a simplified multiscale approach (SMSM)

Daniel et al. [2015], a simplified version of the model presented in 2.3.1. The scales considered
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Tabela 4.1.1: Summary of the thermodynamic laws for the magneto-elastic case.

= . -5 .

= u=H-B+oc:e—divg

z

E -

= T§2—dW6+gde-(?)

=

N

= D=H-B+c:é—f>0

U . =
Considering T =0, grad7 =0

are represented in Figure 4.2.1. In this work, we are interested in modeling the behavior of
the RVE. The following assumptions are made: (a) the material behavior is initially isotropic,
(b) internal demagnetizing effects are negligible, and (c) both applied magnetic field and me-
chanical stress are homogeneous at the representative volume element (RVE) scale (denoted by

).

| | | >
| | 1 ’

Domain scale Representative Macroscopic scale

volume element

(RVE)

Figura 4.2.1: Scales involved in the reversible modeling.
In a domain family with direction @&, the magnetization My is:

Ma :Ms& =M, [(Xl (0%) OC3]t, (421)

with M the saturation magnetization. The magnetostriction strain €, for isotropic

behavior is:

3. /. . 1
85:5%(a®a—§0, (4.2.2)

where Ay denotes the maximum magnetostriction strain. The energy variation dg, for
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a time step dt at the domain scale is written Hubert [2019]:

dgo = —MoMy -dH — &4, : do, (4.2.3)

with €4 the total strain at the domain scale. The magnetic part of the Gibbs free

energy is defined by the integration over the magnetic field path (at constant stress):

g0 = —poMq -H. (4.2.4)

Considering small perturbations: €4 = £, + &4, with £%, the elastic strain. Supposing
uniform strain in the single-crystal, the magneto-elastic part of the Gibbs free energy is written

by integration over the stress path (at constant field):

gnell) — gl g, 4.2.5)

As shown in Chapter 3, the effect of stress on magnetization is non-monotonic. This
simplified approach does not capture such a tendency. This drawback, as discussed in Chapter
2, can be described by adding a second-order term - quadratic in stress - in the magneto-elastic
energy definition Hubert [2019]. The magneto-elastic energy is therefore defined as da Silva
et al. [2022]:

me 3 = P! 1 7 7
B <a® - §1) : (Reh), (4.2.6)

with gq = g¢"¢ + g¢. In this definition, the second-order magnetostriction constant

QLS’ is introduced and the equivalent stress o, is chosen as Daniel and Hubert [2009]:

3. ! }
Oeqg = Eht (G — gtf((f)[) h. 4.2.7)

The magnetostriction strain is composed of the sum of (4.2.2) with a second-order
1(2)

magnetostriction strain €y :

me(2)
Sg(z) — _agﬁt — glslaeq

- - 1
6 > <h®h — 51) , (4.2.8)

1) (i)

W | —

<Fx®6z—
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(2))

such that the property tr(eg =0 1s observed.
Considering a particular case with the magnetic field direction h= [100] and 6 =

o11(h@h) yields:

1
851(12) = 3)(«!0'11 (0612— —)

3
2 2 3 1
2 2 2
ggl(z) = 831(3) = 852(3) =0.

Therefore, introducing a second-order term in the magneto-elastic energy results in a

magnetostriction strain that is stress-dependent. A, can be defined as (see Appendix B):

As

A=
20,

A\

(4.2.10)

where o, is the value of applied uniaxial stress corresponding to the maximum mag-
netic permeability. Combining (4.2.6) and (4.2.10), the magneto-elastic part of the Gibbs free
energy is:

2

G — -
g = _giely eﬁ:(h@h). 42.11)
20,

The energy balance at the domain scale in this approach is composed of a magnetic

and a magneto-elastic parts. These energy terms are summarized in Table 4.2.1:

Tabela 4.2.1: Summary of the energy description at the domain scale

Energy Expression
Magnetic gu® = —oMy, - H
o2 S
Magneto-elastic g = _—c e+ Ll (h ®h>
20,
Total go=8a +86°

The volume fraction py of a domain family with direction & is evaluated using a

Boltzmann relation Buiron et al. [1999]:

_ exp(~As ga)
Zexp (_As goc) ’
o

(4.2.12)

[0
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where the parameter A is proportional to the initial susceptibility Yo of the stress-free

anhysteretic curve Daniel et al. [2008]:

A= ;0 . 4.2.13)

In this simplified approach, the set of possible domain family orientations is defined
through the nodes of an icosphere Daniel and Galopin [2008]. Here, an icosphere with 2562

nodes is used to represent the set of possible domain orientations, as illustrated in Fig. 4.2.2.
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Figura 4.2.2: Icosphere with nodes representing the possible domain orientations.

The macroscopic (see RVE in Fig. 4.2.1) magnetization M and magnetostriction strain

e! are finally defined as:

M=Y paMg and  e" =Y pueh. (4.2.14)
o o

4.3 Vector-play approximation

The minimization of (4.1.24) can be computationally expensive. An explicit approach
presented in Henrotte et al. [2006] is here considered to simplify the implementation. The

magnetic field decomposition is here recalled:

H = Hyo, + Hiy. 4.3.1)

As seen in Chapter 2, because the dissipation ¢, (M ) in non-differentiable at M=M (p)>

the subsequent set defines the derivatives of ¢,;:
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- Hiyp, HHtrrH <K, itM :M(p)
d¢,(M) c . (4.3.2)
o\ a M — M) : .
irr = K———=-——, otherwise.
M — M|

The following simplification can be made: the direction of Hj, is written in terms of
the reversible field at the previous time step Flrev( p)- This results in a vector-play model Henrotte

et al. [2006]. Using this approximation, the explicit update procedure of Hye, at each cell is:

if HH_Hrev(p)H <K
Hypp = H—H (4.3.3)
Kfm(m otherwise.
HH _Hrev(p) H
To model the first magnetization curve, symmetric and asymmetric minor loops, the
pinning parameter can be represented by a statistical distribution of pinning fields «* with N

dry-friction systems (or cells), with normalized weights o that verify Francois-Lavet et al.

[2013]:

N
Y of =1 (4.3.4)
k=1

In this case with several cells, the explicit update of the reversible field ﬁfev at the k

cell is given by:

7k e _ gk
Hien ) if A = Hg,p | <
HY = H— H* (4.3.5)
H—«* #fv(m, otherwise.
The weighted sum of all k-cells contributions in magnetization Mk(c,ﬁfev) and mag-

netostriction strain € ’k(G,ﬁfev) gives the total magnetization M and the total magnetostriction

strain e*:

—

N
M= %) and et =Y w'e*¥(c,HE,). (4.3.6)

1 k=1

kil (o, FiE

M=

k

The model can be summarized as follows: the inputs are the magnetic field Hye, and
the mechanical stress o. The reversible field Ijlfev is calculated using the analogy with a dry-

friction system (4.3.5). Flfev and o are the inputs of the SMSM. The variables Mk(c,ﬁfev) and



4.4 Application under uniaxial stress and alternating field 86

eu’k(a,ﬁfev) are then evaluated. This procedure is repeated for each cell. M and e are then

defined by (4.3.6). A simplified schematic of the algorithm is presented in Fig. 4.3.1.

At each k-cell

___________________________________

I
I
- | Py i1k rk I —
Ji Dry-friction H'r'ev= SMSM M E= Vi
! system M, A, cHok! Weighted sum
T kR Moo A Ly —> e
|
I I
L 1

Figura 4.3.1: Principle of the hysteresis model under static stress. The material parameters are
indicated in red.

4.4 Application under uniaxial stress and alternating field

The magneto-elastic model is entirely defined by the parameters of the anhysteretic
behavior, here based on the SMSM, and the probability distribution of pinning field K* and of.
The parameters are evaluated from anhysteretic and hysteretic characterizations under uniaxial

stress performed on DC04 steel, presented in Chapter 3.

4.4.1 Identification of material parameters
4.4.2 Reversible parameters

The reversible parameters M;, A, and Xy are identified from anhysteretic characteri-
zation without applied stress. M; is the maximum magnetization measured on the stress-free
M(H) curve. A, is the maximum longitudinal magnetostriction strain obtained on the stress-
free magnetostriction curve. Y is the slope, at H = 0, of the anhysteretic stress-free M(H)
curve. Ay is calculated from Yo by using (4.2.13). ),; can be identified from (4.2.10) from a set
of measured anhysteretic permeability under uniaxial stress, such that the maximum magnetic
permeability corresponds to the stress level 6,.

The identified reversible parameters are given in Table 4.4.1. The modeled anhystere-
tic behavior is shown in Fig. 4.4.1 (right) and exhibits a good agreement with the measurements
in Fig. 4.4.1 (left). Fig. 4.4.2 shows that the SMSM with a second-order term can capture the
reversible behavior and the non-monotonic effect. Differences become apparent, especially for
tensile stress of 100 MPa, where the model underestimates the relative permeability at low fi-

eld. Such a tendency is inevitable with the proposed description (second-order elastic energy
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term), which imposes the permeability curve to be symmetric with respect to o;,, as shown in
Appendix B, and results in a bell shaped curve. A possibility to improve this drawback would
be using a stress-dependent demagnetizing term in the free energy, as proposed in Daniel et al.
[2014], instead of or as a complement to the second-order approach. Another option would be

introducing higher order terms in the elastic energy, to the price of additional material parame-

ters.

Tabela 4.4.1: Parameters of the SMSM.

M, (A/m) A (ppm)  A; (ppm/MPa) A (m*/))
1.3910° 5.5 ~691072 141072

0 MPa 7100 MPa
(HLQ[PH
1.5}
\-100 MPa
—~ -80 MPa
S i
~ -60 MPa
s
Q
0.5}
0 [ 1 1 1 1
0 1000 2000 3000 0 1000 2000 3000
Heh (A/m) qe (A/m)

Figura 4.4.1: Effect of uniaxial stress on the anhysteretic behavior: Measurements (left) and
model (right).

8000

6000

4000+

anh
r

2000

0 | | | .2000 A/m|
-120 -60 0 Om 60 120

Figura 4.4.2: Comparison of measured (error bars) and modeled (solid lines) anhysteretic rela-
tive magnetic permeability for different values of applied magnetic field. The maximum anhys-
teretic permeability is observed at 0,, = 40 MPa.
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4.4.3 Dissipative parameters

The identification of the distribution @ (k) usually requires the measured stress-free
coercive field under several peak magnetic fields Henrotte et al. [2006], Scorretti and Sixdenier
[2022]. Considering a magnetic case with applied field along h= [10 0], an identification
method of ®* and k¥ is presented in Henrotte et al. [2014], Jacques et al. [2018]. This procedure
is based on the homogenization of reversible field, where an auxiliary function F(H) is defined
(see Appendix E). The second derivative of F(H) is the probability distribution w(x). The
identification of F (H) (as explained in Appendix E) can be performed from a set of measured H,
under increasing peak magnetic fields H ... These experimental measurements are presented in
Figs. 4.4.3a and 4.4.3b for the stress-free case. This curve is extrapolated outside the measured

range using (4.4.1) Jacques et al. [2018]:

2
4 H .
H.(H) = H"™" (W) if H<H"™" (4.4.1)

where H,™" is the lower measured coercive field on the corresponding peak magnetic
field H™". The identified F (H) and its derivatives oy F (H) and 03 F (H), are presented in Fig.
4.4.4. The derivatives are evaluated with a finite difference method. The non-zero component
for x(0) represents the reversible bending of Bloch walls Henrotte et al. [2006]. The continuous

probability distribution is then discretized into 25 cells (see (E.0.10) in Appendix E).

200} H{/%,}—E”’E

A/m)
f

> 100+
H ;nin I

-5000 0 5000 0 H™™ 2000 4000 6000 8000

He(

H(A/m) Hpeo,(A/m)
(a) Hysteresis loops. (b) Coercive field.

Figura 4.4.3: Stress-free measurements under increasing magnetic field.

An applied compression increases the coercive field, as observed in the measured
hysteresis curves of Fig. 3.7.1. The pinning parameter k is directly related to the coercive field.
We propose to model the stress dependence of dissipation parameters as follows: starting from

the identified discrete pinning field distribution for 0 MPa, the weight @ is kept constant under
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Figura 4.4.4: Identified auxiliary function for the stress-free case, first and second derivatives
that represent the pinning field cumulative distribution and probability distribution, respectively.

stress. The pinning field k(o) evolves as:

K(0) = a(0.4)k(0) with a(Ceg) = < (4.4.2)

with x(0) the identified pinning field for 0 MPa, and a(o,,) a function that is fitted in
order to match with the measured H.(c)/H,.(0). This coercive field characteristic under stress
is presented in Figure 4.4.5 in the case of a uniaxial stress applied parallel to the magnetic
field direction. It can be noted an exponential behavior of H. under compression and a close
to constant behavior under tension. For other materials, such as Fe-Si Singh et al. [2016], the

exponential tendency of the coercive field under compression is also observed.

% ' % Meas. H.(o)/H.(0)

a(o)
2r Used for parameter]
fitting

X

s 15 \

X

i \XM
-100 -50 0 50 100
o (MPa)

Figura 4.4.5: Function a(o,,) at several stress levels.

A phenomenological description of a(o,,) is then adopted:
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a(0.q) = ayexp (—exp(as +a30ey)) +1, (4.4.3)

with o, the equivalent stress (4.2.7). The parameters ay, ap and a3 are fitted (using
the Curve Fitting Toolbox of Matlab) from four measured coercive fields under 0 MPa, -20
MPa, -40 MPa and -100 MPa, respectively, for the same peak magnetic field. The identified
parameters are presented in Table 4.4.2. Fig. 4.4.5 shows that (4.4.3) is appropriate to represent

the measured coercive field characteristic under uniaxial mechanical loading.

Tabela 4.4.2: Fitted parameters for a(o).

al a a3 (MPa’l)
1.25 1.2 0.04

The identification procedure of the dissipation parameters can be summarized as fol-
lows: from the stress-free curve of coercive field with increasing magnetic field, the method
presented in Henrotte et al. [2014], Jacques et al. [2018] allows identifying @ (x(0)). By using
standard measurements of coercive field under stress, the function a(o,,) is fitted, and the de-

pendence k(o) is defined based on (4.4.2).

