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de Santa Catarina e à École doctorale n° 575,

Electrical, Optical, Bio : Physics and Engineering

(EOBE) da Instituição Université Paris-Saclay em
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RESUMO

Os materiais ferromagnéticos apresentam magnetização e deformação de magnetos-

trição que dependem fortemente do campo magnético e da tensão mecânica. Esse compor-

tamento acoplado pode ser utilizado para projetar sensores magnéticos para avaliação não-

destrutiva, e máquinas elétricas de alta eficiência. Algumas caracterı́sticas do comportamento

magnético são a histerese, a anisotropia e a sensibilidade ao estado mecânico. Medições experi-

mentais evidenciam a influência dos carregamentos mecânicos na magnetização e na deformação

de magnetostrição, e diferentes comportamentos são observados quando se aplicam cargas

magneto-elásticas estáticas ou dinâmicas. Este trabalho tem como objetivo propor um modelo

de histerese magneto-elástica no qual as limitações normalmente encontradas em modelos da

literatura são tratadas. A modelagem é feita pela associação de um modelo anisterético multies-

cala com uma abordagem energética da histerese magnética. Os parâmetros do modelo para os

comportamentos reversı́veis e irreversı́veis são identificados a partir da caracterização uniaxial

sob tensões mecânicas. Além disso, são apresentados resultados experimentais sob diversos

carregamentos magneto-elásticos de forma a testar as capacidades preditivas da modelagem. O

modelo é inicialmente desenvolvido para representar o comportamento magneto-elástico sob

tensão mecânica constante, levando em conta o caráter multiaxial dos carregamentos, os efeitos

da textura cristalográfica, o efeito da tensão mecânica no campo coercitivo, o comportamento

não-monotônico da permeabilidade em função da tensão mecânica, e a queda das perdas por his-

terese sob campo girante próximo à saturação. O modelo é analisado em diversas configurações

complexas com resultados satisfatórios. Uma abordagem semelhante é desenvolvida para repre-

sentar a histerese magneto-elástica sob campo magnético constante e tensão mecânica variável.

Esses dois modelos baseados no balanço energético são termodinamicamente consistentes, com

parâmetros identificados a partir de medições uniaxiais, e podem representar o comportamento

magnético em configurações complexas (3D). Por fim, dois modelos são propostos para con-

siderar variações simultâneas no campo magnético e na tensão mecânica. Suas limitações são

discutidas, e possı́veis melhorias são apresentadas como perspectivas para este trabalho.

Palavras-chave: Modelo de histerese, Acoplamento magneto-elástico, Modelagem multies-

cala, Tensão mecânica multiaxial



RESUMO EXPANDIDO

Introdução

Materiais magnéticos são essenciais em diversas aplicações, incluindo sensores para

avaliação não-destrutiva Bouterfas et al. [2023], Eslamlou et al. [2023], captura de energia (do

inglês energy harvesting) Daniel et al. [2023], Liu et al. [2024], Zangho et al. [2024] e máquinas

elétricas Krings et al. [2017]. Ainda que diferentes em relação ao respectivo uso - sensores

magnéticos, sistemas de recuperação de energia, ou conversão eletromecânica - em comum a

todas as aplicações o desenvolvimento de modelos que descrevam o comportamento de materi-

ais magnéticos é essencial no projeto de dispositivos de alta confiabilidade e eficiência.

O comportamento de materiais magnéticos é complexo devido a efeitos como a ani-

sotropia magnética Jiang et al. [2018], Tolentino et al. [2022], a histerese ou comportamento

dissipativo, a dependência da frequência do carregamento aplicado de La Barrière et al. [2012],

e efeitos acoplados, os quais resultam em modificações no comportamento magnético devido à

aplicação de tensões mecânicas Li et al. [2024] ou temperatura Banu et al. [2023].

O efeito de tensões mecânicas em materiais magnéticos resulta em efeitos positivos

ou negativos, dependendo da aplicação. Por exemplo, processos de fabricação podem induzir

tensões mecânicas nas partes magnéticas de máquinas elétricas, podendo resultar em aumento

das perdas magnéticas, e por consequência, afetar a eficiência do dispositivo. Por outro lado,

sistemas de captura de energia e sensores magnéticos beneficiam-se desse comportamento aco-

plado.

O principal objetivo dessa tese é a análise e desenvolvimento de um modelo de histe-

rese magneto-elástico no qual as limitações presentes em modelos da literatura são parcialmente

ou totalmente removidas. Três fatores chaves são considerados no desenvolvimento de uma

relação constitutiva: (a) a possibilidade de considerar carregamentos magneto-mecânicos mul-

tiaxiais, (b) a consistência termodinâmica, de forma que as perdas possam ser calculadas com

precisão em qualquer ponto de operação, e (c) o custo computacional de forma que o modelo

possa ser implementado em ferramentas de análise numérica.

Capı́tulo 2: Modelagem do comportamento magneto-elástico

Os conceitos fı́sicos e expressões relacionadas ao comportamento desacoplado mecânico
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e magnético são introduzidos nesse capı́tulo. Os conceitos de deformação e tensão mecânica

são definidos a partir de uma abordagem de mecânica dos meios contı́nuos sob a hipótese de

deformações infinitesimais. As noções de magnetização, campo magnético e indução são esta-

belecidas por meio das equações de Maxwell restritas ao regime quase-estático.

A modelagem do comportamento acoplado magneto-elástico pode ser separada em

duas classes: comportamento reversı́vel ou anisterético (efeitos dissipativos não são consi-

derados), e comportamento irreversı́vel ou histerese. O processo de magnetização envolve

fenômenos complexos observados em diferentes escalas. Dessa forma, uma abordagem multi-

escala Daniel et al. [2008] é apresentada na literatura. Essa abordagem permite a aplicação de

carregamentos multiaxiais e o protocolo de identificação dos parâmetros é claro.

Em relação a histerese magnetoelástica, a modelagem geralmente é definida na escala

macros-cópica. Embora diversos modelos são apresentados na literatura, como por exemplo

Jiles-Atherton, Preisach e Armstrong, nenhum desses atende simultaneamente os três fatores

chaves mencionados na Introdução. Uma abordagem que atende os requisitos de consistência

termodinâmica e baixo tempo de simulação, mas inicialmente desenvolvida apenas para o caso

sem tensão mecânica é a modelo baseado na energia (do inglês, energy-based).

Capı́tulo 3: Caracterização experimental do comportamento magne-

toelástico

Evidências experimentais do comportamento magneto-elástico são apresentadas nesse

capı́tulo, de forma que medidas são realizadas em dispositivo uniaxial. O material ensaiado é

um aço de baixo carbono (DC04) utilizado na indústria automotiva. O aparato experimental

para a caracterização magneto-elástica é apresentado na Fig. 0.0.1. A parte mecânica con-

siste de uma máquina de tração/compressão. A parte magnética é composta por dois núcleos

magnéticos de Fe-Si para assegurar o caminho do fluxo magnético. Um amplificador fornece

corrente para uma bobina de excitação. O campo magnético é medido por meio de uma sonda

de efeito Hall. A indução é obtida por meio da integração numérica da tensão induzida em uma

bobina de medição disposta em torno da amostra (observe a área de medidas na Fig. 0.0.1). A

magnetostrição é medida utilizando um sensor de deformação colado na amostra.
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influenciado pelo estado mecânico, dessa forma, uma descrição fenomenológica do efeito de

tensões mecânicas no campo coercitivo é proposta.

Validação sob tensão mecânica uniaxial e campo magnético alternado

O comportamento magnético anisterético sob tensões mecânicas uniaxiais é apresen-

tado na Fig. 0.0.3, e o modelo descreve corretamente o comportamento medido, especialmente

sob compressão. Por meio da Fig. 0.0.4, é possı́vel observar que a inclusão do termo de segunda

ordem permite capturar o efeito não monótono dos carregamentos mecânicos na permeabilidade

magnética relativa. Diferenças são mais expressivas sobretudo no caso de tração de 100 MPa,

no qual o modelo subestima a permeabilidade para baixos campos magnéticos.
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Figura 0.0.3: Efeito de carregamentos uniaxiais no comportamento anisterético: medições (es-

querda) e modelo (direita).

Figura 0.0.4: Comparação entre a permeabilidade magnética relativa medida (barra de erro) e

modelada (linha sólida) para diferentes valores de campo magnético. A permeabilidade máxima

é observada em σm = 40 MPa.

Uma validação independente das medidas utilizadas para identificação dos parâmetros
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é apresentada na Fig. 0.0.5, na qual a forma de onda do campo magnético é especificada com

conteúdo harmônico. É observado que o modelo representa com boa acurácia o comportamento

medido para dois nı́veis de tensão mecânica.

-80 MPa -80 MPa 80 MPa 80 MPa

Medidas MedidasModelo Medidas

Figura 0.0.5: Laços de histerese sob carregamentos mecânicos uniaxiais e forma de onda do

campo magnético com conteúdo harmônico.

Validação sob tensão mecânica multiaxial e campo magnético alternado

Utilizando medidas experimentais apresentadas na literatura Aydin et al. [2019b],

Singh et al. [2016], as capacidades do modelo são testadas em configurações mecânicas mul-

tiaxiais e campo magnético alternado. Os parâmetros são identificados a partir de medidas

uniaxiais ao longo de apenas a direção de laminação (RD). Além disso, efeitos da textura cris-

talográfica são levadas em conta por meio do comportamento anisterético, utilizando uma abor-

dagem multiescala. Considerando um carregamento mecânico biaxial e campo magnético apli-

cado na direção RD, o comportamento magnético medido Aydin et al. [2019b] é apresentado na

Fig. 0.0.6 (esquerda). Os resultados do modelo na Fig. 0.0.6 (direita) mostram que o modelo

representa a degradação no comportamento magnético sob cisalhamento. Contudo, particular-

mente sob bi-compressão, o modelo superestima a degradação na magnetização. Uma possı́vel

razão para essa diferença é devido a consideração de tensão mecânica homogênea no modelo

multiescala, o que não é necessariamente o caso no material real.

Validação sob tensão mecânica multiaxial e campo magnético rotativo

Utilizando o mesmo conjunto de parâmetros identificados a partir de medidas unia-

xiais, o modelo de histerese magnética é aplicado sob carregamentos de campos magnéticos

rotativos e tensões mecânicas multiaxiais. As medidas experimentais são apresentadas em Ay-
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A abordagem proposta para modelar a histerese magnetoelástica é termodinamica-

mente consistente no caso de carregamentos mecânicos estáticos e campo variável, e na situação

de campo estático e carregamento mecânico variável. Contudo, uma análise é apresentada in-

dicando que o modelo resulta em comportamento não-fı́sico dependendo do tipo de carrega-

mento magnetoelástico. Dessa maneira, uma segunda abordagem de modelo é apresentada, na

qual as frações volumétricas de dominio são definidas como variáveis internas para descrever a

dissipação. Essa abordagem é apresentada por meio de uma descrição energética, de forma que

a consistência termodinâmica é garantida para qualquer configuração de carregamento magneto-

elástico. O modelo utiliza um processo de minimização numérica para calcular as frações vo-

lumétricas para cada passo de tempo, resultando em um modelo computacionalmente custoso.

O modelo utilizando frações volumétricas é um ponto de partida, no qual possı́veis melhorias

são sugeridas para trabalhos futuros.

Conclusão

O objetivo deste trabalho foi o desenvolvimento de um modelo de histerese magnética

sob tensões mecânicas no qual fatores-chave como consistência termodinâmica, possibilidade

de carregamentos multiaxiais e tempo de simulação compatı́vel para ser aplicado em elementos

finitos sejam atendidos. Medidas experimentais realizadas mostraram a influência de carrega-

mentos magneto-elásticos — em diversas configurações — no comportamento magnético de

um aço de baixo carbono. O conjunto de dados experimentais obtidos durante esta tese repre-

senta uma base sólida para o desenvolvimento e a validação de modelos de histerese magneto-

elásticos.

Os modelos magneto-elásticos desenvolvidos neste trabalho consistem em uma combi-

nação entre um modelo de histerese — utilizando uma abordagem energética com solução

explı́cita — e um modelo anisterético multiescala. Para carregamentos do tipo tensão mecânica

constante e campo magnético variável, e tensão mecânica variável e campo magnético cons-

tante, o modelo proposto é termodinamicamente consistente, e, a partir de parâmetros identifi-

cados por meio de medidas uniaxiais, foi validado para diversos carregamentos e configurações

multiaxiais magneto-elásticas. Limitações na abordagem proposta são analisadas para o com-

plexo caso de simultâneas variações de campo magnético e tensão mecânica. Para determinados

carregamentos nessa configuração, o modelo pode resultar em comportamento não-fı́sico.