4.4.4 Validation

The proposed magneto-elastic model results in the hysteresis curves presented in Fig.
4.4.6 (right). The tendency of slant under compression - as observed in measurements of Fig.
4.4.6 (left) - is captured by the simulation. However, the model does not reproduce the in-
flections in the hysteresis curve - more evident under -100 MPa. This measured behavior is
attributed to the crystallographic texture, whereas in the proposed model, only an equivalent
single crystal representing the macroscopic behavior is considered. A simplified texture multis-
cale model (STMSM) Bernard et al. [2019] may overcome this limitation, but it is not treated
in the validation results presented below.

Fig. 4.4.7 presents a comparison of the modeled coercive field with the measured
symmetric minor loops under uniaxial stress. It must be noted that the validation is performed
by comparison to experiments that have not been used for identification purposes. For the
sake of clarity, the measured values used for identification are explicitly labeled in Fig. 4.4.7.

Differences are observed in the major loop under tensile stress (25% for 20 MPa and 5050 A/m)
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Figura 4.4.6: Hysteresis curves under uniaxial stress: Measurements (left) and model (right).

but the general behavior under stress is captured by the simulation. The second-order term in
the magneto-elastic energy definition allows the representation of the non-monotonic effect of

tensile stress on the remanent induction B, as seen in Fig. 4.4.8.

H,; =290 A/m H,, = 420 A/m H,,; = 1055 A/m H,.; = 5050 A/m
500 500 500 500
400 400 400 400
5 300} { & 300 { & 300} { & 300} ]
~ ~ ~ ~
= = = = I T
= 200 o 200 % = 200 o 200 I
100} I\III 1 100 {100} {100} ]
0 0 0 0
IR S S S B O ®® SR RS
o (MPa) o (MPa) o (MPa) o (MPa)

Figura 4.4.7: Comparison of measured (error bars) and modeled results (solid lines) of coercive
field as a function of uniaxial stress and under various peak magnetic fields. The red boxes
indicate the measurements used in the identification of the parameters of the model.

Hy, = 290 A/m Hyp = 420 A/m Hyp = 1055 A/m Hypy, = 5050 A/m

0
>QQ f’aQ Q <QQ \/QQ /\,QQ fDQ Q 406 \QQ :\QQ fDQ Q <,‘)Q \QQ /\9Q f’oQ Q <QQ ‘\QQ
o (MPa) o (MPa) o (MPa) o (MPa)

Figura 4.4.8: Comparison of measured (error bars) and modeled results (solid lines) remanent
induction as a function of uniaxial stress and under various peak magnetic fields.
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The prediction of hysteresis losses under stress is plotted in Fig. 4.4.9 by numerical
integration of the surface of each hysteresis loop and is presented as a function of the maximum
induction level. This calculation is a blind validation of the modeling approach since no loss
measurement was used for material parameter identification. The modeling results show that the
tendency to increase losses under compression is reproduced. Significant differences are seen
mainly in the major loop under high compression. As already discussed, the SMSM does not
consider the inflections in hysteresis curves under compression, which explains the difference

of about 30% for the worst case (-100 MPa and 1.7 T).

—1.00 0 160
o (MPa)

Figura 4.4.9: Prediction of hysteresis losses as a function of uniaxial stress (solid lines). The ex-
perimental results (markers) are evaluated using measured data from Fig. 3.7.2 and polynomial
interpolation.

The modeled longitudinal and transverse magnetostriction strain components are pre-
sented in Figs. 4.4.10 and 4.4.11. The trend under uniaxial stress is captured in modeling.
However, as discussed in Hubert [2019], the inclusion of a second-order term in the magneto-
elastic energy results in an overestimation of the magnetostriction strain under high stress (see
the case of -100 MPa in Figs. 4.4.10 and 4.4.11). Additional considerations on the magneto-
elastic energy to correct this drawback - including a vanishing second-order term - are addressed
in Taurines et al. [2023].

Considering the magnetic field waveform of Fig. 3.7.10, the comparison of measure-
ments and model is presented in Fig. 4.4.12 for two levels of uniaxial stress. Under a tensile
stress of 80 MPa, because the hysteresis curve is less slanted, only one asymmetric minor loop
is clearly visible, with the others remaining in a region above 1000 A/m. Again, this compari-
son is independent of the identification process, so it can serve as a validation for the model. A
good agreement between the model and experiment is observed, despite the harmonic content

of the H waveform.
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Figura 4.4.10: Longitudinal magnetostriction under uniaxial stress: Measurements (left) and
model (right).
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Figura 4.4.11: Transverse magnetostriction under uniaxial stress: Measurements (left) and mo-
del (right).

Measurements 9 Model 9 Measurements 9 Model
-80 MPa -80 MPa 80 MPa 80 MPa
1 1 1 1
= 0 g 0 g 0 ) 0
Q Q Q Q
-1 -1 -1 -1
- -2 - -2
-2000 0 2000 -2000 0 2000 -2000 0 2000 -2000 0 2000
H (A/m) H (A/m) H (A/m) H (A/m)

Figura 4.4.12: Hysteresis curves under uniaxial stress and considering the magnetic field wave-
form of Fig. 3.7.10.

An extension of the energy-based vector-play magnetic hysteresis model has been pro-
posed in order to incorporate the effect of stress on magnetization. This extension essen-
tially consists of the association of the vector-play model with an anhysteretic simplified
multiscale approach. This combination results in a magneto-elastic vector model appli-

cable to multi-axial stress configurations. Stress-dependent dissipation parameters can

be identified from a few measurements, mostly under compression.
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An accurate prediction of coercive field and remanent induction under stress was obser-
ved compared to experimental measurements performed on low-carbon steel. Including
a second-order development in the magneto-elastic energy enables the description of the
non-monotonic evolution of the magnetic permeability under stress, but limitations, es-
pecially under high stress, are also observed. The magneto-elastic model can predict
the general behavior of hysteresis losses under mechanical loadings from a small set of

parameters and reasonably reproduce asymmetric minor loops.

4.5 Application under multiaxial stress and alternating field

In this section, the magnetic response of a non-oriented (NO) Fe-Si steel under a
multiaxial mechanical state is simulated using the vector-play model previously presented. In
contrast with Section 4.4, where a simplified multiscale model was shown to appropriately
represent the reversible behavior of a DC04 steel, the crystallographic texture has a more sig-
nificant role when analyzing the magnetic response of Fe-Si. Therefore, in what follows, the
anhysteretic behavior is modeled from a multiscale approach where the crystallographic texture
is considered, as already presented in Section 2.3.1. The model summary is presented in Fig.
4.5.1. Moreover, only the first-order development of the magneto-elastic energy is considered

due to the drawbacks of the second-order approach, as previously discussed.

At each k-pinning field

3 s A

H »| Dry-friction |—3 MSM . —> 77
svstem Weigthed
3;6 " A100, A111, M etk sum

o » K w > K1, K, A, —>e#

Figura 4.5.1: Principle of the stress-dependent hysteresis model. The material parameters are
indicated in red.

The material parameters are identified from the uniaxial measurements presented in
Aydin et al. [2019b], Singh et al. [2016], and the losses prediction under biaxial stress is com-
pared with the measurements of Aydin et al. [2019b]. In this multiaxial case, an orthonormal
vector basis (€],€»,€3) is defined, in which €| is the rolling direction (RD), &> the transverse

direction (TD), and ¢€5 the normal direction.
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4.5.1 Identification of material parameters

The measurements performed on a non-oriented (NO) Fe-Si electrical steel Aydin
et al. [2019b], Singh et al. [2016] are used for the parameters identification. The discrete pole
figures for the NO Fe-Si material are shown in Fig. 4.5.2. This set corresponds to 24 distinct
crystallographic orientations with their corresponding volume fraction. The pole figures were
obtained using the MTEX toolbox Bachmann et al. [2010] from X-ray measurements reported

in Martin et al. [2020].

<100> <110>

Figura 4.5.2: Pole figures (24 orientations) for a NO Fe-Si alloy.

Due to the flat geometry of the tested electrical steel sheets, the measurements Ay-
din et al. [2019b], Singh et al. [2016] were performed considering in-plane stress assumption.

Therefore, the stress tensor can be written in Voigt notation as:

O = [(711 02?2 (712] (4.5.1)

4.5.2 Reversible parameters

The parameters 4111, K, and K, can be found in Jiles [1991] for a Fe-Si material. Due
to the simplifying assumptions to model the reversible behavior, the parameters M, and Ao are
adapted for the modeling results to match with measurements of anhysteretic magnetization and
magnetostriction strain for the stress-free case. The parameter Ay is identified from a stress-free

anhysteretic curve using (4.2.13). The identified material parameters are listed in Table 4.5.1.

Tabela 4.5.1: Parameters of the reversible modeling.

M (A/m) Ao (ppm)  Arp (ppm) K (KI/m?) Ko (kJ/m?®) A, (m*/))
1.410° 11.5 45 38 0 1.11072

The anhysteretic behavior for the stress-free case is presented in Fig. 4.5.3. The
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magnetization is oriented along RD and TD. The model satisfactorily reproduces the measured
reversible behavior for the stress-free case with magnetization along RD. The modeling predic-
tion of the anhysteretic behavior along TD highlights the anisotropy of the material due to the

crystallographic texture.

0 1000 2000 3000
H (A/m)

Figura 4.5.3: Comparison between measured (error bars) and modeled (solid line) stress-free
anhysteretic behavior along RD. The dashed line represents the prediction of the stress-free
anhysteretic behavior along TD.

Fig. 4.5.4 (left) presents the measured longitudinal (along RD) component of the
magnetostriction strain with magnetic field and uniaxial stress applied in this same direction
Singh et al. [2016]. The model (Fig. 4.5.4 (right)) captures both the trend under uniaxial stress

and the rotation mechanism under high field.

Measurements [o11 022 012] Model

[100 0 0] MPa
[60 0 0] MPa 10}
[40 0 0] MPa
[15 0 0] MPa
[10 0 0] MPa
[5 0 0] MPa

[0 0 0] MPa

0 1 [-5 0 0] MP 0
S [-10 0 0] Mlga

10}

¢/, (ppm)
(<4

¢/, (ppm)
[=5]

: : : [-15 0 0] MPa : -
0 0.5 1 15 200 0] MPa 0 0.5 1

M; (MA/m) £30 0 0] MPa M; (MA/m)

Figura 4.5.4: Comparison between measured (left) Singh et al. [2016] and modeled (right)
magnetostriction strain along RD under uniaxial stress. Both magnetic field and stress are
applied along RD. In-plane stress tensor in Voigt notation.

4.5.3 Irreversible parameters

The distribution m(x) is identified based on the protocol presented in Henrotte et al.

[2014], Jacques et al. [2018] for the stress-free case, using a set of measured coercive fields

15
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under several amplitudes of alternating magnetic field. The pinning field k can be described by a
symmetric positive-definite matrix to consider the anisotropy Prigozhin et al. [2016]. However,
such an approach would require measurements along RD and TD to characterize the anisotropy
and identify the dissipation parameters. Here, the anisotropic effects are considered only from
the anhysteretic behavior. The hysteresis loops used for the identification of (k) are shown in
Fig. 4.5.5 for applied field and measurements along RD. The identified pinning field distribution
is presented in Fig. 4.5.6. For numerical purposes, the continuous distribution presented in Fig.

4.5.6 is discretized into 25 cells.

15 . 0.025
1t 1 0.02}
0.5} ] =
o < 0.015)
— 0 g
ad S 0.01f
0.5 3
Al 0.005}
-1.5 ' 0 '
2500 0 500 0 100 200 300 400 500
H, (A/m) K (A/m)
Figura 4.5.5: Measured stress-free hyste- Figura 4.5.6: Identified probability distri-
resis loops under increasing magnetic field bution for the stress-free case.
applied along RD.

The evolution of the pinning parameter under stress can be defined as:

H.(0)
H.(0)

K(0) = a(0eq)k(0) with a(Ceq) = (4.5.2)

with a(o,4) identified from uniaxial stress measurements of the coercive field H., and
O.4 1s an equivalent stress. The effects of shear with respect to the magnetic field are neglected
in the equivalent stress of Daniel and Hubert [2009], previously considered in Section 4.4 to
evaluate the coercive field evolution under uniaxial stress. In the present section, the equivalent
stress proposed in Rasilo et al. [2019a] is used, which allows modeling the influence of different

shear loadings on the coercive field. It is defined as:

3 \? 2
am—\/zt(am1—§d> Z if zfdzg?’”

Geq = ; 5
Om + \/E’ (Gml— §d> é, otherwise

\

(

(4.5.3)
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with & the unit vector that defines the direction of H , &' the transposed vector, and /
the second-order identity tensor. Another material parameter to identify, 6, is the value of stress
corresponding to the maximum permeability in a uniaxial configuration. d is the deviatoric part

of the stress tensor defined as:

d=0— %tr(cr)l (4.5.4)

with tr(o) the trace operator of the stress tensor. The material parameter G, can be
estimated from the permeability in the region around the coercive field. From the measurements
of Singh et al. [2016], 0,, is identified as 10 MPa.

The measured coercive field evolution under uniaxial stress for both experimental
setups Aydin et al. [2019b], Singh et al. [2016] is presented in Fig. 4.5.7. It can be noted that
despite the common trend under stress, the results differ on the level of the coercive field. This
can be attributed to differences in the preparation of samples for uniaxial and multiaxial tests.
For example, in the multiaxial setup, the placement of the B-coil involves drilling holes in the
sample. In this work, the measurements of the coercive field presented in Singh et al. [2016]
will be used for the identification of a(o,,) but shifted by AH, - the coercive field difference
for the stress-free case, to match with the experimental conditions of Aydin et al. [2019b]. This

choice is made because the measurements of Singh et al. [2016] cover a wider range of stress

levels.
120 . . .
—x——|[Singh et al., 2016]
100} —6—|Aydin et al., 2019b] |
& 8o}
=
o 60r
)
40t
20— . l |
-50 0 50 100
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Figura 4.5.7: Measured coercive field characteristic under uniaxial stress applied along RD for
the setups presented in Aydin et al. [2019b] and Singh et al. [2016].