Sugere-se para trabalhos futuros o acoplamento do modelo proposto em simulação

por elementos finitos de uma máquina elétrica, de maneira a se analisar o efeito do acopla-

mento magneto-mecânico nas propriedades magnéticas e perdas por histerese de um dispo-

sitivo, comparado a abordagens utilizadas comumente utilizadas na literatura. Para melhorar

a modelagem para qualquer carregamento magneto-elástico, garantindo a consistência termo-

dinâmica, sugere-se o estudo e desenvolvimento de uma solução explı́cita para um modelo base-

ado em frações volumétricas, o qual parece ser uma abordagem promissora para a descrição de

fenômenos dissipativos em materiais ferromagnéticos. Além disso, uma perspectiva promissora

para o trabalho é a inclusão de efeitos plásticos na modelagem da histerese magnética.



ABSTRACT

Ferromagnetic materials exhibit magnetization and magnetostriction strain that are

highly dependent on the magnetic field and mechanical stress loadings. This coupled beha-

vior can be used to design magnetic sensors for non-destructive evaluation and high-efficiency

electrical machines. Some features of the magnetic behavior are hysteresis, anisotropy, and

dependency on the mechanical state. Experimental measurements evidence the influence of

mechanical loadings on magnetization and magnetostriction strain, and different behaviors are

observed when applying static or variable magneto-elastic loadings. This work aims to pro-

pose a magneto-elastic hysteresis model in which limitations usually found in literature models

are covered. The modeling is made by associating an anhysteretic multiscale model with an

energy-based hysteresis approach. The material parameters for reversible and irreversible beha-

viors are identified from uniaxial characterization under mechanical stress. In addition, further

experimental results are presented for various magneto-elastic loadings to test the modeling

prediction capabilities. The model is first developed to represent the magneto-elastic behavior

under constant stress, taking into account the multiaxiality of the loading, the crystallographic

texture effects, the stress effect on the coercive field, the non-monotonic behavior of permea-

bility as a function of stress, and the vanishing of hysteresis losses under rotating field close

to saturation. The model is analyzed in several complex configurations with satisfactory re-

sults. A similar approach is developed to represent the magneto-elastic hysteresis at constant

field and variable stress. These two energy-based models are thermodynamically consistent,

with parameters identified from uniaxial measurements, and can represent the magnetic beha-

vior in complex (3D) configurations. Lastly, two models are proposed to consider simultaneous

variations in field and stress. Their limitations are discussed, but left as perspectives for this

work.

Keywords: Hysteresis model, Magneto-elastic coupling, Multiscale modeling, Multiaxial stress



RÉSUMÉ

Les matériaux ferromagnétiques présentent une aimantation et une déformation de

magnétostriction qui dépendent fortement du champ magnétique et des contraintes mécaniques

auxquels ils sont soumis. Leur comportement magnéto-élastique peut être utilisé pour conce-

voir des capteurs magnétiques pour l’évaluation non destructive et des machines électriques

à haute efficacité. Certaines caractéristiques du comportement magnétique sont l’hystérésis,

l’anisotropie et la dépendance à l’état mécanique. Les mesures mettent en évidence l’influence

des chargements mécaniques sur l’aimantation et la déformation de magnétostriction, et différents

comportements sont observés lors de l’application de chargements magnéto-élastiques stati-

ques ou dynamiques. L’objectif de ce travail est de proposer un modèle d’hystérésis magnéto-

élastique dans lequel les limitations classiques des modèles de la littérature peuvent être dépassées.

La modélisation est réalisée par l’association d’un modèle multi-échelle anhystérétique et d’un

modèle d’hystérésis basé sur une approche énergétique. Les paramètres de modélisation pour

les comportements réversibles et irréversibles sont identifiés à partir de la caractérisation unia-

xiale sous contrainte mécanique. De plus, d’autres résultats expérimentaux sont présentés pour

une variété de chargements magnéto-élastiques permettant de tester la prédictivité des modèles.

Un modèle est d’abord développé pour représenter le comportement magnéto-élastique sous

contrainte constante, prenant en compte la multiaxialité du chargement, les effets de texture,

l’effet des contraintes sur le champ coercitif, la non-monotonie de la perméabilité en fonction

de la contrainte ainsi que l’annulation des pertes à saturation sous champ tournant. Ce modèle

est analysé dans plusieurs configurations complexes et montre des résultats très satisfaisants. Un

modèle analogue est développé pour représenter l’hystérésis magnéto-élastique à champ cons-

tant, sous contrainte variable. Ces deux modèles basés sur l’approche énergétique présentent

la cohérence thermodynamique espérée, leur paramètres peuvent être identifiés à partir de me-

sures uniaxiales et ils sont capables de représenter le comportement dans des configurations

complexes (3D). Enfin, deux modèles permettant de prendre en compte des chargements avec

contrainte et champ variable sont proposés. Ceux-ci présentent chacun des points faibles dont

le traitement est laissé en perspective à ce travail.

Mots clés: Modèle d’hystérésis, Couplage magnéto-élastique, Modélisation multi-échelle, Con-

trainte multiaxiale



Notations

Scalar

µ0 Vacuum permeability

µr Relative magnetic permeability

u Internal free energy density

f Helmholtz free energy density

g Gibbs free energy density

s Entropy

T Temperature

D Dissipation

κ , κH Pinning field

ω Weight corresponding to each pinning field or pinning stress

κσ Pinning stress

Ms Saturation magnetization

Hc Coercive field

σc Coercive stress

pα Volume fraction of domains α

λs Saturation magnetostriction strain of an isotropic material

λ100 Magnetostriction strain along < 100 > direction

λ111 Magnetostriction strain along < 111 > direction

K1,K2 Magnetocrystalline anisotropy constants

σeq Equivalent stress
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Vector

~H Magnetic field

~B Magnetic induction

~M Magnetization

~Hrev Reversible magnetic field

~Hirr Irreversible magnetic field

Tensors of order 2 and higher

ε Second-order strain tensor

εe Second-order elastic strain tensor

εµ Second-order magnetostriction strain tensor

σ Second-order stress tensor

σ rev Second-order reversible stress tensor

σ irr Second-order irreversible stress tensor

I Second-order identity tensor

C Fourth-order stiffness tensor
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Operations

grads Symmetric gradient, e.g. ε = grads~u → εi j =
1

2

[
∂ui

∂x j
+

∂u j

∂xi

]

: Double contraction, e.g. σ = C : ε → σi j = Ci jklεkl

tr Trace, e.g. tr(ε) = εii

div Divergence of a vector field, e.g. div~B =
∂Bi

∂xi

curl Curl of a vector field, e.g. curl ~H = εi jk

∂Hk

∂x j
~ei

ε Levi-Civita permutation symbol: εi jk =





1, if (i, j,k) = (1,2,3) or (2,3,1) or (3,1,2)

−1, if (i, j,k) = (3,2,1) or (1,3,2) or (2,1,3)

0, otherwise
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1 Introduction

Magnetic materials are essential in an extensive range of applications, including sen-

sors for non-destructive evaluation Bouterfas et al. [2023], Eslamlou et al. [2023], energy har-

vesting Daniel et al. [2023], Liu et al. [2024], Zangho et al. [2024], and electrical machines

Krings et al. [2017]. The industrial sector corresponds to about one-third of the total energy

consumed in the world, in which electrical machines correspond to more than 60 % of indus-

trial sector energy consumption Errigo et al. [2022]. The evolution of manufacturing processes

such as additive manufacturing Selema et al. [2023] and the development of materials including

soft magnetic composites Guo et al. [2023] open vast possibilities in researching new topolo-

gies of electrical machines for more sustainable options Fernandes et al. [2022]. Even different

in the respective utilization - magnetic sensors, energy recovery systems, or electromechanical

conversion - in common with all these applications and processes, developing models that des-

cribe the behavior of magnetic materials is essential in designing devices with high reliability

and efficiency.

The behavior of magnetic materials is complex due to anisotropy Jiang et al. [2018],

Tolentino et al. [2022], hysteresis or dissipative behavior, dependence on the frequency of the

applied loading de La Barrière et al. [2012], and coupled effects, which result in modifications in

the magnetic behavior due to the application of mechanical stress Li et al. [2024] or temperature

Banu et al. [2023].

Notably, the mechanical stress effect in magnetic materials can have positive or ne-

gative effects depending on the application. For instance, manufacturing processes can induce

mechanical stress in electrical machines, which can increase iron losses and thus affect effici-

ency and modify the magnetic permeability in certain magnetic parts of the device Takahashi

et al. [2008], Yamazaki and Takeuchi [2017]. Conversely, energy harvesting systems benefit

from the stress-dependence of the magnetization in magnetic materials Daniel et al. [2023].

The stress effect in magnetic materials can also be utilized in developing transducers, such as

force sensors Dapino [2004]. The coupled magneto-mechanical behavior also has an inverse

effect in magnetic materials: a magnetic field induces a strain, denoted by magnetostriction. A

negative impact of the magnetostriction is noted in the core of transformers, in which this strain

is one of the sources of vibration and noise Moses et al. [2016].

Several scales can be considered in modeling the coupled magneto-mechanical beha-
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vior of magnetic materials. Multiscale strategies with proper transition rules have been deve-

loped to define constitutive relations Bernard et al. [2019], Daniel et al. [2008]. Such approa-

ches successfully depict the coupled magneto-mechanical behavior and the anisotropy from an

energy description. However, these multiscale models do not usually describe the hysteresis

dissipation. The multiscale approaches can be combined with hysteresis models to describe the

irreversible behavior.

The main goal of this thesis is to analyze and develop a magneto-elastic hysteresis

model in which the limitations present in some models of the literature are partially or totally

covered. Three key features are defined in developing a constitutive relation: (a) the ability

to consider multiaxial magneto-elastic loadings, (b) thermodynamic consistency such that the

losses can be accurately evaluated at any operating point, and (c) low computational time such

that the model can be implemented into numerical analysis tools.

The manuscript is organized as follows:

The first chapter introduces the physical basis of the magneto-mechanical problem,

followed by the description of some hysteresis models under magneto-elastic loadings availa-

ble in the literature, detailing the main features and limitations. A thermodynamically consistent

model, developed for the stress-free case only, is then introduced, covering some of the limita-

tions of the previous approaches.

The second chapter presents experimental measurements performed on a DC04 low-

carbon steel, illustrating the coupled magneto-mechanical behavior of a magnetic material under

various loading conditions.

In the third chapter, an energy-based magnetic hysteresis approach is combined with

multiscale models to describe the dissipative hysteresis behavior under static mechanical loa-

dings and variable fields. The parameters of the proposed association are identified from uni-

axial measurements only, and the model is validated considering multiaxial stress states and

rotating fields.

In the fourth chapter, two approaches are presented to describe the piezomagnetic

behavior - under variations of stress and constant field - and under variations in both field and

stress. The modeling results are then compared to the measurements, allowing to discuss the

limitations and a route for the following works.



2 MAGNETO-ELASTIC BEHAVIOR MODELING 28

2 Magneto-elastic behavior modeling

This chapter provides an overview of the existing models describing the magneto-

elastic behavior of ferromagnetic materials. In Section 2.1, the physics concepts and expressions

related to the mechanical and magnetic processes in matter are briefly recalled. The concepts

of strain and stress are defined from a continuum mechanics framework under the hypothesis

of small strains. The notions of magnetization, magnetic field, and induction are established th-

rough the Maxwell equations - here restricted to a quasi-static regime. Ferromagnetic materials,

studied in this work, are then introduced.

In Section 2.2, the strong coupling between magnetic and mechanical quantities in a

ferromagnetic material is observed from experimental measurements extracted from the litera-

ture. The magnetization process is strongly affected by the application of stress. In addition,

the magnetostriction, a strain related to the magnetic state of a matter, is another phenomenon

that emphasizes this coupled behavior. Such a coupled behavior can be explained by an energy

balance at a microscopic scale, further detailed.

The modeling of the coupled magneto-elastic behavior is a challenging task due to

the hysteretic and non-linear magnetic response. In the literature, macroscopic modeling can

be performed considering the assumption of no losses - resulting in a thermodynamic reversible

behavior - or considering the dissipation mechanism. In Section 2.3, two approaches to model

the anhysteretic behavior are presented, and in Section 2.4 macroscopic hysteresis models are

introduced. The main flaws of each approach are discussed.