The identification of a(o,,) is made by using the measurements along RD presented
in Singh et al. [2016] but shifted by AH,.. In the interpolation interval ([—40, 100] MPa), a(c,,)
is assumed as a piecewise linear function whose shape is presented in Fig. 4.5.8. Beyond the

measurement range, we consider this function as a constant with coercive field value defined by
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the maximum compression and the maximum tension cases.
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Figura 4.5.8: Identified a(o,,) function from measurements along RD presented in Singh et al.
[2016] shifted according to Aydin et al. [2019b]. The boxes indicate the experimental data used
for the interpolation of a(c,).

4.5.4 Validation
4.5.5 Uniaxial mechanical stress

Considering the magnetic field and uniaxial stress applied along RD, in Fig. 4.5.9, the
measurements presented in Aydin et al. [2019b] are compared with the modeling results. The
model captures the general trend under uniaxial stress. Differences are more evident when loo-
king at the shape of the hysteresis loops, where it is noted that immediately after field reversals

the modeled induction remains constant contrarily to the measured loops.

Measurements Model
1 7, 1 . 7
4

0.5 [011 022 012] 0.5 /
= [-30 0 0] MPa. -
~ 0 [-20 0 0] MPa. ~ 0 /
q [-10 0 0] MPa Q

-0.5 y [0 0 0] MPa -0.5 /

7

0
H, (A/m)

500

[30 0 0] MPa

-500

0 500
H, (A/m)

Figura 4.5.9: Comparison between measured Aydin et al. [2019b] (left) and modeled (right)
hysteresis curves (at 1T) under uniaxial stress and field applied along RD. In-plane stress tensor

in Voigt notation.

The model adequately reproduces the hysteresis losses when the uniaxial stress is

applied either along RD or TD, as shown in Fig. 4.5.10.
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Figura 4.5.10: Hysteresis losses (at 1T) with field applied along RD and under uniaxial stress.
Measurements (markers) with stress along RD (denoted by the symbol 6,,) and TD (denoted
by the symbol 0 ) Aydin et al. [2019b] and modeling results (solid lines).

When the field and uniaxial stress are applied along TD, Fig. 4.5.11 shows the compa-
rison between measurements Aydin et al. [2019b] (left) and model (right). The definition of the
pinning field as a function of an equivalent stress allows capturing the evolution of the coercive

field for this situation with field and stress applied along TD.

Measurements
1 .
-
=
0.5 [0'11 022 0'12]
= [0 -30 0] MPa
~ 0 [0 -20 0] MPa
Q [0 -10 0] MPa
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“1t &= =, L
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Figura 4.5.11: Comparison between measured Aydin et al. [2019b] (left) and modeled (right)
hysteresis curves (at 1T) under uniaxial stress and field applied along TD. In-plane stress tensor
in Voigt notation.

The hysteresis losses for the magnetic field applied along TD are presented in Fig.
4.5.12. Despite some differences (about 17% for 0 MPa), the model reasonably predicts the
loss evolution when the uniaxial stress is applied either along RD or TD. It is important to note
that the hysteresis parameters were identified by using measurements along RD. Therefore, this
is a blind prediction test for which the model shows its capability to capture the tendency of

losses under uniaxial loading.
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Figura 4.5.12: Hysteresis losses (at 1T) with field applied along TD and under uniaxial stress.
Measurements (markers) with stress along TD (denoted by the symbol 6/,) and RD (denoted
by the symbol 0 ) Aydin et al. [2019b] and modeling results (solid lines).

4.5.6 Multiaxial mechanical stress

Considering a biaxial stress loading and the magnetic field applied along RD, the
measured Aydin et al. [2019b] hysteresis loops are presented in Fig. 4.5.13 (left). The modeling
results in Fig. 4.5.13 (right) show that the model captures the degradation under shear. However,
the modeled hysteresis loop under bi-compression presents curvatures that are not observed in
the measurements. One possible reason for this difference is that in the simplified approach
presented here, the mechanical stress is taken as homogeneous in the polycrystal, which is not

the case in a real material.

Measurements Model
: ' iz
0.5 [o11 022 019] 0.5 / ]
™ [-30 -30 0] MPa o
~ 0 [-30 30 0] MPa =~ 0 / 1
Q [0 0 0] MPa Q
0.5 [30 -30 0] MPa. 0.5 / ]
[30 30 0] MPa [/
-1 | i -1 |
-500 500 -500 500

0 0
H, (A/m) Hy (A/m)

Figura 4.5.13: Comparison between measured Aydin et al. [2019b] (left) and modeled (right)
hysteresis loops (at 1T) under biaxial stress with field applied along RD. In-plane stress tensor
in Voigt notation.

The variation of the hysteresis losses Aw (%) due to the application of stress is evalu-

ated by:

w ([611 O (712]) — W ([00 O])
w([000])

Aw ([(711 02 (712]) = 100 (4.5.5)
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where w ([0 0 O]) and w ([611 o 612]) are the hysteresis losses for the stress-free
case and under biaxial stress, respectively, in Voigt notation. Fig. 4.5.14 shows this percentage
variation for both measurements Aydin et al. [2019b] and model. Notably, the model captures
the strong increase in hysteresis losses under shear when compression is applied along RD.
Also, the model shows the tendency of a decrease in hysteresis losses under shear when traction

is applied along RD.

Aw(%)
-20 0 20 40 60 80 100

Measurements

g (MP&)
o, (MPa)

-20 0 20 -20 0 20
O'// (MPa) O'// (MP&)

Figura 4.5.14: Percentage variation of the hysteresis losses compared to the stress-free case at
IT. Magnetization along RD, and under biaxial stress. Measurements Aydin et al. [2019b] (left)
and model (right).

The error ep,; between measured wy,es and modeled w4 hysteresis losses is evalua-
ted as:
Wmod — Wmes (4.5.6)

Chyst = W
mes

This comparison indicator is presented in Fig. 4.5.15. Overall, the model is capable
of modeling the hysteresis losses under biaxial stress, with main differences (around 15%) in
the case of bi-compression. The difference in this biaxial configuration is explained because the
model overestimates the degradation in the magnetization, as observed in Fig. 4.5.13 (bottom).

For a magnetic field applied along TD, the predicted hysteresis loops are presented
in Fig. 4.5.16. Although the tendency of degradation under biaxial stress is captured, some
differences are observed in the shape of the hysteresis loops. This is particularly problematic in
the case of bi-tension.

Fig. 4.5.17 shows that the trend of hysteresis losses, compared to the stress-free case,
is reasonably modeled. It is observed that shear (with compression applied along TD) increases

the hysteresis losses of the material.
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Figura 4.5.15: Percentage error between measured and modeled hysteresis losses (at 1T) under
magnetization along RD and biaxial stress.
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Figura 4.5.16: Comparison between measured Aydin et al. [2019b] (left) and modeled (right)
hysteresis loops (at 1T) under biaxial stress with field applied along TD. In-plane stress tensor

in Voigt notation.
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Figura 4.5.17: Percentage variation of the hysteresis losses compared to the stress-free case at
1T. Magnetization along TD and under biaxial stress. Measurements Aydin et al. [2019b] (left)

and model (right).

The error in the hysteresis losses between measurements and model is presented in

Fig. 4.5.18. Important differences are seen, especially under bi-tension. For this loading, a
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significant difference in the modeled coercive field (about 25%) causes a large error in the

simulated hysteresis losses.

€loss (%)
-20 0 20

-20 0 20
O'// (MPa)

Figura 4.5.18: Percentage error between measured and modeled hysteresis losses (at 1T) under
magnetization along TD and biaxial stress.

The percentage variation of hysteresis losses with magnetization along RD and TD is
shown in Fig. 4.5.19. This comparison indicator highlights the anisotropy effect. The modeling
results exhibit less anisotropy than the measurements, especially in the case of bi-tension. Some
factors may contribute to this significant difference, such as the value chosen for A;¢y, the choice
of the pinning parameter identified from measurements along RD only, or imperfections in the
simplification of the texture. Moreover, as shown in Fig. 3.4.1a, for maximum induction of 1T,

the anisotropic effects are weak compared to higher induction levels.

Variation of hysteresis losses (%)
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Measurements Model
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Figura 4.5.19: Percentage variation of hysteresis losses with magnetization along TD compared
to magnetization along RD.

The modeled magnetic response under shear loading o = [0 0 7},] and magnetization
along RD is shown in Fig. 4.5.20 (right). It is noted that the model underestimates the de-

gradation of magnetization, which is more evident in the measurements Aydin et al. [2019b],
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especially under 612 = —30 MPa. The limitation of the model to represent the degradation un-
der this shear loading results in important differences particularly in the region of the remanent
induction. However, using the proposed stress-dependent pining parameter with the equivalent
stress Rasilo et al. [2019a] allows capturing the evolution of the coercive field for this mecha-

nical configuration, as observed in Fig. 4.5.21, for magnetization along RD or TD.

Measurements Model
1 1
0.5+ [011 022 03] 0.5
= [0 0-30] MPa =
— 0 [0 0 -20] MPa ~ 0
Q [0 0 -10] MPa Q
-0.5} [0 0 0] MPa -0.5
[0 0 30] MPa
-1k Sk 2
-500 0 500 -500 0 500
H, (A/m) H; (A/m)

Figura 4.5.20: Comparison between measured Aydin et al. [2019b] (left) and modeled (right)
hysteresis loops (at 1T) under shear with field applied along RD. In-plane stress tensor in Voigt
notation.

120 - - T 120 : .
—O— Model /x —6— Model
_ 100} — % —Measurement : i — % — Measurements
= X 7 5 100 X
~ \ / ~
< 80 < 80
g ©
= 60 t o 60 t
40 : : . 40 . | !
-40 -20 0 20 40 -40 -20 0 20 40
012 (MP&) g12 (MP&)
(a) Magnetization along RD. (b) Magnetization along TD.

Figura 4.5.21: Coercive field evolution at 1T under different levels of shear.

Fig. 4.5.22 presents the percentage variation of the losses compared to the stress-free
case when the magnetization is along RD (Fig. 4.5.22a) and when the magnetization is along TD
(Fig. 4.5.22b), both under shear. The model reproduces the trend of hysteresis losses increasing
depending on the applied stress. However, the model overestimates the level of losses under

this shear mode.
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Figura 4.5.22: Percentage variation of the hysteresis losses compared to the stress-free case at
IT under different levels of shear.

In this section, an extension of a vector-play model under magneto-elastic loadings has
been tested under biaxial stress conditions. A multiscale approach models the reversible
behavior, in which homogeneous stress and magnetic field are considered at the RVE
scale. Using parameters identified from uniaxial measurements along one direction only,
the model captures the trend of the hysteresis losses under biaxial stress when the mag-
netization is along rolling direction (with errors lower than 15%) or transverse direction
(with error lower than 25%). Considering the crystallographic texture, the anisotropic
effects, even weak in modeling, slightly change the magnetic response. The use of loca-
lization schemes in defining the magnetic field and stress at the grain scale might improve

the modeling results, to the price of a significant increase in the simulation time.

4.6 Application under multiaxial stress and rotating field

Using the same set of material parameters identified in Section 4.5 from uniaxial tests,
the magneto-elastic hysteresis model is now applied to describe the behavior of a NO Fe-Si
under rotating fields and biaxial stress loadings. The measurements were performed controlling
the induction and are presented in Aydin et al. [2019a].

The basic energy-based hysteresis approach, however, cannot reproduce the vanishing
of hysteresis losses under rotating fields near the saturation, as depicted in Fig. 4.6.1 for the
stress-free case. Such a limitation of the hysteresis model was already pointed out in Bergqvist
[1997], Domenig et al. [2023]. To correct this drawback Sauseng et al. [2022] proposed to

multiply the pinning parameter K" by a function fi:
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N
K*(M,0) = fi(M)x"(M,c)  with  fi(M)=1- (”ﬁ”) : (4.6.1)
s

such that k¥ vanishes when the magnetization is close to the saturation. The parame-

ter n = 10 is taken from Sauseng et al. [2022]. The effect of using a vanishing pinning field
under high magnetization is shown in Fig. 4.6.1, and the decrease of hysteresis losses in the
region of domain rotation can be captured by using this adaption. Due to the limitations of the
experimental setup, the maximum measured induction amplitude is 1.2 T, so the rotation effect
is not reached in the measurements. If tests under higher induction levels are available, the

n-parameter can be adapted for the modeling results to match the measurements.

800

O Measurements
600L——  Without adapt. <
% ————— With adapt. .
& 400} *
)
S 200
0 . | |
0 0.5 1 1.5
Bpeak (T)

Figura 4.6.1: Stress-free hysteresis losses. Comparison between the measurements (markers)
Aydin et al. [2019a] and the model without pinning field adaption (solid line) and with the
adaption (dashed line).

4.6.1 Validation

To validate the model under multiaxial magneto-elastic configurations, the measured
waveform of the field is used as input for the model. The stress-free hysteresis loops are presen-
ted in 4.6.2. Despite differences in the amplitude of the induction loci, the modeled hysteresis
loops show a good agreement with the measured B, and B, components of B. Considering
compression applied along RD (Fig. 4.6.3) and along TD (Fig. 4.6.4), a satisfying agreement
between measurements and model is observed. In challenging multiaxial magneto-elastic con-
figurations with bi-compression (Fig. 4.6.5) and shear (Fig. 4.6.6) applied together with a
rotating field, again, a good agreement between measurements and model is noted, despite the
complex hysteresis loops shape.

The model captures the trend of hysteresis losses under biaxial stress and rotating

field, as observed in 4.6.7. Notably, the increase on losses, specially under shear, is represented
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Figura 4.6.2: Stress-free magnetic behavior under rotating field. Comparison between the mea-
surements (dashed lines) Aydin et al. [2019a] and the model (solid lines).
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Figura 4.6.3: Magnetic behavior under rotating field and compression applied along RD. Com-
parison between the measurements (dashed lines) Aydin et al. [2019a] and the model (solid
lines).