2.1 Introduction of the uncoupled physics basis

2.1.1 Continuum mechanics

Continuum mechanics is a branch of Physics that deals with the interaction between

force and motion in a continuum media. In continuum mechanics, a body is defined as a col-

lection of elements - the material points. As exemplified in Fig. 2.1.1, at time t0 - the reference

configuration - a body is denoted by B0. The vector ~X defines the position of a material point

P(t0). After motion and deformation, at time t, the vector~x characterizes the new material point

position. The deformation field ~u is introduced, linking the set of material points location on

both configurations Eringen and Maugin [1990]:
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The mass m of a continuum does not depend on motion. This statement is defined

mathematically from the conservation of mass principle Kovetz [2000]:

•
m = 0, with m =

∫

B

ρ (~x, t) dv, (2.1.5)

with ρ (~x, t) the volumetric mass density. From the balance of linear momentum pos-

tulate, the force ~F exerted on the body is introduced. This quantity comprises a volume ~f and

a surface~t force components. The Cauchy hypothesis states that the surface forces depend on

the vector~n, normal to the surface ∂B. From this assumption, the second-order Cauchy stress

tensor σ is introduced Kovetz [2000]:

~F =
∫

B

ρ~f dv+
∫

∂B

~t ds with ~t = σ~n. (2.1.6)

The balance of angular momentum and the Cauchy hypothesis lead to the symmetry

of the stress tensor Kovetz [2000]:

σ = σ t , (2.1.7)

with the superscript t denoting the transpose operator. Volume forces, such as gravity

and electromagnetic forces, are not treated in this work in developing constitutive models. The

reader is referred to Eringen and Maugin [1990], Kankanala and Triantafyllidis [2004], Kovetz

[2000] for an extensive analysis of the electromagnetic forces contribution on a continuum

mechanics framework.

2.1.2 Linear elastic behavior

In addition to the mass conservation postulate and the balance laws, constitutive equa-

tions, which consider specific material properties, are defined to solve a mechanical problem. If

a material, under the hypothesis of small strains, deforms depending on the stress level, such that

it presents a thermodynamically reversible behavior, the material exhibits an elastic behavior.

Moreover, if the material deforms linearly under mechanical loading, the constitutive relation

between strain and stress is defined by the Hooke law:

σ = C : ε, (2.1.8)
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with C the fourth-order stiffness tensor. The operator : represents the double-contraction

product. If the material is elastically isotropic, and considering the symmetries of the quantities,

the Hooke law can be written as:

σ = 2 µl ε +λl

(
tr(ε)

)
I with µl =

E

2(1+ν)
and λl =

2 µl ν

1−2ν
, (2.1.9)

tr is the trace operator. The Lamé coefficients µl and λl can be evaluated from the

Young’s modulus E and the Poisson’s ratio ν and vice-versa.

2.1.3 Introduction to magnetism and ferromagnetic materials

The Maxwell equations govern the interactions between magnetic and electrical quan-

tities. The magnetic set of the Maxwell equations under the assumption of quasi-static fields

linking the magnetic field ~H, the magnetic induction ~B, the current density ~Jc, and the electric

field ~E are Bastos and Sadowski [2003]:

curl ~H = ~Jc (Ampère law) (2.1.10)

div~B = 0 (Gauss law) (2.1.11)

curl~E =−∂~B

∂ t
(Faraday-Lenz law) (2.1.12)

with the operators curl and div representing the curl and the divergence, respectively.

The relationship of magnetic fields is:

~B = µ0

(
~H + ~M

)
, (2.1.13)

where it is introduced the magnetization ~M, and µ0 is the vacuum permeability. As

in the previous section, the definition of constitutive relations is necessary to solve a magnetic

problem. In the case of materials with linear anhysteretic magnetic behavior, the constitutive

equation writes:

~B = µ0 (χ + I) ~H = µ~H, (2.1.14)
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rotation of an electron around its own axis or spin. This motion is represented in Fig. 2.2.5. The

spin results in a magnetic moment given by Purcell and Morin [2013]:

~µs =−gl

e

2me

~S, (2.2.2)

with ~S the angular momentum. gl is the Landé factor, a quantum mechanics factor

that depends on the atomic state, and gl = 2 under a pure electron spin. The total magnetic

moment ~µ of an electron is given by the sum of the contributions of orbital motion and spin:

~µ =− e

2me

(
~L+gl

~S
)
. (2.2.3)

The total magnetic moment in a free atom - with several electrons - can be evaluated

from a vector sum of all magnetic moments of the electrons. The atomic magnetization is given

by the volumetric sum of the total magnetic moment. A much more detailed analysis of the

quantum state of an electron in an atom and its interaction with a magnetic field can be found in

Chikazumi [1997], Jiles [1991]. Here, we emphasize the influence of the magnetic moments -

at the atomic scale - on the macroscopic magnetic behavior of a material. For instance, as noted

in Fig. 2.1.2, diamagnetic materials have a minimal and negative susceptibility. This behavior

can be explained from an atomic perspective, where the electrons are so paired that the total

magnetic moment of the atom is zero. Moreover, under an applied field, the magnetization

generated by the electrons motion of a diamagnetic material opposes the increasing of the field,

resulting in a negative susceptibility Jiles [1991].

On the other hand, paramagnetic materials exhibit a total magnetic moment due to

unpaired electrons. Under an applied field, the magnetization proportionally increases with the

field (see Fig. 2.1.2). Below the Curie temperature, ferromagnetic materials manifest a much

more significant magnetic response under an applied field when compared to paramagnetic ones

(see Fig. 2.1.2). The atomic structure of ferromagnetic materials, with the magnetic moment

of adjacent atoms aligned in parallel - arranged in the so-called magnetic domains structure -

favors the magnetization changes with the applied field Jiles [1991].

2.2.5 Domains and grains

The magnetic domains are a large set of magnetic moments aligned in parallel - cha-

racteristic of ferromagnetic materials. At the domain scale (denoted by the index α) the mag-
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when the magnetization is aligned with an easy axis. For materials with cubic crystal-

lographic symmetry, the magnetocrystalline anisotropy energy density is evaluated by

Hubert and Schäfer [2008]:

wan
α = K1

(
α2

1 α2
2 +α2

1 α2
3 +α2

2 α2
3

)
+K2

(
α2

1 α2
2 α2

3

)
, (2.2.7)

with K1 and K2 the anisotropy constants. As an example of a material with cubic sym-

metry, consider a grain of iron, whose easy axes are along the < 100 > directions. The

anisotropy constants for iron are K1 = 42.7 kJ/m3 and K2 = 15 kJ/m3 Jiles [1991]. The

anisotropy energy density for a grain of iron - presented in Fig. 2.2.7 - is minimum for

the domain orientations aligned along the easy axes.

[100] [010]

[001]

Figura 2.2.7: Anisotropy magnetocrystalline energy density of a grain of iron.

• Magnetostatic energy w
mag
α : The magnetostatic energy is characterized by two contributi-

ons: the first one, the Zeeman energy wz
α , describes the interaction between an externally

applied field and the magnetization. For a uniform magnetic field, wz
α writes Hubert and

Schäfer [2008]:

wz
α =−µ0

~H · ~Mα . (2.2.8)

The Zeeman energy wz
α is minimum when the magnetization is parallel to the applied

field. The second contribution of the magnetostatic energy is due to demagnetizing effects

and is denoted by wd
α . From the Gauss law (2.1.11), spatial variations of magnetization

result in a magnetic field, denoted as demagnetizing ~Hd:

div ~Hd =−div ~Mα . (2.2.9)
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The energy contribution due to demagnetizing effects is Hubert and Schäfer [2008]:

wd
α =−1

2
µ0

~Hd · ~Mα . (2.2.10)

The magnetostatic energy is then:

w
mag
α = wz

α +wd
α =−µ0

~Heff · ~Mα with ~Heff = ~H +
1

2
~Hd (2.2.11)

• Magneto-elastic energy wmec
α : The arrangement of domains is altered by applying mecha-

nical loadings. Considering uniform stress within the grain and a linear dependence of

wmec
α on the mechanical loading, the magneto-elastic energy can be defined as Hubert and

Schäfer [2008]:

wmec
α =−σ : ε

µ
α . (2.2.12)

For materials with cubic crystallographic symmetry, the magnetostriction strain ε
µ
α is

defined by:

ε
µ
α =

3

2




λ100

(
α2

1 −
1

3

)
λ111α1α2 λ111α1α3

λ111α2α1 λ100

(
α2

2 −
1

3

)
λ111α2α3

λ111α3α1 λ111α3α2 λ100

(
α2

3 −
1

3

)




(2.2.13)

with the constants λ100 and λ111 indicating the magnetostriction strain along the < 100 >

and < 111 > directions, respectively.

The magnetization process in a grain under a magneto-elastic loading is illustrated in

Fig. 2.2.8 for a Fe-Si material. Without field and under static tension, the volume fraction of the

domain orientations more favorably aligned to the tension direction will increase. By increasing

the field in the direction of the tension, the material almost reaches a magnetic saturation, with

most of the domains oriented along the direction of the magneto-elastic loading.

A simplified schematic of the domain arrangement under a magneto-elastic loading is

presented in Fig. 2.2.6. In this schematic, two main parts concerning the magnetization process

can be highlighted: under moderate loadings (Fig. 2.2.6 (b-d)), a domain wall motion takes
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Considering small perturbations, the strain εα can be expressed as:

εα = εe
α + ε

µ
α = C

−1
α : σα + ε

µ
α , (2.3.6)

with εe
α the elastic strain at the domain scale, ε

µ
α is the magnetostriction strain tensor

of (2.2.13) for cubic crystallographic symmetric, and Cα the domain stiffness tensor. The in-

tegration of (2.3.5) over the stress path gives the magneto-elastic part of the Gibbs free energy

Hubert [2019]:

gme
α =−1

2
σα : C

−1
α : σα − ε

µ
α : σα . (2.3.7)

From the Helmholtz free energy, defined using a Taylor expansion of magnetization

Hubert [2019] and considering a cubic symmetry, the magnetic and the anisotropy parts of the

Gibbs free energy are written as:

g
mag
α =−µ0

~Mα · ~Hα

gan
α = K1

(
α2

1 α2
2 +α2

1 α2
3 +α2

2 α2
3

)
+K2

(
α2

1 α2
2 α2

3

)
.

(2.3.8)

To simplify the modeling, the field and stress are considered homogeneous within the

material (~H = ~Hα and σ = σα ). The Gibbs free energy is then:

gα = g
mag
α +gme

α +gan
α with





g
mag
α =−µ0

~Mα · ~H

gme
α =−ε

µ
α : σ

gan
α = K1

(
α2

1 α2
2 +α2

1 α2
3 +α2

2 α2
3

)
+K2

(
α2

1 α2
2 α2

3

)
.

.

(2.3.9)

The heterogeneity of field and stress can be considered in a more complete multiscale

approach Daniel et al. [2008]. In this case, using localization schemes allows for modeling the

non-homogeneous distribution of the magneto-elastic loadings in a polycrystal.

As shown in Fig. 2.3.2 and in earlier works Daniel et al. [2014], Hubert [2019], the

effect of stress on magnetization is non-monotonic. The formulation of (2.3.9) does not capture

such a tendency. This drawback can be solved by adding a stress-dependent demagnetizing

term in the energy balance Daniel et al. [2014], or by adding a higher-order development of the

magneto-elastic Hubert [2019]. The magneto-elastic energy, including a second-order term -
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quadratic in stress - is proposed in Hubert [2019]. In da Silva et al. [2022], a development of

the magneto-elastic energy using an equivalent stress σeq is presented and defined as:

gme
α = g

me(1)
α +g

me(2)
α =−ε

µ
α : σ − 3

2
λ ′

sσ2
eq

(
~α ⊗~α − 1

3
I

)
:
(
~h⊗~h

)
. (2.3.10)

Figura 2.3.2: Uniaxial stress effect on the relative secant permeability of an electrical steel

Mailhé et al. [2020].

In (2.3.10) the second-order magnetostriction constant λ ′
s is introduced, and an equi-

valent stress Daniel and Hubert [2009], written in terms of~h = ~H/‖~H‖ and the deviatoric part

of σ , is used. σeq is:

σeq =
3

2
~ht

(
σ − 1

3
tr(σ)I

)
~h. (2.3.11)

The magnetostriction constant λ ′
s can be identified as (see Appendix B) da Silva et al.

[2022]:

λ ′
s =− λs

2σm
, (2.3.12)

where σm is the value of the applied uniaxial stress corresponding to the maximum

magnetic permeability (obtained from a uniaxial characterization of permeability under stress).

λs is the saturation magnetostriction, which can be evaluated considering the Reuss hypothesis

of uniform stress within an isotropic material Daniel et al. [2008]:

λs =
2

5
λ100 +

3

5
λ111. (2.3.13)

The volume fraction pα of a domain family with direction ~α is established using a
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Boltzmann relation Buiron et al. [1999]:

pα =
exp(−As gα)

∑α exp(−As gα)
, (2.3.14)

with As a material parameter that is proportional to the initial susceptibility χ0 of the

stress-free anhysteretic curve Daniel et al. [2008]:

As =
3χ0

µ0M2
s

. (2.3.15)

The set of possible domain orientations is defined through the nodes of an icosphere -

a geometric mesh that approximates a sphere using triangular faces Daniel and Galopin [2008].