4.6 Application under multiaxial stress and rotating field 109

[0 -30 0] MPa
500 1y
—_ 0.5}
£ g
< 0 = O
[8a)
o 0.5}
500 | A1t
-500 0 500 -1 0 1 Model
H, (A/m) B, (T) Measurements
1 1
& e
S0 =
m 8]
1 -1}
|
-200 0 200 -500 0 500
H, (A/m) Hy (A/m)

Figura 4.6.4: Magnetic behavior under rotating field and compression applied along TD. Com-
parison between the measurements (dashed lines) Aydin et al. [2019a] and the model (solid
lines).
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Figura 4.6.5: Magnetic behavior under rotating field and bi-compression. Comparison between
the measurements (dashed lines) Aydin et al. [2019a] and the model (solid lines).
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Figura 4.6.6: Magnetic behavior under rotating field and shear. Comparison between the mea-

surements (dashed lines) Aydin et al. [2019a] and the model (solid lines).

in the approach. By adapting the pinning field, the model represents the vanishing of hysteresis
losses in the region of domains rotation.
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Figura 4.6.7: Comparison between measured Aydin et al. [2019a] (markers) and modeled (solid
lines) hysteresis losses under rotating field and stress.



4.6 Application under multiaxial stress and rotating field 111

Using material parameters identified from uniaxial tests along one direction only, the
combination of a vector-play model and a multiscale approach predicts the magnetic
hysteresis loops and the losses trend of a ferromagnetic material under rotating fields and
biaxial mechanical loadings. The model validation has been performed by considering
complex magneto-elastic loadings different from those used for parameters identification,

which were presented in Section 4.5.
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S Magneto-elastic hysteresis modeling under variable stress

This chapter considers the effects of variable stress on the dissipative magnetic beha-
vior and presents two modeling approaches. The first is inspired on the decomposition of the
magnetic field - as presented in the vector-play model - and an irreversible stress is introduced,
which captures the dissipation due to mechanical loadings. The definition of irreversible stress
is based on the description of the irreversible field, and the pinning stress is further introdu-
ced. However, because this modeling approach is not based on an energetic description, the
thermodynamic consistency is not ensured for any magneto-elastic loading. This opens space
for the second approach, in which the dissipation is modeled from the domain volume fractions

evolution, and a thermodynamic approach based on internal variables is proposed.

5.1 Irreversible stress approach

As presented in Chapter 4, in the energy-based model approach the magnetic field H
is decomposed into reversible H,ev and irreversible parts, with H= Flrev + FIirr. To capture the
dissipation due to variation of mechanical stress o, the following mechanical decomposition is

proposed:

O = Orev + Oirr, (511)

with 0, and ¢, the reversible and irreversible stresses, respectively. As discussed
in Chapter 4, by using the vector-play approach, an explicit approach is defined to evaluate Hyey
at each time-step. This notion is here used to define an explicit update of the reversible stress

by?:

Crev(p) if HG — Orev(p) H < KG’ SIgn(H&H)|

Orev = — Grev(p)

m| sign([|o[])] otherwise.
rev(p

0 — Ko
(5.1.2)
with Ko the pinning stress, O, () the previous value of the reversible stress, and c

the time-derivative of the stress. The sign function is introduced such that it ensures a null

2The norm operator of a second-order tensor X is evaluated by ||X|| = VX : X.
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irreversible stress - so no dissipation - to the case of static mechanical loading. Likewise, the

explicit update of H,, is given by:

H,yp) if ||H — Hypy() || < x| sign(|[H|))|
Hrev = H _H .
A -k ———= | sign(||H]|))| otherwise.
HH_Hrev(p)”
(5.1.3)

with kg the pinning field and ﬁ,ev( p) the previous value of reversible stress. The sign
function is defined to enforce zero dissipation in the case of static field.

To model the first magnetization curve, symmetric and asymmetric minor loops, a
discrete distribution of Kz and ks can be used. In this case, several pinning fields and pinning

stresses can be considered, defined by the weight o that verifies:

N
Y of=1. (5.1.4)
k=1

The explicit update of reversible field flfev and G’r‘ev are given by:

k : k k| o b
Grev(p) if HG_Grev(p)H < KG‘Slgn(HGH)’
G];ev = — ok
c— k& —lr:v(p)| sign(||G|])] otherwise,
16 =0l
(p)
(5.1.5)
3 e Ak k| ion (|| B
o) if ||H = H,py) | < xg] sign([|H]])]
erv = —HF °
H—x f']‘jv(m| sign(||H]))| otherwise.
1H —Hy, |
(p)
(5.1.6)

The magnetization M and the magnetostriction strain € are evaluated by the weighted

sum:

N N
M = Z mkMk(GI;evaH;Ifev) and el = Z mkSMk(Glrceva;]fev)' (5.1.7)
k=1 k=1
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5.1.1 Reversible behavior

The anhysteretic behavior is modeled using a multiscale approach. As pointed out
in Hubert and Rizzo [2008], texture effects, such as the Villari reversal, have an important
impact on piezomagnetic loops. Therefore, a crystallographic texture is considered here, and a
simplified texture multiscale approach (STMSM) - introduced in Chapter 4 - is recalled here.
Three scales are defined: the domain scale (denoted by the index «), the grain scale (denoted
by the index g), and the polycrystal (or macroscopic) scale. The free-energy density g, at the

domain scale of a domain family o with orientation & is given by Bernard et al. [2019]:

/

86" = —noMo - H

Sa=8u  +gn +gs  with =gl o

gu = Ki (afod + afod +03a}) + K, (afeded).,
) (5.1.8)
with M, and €k the magnetization and the magnetostriction strain at the domain scale,
K and K, the magnetocrystalline anisotropy constants. With the definition of g, the volume

fraction of a domain family o is evaluated using a Boltzmann relation Bernard et al. [2019]:

_exp(—Asga)
Yexp(—As ga)
o

(5.1.9)

o

where A; is a material parameter. At the grain scale, the magnetization Mg and magne-

tostriction strain 82,‘ are evaluated by the weighted sum over all the possible domain orientations:

Mg=Y paMy and ek =Y poael, (5.1.10)
o o

The macroscopic magnetization M and magnetostriction strain 82,‘ are then calculated

by an operation of volume average over all grains:

M=Y pM, and e* =Y pel (5.1.11)
8 8

with p, the proportion of each grain.

The schematic of the algorithm of the hysteresis model is presented in Fig. 5.1.1.
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Figura 5.1.1: Principle of the magneto-elastic hysteresis model. The material parameters are
indicated in red.

5.1.2 Identification of material parameters

The material parameters are identified from experimental measurements performed
on a DC04 low carbon steel and presented in Chapter 3. The crystallographic texture of the
DCO04 (Fig. 3.2.1) can be reasonably approximated to the texture of a perfect < 111 > fiber, as
shown in Fig. 5.1.2, where a simplified texture made of eight grains with equal proportions is

presented.
<111> <110> <100>

TD TD TD

RD RD RD

Figura 5.1.2: Pole figures for a perfect < 111 > fiber with eight orientations.

5.1.3 Reversible parameters

The anhysteretic material parameters for the single crystal are taken from pure iron
and are listed in Table 5.1.1. The material parameter Ay can be identified from stress-free

anhysteretic measurements Daniel et al. [2008] and is identified as 7.5 1073 J/m?3.

Tabela 5.1.1: Single crystal parameters for pure iron Jiles [1991].

M (A/m) Ao (ppm)  Ar1n (ppm) K (KJ/m?)  K» (kJ/m?)
1.7110° 21 —21 42.7 15
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5.1.4 Irreversible parameters

The dissipation parameters of and KZ can be identified from measured coercive fields
under increasing peak magnetic field for the stress-free case and are detailed in Chapter 4.
Moreover, the stress-dependent pinning field is also considered here, with parameters identified
in Chapter 4.

The identification of Kf, follows the same procedure as that of xf;. However, ex-
perimental setup limitations do not allow measuring a field-free magnetostriction strain under
variable stress. Indeed, the maximum measured magnetostriction for DC04 is about 5.5 1076
da Silva et al. [2022], and considering a Young modulus of about 192 GPa, a tension of 1 MPa
produces the same elastic strain amplitude as the maximum magnetostriction. Therefore, the
elastic strain hides the magnetostriction during the stress cycle.

It is proposed here to identify K(k, from piezomagnetic measurements. In this case, the
coercive stress o, is introduced and defined as the mechanical stress when B = B, - with By,
the bias level of induction (see Fig. 5.1.3 (left)). Because o, is not symmetric with respect to

the o0 = 0 axis, o, is given by:

1 _
oc =3 (Il I +lloc 1) (5.1.12)

with 0,7 and o, the negative and positive coercive stresses, respectively (see Fig.
5.1.3 (left)). The identification of Kf, is based on a set of coercive stress 0, under increasing
peak stress Opqq. Because the measured induction is close to zero under Hy. =0 A/m in a
piezomagnetic test (see Fig. 5.1.9), the K(k, parameter is identified from a level of static field that
is close to zero, but for which the induction has a measurable value. The identification of Ké‘, is
performed from measurements under H;. = 51 A/m. The piezomagnetic loops under increasing
peak stress are depicted in Fig. 5.1.3 (left).

The coercive stress depending on the level of static field H,, is presented in Fig. 5.1.4.
It can be noted that o, does not vary significantly by increasing H;.. Therefore, the pinning
stress ch, is considered constant under increments of static field in what follows.

The identified continuous distributions of pinning fields and pinning stresses are dis-

cretized into 25 cells, and are depicted in Fig. 5.1.5.
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Figura 5.1.3: Comparison between measured (left) and modeled (right) piezomagnetic loops
under increasing peak stress and static field. The initial induction By, is about 0.51 T.
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Figura 5.1.4: Coercive stress characteristic under static field.
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Figura 5.1.5: Discretized pinning field (left) and pinning stress (right) distributions.

5.1.5 Comparison of the model with anhysteretic measurements

The modeled anhysteretic magnetic response under uniaxial stress is presented in Fig.
5.1.6 (right). By considering a simplified crystallographic texture, the Villari reversal - in the
region of about 2200 A/m - is captured in modeling. Moreover, inflections (or bowing) under
high compression are also captured, though the model overestimates such a texture effect, as

observed in the case under -100 MPa.
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Figura 5.1.6: Comparison between measured (left) and modeled (right) anhysteretic magnetic
behavior under several levels of static uniaxial stress.

The anhysteretic longitudinal magnetostriction strain under static uniaxial stress is
shown in Fig. 5.1.7. The rotation mechanism - depicted by the drop of magnetostriction at
about 1.38 MA/m - is captured by the model. The model captures the trend of the longitudinal
magnetostriction under uniaxial stress.
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Figura 5.1.7: Comparison between measured (left) and modeled anhysteretic longitudinal mag-
netostriction under several levels of static uniaxial stress

5.1.6 Comparison of the model with hysteresis measurements

The magnetic hysteresis behavior under static stress is shown in Fig. 5.1.8. As pre-
sented in the anhysteretic modeling results, the texture effects, such as the Villari reversal and
inflections under high compression, are also captured in the modeled magnetic hysteresis. Com-
paring these modeling results those in Chapter 4, where an equivalent single-crystal was consi-
dered, the improvement in the modeled results is notable by considering the simplified crystal-

lographic texture.

x10°
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Figura 5.1.8: Comparison between measured (left) and modeled (right) magnetic hysteresis
under several levels of static uniaxial stress.

Applying a magneto-elastic loading of static field and quasi-static uniaxial stress, the
model reproduces the measured symmetric minor loops, as shown in Fig. 5.1.3 (right). Consi-
dering several levels of static field, the modeled piezomagnetic loops are depicted in Fig. 5.1.9.
The Villari reversal is evident in the piezomagnetic loops by the slightly decreasing behavior
of the induction under high tension. Such a texture-related behavior is captured by the model.
The main differences are noted in the area of the loops (20% difference between modeled and
measured results under H;. =233 A/m as the worst case). Despite this difference, the measured

piezomagnetic trends under increasing bias field are captured by the model.
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Figura 5.1.9: Comparison between measured (left) and modeled (right) piezomagnetic curves
under increasing static field.

To illustrate the effect of mechanical dissipation, Figure 5.1.10 presents the predicted
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longitudinal magnetostriction under varying stress and H;. = 0 A/m. The mechanical dissipa-
tion is estimated as about 0.9 kJ/m>. As previously pointed out, limitations in the experimental
setup do not allow the comparison of this prediction with measurements. Specifically, the elastic

strain hides the magnetostriction strain during varying stress.
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Figura 5.1.10: Modeling prediction of the longitudinal magnetostriction strain behavior under
varying stress and zero static field.

A more complex validation configuration is when both the magnetic field and stress
vary. Considering the case of the magneto-elastic loading of Fig. 5.1.11 (a), the magnetic
response is shown in Fig. 5.1.11 as a function of the magnetic field (b) and of the stress (c).
A very good agreement is observed between modeling (blue solid lines) and experiments (red
dashed lines). This validation highlights the capabilities of the model to capture the magnetic

hysteresis when both field and stress are quasi-static.

5.1.7 Discussions on the model

To study the energetic consistency of the model, the case of static stress and varying
magnetic field is analyzed. The approach returns to the same thermodynamically consistent
hysteresis model presented in Chapter 4. In the case of varying stress and static magnetic field,

first the Clausius-Duhem inequality for the magneto-mechanical behavior is recalled:

D=-H-B—6:e—5>0. (5.1.13)

The magnetostriction strain € is introduced as internal variable to model the irrever-
sible behavior due to stress variations. In this case, the time-derivatives of the Gibbs free energy
density g are given by:

. 4 - ag L2 ag - ag

g(G,H,gﬂ)—%.G—i—ﬁ:H—'—ﬁigu. (5114)
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Figura 5.1.11: Magnetic response under quasi-static magneto-elastic loading (a). Comparison
between measurements and modeled induction as a function of magnetic field (b) and stress (c).