With the definition of pα , the magnetization ~Mg and the magnetostriction strain εµ
g at the grain

scale are evaluated by:

~Mg = ∑
α

pα ~Mα and εµ
g = ∑

α

pαε
µ
α . (2.3.16)

The macroscopic (see RVE in Fig. 2.3.1) magnetization ~M and magnetostriction strain

εµ are then evaluated by an operation of volume average:

~M = ∑
g

pg
~Mg and εµ = ∑

g

pgεµ
g , (2.3.17)

where pg represents the proportion of each grain orientation, which can be defined

from crystallographic texture measurements of the sample.

Simplifications on this multiscale approach can be made, namely considering an equi-

valent simplified crystallographic texture with a reduced number of grain orientations, leading

to a simplified texture multiscale model (STMSM) Bernard et al. [2019]. A further simplifica-

tion consists in representing the macroscopic behavior using a fictitious single-crystal, leading

to the so-called simplified multiscale model (SMSM) Daniel et al. [2015] or even limiting the

number of possible domain orientations to six, resulting in analytical formulas for the magneto-

elastic behavior Daniel [2018], Daniel [2013].

Similarly to the approach introduced in this section, a multiscale modeling is also

presented in Ito et al. [2015]. First, this modeling defines a simplified six-domain structure, with

orientations corresponding to the easy axes of the cubic symmetry. A minimization procedure

of the total energy results in the magnetic state of this simplified structure domain. Then,
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the macroscopic response corresponds to the assembly of several simplified domain structures.

Such a minimization approach is also presented in Daniel [2003].

2.3.2 Thermodynamic macroscopic model

In this approach Dorfmann and Ogden [2003], Fonteyn et al. [2010], the induction ~B

and the strain ε are independent variables. The magnetization ~M and mechanical stress σ are

calculated by:

~M =−∂ f

∂~B
and σ =

∂ f

∂ε
, (2.3.18)

f (ε,~B) represents the Helmholtz free-energy density. Considering an isotropic mate-

rial, f (ε,~B) can be expressed through six invariants Fonteyn et al. [2010]:

f = f (I1, I2, I3, I4, I5, I6) with

I1 = tr(ε), I2 =
1

2
(tr(ε))2, I3 = det(ε), I4 = ~B ·~B, I5 = ~B · ε ·~B, I6 = ~B · ε2 ·~B.

(2.3.19)

Analytical expressions for f (ε,~B) are presented in Aydin et al. [2017], Fonteyn et al.

[2010], Rasilo et al. [2019b]. This approach with invariants is flexible to changes in the state

variables - originally (ε,~B) - and so (~H,σ) could be chosen depending on the application, and

a new set of invariants is defined Rasilo et al. [2019b]. One drawback of this modeling is

identifying the parameters that define the energy density, which usually requires several measu-

rements Rasilo et al. [2019b]. A magneto-mechanical anhysteretic model based on the invariant

theory is also presented in Taurines et al. [2022].
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Despite its simplifications when compared to micromagnetics modeling, the multis-

cale approach has good prediction capabilities of the macroscopic anhysteretic magnetic

behavior of a ferromagnetic material under stress, as observed in Hubert et al. [2022].

Moreover, it accounts for a multiaxial loading condition with a clear parameters identi-

fication protocol. One drawback of the multiscale approach is the use of magnetic field

and stress as state variables, which implies the inversion of the model for application

with classical finite element formulations Bernard et al. [2019]. On the other side, in the

thermodynamic model, by using the invariant theory, the model is flexible to changes in

the state variables. However, the complexity of identifying the parameters increases by

increasing the number of invariants that express the energy density.

2.4 Irreversible modeling

Macroscopic hysteresis models are generally developed from a Physics or purely

mathematical description. In this section, models based on these two perspectives will be pre-

sented, detailing the main features and drawbacks of each approach.

2.4.1 Jiles-Atherton model

In scalar Jiles-Atherton (JA) approaches Sablik and Jiles [1993], Sablik et al. [1987,

1988], the magnetization M is defined by the sum of Mb, that represents the bending of domain

walls, and Mirr, which denotes the irreversible domain wall motion:

M = Mb +Mirr with Mb = c(Man −Mirr) , (2.4.1)

with c a material parameter and Man the anhysteretic magnetization. Often, the anhys-

teretic behavior is described by the Langevin function in Jiles-Atherton-Sablik approaches:

Man = Ms

[
coth

(
He

a

)
− a

He

]
, (2.4.2)

where Ms represents the saturation magnetization, and a is a material parameter that

controls the slope of the anhysteretic curve. An effective field He is introduced, and its terms

are evaluated from an energy balance as presented in Sablik and Jiles [1993]. He is then:
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d pα =
1

κ

(
panh

α − pα

)
|dH|, (2.4.7)

with κ a material parameter representing the domain walls pinning. This approach

is then applied to predict the magnetic behavior of Terfenol-D. However, it was pointed out in

Evans and Dapino [2010] that the Armstrong model exhibits non-physical behavior in the region

of asymmetric minor loops. A further development on the definition of the irreversible volume

fraction was presented in Evans and Dapino [2010], and the model showed its capabilities to

predict the magnetic response of Galfenol under a quasi-static field and under a quasi-static

stress.

2.4.3 Hauser model

The polycrystal hysteretic magnetic response of a ferromagnetic material is modeled

in Daniel et al. [2014], as a combination of a magneto-mechanical anhysteretic model Daniel

et al. [2008] with a magnetic hysteresis approach Hauser [2004]. The dissipative behavior is

captured from the definition of an irreversible field whose norm is evaluated at the grain scale

as:

‖~Hirr‖= δ

(
kr

µ0Ms
+ cr‖~H‖

)
1−κg exp

(
− ka

κg
‖~M− ~M(inv)‖

)
 , (2.4.8)

with kr, cr, ka and κg material parameters. δ is a sign function of the loading. ~M(inv)

is the value of ~M at the previous inversion of the loading direction Daniel et al. [2014]. The

parameter kr defines the coercive field and is adapted to a stress dependence. To avoid the

long-time simulation of a polycrystal, in Daniel et al. [2015], the RVE is represented by an

equivalent single-crystal - with anhysteretic behavior defined through a SMSM. This single-

crystal approach can also reproduce the magnetic behavior under a biaxial stress state. The

main drawback of this approach is the update of only the norm of the irreversible field at each

time step. This limitation may cause problems in the case of simulation with a rotating field.

The combination of multiscale model and the Hauser approach is also used to simulate

the piezomagnetic behavior, as presented in Ouaddi et al. [2019]. By analogy with the field

decomposition, piezomagnetic effects are considered through the definition of an irreversible
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stress σirr, where a coercive stress captures the dissipative magnetostriction strain under variable

mechanical loading. However, the model proposed in Ouaddi et al. [2019] is limited to uniaxial

loadings.

2.4.4 Plasticity based models

A strategy to describe the magnetic hysteresis comes from the analogy of this pheno-

menon with plasticity. Some models of plastic behavior start from thermodynamics principles

with the definition of internal variables that describe the dissipation. These internal variables

are a modeling choice in a way that they unify in a single (or more) variable (or variables) the

complex microscopic process that manifests in the form of dissipation at the macroscopic scale

Maugin [2015]. Examples of internal variables are the irreversible magnetization in the Jiles-

Atherton approaches, the domain volume fraction in the Armstrong model, and the irreversible

field in the Hauser model.

Some thermodynamically consistent plasticity approaches introduce a switching sur-

face, a quantity that controls the material behavior, whether reversible or dissipative. The swit-

ching surface is defined to ensure that the constraint of the second law of thermodynamics is

respected - namely, dissipation is always positive - and is a function of the internal variables.

In Landis [2002], a macroscopic thermodynamic framework for the ferroelectric hysteresis is

proposed, also considering stress effects. The remanent polarization and strain are chosen as

internal variables. Another example, presented in Kiefer et al. [2012], is applying the internal

variables approach to simulate the strain response of magnetic shape memory alloys.

2.4.5 Preisach model

In the classical Preisach model, first, it is introduced the notion of hysterons denoted

by γ . These hysteresis operators are represented by a rectangular loop, as presented in Fig.

2.4.3a, whose width is controlled by the fields Hu and Hd . The set of hysterons is defined by a

distribution φ(Hu,Hd). The hysteretic magnetization can be calculated by Mayergoyz [1991]:

M(t) =
∫ ∫

φ(Hu,Hd)γ(Hu,Hd)H(t)dHudHd with γH(t) =





−Ms, if Hu,Hd ∈ T (+)

Ms, if Hu,Hd ∈ T (−).

(2.4.9)
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The magnetic response of a ferromagnetic material, as observed in the hysteresis curves,

is the result of a complex evolution of the domain structure. Usually, the magnetic hyste-

resis models are defined from either a macroscopic approach, a multiscale approach, or

a combination of both. Although many hysteretic magneto-elastic modeling approaches

are available in the literature, as described above, none of them simultaneously combines

three key features for the numerical analysis of electromagnetic devices. The first is the

ability to consider fully multiaxial loadings as encountered in practical applications, the

second is thermodynamic consistency to compute losses accurately, and the last is the

implementation into numerical analysis tools, which requires low computation time for

behavior evaluation. One modeling approach that checks the last two requirements is

the energy-based model. However, this approach, further detailed, was developed for the

stress-free case only.

2.4.7 Stress-free energy-based hysteresis model

In this stress-free energy-based approach, the magnetization is the internal variable

that describes dissipative effects. The Clausius-Duhem inequality at the macroscopic scale of a

ferromagnetic material can be written as Bergqvist [1997], Henrotte et al. [2006]:

D = µ0
~H ·

•
~M−

•
f ≥ 0, (2.4.12)

with D the dissipation and
•
f the time-derivative of the Helmholtz free energy density.

In a reversible framework, a reversible magnetic field ~Hrev is introduced, and it is defined as:

~Hrev =
1

µ0

∂ f

∂ ~M
. (2.4.13)

Combining (2.4.12) and (2.4.13) yields:

D = µ0

(
~H − ~Hrev

)
·

•
~M ≥ 0. (2.4.14)

In a dissipative framework, an irreversible field ~Hirr is introduced and defined by

~Hirr = ~H − ~Hrev. The dissipation is modeled by analogy with a mechanical dry-friction system

Henrotte et al. [2006]. The defects that pin domain walls at specific positions are represented

by a pinning field κ , a positive scalar in the isotropic case. The dissipation writes:
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D = µ0κ‖
•
~M‖= µ0

~Hirr ·
•
~M. (2.4.15)

As in (2.4.13) - where a relation between ~Hrev and f was defined - the irreversible

field ~Hirr can be written as a function of the partial derivative of D. Since D is not differentiable

at
•
~M =~0, the subdifferential of a convex function is considered Henrotte et al. [2006]. An

illustrative example of a subdifferential is presented in Appendix A. The subdifferential of D(
•
~M)

is the set Prigozhin et al. [2016]:

∂D(
•
~M) :=

{
~Hirr ∈ Re

3 : κ‖~y‖ ≥ κ‖
•
~M‖+ ~Hirr · (~y−

•
~M), ∀~y ∈ Re

3

}
. (2.4.16)

The elements ~Hirr ∈ ∂D(
•
~M) are the subgradients of D at

•
~M. At

•
~M =~0, the subgradient

writes:

κ‖~y‖ ≥ ‖~0‖+ ~Hirr ·
(
~y−~0

)
, ∀~y ∈ Re

3. (2.4.17)

From the inequality:

~Hirr ·~y ≤ ‖~Hirr‖ ‖~y‖, ∀~y ∈ Re
3, (2.4.18)

the condition of (2.4.17) will hold when:

‖~Hirr‖ ≤ κ. (2.4.19)

At
•
~M 6=~0, D is differentiable so:

∂D

∂
•
~M

= κ

•
~M

‖
•
~M‖

= ~Hirr. (2.4.20)

The subdifferential of D(
•
~M) is then written as:

∂D

∂
•
~M

=





~Hirr,‖~Hirr‖ ≤ κ, if
•
~M =~0

~Hirr = κ

•
~M

‖
•
~M‖

, otherwise.
(2.4.21)
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This set implies that for ‖~Hirr‖ < κ the magnetization ~M remains constant until a

threshold κ is reached. From the previous definitions:

~H − ~Hrev − ~Hirr =~0. (2.4.22)

The analogy of the magnetic hysteresis with a dry-friction mechanism is illustrated in

Fig. 2.4.5, with the magnetic field ~H representing the driving force, and the strain of the system

corresponding to variations on magnetization:

Figura 2.4.5: Analogy of the magnetic hysteresis phenomena with a mechanical system Jacques

[2018].

When the threshold is reached (
•
~M 6= 0), and from the definitions of (2.4.13) and

(2.4.21), the relation of (2.4.22) can be written as:

~H − 1

µ0

∂ f

∂ ~M
− ∂D

∂
•
~M

=~0 → ~H − 1

µ0

∂ f

∂ ~M
−κ

•
~M

‖
•
~M‖

=~0. (2.4.23)

Considering a scalar case, Fig. 2.4.6 illustrates this energy-based approach. Ne-

glecting the dissipation mechanism results in a magnetic anhysteretic behavior. The hysteresis

modeling essentially involves translating the anhysteretic curve along the pinning parameter κ .

Therefore, κ is the coercive field and can be identified from a standard magnetic characteri-

zation. This modeling has limitations in representing the first magnetization curve and minor

loops, as observed in Fig. 2.4.6.
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Figura 2.4.6: Application of the energy-based model to a scalar loading.

To solve the limitation of representing minor loops and the first magnetization curve,

the pinning field κ can be represented by a discrete distribution of pinning fields Henrotte et al.

[2006]. In this case, the single dry-friction system of Fig. 2.4.5 is replaced by a series connec-

tion of dry-friction systems or cells. In Fig. 2.4.7, a structure with N cells is presented.

Figura 2.4.7: Analogy of the magnetic hysteresis phenomena with a mechanical system made

of N dry-friction cells Jacques [2018].

In this multicells context, the fields at each k-cell are defined as Jacques [2018]:

~H − ~Hk
rev − ~Hk

irr =~0 → ~H − 1

µ0

∂ f k

∂ ~Mk
−∂Dk(

•
~Mk) ∈





~Hk
irr,‖~Hk

irr‖ ≤ κk, if
•
~Mk =~0

~Hk
irr = κk

•
~Mk

‖
•
~Mk‖

, otherwise.

(2.4.24)

The constant κk represents the pinning field at the k-cell. By using a weighted sum,

the total magnetization ~M is then:

~M =
N

∑
k=1

ωk ~Mk, (2.4.25)

where the weight ωk of each cell is introduced. It verifies:
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N

∑
k=1

ωk = 1. (2.4.26)

Concerning the numerical implementation of the model, three approaches are usually

performed and detailed hereafter. The first one is an explicit solution of (2.4.24) or vector-play

approach. In this modeling, the unit vector that defines the direction of ~Hirr is approximated by

Henrotte et al. [2006], Jacques [2018]:

~e~Hk
irr
=

~Hk
irr

‖~Hk
irr‖

=
~H − ~Hk

rev

‖~H − ~Hk
rev‖

≈
~H − ~Hk

rev(p)

‖~H − ~Hk
rev(p)

‖
. (2.4.27)

Using this approximation, the explicit update procedure of ~Hk
rev at each cell is:

~Hk
rev =





~Hk
rev(p), if ‖~H − ~Hk

rev(p)‖ ≤ κk

~H −κk
~H − ~Hk

rev(p)

‖~H − ~Hk
rev(p)

‖
, otherwise.

(2.4.28)

The induction ~B then is evaluated by:

~B = µ0
~H +

N

∑
k=1

Man(~H
k
rev), (2.4.29)

with Man(~H
k
rev) a function that defines the reversible behavior.

A second approach to evaluating the energy-based model consists of directly solving

(2.4.24) using a minimization procedure François-Lavet et al. [2013]. In this case, the functional

g(~H, ~Mk) is introduced:

g(~H, ~Mk) = f k(~Mk)−µ0
~H · ~Mk, (2.4.30)

with the partial derivative:

1

µ0

∂g

∂ ~Mk
=

1

µ0

∂ f

∂ ~Mk
− ~H. (2.4.31)

For sufficiently small time steps, the time-derivative of the dissipation is approximated

by:

D ≈ µ0κk
‖~Mk − ~Mk

(p)‖
∆t

, (2.4.32)
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with ~Mk
(p) the magnetization at the previous time step. The subgradient of (2.4.32) is

given by the set:

∂Dk(~Mk) ∈





~Hk
irr,‖~Hk

irr‖ ≤ κk, if ~Mk = ~Mk
(p)

~Hk
irr = κk

~Mk − ~Mk
(p)

‖~Mk − ~Mk
(p)

‖
, otherwise.

(2.4.33)

Finally, (2.4.24) can be written as the unconstrained minimization problem:

∂

∂ ~Mk

[
g(~H, ~Mk)+∆t D(~Mk)

]
= 0 →

~Mk = min
~Mk

[
f k(~Mk)−µ0

~H · ~Mk +µ0κk‖~Mk − ~Mk
(p)‖
]
.

(2.4.34)

In another minimization procedure Prigozhin et al. [2016], the reversible field ~Hk
rev is

updated at each time step. As pointed out in Kaltenbacher et al. [2022], the implementations

presented in Prigozhin et al. [2016] and in François-Lavet et al. [2013] are mathematically

equivalent. A feature of the energy-based model presented in Prigozhin et al. [2016] is the

definition of κ as a symmetric positive-definite matrix, which can employ different thresholds

when the field is applied along rolling or transverse directions, and results in a scalar parameter

in the isotropic case. Such an approach requires measurements along rolling and transverse

directions to identify the components of the matrix κ , as shown in Upadhaya et al. [2020].

In Jacques [2018], a comparison between the vector-play approach Henrotte et al.

[2006] and the minimization procedure François-Lavet et al. [2013] is presented, considering an

isotropic magnetic behavior. Both approaches lead to the same values under uniaxial magnetic

loading and under a purely circular rotating field. The two approaches show slight differences

when applying a 2D spiral field. Another difference between the two approaches is related to the

simulation time. The vector-play approximation results in an explicit model whose simulation

time is reduced compared to a minimization procedure.

A common drawback of this energy-based approach is the limitation to reproducing

the hysteresis losses in the range of saturation, which can be attributed to the absence of the

rotation mechanism description in the model development. Correcting this drawback requires

adapting the pinning parameter to vanish the hysteresis losses under high induction Bergqvist

[1997], Sauseng et al. [2022].
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The energy-based approach is a rate-independent magnetic hysteresis model defined di-

rectly in a vector form. Its energetic description ensures a thermodynamic consistency.

Notably, the vector-play approximation results in a computational light version of the

complete minimization approach, which is mandatory for reasonable finite element si-

mulations. Moreover, symmetric and asymmetric minor loops can be modeled using a

pinning field distribution. Due to these improvements compared to classical approaches,

the energy-based model in a vector-play form is chosen in this study and extended to the

magneto-elastic case, further detailed in Chapter 4.
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3 Experimental characterization of the magneto-elastic beha-

vior

This chapter deals with the uniaxial magneto-elastic measurements performed on a

magnetic material. First, the experimental apparatus is detailed, specifying the main parts to

supply and measure the magnetic and mechanical quantities. The measurement methodology

is briefly introduced, considering different quasi-static loadings: static stress and varying field,

static field and varying stress, and varying both field and stress. The material used in the experi-

mental tests is a high-formability low-carbon steel (DC04) used in the automotive industry. The

experimental measurements are then presented, highlighting the magneto-mechanical coupling

in the material, and are related to results already presented in the literature.

3.1 Experimental setup

The apparatus used to carry out the magneto-mechanical characterization of a sample

under uniaxial stress is detailed in Domenjoud et al. [2019] and shown in Fig. 3.1.1. The

mechanical setup is composed of a tension/compression machine Zwick/Roell Z030 with the

possiblity to control in force or displacement. The resolution and accuracy are 0.2 N ± 0.06%

in force control, and 1 µm ± 0.1% in displacement control. Force measurements are performed

using a 10 kN load cell (strain gauge sensor TC-LC010kN).

The magnetic setup is composed of two U-shaped Fe-Si yokes to ensure the closure

of the magnetic flux. A Kepco 72-14MG amplifier, that can deliver 14 A and 72 V with 0.2%

accuracy, supplies current to an excitation coil (28 turns) positioned around the sample. The

current is measured with a LA 125-P transducer with 0.6% accuracy. A Teslameter FM302 and

a transverse Hall proble 20 mT AS-VTP, which can operate from DC to 1 kHz, measure the

magnetic field with accuracy of 0.5% and measured noise of 19 A/m in the range of 0 - 15.9

kA/m.
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levels. Table 3.3.2 summarizes the hysteresis measurements and loadings.

Tabela 3.3.2: Summary of the hysteresis tests.

Static stress and quasi-static field

Loading Measurements
H

y
st

er
es

is Uniaxial stress σ = [−100 : 20 : 100] MPa Induction B(H,σ)

Peak field Hpeak: 15 values between 140 A/m

and 6800 A/m

Longi. and transv.

magnetostriction ε
µ
//(H,σ)

ε
µ
⊥(H,σ)

3.3.3 Tests under variable stress

As seen in Chapter 2, the variation of magnetization due to stress variations, also

known as piezomagnetism, is another characteristic that highlights the magneto-elastic cou-

pling. The piezomagnetic behavior is measured as follows: the field is set as an exponentially

decaying sine wave superimposed to a bias level, as in the anhysteretic test. A quasi-static cy-

clic force is applied after stabilizing the field at the bias level. Fig. 3.3.3 (left) summarizes

the magneto-elastic loading conditions in a piezomagnetic test. After the mechanical cycle, the

resulting piezomagnetic loop is illustrated in Figure 3.3.3 (right). This test is repeated at several

bias field levels. Table 3.3.3 summarizes the loadings in the piezomagnetic tests.

M
 (

A
/m

)

Figura 3.3.3: Magneto-elastic loading conditions in a piezomagnetic test (left) and the corres-

ponding piezomagnetic loop (right).

A complex magneto-elastic test consists of setting both field and stress as quasi-static,

as illustrated in Fig. 3.3.4. Such an experiment is not usually performed in the literature, but the

magneto-mechanical setup allows the evaluation of the magnetic material response under this

loading condition, which can be further used for modeling validation. As in the hysteresis me-

asurements, first, the sample is demagnetized. Then, a quasi-static field and stress are applied.
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Similar results for low-carbon steels are found in Dobranski et al. [1985], Hubert and Rizzo

[2008]. The anhysteretic relative secant permeability µanh
r can be evaluated by:

µanh
r =

1

µ0

Ban

Han
. (3.4.1)

The anhysteretic relative secant permeability as a function of the applied stress for

different field values is shown in Fig. 3.4.1b. In particular, it highlights the non-monotonic

effect of stress on the magnetization. The maximum anhysteretic permeability is reached under

σm = 40 MPa. Then, the permeability decreases under increments of tension.

-100 MPa
-80 MPa

-60 MPa

-40 MPa

60 MPa

0 MPa100 MPa

-20 MPaB
a
n

(T
)

Han (A/m)

(a) Effect of uniaxial stress on the anhysteretic

behavior.

(b) Magnetic permeability for different values of ap-

plied magnetic field.

Figura 3.4.1: Anhysteretic measurements.

3.4.2 Magnetic hysteresis

The magnetic hysteresis is the behavior under a quasi-static regime. Such a regime is

defined as being independent of the loading frequency. An experimental analysis is presented to

define the conditions for which the magnetic material response is approximately independent of

the loading frequency. However, a drift may appear during the integration of the low frequency

voltage of the B-coil. A drift correction method is then addressed. Subsequently, experimental

measurements of the hysteresis behavior under static stress are presented. An explanation of

the coupled magnetic behavior from a microscopic perspective is detailed.
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3.5 Definition of the quasi-static regime

A characterization without stress indicates that a frequency of 1 Hz does not allow

a quasi-static assumption for this material sample, as seen in Fig. 3.5.1a, where a significant

change is observed in the coercive field Hc when comparing measurements at 1 Hz and 25

mHz. The remanent induction (Fig. 3.5.1b) is less sensitive to changes in frequency for this

stress-free case. The hysteresis measurements under uniaxial stress are performed considering

that the frequency of 25 mHz allows reaching the quasi-static regime. Such a value cannot be

considered general since it is dependent on the prescribed waveform for the current, but it was

empirically determined as relevant for the measurements shown here.

1 Hz

0.1 Hz

0.05 Hz

0.025 Hz

(a) Coercive field.

0.025 Hz 0.05 Hz

0.1 Hz
1 Hz

(b) Remanent induction.

Figura 3.5.1: Stress-free measurements at several frequency levels.

3.6 Correction of drift in magnetic induction

The integration DC drift - or a cumulative offset - in voltage measurements can be

related with thermal variation of electronic components Garcia and Rivas [2005]. This becomes

more problematic with the choice of the frequency of 25 mHz for the input waveform. The drift

in the measured induction Bmes is linearly corrected with:

Bcor = Bmes +
t

∆t

(
B
(1)
max −B

(2)
max

)
, (3.6.1)

considering the difference between two peaks: in Fig. 3.6.1 they are taken as B
(1)
max at

t = 0 s and B
(2)
max at t = 40 s, with time difference denoted by ∆t.
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Figura 3.6.1: Drift correction in induction after the first magnetization.

3.7 Hysteresis measurements

The magnetic hysteresis measurements under uniaxial stress are presented in Fig.

3.7.1. The stress effect on the macroscopic hysteresis loops are noted specially under high

compression. For example, at -100 MPa, the bowing of the hysteresis curves in the low field

region, also seen in Fe-Si LoBue et al. [2000], Singh et al. [2016], is observed.