Replacing (5.1.14) into (5.1.13), it gives:

dgl. - [z,98] 5 9dg
—— : — . — . > . A N
D {e+ 36} o {B+ 8[?} H Sk es >0 (5.1.15)

From (5.1.15), the following relationships are defined, such that the restrictions of the

second-law of thermodynamics are fulfilled:

8:—%, (51163)
B’:—a—‘i, (5.1.16b)
oH
Jdg . u
=2 gl >0, 1.
D=—o e >0 (5.1.16¢)

The irreversible behavior is characterized by a dissipation function in terms of the

internal variable ¢,(e"), which is defined by Miehe et al. [2011]:
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d d
——gzi.d- (5.1.17)
del  Heu
The dissipation inequality can be written as:
9y . B g
D=——:e">0  with  ¢4(0)=0 and  ¢4(e")>0. (5.1.18)
dek

For rate-independent processes, ¢, is defined as positively homogeneous of degree

one, so that Miehe et al. [2011]:

oqa(te!) = 10,(eH) with  TER,,. (5.1.19)
Using the chain rule and assuming a positively homogeneous function of degree one,
the following relationship can be defined:

9%a . gt _ g (e, (5.1.20)

oeh

Therefore, the dissipation function ¢,(€") defines the evolution of dissipation D by:

D = g,(e!) > 0. (5.1.21)

From (5.1.17), a minimization procedure can be established to evaluate the hysteresis
behavior under variable mechanical loadings and static fields. In this case, the energy density g
and the dissipation function ¢; need to be defined. Following the analogy of the magnetic hys-
teresis with a dry-friction mechanism Bergqvist [1997], Henrotte et al. [2006], the dissipation

function ¢, is defined as:

0a(e) = oM, (5.1.22)

with K a pinning stress. For sufficient small time-steps, the dissipation ¢, is appro-

ximated by:

Je# —e |

_— 1.2
YR (5.1.23)

¢d(€'u) ~ Ko
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with s?p) the magnetostriction strain at the previous time-step. From this approxima-

tion, the partial derivative of the dissipation function ¢, is given by:

M, 99 _ar 9% (5.1.24)
e eh — ¢l dek
P (p)
At

In Chapter 4, the magnetization M was introduced as internal variable and a minimi-
zation evaluates the behavior of M under static stress and varying field. Here, from the definition
of (5.1.17) and taking into account the approximation (5.1.24), the magnetostriction strain &*
is calculated from a minimization by:

d

B [g(a,ﬁ,e“)+At ¢d(e“)] =0 —

e! = arg min [8(67H,8M)+K0||8“_8?p)”

(5.1.25)
subjectto tr(e”) =0
The energy density g(o,H,e") can be identified as:
g(o,H,e") = f(H,&e") —Ho5—3 <‘5 o) co—¢t: o, (5.1.26)

with f(FI ,€") a free energy density that can be obtained from the partial numerical

inversion of a magnetic anhysteretic model - here the multiscale approach. The time-derivative

fis:

< . Lo , of af =
H.e") =00 : " — oM -H th =X =06, d =L — _puyM. (5127
FH ") =0y € — g with S =0 and =M. (5.1.27)

and the reversible stress 0, is introduced. With the choice of g(O',FI ,1\71 ), (5.1.16a)
and (5.1.16b) are:

~ 2% — o (A +M) =B
gﬂ (5.1.28)
% g lotet =t 1 et =,

do

under the hypothesis of small strains, with % the stiffness tensor and €° the elastic
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strain. From (5.1.16¢):

—=——=—5,;10=—0py+ 0 = Ojp, (5.1.29)

and the irreversible stress o, is introduced, defining the mechanical loading decom-
position into reversible and irreversible parts ¢ = O e, + O
Combining (5.1.25) and (5.1.26), the magnetostriction strain is given by the minimi-

zation:

e! = arg min f(H, ") —e! :G+KG||8“—SZD)||}
(5.1.30)
subjectto  tr(e”) =0

considering that 4" does not depends on &, (%*1 G) : 0 1s constant, and it can be
neglected in evaluating €”. Moreover, the term uofl -H is also constant, and can be neglected
in the minimization.

As the dissipation ¢ (") in non-differentiable at e* = e?p), the subsequent set defines

the derivatives of ¢;:

Oirr, ||GirrH S Ko, if 8# = e‘zlp)
P, (eH
_‘1’5(# ) ¢ s (5.131)
€ Cirr = Kc—f, otherwise.
e —el ]

By applying the vector-play approximation, an explicit solution of the model is obtai-

ned, and the reversible stress updates are given by:

Orev(p) if ||G — Orev(p) H < Ko

Orev = o — Grev( (5.1.32)

o — Ky p)

— otherwise.
[0 = Crevip)

The modeling is thermodynamically consistent in the case of static magnetic fields
and varying mechanical loadings. However, as pointed out in Prigozhin et al. [2016], where
the vector-play approximation is shown to exhibit limitations in the case of 2D spiral magnetic
fields, it is expected that the vector-play approximation for the stress also may show limitations
when complex stress loadings are applied.

Consider now a uniaxial configuration and the application of the loading presented in

Fig. 5.1.12a, in which both field and stress vary sequentially. Field variations are imposed when
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stress is constant, and stress variations are imposed when the field is constant. For simplicity,
only one cell is considered with kK = 200 A/m and ks = 20 MPa. Under stress variations (see
the A-B segment in Fig. 5.1.12a), the reversible stress will be modified when the threshold k4
is reached as shown in Fig. 5.1.12b, with the value given by 6,,, = 0 — K. The reversible field
remains constant for this loading case. The magnetic response is shown in Fig. 5.1.13. The
induction is close to zero in the A-B segment (see Fig. 5.1.13a), and the magnetostriction strain
evolves with increments in the reversible stress (see Fig. 5.1.13b).

As shown in Fig. 5.1.12a, the stress loading is set constant, and the magnetic field
varies in the B-C segment. The reversible field will be modified only when the threshold ky
is reached, with the value given by H,,, = H — kg. Due to the formulation of the proposed
approach, constant stress yields to 0y, = 0, resulting in a discontinuity of the reversible stress,
as observed in the segment B-C in Fig. 5.1.12b. This discontinuity results in a jump in mag-
netostriction strain, as seen in Fig. 5.1.13b. If now the magnetic field is constant and stress
varies, the same discontinuity problem is observed in the reversible field, resulting in jumps in
both induction and magnetostriction strain (see Fig. 5.1.13). Therefore, the model can present

non-physical behavior for some magneto-elastic loadings.
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Figura 5.1.12: Modeling application under variations of both field and stress.
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Figura 5.1.13: Modeled magnetic response.

The dissipation due to variations of mechanical loading is modeled from an analogy of
the decomposition of the magnetic field - into reversible and irreversible parts - applied
to the mechanical stress. In this case, an irreversible stress describes the dissipative beha-
vior due to mechanical loading variations. A pinning stress parameter is introduced and
is identified from piezomagnetic measurements. The model captures the piezomagne-
tic behavior, and validation under simultaneously varying stress and magnetic fields is
performed with satisfying agreement. The model can be summarized as two thermody-
namically consistent models in the situation of static stress and varying fields, and in the
situation of static field and varying stress. However, non-physical results are observed
for some magneto-elastic loadings. The model allows for multiaxial magneto-elastic loa-
dings, such that the model could be applied in a complex application under rotating stress

and static field, for example, with thermodynamic consistency.

5.2 Domain volume fraction approach

The dissipation modeling using internal variables is flexible in defining the appropri-
ate quantity to describe the irreversible behavior. The physics of the problem determines such
a choice. The domain volume fractions are a set of common variables for both magnetization
and magnetostriction evaluation. This section uses the domain volume fraction to describe the
dissipation in a thermodynamics framework. The modeling of the magneto-elastic hysteresis
is based on a multiscale model, and three scales are defined: the domain scale (denoted by the
index o), the grain scale (denoted by the index g), and the polycrystalline representative volume

element scale (RVE).



5.2 Domain volume fraction approach 127

The magneto-elastic hysteresis modeling starts from the thermodynamics principles,
as the energy-based approach presented in Chapter 4. The Clausius-Duhem inequality given in

terms of the Gibbs free energy g(c,H) is:

D=-H-B—6:e—5>0. (5.2.1)

In Chapter 4, the magnetization M was chosen as internal variable to describe the
irreversible behavior. Here, the domain volume fractions py are introduced as internal variables.

The domain volume fractions p, are represented under the following constraints:

Y pa=1 and 0<pg<l. (5.2.2)
o

—

Inserting the internal variables into the Gibbs free energy, the time-derivative g(o, H, po)

is given by:
. — ag . ag :» ag .
o, H, ):-:a+-,H+ 28 5. 523
g( Pa 90 By, ; papoc ( )
Replacing (5.2.3) into (5.2.1) gives:
dg ) . (8g _») °, dg .
D=—|=—=+¢|:0—(—=+UM|-H-) ——pg>0. 524
(ac o5 THo ;apapa_ (5.24)
The following relationships are defined:
dg
€= 35"
- dg
B=-——-2, 2.
50 (5.2.5)
0
D= _Z_gpa Z 07
o Pa

such that (5.2.5) can be considered sufficient conditions to fulfill the second law of
thermodynamics requirements. As in Chapter 4, a dissipation function ¢;(py) is introduced,
and the variations of domain volume fractions characterize the dissipation. Moreover, ¢;(pg)

needs to be defined under the following conditions:

¢4(0)=0 and  @4(pa) >0, (5.2.6)

ensuring that D = ¢;(py) > 0. Following the same notion presented in Chapter 4,
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from the definition of ¢;(py,), the following relationship is defined Miehe et al. [2011]:

20 , 28

—= =0, 5.2.7
95 Iva (5.2.7)

which is the basis to solve the model by establishing a minimization procedure. To
fully characterize the evaluation of the domain volume fractions, it remains to define the Gibbs

free energy g(o,H, pg) and the dissipation function ¢g(pe).

5.2.1 Formulation of the Gibbs free energy

The Gibbs free energy density is developed based on a multiscale approach, conside-
ring stress and field homogeneous within the grain, and under the hypothesis of small strains.

At the domain scale, the Gibbs free energy g, is given by Daniel et al. [2008]:

8a=8a" +8 +85°  With

@ = Ki (o} + ajod + ded) + ks (fadod

R AR (5.2.8)
ga™ = —SuoH - H — oMo - H

1 1
g'gez_ise:c—sﬁzoz—ic:%*l:0—85:6.

with € the stiffness tensor, considered uniform within the single crystal. To define the
Gibbs free energy at the grain scale, following Tan and Kochmann [2017], the entropy s related

to the volume fractions configuration is first introduced:

s =—k)_ palogpag, (5.2.9)
o

with k a positive material parameter. The Gibbs free energy at the grain scale is
composed of a weighted sum of the energy of the domains and a contribution of the thermal

energy Tan and Kochmann [2017]:

g (6,Fl,pa) =Y palga+kTlogpy], (5.2.10)
o

with T the absolute temperature. The partial derivatives of (5.2.10) in terms of stress

and field are:
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dg —-1. u e
- 5o =% .G+;pa8a:£ +el=e
3 (5.2.11)
g — — — — -
——== H+ My | = H+M) =B,
ob “0( Za Pa a) .UO( )

such that the macroscopic magnetostriction strain € and the macroscopic magneti-

zation M are given by:

e" =Y paey and M=) poM,. (5.2.12)
o o

For a polycrystal, the energy density at the macroscopic scale is evaluated from each

grain contribution Tan and Kochmann [2017]:

g <G,Fl,pa> =Y r; [Zpa [ga +leogpa]] , (5.2.13)
g o

with p, the proportion of each grain orientation. The macroscopic magnetization and

magnetostriction strain for a polycrystal are evaluated by:
e=) pg [Zpﬁ‘&] and  M=Y p, [Z paMa] . (5.2.14)
8 (o4 g a

5.2.2 Anbhysteretic magnetic behavior

Neglecting dissipation (¢; = 0), the reversible (or anhysteretic) magnetic response
can be evaluated by defining a minimization procedure based on (5.2.7), under the constraints

of (5.2.2):

n
pe=argmin Y pg[ge+kT10gpy]

a=1

n
subject to <Z pa> —1=0, (5.2.15)
a=1

0<pa<1

From the definition of the energy density gq, it is noted that the terms

1 1 - -
—50: ¢ 1l:0  and —E[.LQH-H, (5.2.16)

are constants, and will not influence in the minimization. Therefore, these terms can
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be neglected in evaluating the domain volume fractions. The Hessian matrix H, of the Gibbs

free energy g is:

d%g ?g %
dp?  Ip1dp 9p19pn
d%g r’g  J%g
H,= |9p2dp1  9p3 dp2dpn |, (5.2.17)
d?g  Jdg . I
| dpudp1 Ipudp ap3

with (p1,p2,...,pn) the domain volume fractions. The partial derivatives in the ex-

pression of H, are given by:

dg

—= kT (1 1
apa gOC+ (Og(pa>+ )7
g _ KT (5.2.18)
8pa2 Poc7 o
(92
€ —0 with a#B.
Ipapp
The Hessian matrix H, is then:
_kT -
=0 .- 0
P1
kT
0 — ... 0
H, = P2 , (5.2.19)
kT
0 0 —
i Dn |

with positive eigenvalues, such that H, is positive definite, and as a consequence,
the Gibbs free energy g is a convex function. To evaluate the domain volume fractions that
correspond to a minimum of (5.2.15), the Karush-Kuhn-Tucker (KKT) conditions need to be

satisfied:
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Karush-Kuhn-Tucker conditions

min  f(x)
s.t.  g(x) <0,
h(x)=0

Kuhn-Tucker conditions Ali et al. [1997]

0L (x")
ox
h(x*) =0

negx)=0 with u>0
g(x*) <0

% is the Lagrangean, and u and A the Lagrange multipliers.

Consider the minimization problem given by Herskovits [1998]:

with f: R, — R, a real valued function. The function g(x) defines an inequality cons-

traint and A(x) an equality restriction. x* is a local minimum if it satisfies the Karush-

=0 with  Z(x,u,A)=f(x)+uglx)+A h(x)

The KKT conditions applied to (5.2.15) are:

a;'%:O with L=g+A <i >—1 —}—i

apa a=1 a=1

nga§17

— Ky (Pa>]

(5.2.20a)

(5.2.20b)

(5.2.20c)
(5.2.20d)

(5.2.20e)

with . the Lagrangean, and pf*, 1y and A Lagrange multipliers. The KKT conditi-

ons (5.2.20c) and (5.2.20d) will be satisfied when p{¥ = us* = 0.
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The first condition (5.2.20a) gives:

0%

5, = ga+kTlog(pe) +kT+A =0
Pa | (5.2.21)
Pa = exp {ﬁ(—ga—l) - 11 :

Combining (5.2.21) and (5.2.20b) gives:

_A’ n ga
exp ——1) (Z exp(——) =1
k o=l kT (5.2.22)

A = —kTlog —kT.