-100 MPa

-60 MPa-40 MPa

0 MPa

60 MPa

100 MPa

Figura 3.7.1: Hysteresis curves measurements under uniaxial stress.

The hysteresis losses are obtained by numerical integration of the surface of each

hysteresis loop. Fig. 3.7.2 shows the hysteresis losses under uniaxial stress as a function of

the maximum induction. Comparing the hysteresis losses for the same induction level is a

common presentation of these results. The hysteresis losses under uniaxial stress for the same

induction level are presented in Fig. 3.7.3. It can be noted that compression applied along

the magnetization direction strongly increases the quasi-static losses. Such a loss trend is also

observed in Fe-Si LoBue et al. [2000], Singh et al. [2016].

The effect of uniaxial stress on the magnetic hysteresis can also be analyzed at specific
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plotting the relation εµ(M), the hysteresis effects on the magnetostriction strain are significan-

tly reduced. These curves indicate that most of the hysteresis observed on εµ(H) comes from

the one observed on the B(H) characteristic. Besides, the εµ(M) measurements highlight the

rotation mechanism: for example, taking the stress-free case, the longitudinal magnetostriction

strain increases until M ≈ 1.3 MA/m, then starts to decrease. Such a behavior is characteristic

of the rotation mechanism present under high fields.

Y 

Figura 3.7.8: Longitudinal magnetostriction strain under uniaxial stress.

X 

Figura 3.7.9: Transverse magnetostriction strain under uniaxial stress.

Magnetic field with higher harmonics forming asymmetric minor loops increase the

hysteresis losses. By applying the magnetic field waveform of Fig. 3.7.10, the magnetic ma-

terial response under this magnetic field and uniaxial stress is presented in Fig. 3.7.11. The

asymmetric minor loops are notable, with the shape varying depending on the level of stress.
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Figura 3.7.10: Applied field to measure asymmetric minor loops.

-80 MPa
80 MPa

Figura 3.7.11: Magnetic hysteresis under uniaxial stress and field with harmonic content.

3.8 Measurements under static field and quasi-static stress

As previously introduced, to measure the piezomagnetic behavior, the force is applied

after stabilizing the current at the bias level. In the results hereafter presented, the cyclic force is

applied with a speed of 0.5 mm/s. As in the magnetic hysteresis measurements, a drift correction

on induction is performed for each test.

The measured piezomagnetic behavior is shown in Fig. 3.8.1 considering several

levels of static field. It can be observed that under a high static field, the relation B(σ) is almost

linear, which is an interesting behavior for designing force sensors. Another feature is related

to the shape of the piezomagnetic loops, for which the anhysteretic results under static stress

give some insights. In the region of domain rotation (for fields above 2000 A/m in Fig. 3.4.1a),

there is a crossing of the curves implying that the dependence of the magnetization on stress is

reversed: a compression leads to a relatively small increase in magnetization. This behavior is

also emphasized in the piezomagnetic results of Fig. 3.8.1. Such a mechanism is experimental
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evidence of the so-called Villari reversal Cullity and Graham [2009]. Similar observations are

made on Hubert [2019], Hubert and Rizzo [2008].

Figura 3.8.1: Piezomagnetic behavior under several levels of static field.

3.9 Measurement under both varying field and stress

The configuration with both variations of magnetic field and stress is not usual in

characterizing ferromagnetic materials. However, the magneto-elastic setup allows for this kind

of test, which gives a challenging configuration for model validation. The applied magneto-

elastic loading is shown in Fig. 3.9.1 (top left), and the magnetic field waveform is set with

two times the frequency of the stress waveform. The resulting magnetic hysteresis loops as

a function of field and stress are depicted in Fig. 3.9.1 (top right) and Fig. 3.9.1 (bottom),

respectively. A magnetic field period in the first half-cycle of stress leads to a B(H) loop similar

to the loops observed at constant stress but unsymmetric. In the half-cycle of compression,

an interesting phenomenon can be analyzed: the combination of decreasing the magnetic field

and increasing the compression (dashed lines region in 3.9.1 (top left)) results in a drop in

magnetization observed on both B(H) and B(σ) loops.
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Figura 3.9.1: Magnetic hysteresis under quasi-static field and quasi-static stress.

The experimental measurements presented here highlight the strong coupling between

magnetic and mechanical quantities in a ferromagnetic material and some of its particular

features, such as the Villari effect and the non-monotonic effect of stress on magnetiza-

tion. A good predictive modeling strategy should be able to reproduce such a complex

behavior, with a limited set of parameters that could be identified from standard material

characterizations.
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4 Energy-based magneto-elastic hysteresis model under cons-

tant stress

This chapter presents a magneto-elastic hysteresis model under static mechanical

stresses, mainly based on the papers da Silva et al. [2022, 2023]. As discussed in Chapter 2, an

hysteretic magneto-elastic model is sought considering fully multiaxial loadings, thermodyna-

mic consistency, and the implementation into numerical analysis tools. For the stress-free case,

the hysteresis energy-based model Henrotte et al. [2006], Jacques [2018] fulfills these require-

ments. Therefore, this chapter presents an extension to the magneto-elastic case by combining

the energy-based hysteresis approach with a multiscale anhysteretic model. Such an association

results in an hysteresis model allowing multiaxial magneto-elastic loadings. Three situations

under static stress are presented to validate the proposed approach: first, the model is applied to

represent the magnetic behavior of a low-carbon DC04 steel - previously introduced in Chapter

3 - under uniaxial stress and alternating field. Then, using experimental data from the litera-

ture, the model is applied to a Fe-Si electrical steel under multiaxial stress configurations and

alternating and rotating fields.

4.1 Thermodynamic formulation

In the framework of continuum thermodynamics, the energy balance - or first law of

thermodynamics - in a ferromagnetic material at the macroscopic scale is composed of mecha-

nical, magnetic, and thermal components. As detailed in Appendix D, the first law of thermody-

namics can be written as Kovetz [2000]:

•
u = ~H ·

•
~B+σ :

•
ε −div~q, (4.1.1)

•
u is the time-derivative of the internal energy density, the dot product ~H ·

•
~B represents

the magnetic power density, the double-contraction product σ :
•
ε represents the mechanical

power density, and ~q the heat flux. The second law of thermodynamics can be expressed as

Houlsby and Puzrin [2000]:

T
•
s ≥−div~q+gradT ·

(
~q

T

)
, (4.1.2)
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with s the entropy and T the temperature. Defining the Helmholtz free energy as:

f (ε,~B,T ) = u(ε,~B,s)−T s, (4.1.3)

combining (4.1.1), (4.1.2) and (4.1.3), and neglecting spatial and temporal thermal

variations, the Clausius-Duhem inequality (CDI) for the magneto-mechanical case writes:

D = ~H ·
•
~B+σ :

•
ε −

•
f ≥ 0, (4.1.4)

with D the dissipation, which can also be written in terms of the Gibbs free energy g

defined by:

g(σ , ~H) = f (ε,~B)− ~H ·~B−σ : ε. (4.1.5)

The dissipation is then:

D =−
•
~H ·~B− •

σ : ε − •
g ≥ 0. (4.1.6)

The irreversible behavior is described through the evolution of internal variables. The

magnetization ~M is introduced as an internal variable, such that the time-derivative of the Gibbs

free energy
•
g is given by:

•
g(σ , ~H, ~M) =

∂g

∂σ
:

•
σ +

∂g

∂ ~H
·

•
~H +

∂g

∂ ~M
·

•
~M. (4.1.7)

Replacing (4.1.7) into (4.1.6):

D =−
[
~B+

∂g

∂ ~H

]
·

•
~H −

[
ε +

∂g

∂σ

]
:

•
σ − ∂g

∂ ~M
·

•
~M ≥ 0. (4.1.8)

The following relationships are defined and are considered as sufficient conditions to
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respect the constraint of the second law of thermodynamics:

~B =− ∂g

∂ ~H
, (4.1.9a)

ε =− ∂g

∂σ
, (4.1.9b)

D =− ∂g

∂ ~M
·

•
~M ≥ 0. (4.1.9c)

To characterize the irreversible behavior in terms of the internal variables, first, a

dissipation function φd(
•
~M) is introduced such that φd : Re

n → Re. The dissipation function can

be non-smooth - or non-differentiable at some points - and per definition is characterized by

Miehe et al. [2011]:

− ∂g

∂ ~M
=

∂φd

∂
•
~M

. (4.1.10)

From (4.1.9c), the dissipation inequality can be written as:

D =
∂φd

∂
•
~M

·
•
~M ≥ 0, (4.1.11)

and the following constraints in defining φd are necessary conditions to respect the

restrictions of the second-law of thermodynamics:

φd(~0) = 0 and φd(
•
~M)≥ 0. (4.1.12)

In the case of rate-independent dissipation functions, which is the interest here, φd is

assumed to be positively homogeneous of degree one and therefore Miehe et al. [2011]:

φd(τ
•
~M) = τφd(

•
~M) with τ ∈ Re+. (4.1.13)

Using the chain rule and the positively homogeneous of degree one property, the

following identity is obtained:

∂φd

∂
•
~M

·
•
~M = φd(

•
~M). (4.1.14)

Therefore, the dissipation function φd(
•
~M) defines the evolution of dissipation D by:
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D = φd(
•
~M)≥ 0. (4.1.15)

From (4.1.10) it can be noted that a minimization procedure can be defined if the

energy density g and the dissipation function φd are identified. Particularly, the definition of

φd(
•
~M) needs to take into account the constraints of (4.1.12). As discussed in Chapter 2, in this

energy-based approach the magnetic hysteresis is modeled by analogy with a mechanical dry-

friction system Bergqvist [1997], Henrotte et al. [2006]. The dissipation function φd is given

by:

φd(
•
~M) = µ0κ‖

•
~M‖, (4.1.16)

with κ a pinning parameter, a positive scalar. κ can be defined as a symmetric

positive-definite matrix to consider the anisotropy Prigozhin et al. [2016]. As presented in

François-Lavet et al. [2013], to formulate a minimization from (4.1.10), first, for small enough

time-steps, the dissipation φd is approximated by:

φd(~M)≈ µ0κ
‖~M− ~M(p)‖

∆t
, (4.1.17)

with ~M(p) the magnetization at the previous time-step. Taking into account the appro-

ximation for φd into (4.1.10):

∂φd

∂
•
~M

≈ ∂φd

∂

(
~M− ~M(p)

∆t

) = ∆t
∂φd

∂ ~M
. (4.1.18)

The magnetization ~M can be calculated from a minimization given by:

∂

∂ ~M

[
g(σ , ~H, ~M)+∆t φd(~M)

]
= 0 → ~M = argmin

[
g(σ , ~H, ~M)+µ0κ‖~M− ~M(p)‖

]
.

(4.1.19)

The energy density g(σ , ~H, ~M) can be chosen as:

g(σ , ~H, ~M) = f̃ (σ , ~M)−µ0
H2

2
−µ0

~H · ~M− 1

2

(
C

−1 σ
)

: σ , (4.1.20)

with f̃ (σ , ~M) a free energy density that can be obtained from the partial numerical
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inversion of a magnetic anhysteretic model. The time-derivative

•

f̃ is:

•

f̃ (σ , ~M) =−εµ :
•
σ +µ0

~Hrev ·
•
~M with

∂ f̃

∂σ
=−εµ and

1

µ0

∂ f̃

∂ ~M
= ~Hrev.

(4.1.21)

and the reversible field ~Hrev is introduced. With the choice of g(σ , ~H, ~M), (4.1.9a) and

(4.1.9b) are:

− ∂g

∂ ~H
= µ0

(
~H + ~M

)
= ~B

− ∂g

∂σ
=− ∂ f̃

∂σ
+C

−1σ = εµ + εe = ε,

(4.1.22)

supposing small strains, with C the stiffness tensor and εe the elastic strain. From

(4.1.9c):

− ∂g

∂ ~M
=− ∂ f̃

∂ ~M
+µ0

~H = µ0

(
−~Hrev + ~H

)
= µ0

~Hirr, (4.1.23)

and is introduced the irreversible field ~Hirr such that the field decomposition is high-

lighted ~H = ~Hrev + ~Hirr.

Combining (4.1.19) and (4.1.20), the minimization can be established by:

~M = arg min
[

f̃ (σ , ~M)−µ0
~H · ~M+µ0κ‖~M− ~M(p)‖

]

subject to ‖~M‖ ≤ Ms

(4.1.24)

by considering that C does not depends on ~M, so the term
(
C

−1 σ
)

: σ is constant,

and it can be neglected in evaluating ~M. The term µ0
~H · ~H also is constant, and can be neglected

in the minimization. For the stress-free case, (4.1.24) returns the same formulation as presented

in François-Lavet et al. [2013].

A summary of the thermodynamics laws and approximations considered is presented

in Table 4.1.1.