Inserting (5.2.22) into (5.2.21), the domain volume fractions can be evaluated by:

—8a
exp( & )
Po = 2 .
n a
e (55)

Therefore, the minimization of the Gibbs free energy yields to a Boltzmann distribu-

(5.2.23)

tion. A different analysis that yields the same result is presented in Tan and Kochmann [2017].

The parameters k and T are approximated to the multiscale modeling parameter A by:

1

Ay~ —. 5.2.24
s N ( )

The material parameter A; can be identified from stress-free anhysteretic measure-

ments, and is evaluated by Daniel et al. [2008]:

3
A, = X0

== 2.2
poM?’ (6:2:25)

with (o the initial susceptibility and M; the saturation magnetization.
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5.2.3 Irreversible behavior

To characterize the irreversible behavior, it is necessary to define the dissipation func-
tion ¢7(pg) in terms of the rate of the internal variables, here the domain volume fractions. The

dissipation ¢y (pg) is proposed as:

¢a =Y |Ka Pal, (5.2.26)

with Ky a pinning parameter and | . | is the absolute value function. For numerical
implementation purposes, the time-derivative of the domain volume fraction py, is approximated

by:

n+1 n
. Pa  —Pa

- 5.2.27
Po = At I ( )

with pthl and p¢, the current and the previous values of the domain volume fraction.

The derivative of the dissipation function can be approximated as follows:

IPs dPg . 9%g
i e e (5.2.28)
Pa a Pa —Pa Pa
At

Taking into account the previous approximation into (5.2.7), the following relati-

onship can be defined:

JPy dg J n+1 n+1y\
St Gt ™ gt (SO H ) 8 0 ) =0
(5.2.29)
aQ _ . n+1 n+1
3o+l =0 with Q= g(G H 'Po )+At ¢d(poc )7
apl

Q is the objective function to be minimized. The magneto-elastic hysteresis model is

evaluated by the constrained minimization:

n

Y ko (P =)

a=1

.t (Z pn+1> _o, (5.2.30)

0<pritl<i

1
mln Q— Z pn-‘rl |: logpn+1:| +

Ay
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The numerical implementation of the hysteresis model is detailed in Appendix F using
the interior points method.

Considering a stress-free case and applied uniaxial magnetic field along the [1 0 O]
direction, the pinning parameter K, can be identified from the domain magnetic energy at the
coercive field. The pinning energy is given by:

—

Ko = —MoH.h-My — with  h=[100], (5.2.31)

with H, the coercive field and h the unit vector that defines the direction of H. The-
refore, each domain orientation will have a different pinning energy. To illustrate the modeling
approach, consider a single crystal consisting of six domain orientations along the < 100 >
directions, with parameters given in Table 5.2.1. The stress-free magnetic response under a

variable magnetic field is presented in Fig. 5.2.1.

Tabela 5.2.1: Parameters of the example.

M, (A/m) A (ppm) A (m*/))  H, (A/m)
1.3910° 5.5 1.41072 200

6
4
g
o
2
5 2
w
I — . | o B
-1000 0 1000 -1000 0 1000
H (A/m) H (A/m)

Figura 5.2.1: Stress-free hysteresis loop (left) and magnetostriction strain (right) considering
six domain orientations. M, = 1

The hysteretic induction and magnetostriction strain can be explained from the do-
main volume fractions evolution, as seen in Fig. 5.2.2. The volume fractions remain unchanged
until the applied field reaches the coercive field H,. (see the A-B segment in Fig. 5.2.2). As H,.

is reached, the domain family oriented in the direction of the increasing field grows, and the
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other domain families vanish, following the modeling constraints (5.2.2). As seen in Fig. 5.2.1,
B varies, but little, and € remain constant along the segment path A-B and then vary with H

variations.

T T T T T — 2000

1000

H (A/m)

-1000

L L L L ; 1—1-2000

Figura 5.2.2: Domain volume fractions evolution under a magnetic loading.

As observed in Fig. 5.2.1, considering a single pinning energy for each domain orien-
tation does not allow modeling the first magnetization curve and minor loops. Using the same
strategy as in the vector-play model, several coercive fields can be considered to characterize
pinning energies for each domain orientation. These pinning parameters " are distinguished

by the weights o that verify:

N
Y ot =1, (5.2.32)
k=1

with N the total number of coercive fields. For this situation with several pinning

parameters, the magnetostriction strain € and magnetization M are given by:

N

N
e" =Y 'Y po | Y Pien and  M=Y oY p, |Y piMal. (5.2.33)
k=1 8 o k=1 8 o

5.2.4 Anbhysteretic test

The magnetic anhysteretic curve can be experimentally obtained by setting the magne-
tic field waveform as an exponentially decaying sine superimposed to a bias field, as presented
in Chapter 3. The model can reproduce the magnetic anhysteretic response using the strategy
of several pinning energies. Fig. 5.2.3 (markers) illustrates the reversible behavior under sta-
tic stresses obtained by the model. The solid lines consist of the results of the anhysteretic

multiscale model. As expected, both models present the same magnetic anhysteretic response.
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Figura 5.2.3: Anhysteretic test under variable field and static stress.

The anhysteretic test can also be performed under variations of mechanical loading
and a static field. As an example, a uniaxial stress waveform is defined as an exponentially
decaying sine superimposed to a bias stress and the magnetic field is static. The resulting
anhysteretic piezomagnetic curves are shown in Fig. 5.2.4, and again, the anhysteretic test

(illustrated by the markers) gives the same results as using the multiscale model (the solid

lines).
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© 9 Wv & -
0.2
-50
0 5 10 15 0 50 100
t (s) o (MPa)

50 A/m |

-50
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| 1500 A/m
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Figura 5.2.4: Anhysteretic test under variable stress and static field.



5.2 Domain volume fraction approach 137

5.2.5 Identification of parameters

The number of domain orientations is limited to six for numerical implementation
purposes, corresponding to the < 100 > directions. Moreover, the crystallographic orientations
are described by the texture of a < 111 > fiber, as depicted in Fig. 5.1.2. The single crystal
parameters are taken from pure iron. The parameters My and Ao are adapted to the modeling
results to match the stress-free hysteresis measurements. The reversible parameters are listed in
Table 5.2.2.

Tabela 5.2.2: Single crystal parameters.

M (A/m)  Aq00 (ppm)  Aq11 (ppm)
1.3910° 14 14

Considering a uniaxial stress-free case, the pinning energies k¥ are evaluated from
(5.2.31), based on a set of coercive fields. The respective weights o can be fitted from measu-
red stress-free hysteresis loops under increasing magnetic field, as depicted in Fig. 5.2.5 (left).

Table 5.2.3 gives the fitted weights from a set of stress-free coercive fields.

Measurements

Model

) . . . 2 . . .
-2000 -1000 0 1000 2000 -2000 -1000 0 1000 2000
H(A/m) H(A/m)

Figura 5.2.5: Stress-free hysteresis loops under increasing magnetic field. Comparison between
measurements (left) and model (right).

Tabela 5.2.3: Identified weights from a set of coercive fields.

H.(A/m)| O 25 50 100 200 350
o 0.05 0.05 0.1 0.1 045 0.25

From this set of coercive fields, the pinning parameters ki, are identified from the

magnetic energy at the domain scale. The same proposition previously used in the vector-play
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model is utilized here to model the mechanical loading influence in the pinning parameter K.
From the identified pinning parameter from stress-free measurements kg (0), the weight @ is

kept constant under stress. The stress-dependent pinning parameter k(o) is given by:

H.(o)
H.(0)’

Ka(0) = a(0eq)Ka(0) with a(0eq) = (5.2.34)

with a(o,,) a function that is fitted in order to match with the measured H.(c) /H.(0).

As presented in Chapter 4, the coercive field characteristic a(o,,) is described by:

a(0eq) = ayexp (—exp(az +az0,)) + 1. (5.2.35)

5.2.6 Modeling results compared to the measurements

By using the strategy of several pinning parameters, the model reproduces the stress-
free symmetric minor loops under increasing magnetic field, as shown in Fig. 5.2.5 (right).
The modeling results under static uniaxial stress and quasi-static magnetic field are presented
in Fig. 5.2.6. Despite the model captures the increasing of losses under compression, the shape

of the hysteresis loop in this mechanical configuration results in a difference of about 24% in

evaluating the losses.

-100 MPa
0 MPa
100 MPa
i -2000 -1000 0 1000 2000 i -2600 -1600 0 1600 20.00
H (A/m) H (A/m)

Figura 5.2.6: Comparison between measured (left) and modeled (right) hysteresis loops under
uniaxial stress.

The longitudinal magnetostriction strain is presented in Fig. 5.2.7, and it is noted that
the model captures the measured trend under static uniaxial stress. Notably, the model also

simulates the inversion on the sign of the longitudinal magnetostriction under high tension.
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Figura 5.2.7: Comparison between measured (left) and modeled (right) magnetostriction strain
under uniaxial stress.

Considering a variable mechanical loading and a static magnetic field, the modeled
piezomagnetic loops are depicted in Fig. 5.2.8. A characteristic of the domain volume fraction
approach can be highlighted: the model reproduces the piezomagnetic loops from the same set

of parameters identified in the case of static stress and variable magnetic field.

0A/m 110 A/m 987 A/m
70 A/m 233 A/m 3045 A/m
Measurements Model
1.5} 1.5}
) 3
! Rf
=1 =1
.2 .2
+= +
2 2
!-U 0-5 !-O 0-5 r
= =
0 I . . ] 0f . . . |
-100 -50 0 50 100 -100 -50 0 50 100
Stress, o (MPa) Stress, o (MPa)

Figura 5.2.8: Comparison between measured (left) and modeled (right) piezomagnetic loops.

Considering that both the magnetic field and stress are variable, the model also re-
produces the characteristic of the induction as a function of magnetic field and stress 5.2.9.
However, significant differences are observed, especially under high compression, where the
modeled induction tends to zero. In this situation where both field and stress vary, the total
dissipation can be either evaluated from the sum of the numerical integration of the €* (o) and

B(H) loops, or from the dissipation function (5.2.26).
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Figura 5.2.9: Magneto-mechanical loading (top) and comparison between measured and mo-
deled induction as a function of magnetic field (bottom left) and mechanical stress (bottom

right).

5.2.7 Discussions on the model

In Section 5.1, limitations of the model with irreversible stress were presented when
applying a sequential magneto-elastic loading. For simplicity, consider the domain volume frac-
tion approach with a single pinning energy for each domain orientation (with H, = 200 A/m)
under the application of a sequential uniaxial magneto-elastic loading shown in Fig. 5.2.10.
Fig. 5.2.11 presents the modeled magnetic response. It can be noted that the modeled induc-
tion and magnetostriction strain do not present discontinuities when the loadings stop varying.
Therefore, the domain volume fraction approach improves the physical modeling description

compared to the modeling presented in Section 5.1.
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Figura 5.2.10: Uniaxial magneto-elastic loading.
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Figura 5.2.11: Modeled magnetic response.

One might ask if the pinning energy can be identified from magnetostriction strain

measurements under variable stress. In this case, a coercive stress o, defines the pinning energy

at the domain scale. Considering a uniaxial example with 6, = 20 MPa, the pinning energy is

evaluated by:

_ oM
Ko = —O¢ Oypi - Eg

with

Guni =[100000],

(5.2.36)
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with o,,; the second-order tensor that defines the stress direction in Voigt notation.
Under variations of magnetic field and static stress, the resulting hysteresis behavior is depicted
in Fig. 5.2.12b. For this case, the domain volume fractions evolution is represented in Fig.
5.2.12a. Constraints (5.2.2) are fulfilled, but it is observed that the volume fractions parallel to
the applied field change first. Subsequently, the volume fractions perpendicular to the applied
field are changed. This difference in the thresholds results in a modeled hysteresis behavior
with stair shape, especially in the region of low magnetic fields, as seen in Fig. 5.2.12b.

2

1k
0.8} 100 1t
100 ’g
L 0or 010 = o
= o4l — 010 —
' 001 M
0.2} 001 | -1t 0 MPa
N L | |
0 200 400 600 800 1000 1200 -2000 0 2000
H (A/m) H (A/m)
(a) Domain volume fractions evolution (b) Hysteresis behavior

Figura 5.2.12: Modeled magnetic response under static stress and variable field.

If variable stress and a static field are applied now, the previous threshold problem
is no longer observed. The domain volume fractions evolve when the stress reaches K = 20
MPa, as seen in Fig. 5.2.13a, resulting in the piezomagnetic loop depicted in Fig. 5.2.13b.
A proper definition of the pinning energy in terms of both coercive field and coercive stress
could replace the empirical description given by (5.2.34), such that the model would require
only stress-free measurements (under varying field) and field-free tests (under varying stress)

for parameter identification.
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Figura 5.2.13: Modeled magnetic response under static field and variable stress.



5.2 Domain volume fraction approach 143

Another problem of the domain volume fraction approach implemented in this section
is the limitation to only six domain orientations - related to the easy axis for a cubic symme-
try. Due to the minimization numerical routine of the model, increasing the number of domain
orientations can yield prohibitive simulation time. For instance, Fig. 5.2.14 illustrates the stress-
free magnetic hysteresis behavior considering 652 possible domain orientations. The simulation
time increases about 800 times compared to the approach with only six possible domain orienta-
tions. However, by limiting the model to only the easy axis orientations, significant effects, such
as anisotropy, are not captured in the simulation. Attempts were made to produce an explicit
model for this domain volume fraction approach - based mainly on the vector-play approxima-
tion presented in Chapter 4. However, the need to impose the volume fraction constraints makes

it difficult to solve the model explicitly.

-2 . ! !
-2000 -1000 0 1000 2000
H (A/m)

Figura 5.2.14: Stress-free hysteresis loop.
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By considering the domain volume fractions as internal variables to describe the magnetic
hysteresis behavior, any magneto-elastic loading can be simulated, and the thermodyna-
mic consistency is ensured due to the formulation of the model based on an energetic
description. Here, the main goal is to give a route to future works, as the domain volume
fraction seems to be an appropriate variable to describe the dissipation under variations
of magnetic field and stress. Complementary works are required to improve the appro-
ach. One important task will be to increase the number of domain orientations so that
anisotropy effects can be described. It may be a challenging task using a minimization
approach; therefore, defining an explicit solution to the model, ensuring that the cons-
traints of the domain volume fraction formulation are respected, is an important aspect.
Moreover, the pinning energies are identified from a stress-free uniaxial configuration.
The impact of this choice in validating the model under rotating fields or stresses needs

to be further analyzed.
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6 Conclusion

The present thesis deals with the modeling of the hysteretic magneto-elastic behavior
of ferromagnetic materials. Experimental characterization of the magneto-elastic behavior is
performed in Chapter 3. A uniaxial magneto-mechanical bench is utilized, and tests are carried
out on low-Carbon DC04 steel with mechanical loadings below the elastic limit. First, the mag-
netic response under static stress and varying magnetic loadings is measured. The experimental
results show the expected behavior for a material with positive magnetostriction: compression
deteriorates the initial permeability, the remanent induction, and the coercive field and increases
the hysteresis losses. The application of tension presents a non-monotonic behavior: the initial
permeability is increased until a certain stress value and then decreases under further tension.

Experimental tests under varying stress and static fields highlighted another feature
of the magneto-mechanical behavior. For low static fields, magnetization increases with stress
(increasing from compression to tension). On the contrary, for high static field, magnetization
decreases with stress. This change in the magnetization behavior is due to the Villari reversal.
In addition, anhysteretic behavior, hysteresis with asymmetric minor loops, and piezomagnetic
loops were obtained. The set of experimental data built during this thesis represents a reliable
basis for the development and validation of magneto-elastic hysteresis models.

The multiscale nature of the magneto-mechanical behavior is used in an anhysteretic
modeling approach, such that the magnetic response of a polycrystal can be simulated, allowing
for multiaxial loading conditions. Classical modeling for the hysteresis behavior, such as the
Jiles-Atherton and Preisach models, lack thermodynamic consistency and are usually restricted
to uniaxial loadings. A promising approach but limited so far in the literature to purely magnetic
hysteresis modeling is based on an energy description allowing 3D magnetic field loadings. It
uses the analogy of a dry-friction mechanism and can be approximated by a vector-play model
under some restrictions.

An extension of the energy-based hysteresis approach to the case when static stress
is applied is proposed. An equivalent single-crystal simulates a representative volume element
of the material. To describe the magneto-elastic hysteresis behavior, a stress dependence of
the pinning field - the quantity that defines the coercive field and, thus, the dissipation - is
proposed. The pinning field is defined in terms of an equivalent stress, allowing to capture the

influence of a multiaxial stress state on the coercive field. Another feature of the proposed
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approach is the use of a second-order development in the definition of the magneto-elastic
energy. Such an inclusion allows to capture the non-monotonic stress effect on the magnetic
behavior. A new formulation of this second-order magneto-elastic energy is proposed, in terms
of an equivalent scalar stress, so that its definition is reduced to only one parameter ¢,,. The
modeling parameters of the magneto-elastic hysteresis approach can be separated into those
related to the anhysteretic behavior and the ones related to the dissipation, and they are all
identified from uniaxial measurements along one direction only.

The validation of the modeling is verified by using a different set of measurements
than those used for parameter identification. Notably, no additional parameter is required to
model asymmetric minor loops in the hysteresis behavior under uniaxial stress when conside-
ring a magnetic field waveform with harmonic content. Besides, the model captures the trend of
hysteresis losses of DC04 under uniaxial stress. Though the second-order term in the magneto-
elastic energy allows the capture of the non-monotonic stress effect on the magnetic behavior.
The approach forces the magnetic behavior to be symmetric with respect to o, such that the
model underestimates the permeability at low fields under high tension.

The proposed hysteresis model allows multiaxial loadings. The approach is tested un-
der multiaxial stress and alternating field conditions to test the modeling capabilities in complex
magneto-elastic cases. In this case, two sets of experimental measurements previously perfor-
med at Aalto University on a non-oriented Fe-Si were used: tests under uniaxial loadings along
rolling direction only are used to identify the modeling parameters, and measurements under
biaxial mechanical loadings are employed for validation. Cases under biaxial stress showed
that the model captures the trend of hysteresis losses when the magnetization is along rolling
or transverse directions. However, the error in the simulated results increases when magne-
tization is considered along transverse direction. Main drawbacks are observed under shear
stress configurations. It was shown that the modeled anhysteretic behavior is not sensitive to
this mechanical loading condition, which seems not compatible with the measurements. The
use of stress localization schemes is expected to be a possible solution to this problem. On
the other hand, the coercive field trend under shear is captured by modeling. The model is
further validated under magneto-elastic loadings for rotating field and multiaxial stress state.
A known limitation of the energy-based hysteresis approach is that it does not capture the va-
nishing of rotating hysteresis losses under high induction. A mathematical modification of the

pinning field is applied to correct this drawback, enforcing that the pinning field vanishes when
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the magnetization approaches saturation. Applying the measured magnetic field waveform as
the input of the model, the model reproduces the hysteresis behavior under several multiaxial
stress loadings with satisfying agreement. Therefore, the proposed magneto-elastic hysteresis
is predictive in the sense that from parameters identified from uniaxial measurements, it can be
applied to several multiaxial loading conditions with reasonable accuracy.

Inspired from the energy-based approach, the hysteresis behavior under static mag-
netic field and variable stress is modeled through the definition of an irreversible stress. A
pinning stress is introduced to control the dissipation under mechanical loadings. This irrever-
sible stress parameter is identified from uniaxial piezomagnetic loop measurements. The model
can satisfactorily represent the piezomagnetic behavior under increasing static field. Moreover,
the mechanical losses - namely, the magnetostriction strain variation under stress - can be esti-
mated. The proposed energy-based vector-play approach presented in this thesis can represent
the hysteresis behavior under static field and variable stress, as well as under static stress and
variable field, in multiaxial loading configurations, ensuring thermodynamic consistency.

The model is further applied under a more complex loading configuration with both
field and stress variations. A very satisfying agreement was demonstrated between measu-
rements and modeling. However, limitations are noted in this approach: sequential stress and
field loadings yield non-physical behavior in the modeled induction and magnetostriction strain.
The non-physical behavior is inherent to the proposed approach, in which both induction and
magnetostriction are given simultaneously in terms of reversible field and reversible stress.

To fix these limitations, a route for future works is presented in which the dissipative
effects are captured through the rate of domain volume fractions. Such an approach is inspi-
red by ferroelectric hysteresis models. The domain volume fraction is a common variable in
evaluating both magnetization and magnetostriction and seems to be an adequate internal varia-
ble to capture the irreversible behavior for any magneto-elastic loading. A dissipation function
based on the rate of volume fractions is proposed. Pinning energies that act as threshold for
the evolution of the volume fractions are introduced. The pinning energies are directly related
to the coercive field and are identified from stress-free hysteresis measurements. Moreover, no
further parameter is necessary to model the piezomagnetic loops and the hysteresis behavior
under variations of both field and stress. The approach is thermodynamically consistent for any
magneto-mechanical loading. However, limitations in capturing the measured results are obser-

ved and attributed to the small number of domain orientations considered in the model. Ideas
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to improve the domain volume fraction approach are suggested:

* Propose an explicit solution for the domain volume fractions approach

The domain orientations are usually determined by minimizing the potential energy at
the domain scale Daniel et al. [2008]. In Daniel and Galopin [2008], a dense meshed
unit sphere is introduced with nodes corresponding to the possible domain orientations
to avoid numerical minimization. This proposition significantly reduces the anhysteretic

simulation time.

In the presented hysteresis approach given in terms of the rate of domain volume fracti-
ons, only six domain orientations corresponding to the easy axis of cubic symmetry were
considered. This choice reduces the predictive capabilities of the model. The minimiza-
tion evaluation of the hysteresis model makes the simulation of a polycrystal impractical
with a great number of domain orientations as given by the nodes of a dense meshed unit
sphere. An explicit scheme in the implementation of the model would be very beneficial

to avoid minimization ensuring that the volume fractions constraints are respected.

* Investigate the influence of coercive stress in the pinning energy

The pinning energy was identified from stress-free measurements using the coercive field.
If the field-free magnetostriction loop under variable stress was available, the pinning
energy could be identified from the coercive stress. However, simulations showed that
the model presents limitations in representing the hysteresis behavior when the pinning
energy is identified from the coercive stress. The relationship between coercive stress and
coercive field in defining the pinning energy must be clarified. It could be a route to avoid
the phenomenological description of the stress-dependent pinning energy, as shown in

Chapter 5.
Next steps regarding the magneto-elastic vector-play model are also suggested:

* Magnetic measurements of a giant magnetostrictive material

The low magnetostriction strain of the tested material (DC04) did not allow the valida-
tion of the modeled magnetostriction under variations of mechanical loadings. Due to
this limitation, the pinning stress was identified from piezomagnetic loops. To validate
the modeled magnetostriction strain and to analyze the pinning stress parameter identi-

fication, measuring the hysteresis magnetostriction of giant magnetostrictive materials,
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such as Galfenol, under several static field levels is suggested. Moreover, when both fi-
eld and stress vary, the magnetostriction strain response could also be used for modeling

validation.

« Simulation of an electrical machine

The proposed models could be used to simulate the magnetic behavior of an electrical
machine to analyze the impact of the magneto-mechanical coupling in losses, compa-
red to classical approaches usually performed in the machinery literature. This requires
the magneto-elastic vector-play approach to be numerically inverted to properly plug the
model into a vector potential finite element formulation. The numerical inversion of
the stress-free energy-based hysteresis model is presented in Jacques [2018], while the
inversion of the anhysteretic multiscale approach is proposed in Bernard et al. [2019].
Combining both procedures can lead to a magneto-elastic hysteresis model with input

magnetostriction strain and induction and outputs magnetic field and stress.

* Influence of plasticity on the magnetic hysteresis

In this thesis, mechanical loadings were considered below the elastic limit. However,
plasticity effects induced by manufacturing or assembly processes can significantly mo-
dify the magnetic characteristic of magnetic materials and increase hysteresis losses Do-
menjoud and Daniel [2023], El Youssef et al. [2021], Maazaz et al. [2024]. Modifications
in anhysteretic multiscale modeling to consider the influence of plasticity are proposed in
Domenjoud and Daniel [2023], Taurines et al. [2024]. Incorporating such extensions in

the vector-play approach is a promising prospect.
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A Appendix A: Elements of convex analysis

In this appendix, some elements of convex analysis discussed in the work are intro-
duced. First, it is introduced the notion of convex set. A set S is convex if, for any elements

x1,Xx2 € S, aline segment that connects x; and x; is also in S, so Boyd and Vandenberghe [2004]:
ox;+(l—a)x €8 with 0<a<l1 (A.0.1)
A function f : R, — R, is convex on a convex set S if, for any x,x; € S, it satisfies

Boyd and Vandenberghe [2004]:

foxi+(1—a)xy) < ouf(xr)+(1—a)f(x2) (A.0.2)

As an example, consider the concave function f represented in Fig. A.0.1. The ine-
quality requirement of (A.0.2) means that the line segment connecting x; and x, lies above the

graph of the function for all 0<a<l.

o f(3ey)+ (104 )£(x,)

anpf(x1) + (1-0)f(x)

£one, 4 (L-on)x)

(o (L-o)xy

/.

AN

1 H 1
~0)X, Xyt (L-oy)x,  Xo

=

i 1
X1 ¥ +(

X

Figura A.0.1: Example of a convex function.

An important element of convex analysis used in this work is the notion of subditfe-

rential. At x, the subdifferential of a convex function f is defined by Prigozhin et al. [2016]:

Af(x):={z€eR": f(y) > f(x)+Z(y—x), VyeR } (A.0.3)

with z the subgradients of f at x. The subgradients are a generalization of the concept

of gradient to a non-differentiable function. If the function is differentiable, then:

df(x) = grad f(x) (A.0.4)
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For example, the convex function f(x) = ||x|| illustrated in Fig. A.0.2 is non-differentiable

at x = 0. In this case, from the definition of (A.0.3) the subgradient results in:

Iyl > zy — z€[—-1,1] (A.0.5)

For x > 0 and x < 0, the function is differentiable and results in sign(x). The subdif-

ferential for this example then is:

(

-1, ifx <O
af(x) =9 [~1,1], ifx=0 (A.0.6)
L ifx>0
f(x)
81 f(x2) +75(y-x)
6l
n
o
ol
X1 0 ' X9
x

Figura A.0.2: Example of a non-differentiable convex function.
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B Appendix B: Identification of the magnetostriction cons-

tant A/

The identification of the second-order magnetostriction constant A, is obtained from
the analysis of the anhysteretic relative magnetic permeability u%"(c), considering isotropic
materials, and the magnetic field in the direction of the uniaxial stress da Silva et al. [2022].
The starting point is the expression of the magnetization given bellow (see (67) from Hubert

[2019]).