4.2 Reversible behavior and simplified multiscale model

The reversible behavior is modeled using a simplified multiscale approach (SMSM)

Daniel et al. [2015], a simplified version of the model presented in 2.3.1. The scales considered
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a time step dt at the domain scale is written Hubert [2019]:

dgα =−µ0
~Mα ·d~H − εα : dσ , (4.2.3)

with εα the total strain at the domain scale. The magnetic part of the Gibbs free

energy is defined by the integration over the magnetic field path (at constant stress):

g
mag
α =−µ0

~Mα · ~H. (4.2.4)

Considering small perturbations: εα = εe
α +ε

µ
α , with εe

α the elastic strain. Supposing

uniform strain in the single-crystal, the magneto-elastic part of the Gibbs free energy is written

by integration over the stress path (at constant field):

g
me(1)
α =−ε

µ
α : σ . (4.2.5)

As shown in Chapter 3, the effect of stress on magnetization is non-monotonic. This

simplified approach does not capture such a tendency. This drawback, as discussed in Chapter

2, can be described by adding a second-order term - quadratic in stress - in the magneto-elastic

energy definition Hubert [2019]. The magneto-elastic energy is therefore defined as da Silva

et al. [2022]:

gme
α = g

me(1)
α +g

me(2)
α =−σ : ε

µ
α − 3

2
λ ′

sσ2
eq

(
~α ⊗~α − 1

3
I

)
:
(
~h⊗~h

)
, (4.2.6)

with gα = g
mag
α + gme

α . In this definition, the second-order magnetostriction constant

λ ′
s is introduced and the equivalent stress σeq is chosen as Daniel and Hubert [2009]:

σeq =
3

2
~ht

(
σ − 1

3
tr(σ)I

)
~h. (4.2.7)

The magnetostriction strain is composed of the sum of (4.2.2) with a second-order

magnetostriction strain ε
µ(2)
α :

ε
µ(2)
α =−∂g

me(2)
α

∂σ
=

9

2
λ ′

sσeq

[(
~α ⊗~α − 1

3
I

)
:
(
~h⊗~h

)](
~h⊗~h− 1

3
I

)
, (4.2.8)
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such that the property tr(ε
µ(2)
α ) = 0 is observed.

Considering a particular case with the magnetic field direction~h = [1 0 0]t and σ =

σ11(~h⊗~h) yields:

ε
µ(2)
α11

= 3λ ′
sσ11

(
α2

1 −
1

3

)

ε
µ(2)
α22

= ε
µ(2)
α33

=−3

2
λ ′

sσ11

(
α2

1 −
1

3

)

ε
µ(2)
α12

= ε
µ(2)
α13

= ε
µ(2)
α23

= 0.

(4.2.9)

Therefore, introducing a second-order term in the magneto-elastic energy results in a

magnetostriction strain that is stress-dependent. λ ′
s can be defined as (see Appendix B):

λ ′
s =− λs

2σm
, (4.2.10)

where σm is the value of applied uniaxial stress corresponding to the maximum mag-

netic permeability. Combining (4.2.6) and (4.2.10), the magneto-elastic part of the Gibbs free

energy is:

gme
α =−σ : ε

µ
α +

σ2
eq

2σm
ε

µ
α :
(
~h⊗~h

)
. (4.2.11)

The energy balance at the domain scale in this approach is composed of a magnetic

and a magneto-elastic parts. These energy terms are summarized in Table 4.2.1:

Tabela 4.2.1: Summary of the energy description at the domain scale

Energy Expression

Magnetic g
mag
α =−µ0

~Mα · ~H

Magneto-elastic gme
α =−σ : ε

µ
α +

σ2
eq

2σm
ε

µ
α :
(
~h⊗~h

)

Total gα = g
mag
α +gme

α

The volume fraction pα of a domain family with direction ~α is evaluated using a

Boltzmann relation Buiron et al. [1999]:

pα =
exp(−As gα)

∑
α

exp(−As gα)
, (4.2.12)
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where the parameter As is proportional to the initial susceptibility χ0 of the stress-free

anhysteretic curve Daniel et al. [2008]:

As =
3χ0

µ0M2
s

. (4.2.13)

In this simplified approach, the set of possible domain family orientations is defined

through the nodes of an icosphere Daniel and Galopin [2008]. Here, an icosphere with 2562

nodes is used to represent the set of possible domain orientations, as illustrated in Fig. 4.2.2.

-1

1

1

0

0

1

0

-1 -1

Figura 4.2.2: Icosphere with nodes representing the possible domain orientations.

The macroscopic (see RVE in Fig. 4.2.1) magnetization ~M and magnetostriction strain

εµ are finally defined as:

~M = ∑
α

pα ~Mα and εµ = ∑
α

pαε
µ
α . (4.2.14)

4.3 Vector-play approximation

The minimization of (4.1.24) can be computationally expensive. An explicit approach

presented in Henrotte et al. [2006] is here considered to simplify the implementation. The

magnetic field decomposition is here recalled:

~H = ~Hrev + ~Hirr. (4.3.1)

As seen in Chapter 2, because the dissipation φd(~M) in non-differentiable at ~M = ~M(p),

the subsequent set defines the derivatives of φd:
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∂φd(~M)

∂ ~M
∈





~Hirr,‖~Hirr‖ ≤ κ, if ~M = ~M(p)

~Hirr = κ
~M− ~M(p)

‖~M− ~M(p)‖
, otherwise.

(4.3.2)

The following simplification can be made: the direction of ~Hirr is written in terms of

the reversible field at the previous time step ~Hrev(p). This results in a vector-play model Henrotte

et al. [2006]. Using this approximation, the explicit update procedure of ~Hrev at each cell is:

~Hrev =





~Hrev(p) if ‖~H − ~Hrev(p)‖ ≤ κ

~H −κ
~H − ~Hrev(p)

‖~H − ~Hrev(p)‖
otherwise.

(4.3.3)

To model the first magnetization curve, symmetric and asymmetric minor loops, the

pinning parameter can be represented by a statistical distribution of pinning fields κk with N

dry-friction systems (or cells), with normalized weights ωk that verify François-Lavet et al.

[2013]:

N

∑
k=1

ωk = 1. (4.3.4)

In this case with several cells, the explicit update of the reversible field ~Hk
rev at the k

cell is given by:

~Hk
rev =





~Hk
rev(p), if ‖~H − ~Hk

rev(p)‖ ≤ κk

~H −κk
~H − ~Hk

rev(p)

‖~H − ~Hk
rev(p)

‖
, otherwise.

(4.3.5)

The weighted sum of all k-cells contributions in magnetization ~Mk(σ , ~Hk
rev) and mag-

netostriction strain εµ,k(σ , ~Hk
rev) gives the total magnetization ~M and the total magnetostriction

strain εµ :

~M =
N

∑
k=1

ωk ~Mk(σ , ~Hk
rev) and εµ =

N

∑
k=1

ωkεµ,k(σ , ~Hk
rev). (4.3.6)

The model can be summarized as follows: the inputs are the magnetic field ~Hrev and

the mechanical stress σ . The reversible field ~Hk
rev is calculated using the analogy with a dry-

friction system (4.3.5). ~Hk
rev and σ are the inputs of the SMSM. The variables ~Mk(σ , ~Hk

rev) and
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term), which imposes the permeability curve to be symmetric with respect to σm, as shown in

Appendix B, and results in a bell shaped curve. A possibility to improve this drawback would

be using a stress-dependent demagnetizing term in the free energy, as proposed in Daniel et al.

[2014], instead of or as a complement to the second-order approach. Another option would be

introducing higher order terms in the elastic energy, to the price of additional material parame-

ters.

Tabela 4.4.1: Parameters of the SMSM.

Ms (A/m) λs (ppm) λ ′
s (ppm/MPa) As (m3/J)

1.39106 5.5 −6.9 10−2 1.410−2
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Figura 4.4.1: Effect of uniaxial stress on the anhysteretic behavior: Measurements (left) and

model (right).

Figura 4.4.2: Comparison of measured (error bars) and modeled (solid lines) anhysteretic rela-

tive magnetic permeability for different values of applied magnetic field. The maximum anhys-

teretic permeability is observed at σm = 40 MPa.
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4.4.3 Dissipative parameters

The identification of the distribution ω(κ) usually requires the measured stress-free

coercive field under several peak magnetic fields Henrotte et al. [2006], Scorretti and Sixdenier

[2022]. Considering a magnetic case with applied field along ~h = [1 0 0]t , an identification

method of ωk and κk is presented in Henrotte et al. [2014], Jacques et al. [2018]. This procedure

is based on the homogenization of reversible field, where an auxiliary function F(H) is defined

(see Appendix E). The second derivative of F(H) is the probability distribution ω(κ). The

identification of F(H) (as explained in Appendix E) can be performed from a set of measured Hc

under increasing peak magnetic fields Hpeak. These experimental measurements are presented in

Figs. 4.4.3a and 4.4.3b for the stress-free case. This curve is extrapolated outside the measured

range using (4.4.1) Jacques et al. [2018]:

Hc(H) = Hc
min

(
H

Hmin

)2

if H < Hmin, (4.4.1)

where Hc
min is the lower measured coercive field on the corresponding peak magnetic

field Hmin. The identified F(H) and its derivatives ∂HF(H) and ∂ 2
HF(H), are presented in Fig.

4.4.4. The derivatives are evaluated with a finite difference method. The non-zero component

for κ(0) represents the reversible bending of Bloch walls Henrotte et al. [2006]. The continuous

probability distribution is then discretized into 25 cells (see (E.0.10) in Appendix E).

(a) Hysteresis loops.

H
min

Hc
min

(b) Coercive field.

Figura 4.4.3: Stress-free measurements under increasing magnetic field.

An applied compression increases the coercive field, as observed in the measured

hysteresis curves of Fig. 3.7.1. The pinning parameter κ is directly related to the coercive field.

We propose to model the stress dependence of dissipation parameters as follows: starting from

the identified discrete pinning field distribution for 0 MPa, the weight ω is kept constant under
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Figura 4.4.4: Identified auxiliary function for the stress-free case, first and second derivatives

that represent the pinning field cumulative distribution and probability distribution, respectively.

stress. The pinning field κ(σ) evolves as:

κ(σ) = a(σeq)κ(0) with a(σeq) =
Hc(σ)

Hc(0)
, (4.4.2)

with κ(0) the identified pinning field for 0 MPa, and a(σeq) a function that is fitted in

order to match with the measured Hc(σ)/Hc(0). This coercive field characteristic under stress

is presented in Figure 4.4.5 in the case of a uniaxial stress applied parallel to the magnetic

field direction. It can be noted an exponential behavior of Hc under compression and a close

to constant behavior under tension. For other materials, such as Fe-Si Singh et al. [2016], the

exponential tendency of the coercive field under compression is also observed.

Figura 4.4.5: Function a(σeq) at several stress levels.

A phenomenological description of a(σeq) is then adopted:
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a(σeq) = a1 exp
(
−exp(a2 +a3σeq)

)
+1, (4.4.3)

with σeq the equivalent stress (4.2.7). The parameters a1, a2 and a3 are fitted (using

the Curve Fitting Toolbox of Matlab) from four measured coercive fields under 0 MPa, -20

MPa, -40 MPa and -100 MPa, respectively, for the same peak magnetic field. The identified

parameters are presented in Table 4.4.2. Fig. 4.4.5 shows that (4.4.3) is appropriate to represent

the measured coercive field characteristic under uniaxial mechanical loading.

Tabela 4.4.2: Fitted parameters for a(σ).

a1 a2 a3 (MPa-1)

1.25 1.2 0.04

The identification procedure of the dissipation parameters can be summarized as fol-

lows: from the stress-free curve of coercive field with increasing magnetic field, the method

presented in Henrotte et al. [2014], Jacques et al. [2018] allows identifying ω(κ(0)). By using

standard measurements of coercive field under stress, the function a(σeq) is fitted, and the de-

pendence κ(σ) is defined based on (4.4.2).

4.4.4 Validation

The proposed magneto-elastic model results in the hysteresis curves presented in Fig.

4.4.6 (right). The tendency of slant under compression - as observed in measurements of Fig.

4.4.6 (left) - is captured by the simulation. However, the model does not reproduce the in-

flections in the hysteresis curve - more evident under -100 MPa. This measured behavior is

attributed to the crystallographic texture, whereas in the proposed model, only an equivalent

single crystal representing the macroscopic behavior is considered. A simplified texture multis-

cale model (STMSM) Bernard et al. [2019] may overcome this limitation, but it is not treated

in the validation results presented below.

Fig. 4.4.7 presents a comparison of the modeled coercive field with the measured

symmetric minor loops under uniaxial stress. It must be noted that the validation is performed

by comparison to experiments that have not been used for identification purposes. For the

sake of clarity, the measured values used for identification are explicitly labeled in Fig. 4.4.7.