3xoH

T Mscosd)e( Ms
M= /O (MCOS¢+B(G)(COS2¢71/3)>
Jore\ Ms sin(¢)d¢

cos ¢+B(0)(cos? ¢—1/3)>

sin oo (B.0.1)
where B(0) is:

B(c) = 1.5A,A! (0-2 + c%)

N /a2
_ / o S _ S
s (o (32)) - (32)

The quantity —A;/2A. (homogeneous to a stress) is denoted by o;,. It can be noticed

(B.0.2)

that, for any stress o, one has B(0,, + 6) = B(0,, — 0). This shows that independently of the

magnetic field, the magnetization as a function of stress is always symmetric with respect to

O = Op. Such symmetry is naturally inherited by the relative permeability. Furthermore to
anh

prove that " is maximal at o,,, we first carry out the integration with respect to ¢ in (B.0.1)

which yields:

2,2
3%0H  3xH <9” 7%0 )
B e —o M |\ 428
3H %o

ﬁ(erﬁ(ﬁ_w_ﬂw)+erﬁ<\/§+%>) C2MB |’

2MV/B

M = M; (B.0.3)

where erfi is the imaginary error function given as:

erfi(x) = % /O et (B.0.4)
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Upon taking the limit of M /JH at H — 0 one gets:

anh _ eB(G) i 1
we) =143 <\/B(G)ﬂerﬁ(\/B(G)) 2B(6)> | (B0

This gives an analytical expression of the relative magnetic permeability, in the case

of isotropic materials when the uniaxial loading is applied parallel to the magnetic field. By

studying the function ,uﬁ’”h(o), one can show that: (a) it is maximal at 6;, = —A;/2A/, (b) it has

O = Oy, as an axis of symmetry, (c) it has /,Lf”h = 1 as a horizontal asymptote and (d) equals

1+ xo for o0 = 0 (using a second-order Taylor series expansion).
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C Appendix C: Identification of the crystallographic orien-

tations

C.1 Crystallographic orientations

A polycrystalline material is composed of several grains (or crystals) with a given
orientation, as shown in Fig. C.1.1 (a). Two coordinate systems can be introduced: (a) X,Y,Z
corresponding to the sample coordinate system, which for laminated steel is defined by rolling
(RD), transverse (TD), and normal directions (ND), and (b) defined by the grain coordinate
system, which for cubic symmetry corresponds to the edges direction of a cube [1 0 0], [0 1 0],
and [0 O 1]. Both coordinate systems are illustrated in Fig. C.1.1 (b). The grain orientation
can be represented by rotations that relate the sample coordinate system to the grain coordinate

system. These rotations are described by the Euler angles (¢, ®, ¢») Stojakovic [2012].

D ™ 7

Pal
L—/< } [001] \4[010]
ND ‘ﬁ/——'» ND,
[100]
~ RD RD
a) \ —— b)

Figura C.1.1: Representation of a polycrystal material with cubic symmetry: (a) arrangement
of grains, and (b) definition of the coordinate systems Stojakovic [2012].

To illustrate the Euler angles (@1, P, ¢, ), consider the two coordinate systems previ-
ously introduced and shown in Fig. C.1.2 (a). The Euler angles representation is usually per-
formed following the Bunge convention Bunge [2013]: the angle ¢ is defined from a rotation
about the ND axis, resulting in a new coordinate system (RD’, TD’,ND) (see Fig. C.1.2 (b)). A
second rotation is performed about the RD' axis, resulting in the angle @, and in the coordinate
system (RD’,TD”,ND") (see Fig. C.1.2 (c)). Note that now the axis ND” corresponds to the
axis [00 1]. A final rotation about the axis ND” corresponds to the angle ¢». The final coordinate

system (RD”', TD"',ND") lies parallel to the grain coordinate system ([100] [010][001]).
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ND ND = ND'

‘5
N TD
-
-
~
.
-~
TT e [100)
RD
(a)
ND ND
001] = TD'"
[001] = ND" [001] = ND'™ [0o1]
v D' v TD"

-
~au
~ -

™ [100] = RD'"

Figura C.1.2: Representation of a polycrystal material with cubic symmetry: (a) arrangement
of grains, and (b) definition of the coordinate systems Stojakovic [2012].

Thus, the rotation matrix R( ¢y, P, ¢, ) is defined from each rotation contribution Bunge

[2013]:
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R(@1, @, ) = R1(01) R2(P) R3(2)  with
cos¢p sing; O
Ri(gr) = —sin¢g; cos¢; 0

0 0 1

1 0 0

(C.1.1)
Ry(®)= |0 cos® sind

0 —sin® cosdP

cos¢@ singy O
R3(¢2) = | —sing, cosg, 0

0 0 1

C.2 Representation of an orientation

A crystallographic texture - with orientation defined by the Euler angles - can be il-
lustrated by the pole figures. Such figures are built from the stereographic projection of the
crystallographic directions on an equatorial plane. For example, consider two coordinate sys-

tems (for the sample and the grain) shown in Fig. C.2.1 (left). The resulting 100 pole figure
from the stereographic projection is shown in Fig. C.2.1 (right).

Reference
sphere

[oo1]

° TD
[010]
Equatorial .

plane [100]

Figura C.2.1: Construction of a 100 pole figure (adapted from Bunge [2013]).

The pole figures analysis of polycrystalline materials - with many more grains - can

be simplified by using the representation of the orientation distribution function (ODF). The
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volume fraction of grains with the same orientation defines the ODF, which can be represented

by a probability density Bunge [2013].

C.3 Texture measurements

The crystallographic orientation of grains in polycrystalline materials can be identified
using diffraction techniques. In the results presented in this work, the electron backscatter
diffraction (EBSD) implemented in a scanning electron microscope (SEM) was employed to
identify the crystallographic texture of the studied materials. The EBSD measurement technique
consists of illuminating a point of interest on a sample with an electron beam (see the schematic
of Fig. C.3.1). The diffracted electrons form a set of cones. A fluorescent screen positioned near
the sample captures these cones (two per atom lattice plane). The set of grain lattice planes form
the EBSD patterns - also called Kikuchi patterns. Fig. C.3.2 depicts the Kikuchi patterns for a
sample of Fe-Si. Each line pair (or band) represents a crystallographic plane in the grain, and
the distances between the bands represent the angles between the crystallographic plans. The
Kikuchi patterns are then image processed, and several methods can be employed to determine

the crystal orientation Goldstein et al. [2003].

Electron Beam

e

diffracted cone\o!\

electrons

»
Diffracting planes

Tilted Sample

Phosphor Screen

Figura C.3.1: Illustration of the experimental apparatus for the EBSD measurements Goldstein
et al. [2003].
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Figura C.3.2: Kikuchi patterns from a sample of Fe-Si Daniel [2003].
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D Appendix D: Conservation of energy

Considering an arbitrary volume % with boundary d %, the first law of thermodyna-

mics for the magneto-mechanical case can be stated as Kovetz [2000]:

E = Pec +Pmag+l)1fha (D.0.1)

with E the time-derivative of the total energy E, Py, the mechanical power, B¢ the
magnetic power, and P, the thermal power. The total energy E can be expressed in terms of the

internal energy u and the kinetic energy by:

E= / [u—klpﬁ-b.?} dv. (D.0.2)
i 2

with i the time-derivative of the displacement #, and p the mass density. From the

continuum mechanics framework presented in Chapter 2, the mechanical power is defined by:

PmeC:/B-iwar (Gfi)-b._ids
B 0%

- B-édw/ div(c - i) dv
B

. . . (D.0.3)
= b-ﬁdv+/ {G:gradﬁ—kﬁ-divc} dv
B

I:_t" (Z—kdivc) +0: gradbli} dv,
B

with b the body forces and ¢ the symmetric second-order stress tensor. The surface

integral is transformed into a volume integral by using the divergence theorem. From the ba-

lance of linear momentum, it is defined the following identity Kovetz [2000]:

p Li=b+divo. (D.0.4)

dt

The mechanical power is then:

(] d L] .
Pooc = / {ﬁ-p —i+ o :gradi| dv. (D.0.5)
R dt

The magnetic power is defined by Kovetz [2000]:
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(D.0.6)

Prag = —/Mﬁ. (Ex#) as= —/%div(l? x H) dv,

with E the electrical field, and H the magnetic field. The term (E x H ) represents

the electromagnetic power density, also denoted as Poynting vector. By using the Maxwell
equations under quasi-static regime, the divergence of the Poynting vector can be expanded as:

div(E x H) =curlE-H —E -curlH = —B-H—E - J, (D.0.7)

with J, the current density. The magnetic power is then:

Pinag = /j {E -H+E-JZ} dv. (D.0.8)

The thermal power is written as Kovetz [2000]:

P,h:/ rdv—/ Z]-ﬁds:/ rdv—/ divg dv,
B 0% P B

with r the heat power source, and ¢ the heat flux. Combining the previous equations,

(D.0.9)

the energy balance can be written as:

d L == = d- L I
‘U|=u-p—u+o:gradi—B-H—FE-J.+r—divg
dt (D.0.10)

<

+
|

©
<
<

u=o:gradii—B-H—E-J.+r—divg.
The velocity gradient tensor gradii can be split into a symmetric and anti-symmetric

parts as:

. . T
gradi — (gradﬁ) ] . (D.0.11)

!
2

L] 1 L] L] T
gradi = 5 [gradﬁ-l— (gradﬁ)

Due to the symmetry of the stress tensor, the product of ¢ with the second term on
the right side of (D.0.11) is zero. From the small strain hypothesis, the first term on the right

side (D.0.11) is the rate of the strain tensor €. Neglecting the electric field contribution and the

heat power source, the first law of thermodynamics for the magneto-mechanical case is:
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n=oc:£+H -B—divg. (D.0.12)
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E Appendix E: Identification of the pinning field distribution

The identification of the pinning field distribution was performed following the proce-
dure given in Henrotte et al. [2014], Jacques et al. [2018]. Starting from the demagnetized state,

after the application of a unidirectional magnetic field H,, the homogenized reversible field is

Hyey (0 — H,) / max(H, — k,0) o(k)dk = F(H,), (E.0.1)

where the max operation indicates that only the cells with k¥ < H, will be modified.

An auxiliary function F(H) is then defined:

F(H) = /0 " (k) (H — x) d, (E.0.2)

with first and second derivatives:

IF (H)
oH

0°F (H)

H
:/ o(Kx) dx and
0

From the previous magnetic state, if now the magnetic field is decreased until the
coercive field —H,, with 0 < H, < H,, the homogenized reversible field is Henrotte et al. [2014],
Jacques et al. [2018]:

H,+H,
H,ev(O—>Ha—>—HC):F(Ha)—2F< at C).

> (E.04)

Because the magnetization is null at the coercive field M(H,,(0 — H, — —H,)) =0

Henrotte et al. [2014], Jacques et al. [2018]:

F(H,)—2F (H“ ;LHC> =0. (E.0.5)

Therefore, the identification of F(H) can be performed through experimental measu-
rements of coercive field curve under increasing magnetic field H.(H . ) Henrotte et al. [2014].
The pinning field distribution is evaluated from (E.0.3).

The steps to construct F(H) are Henrotte et al. [2014], Jacques et al. [2018]:

o Starting from a saturating magnetic field Hy, where H.(H) = H"", from (E.0.2) is ob-

served that:
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H
F(H,)=H,—H™  with  H"™ = / ko(K)dK. (E.0.6)
0
* Because H.(H) < H:
H+H.(H
%() <H. (E.0.7)

A strictly decreasing series is defined:

B anl _‘_HC(anl)

5 <H" ! (E.0.8)

Hn

with

F(H") = @ (E.0.9)

For numerical simulation purposes, a discrete approximation of @(x) can be evalua-
ted. The magnetic field is decomposed into N discrete parts and the discrete set (a)k, K Jk=1,..N
is Henrotte et al. [2014]:

H* _OF(H%) 9F(H*)

k
0" = kalw(K)dK 34 55

y . (E.0.10)
i ko _ [HIRF(E) - FE]

L e(k)dk ot

K
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F Appendix F: Numerical implementation of the minimiza-
tion

The minimization of the magneto-elastic hysteresis model with the domain volume
fractions as internal variables is here detailed. The minimization problem is defined in Chapter

5 and is given by:

1 n
min Q= Z put! [8a+A logp"“} + ) ke ( nl —pa>|

S.t. (Z pn+1> —0, (F.0.1)

0<pit <1

To avoid the derivative, the absolute value function is replaced by the constant y,

defined by:

ko (P = Pl) | = v (F02)

with additional constraints added to the minimization problem:

—ya < Ka (Pa = Pl) <o (F0.3)

such that the minimization problem is given by:

1 n
min Q= Z Pn+1 {8a+_10gpn+l} + Z Ya
Pa a=1 A o=

.t (Z p"+1> —0, (F.0.4)

1
—ya <K (p?.lf p’&) <ya-

Following the interior-point methodology, the inequality constraints are transformed

to equality constraints by introducing the slack variables Griva et al. [2008], Krabbenhoft et al.

[2007]. By using this strategy, a penalty term is added to the objective function:
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1 n
min Q= Zp”“{ Y logp”“} Y v+ i [log(s1) +log(sz)]

a=1 a=1

s.L. (Z p"“) =0,

1 (F.0.5)
(p’o‘c+ p’&) +yg—51=0,

—K (p’&“ p’&) +Yyoa—52=0,

with S1,82 >0,

with s1, s> slack variables and u; a small positive constant. The Lagrangean can be

build as:

2 (pars, A1) = Q-+ (Z )—1 +uf‘['<(pz“—p'a)+ya—ﬂ]+

(F.0.6)
+ 5 {— (p’&“ pa> +Ya _52} :
The necessary and sufficient Karush-Kuhn-Tucker (KKT) conditions are:
0
;'21 =0 (F.0.7a)
Il
8;2” =0 (F.0.7b)
Yo
8;? =0 (F.0.7¢)
ds
0%
= 0 F.0.7d
37 ( )
0%
PG =0. (F.0.7¢)

From the KKT conditions, the residual vector is given by:
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R,

Ry,

R,

Ry

% = exp [As (—ga—A+x(—pf+ps) — 1] -pi =0,
372:=1+uf‘+u§‘=0a
%ﬂ:—slu%ui:oa

= aa;ff = —sou3 4+ 1 =0, (F.0.8)

0¥ L
ReZW:<ZPa>—1:0;

Ry

R

a=1

.¢ ntl  on

= W = K(Pa+ —Pa> +ya—s51=0,
07 " "
a“g:_K(pa+l_p(X> +ya—S2:O.

The variables are iteratively solved using a Newton method Griva et al. [2008]:

Apa
~ ) Ayo
ory' orS oRy R ORS ORY orS||
optl dyg  dsi dsy  IA ou¥  oul 51
: : : : : : : Asy |, (E0.9)
oRY  oRY Ry orY Ry oRY R "
opitt  dyq s ds) oA oJuf Juy
Apf
Apg

with k indicating the iteration step.
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