Differences are observed in the major loop under tensile stress (25% for 20 MPa and 5050 A/m)
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-100 MPa

-60 MPa-40 MPa

0 MPa

60 MPa

100 MPa

-100 MPa

-60 MPa

0 MPa

60 MPa

-40 MPa

100 MPa

Figura 4.4.6: Hysteresis curves under uniaxial stress: Measurements (left) and model (right).

but the general behavior under stress is captured by the simulation. The second-order term in

the magneto-elastic energy definition allows the representation of the non-monotonic effect of

tensile stress on the remanent induction Br as seen in Fig. 4.4.8.

Hpeak = 420 A/mHpeak = 290 A/m Hpeak = 1055 A/m Hpeak = 5050 A/m

Figura 4.4.7: Comparison of measured (error bars) and modeled results (solid lines) of coercive

field as a function of uniaxial stress and under various peak magnetic fields. The red boxes

indicate the measurements used in the identification of the parameters of the model.

Hpeak = 420 A/mHpeak = 290 A/m Hpeak = 1055 A/m Hpeak = 5050 A/m

Figura 4.4.8: Comparison of measured (error bars) and modeled results (solid lines) remanent

induction as a function of uniaxial stress and under various peak magnetic fields.
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The prediction of hysteresis losses under stress is plotted in Fig. 4.4.9 by numerical

integration of the surface of each hysteresis loop and is presented as a function of the maximum

induction level. This calculation is a blind validation of the modeling approach since no loss

measurement was used for material parameter identification. The modeling results show that the

tendency to increase losses under compression is reproduced. Significant differences are seen

mainly in the major loop under high compression. As already discussed, the SMSM does not

consider the inflections in hysteresis curves under compression, which explains the difference

of about 30% for the worst case (-100 MPa and 1.7 T).

1.7 T

1.5 T

0.5 T

1 T

Figura 4.4.9: Prediction of hysteresis losses as a function of uniaxial stress (solid lines). The ex-

perimental results (markers) are evaluated using measured data from Fig. 3.7.2 and polynomial

interpolation.

The modeled longitudinal and transverse magnetostriction strain components are pre-

sented in Figs. 4.4.10 and 4.4.11. The trend under uniaxial stress is captured in modeling.

However, as discussed in Hubert [2019], the inclusion of a second-order term in the magneto-

elastic energy results in an overestimation of the magnetostriction strain under high stress (see

the case of -100 MPa in Figs. 4.4.10 and 4.4.11). Additional considerations on the magneto-

elastic energy to correct this drawback - including a vanishing second-order term - are addressed

in Taurines et al. [2023].

Considering the magnetic field waveform of Fig. 3.7.10, the comparison of measure-

ments and model is presented in Fig. 4.4.12 for two levels of uniaxial stress. Under a tensile

stress of 80 MPa, because the hysteresis curve is less slanted, only one asymmetric minor loop

is clearly visible, with the others remaining in a region above 1000 A/m. Again, this compari-

son is independent of the identification process, so it can serve as a validation for the model. A

good agreement between the model and experiment is observed, despite the harmonic content

of the H waveform.
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Figura 4.4.10: Longitudinal magnetostriction under uniaxial stress: Measurements (left) and

model (right).

Figura 4.4.11: Transverse magnetostriction under uniaxial stress: Measurements (left) and mo-

del (right).

-80 MPa -80 MPa 80 MPa 80 MPa

Figura 4.4.12: Hysteresis curves under uniaxial stress and considering the magnetic field wave-

form of Fig. 3.7.10.

An extension of the energy-based vector-play magnetic hysteresis model has been pro-

posed in order to incorporate the effect of stress on magnetization. This extension essen-

tially consists of the association of the vector-play model with an anhysteretic simplified

multiscale approach. This combination results in a magneto-elastic vector model appli-

cable to multi-axial stress configurations. Stress-dependent dissipation parameters can

be identified from a few measurements, mostly under compression.
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4.5.1 Identification of material parameters

The measurements performed on a non-oriented (NO) Fe-Si electrical steel Aydin

et al. [2019b], Singh et al. [2016] are used for the parameters identification. The discrete pole

figures for the NO Fe-Si material are shown in Fig. 4.5.2. This set corresponds to 24 distinct

crystallographic orientations with their corresponding volume fraction. The pole figures were

obtained using the MTEX toolbox Bachmann et al. [2010] from X-ray measurements reported

in Martin et al. [2020].

<100>

RD

TD

RD

TD

<110>

RD

TD

<111>

Figura 4.5.2: Pole figures (24 orientations) for a NO Fe-Si alloy.

Due to the flat geometry of the tested electrical steel sheets, the measurements Ay-

din et al. [2019b], Singh et al. [2016] were performed considering in-plane stress assumption.

Therefore, the stress tensor can be written in Voigt notation as:

σ = [σ11 σ22 σ12] (4.5.1)

4.5.2 Reversible parameters

The parameters λ111, K1, and K2 can be found in Jiles [1991] for a Fe-Si material. Due

to the simplifying assumptions to model the reversible behavior, the parameters Ms and λ100 are

adapted for the modeling results to match with measurements of anhysteretic magnetization and

magnetostriction strain for the stress-free case. The parameter As is identified from a stress-free

anhysteretic curve using (4.2.13). The identified material parameters are listed in Table 4.5.1.

Tabela 4.5.1: Parameters of the reversible modeling.

Ms (A/m) λ100 (ppm) λ111 (ppm) K1 (kJ/m3) K2 (kJ/m3) As (m3/J)

1.4106 11.5 −4.5 38 0 1.110−2

The anhysteretic behavior for the stress-free case is presented in Fig. 4.5.3. The
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under several amplitudes of alternating magnetic field. The pinning field κ can be described by a

symmetric positive-definite matrix to consider the anisotropy Prigozhin et al. [2016]. However,

such an approach would require measurements along RD and TD to characterize the anisotropy

and identify the dissipation parameters. Here, the anisotropic effects are considered only from

the anhysteretic behavior. The hysteresis loops used for the identification of ω(κ) are shown in

Fig. 4.5.5 for applied field and measurements along RD. The identified pinning field distribution

is presented in Fig. 4.5.6. For numerical purposes, the continuous distribution presented in Fig.

4.5.6 is discretized into 25 cells.

Figura 4.5.5: Measured stress-free hyste-

resis loops under increasing magnetic field

applied along RD.

Figura 4.5.6: Identified probability distri-

bution for the stress-free case.

The evolution of the pinning parameter under stress can be defined as:

κ(σ) = a(σeq)κ(0) with a(σeq) =
Hc(σ)

Hc(0)
(4.5.2)

with a(σeq) identified from uniaxial stress measurements of the coercive field Hc, and

σeq is an equivalent stress. The effects of shear with respect to the magnetic field are neglected

in the equivalent stress of Daniel and Hubert [2009], previously considered in Section 4.4 to

evaluate the coercive field evolution under uniaxial stress. In the present section, the equivalent

stress proposed in Rasilo et al. [2019a] is used, which allows modeling the influence of different

shear loadings on the coercive field. It is defined as:

σeq =





σm −

√

~e t

(
σmI − 3

2
d

)2

~e, if ~e td~e ≤ 2r

3

σm +

√

~e t

(
σmI − 3

2
d

)2

~e, otherwise

(4.5.3)
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where w
(
[0 0 0]

)
and w

(
[σ11 σ22 σ12]

)
are the hysteresis losses for the stress-free

case and under biaxial stress, respectively, in Voigt notation. Fig. 4.5.14 shows this percentage

variation for both measurements Aydin et al. [2019b] and model. Notably, the model captures

the strong increase in hysteresis losses under shear when compression is applied along RD.

Also, the model shows the tendency of a decrease in hysteresis losses under shear when traction

is applied along RD.

-20 0 20 40 60 80 100

Figura 4.5.14: Percentage variation of the hysteresis losses compared to the stress-free case at

1T. Magnetization along RD, and under biaxial stress. Measurements Aydin et al. [2019b] (left)

and model (right).

The error ehyst between measured wmes and modeled wmod hysteresis losses is evalua-

ted as:

ehyst =
wmod −wmes

wmes
(4.5.6)

This comparison indicator is presented in Fig. 4.5.15. Overall, the model is capable

of modeling the hysteresis losses under biaxial stress, with main differences (around 15%) in

the case of bi-compression. The difference in this biaxial configuration is explained because the

model overestimates the degradation in the magnetization, as observed in Fig. 4.5.13 (bottom).

For a magnetic field applied along TD, the predicted hysteresis loops are presented

in Fig. 4.5.16. Although the tendency of degradation under biaxial stress is captured, some

differences are observed in the shape of the hysteresis loops. This is particularly problematic in

the case of bi-tension.

Fig. 4.5.17 shows that the trend of hysteresis losses, compared to the stress-free case,

is reasonably modeled. It is observed that shear (with compression applied along TD) increases

the hysteresis losses of the material.
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significant difference in the modeled coercive field (about 25%) causes a large error in the

simulated hysteresis losses.

-20 0 20

Figura 4.5.18: Percentage error between measured and modeled hysteresis losses (at 1T) under

magnetization along TD and biaxial stress.

The percentage variation of hysteresis losses with magnetization along RD and TD is

shown in Fig. 4.5.19. This comparison indicator highlights the anisotropy effect. The modeling

results exhibit less anisotropy than the measurements, especially in the case of bi-tension. Some

factors may contribute to this significant difference, such as the value chosen for λ100, the choice

of the pinning parameter identified from measurements along RD only, or imperfections in the

simplification of the texture. Moreover, as shown in Fig. 3.4.1a, for maximum induction of 1T,

the anisotropic effects are weak compared to higher induction levels.

-10 0 10 20 30 40

Figura 4.5.19: Percentage variation of hysteresis losses with magnetization along TD compared

to magnetization along RD.

The modeled magnetic response under shear loading σ = [0 0 σ12] and magnetization

along RD is shown in Fig. 4.5.20 (right). It is noted that the model underestimates the de-

gradation of magnetization, which is more evident in the measurements Aydin et al. [2019b],
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(a) Magnetization along RD. (b) Magnetization along TD.

Figura 4.5.22: Percentage variation of the hysteresis losses compared to the stress-free case at

1T under different levels of shear.

In this section, an extension of a vector-play model under magneto-elastic loadings has

been tested under biaxial stress conditions. A multiscale approach models the reversible

behavior, in which homogeneous stress and magnetic field are considered at the RVE

scale. Using parameters identified from uniaxial measurements along one direction only,

the model captures the trend of the hysteresis losses under biaxial stress when the mag-

netization is along rolling direction (with errors lower than 15%) or transverse direction

(with error lower than 25%). Considering the crystallographic texture, the anisotropic

effects, even weak in modeling, slightly change the magnetic response. The use of loca-

lization schemes in defining the magnetic field and stress at the grain scale might improve

the modeling results, to the price of a significant increase in the simulation time.

4.6 Application under multiaxial stress and rotating field

Using the same set of material parameters identified in Section 4.5 from uniaxial tests,

the magneto-elastic hysteresis model is now applied to describe the behavior of a NO Fe-Si

under rotating fields and biaxial stress loadings. The measurements were performed controlling

the induction and are presented in Aydin et al. [2019a].

The basic energy-based hysteresis approach, however, cannot reproduce the vanishing

of hysteresis losses under rotating fields near the saturation, as depicted in Fig. 4.6.1 for the

stress-free case. Such a limitation of the hysteresis model was already pointed out in Bergqvist

[1997], Domenig et al. [2023]. To correct this drawback Sauseng et al. [2022] proposed to

multiply the pinning parameter κk by a function f1:
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Using material parameters identified from uniaxial tests along one direction only, the

combination of a vector-play model and a multiscale approach predicts the magnetic

hysteresis loops and the losses trend of a ferromagnetic material under rotating fields and

biaxial mechanical loadings. The model validation has been performed by considering

complex magneto-elastic loadings different from those used for parameters identification,

which were presented in Section 4.5.
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5 Magneto-elastic hysteresis modeling under variable stress

This chapter considers the effects of variable stress on the dissipative magnetic beha-

vior and presents two modeling approaches. The first is inspired on the decomposition of the

magnetic field - as presented in the vector-play model - and an irreversible stress is introduced,

which captures the dissipation due to mechanical loadings. The definition of irreversible stress

is based on the description of the irreversible field, and the pinning stress is further introdu-

ced. However, because this modeling approach is not based on an energetic description, the

thermodynamic consistency is not ensured for any magneto-elastic loading. This opens space

for the second approach, in which the dissipation is modeled from the domain volume fractions

evolution, and a thermodynamic approach based on internal variables is proposed.

5.1 Irreversible stress approach

As presented in Chapter 4, in the energy-based model approach the magnetic field ~H

is decomposed into reversible ~Hrev and irreversible parts, with ~H = ~Hrev + ~Hirr. To capture the

dissipation due to variation of mechanical stress σ , the following mechanical decomposition is

proposed:

σ = σ rev +σ irr, (5.1.1)

with σ rev and σ irr the reversible and irreversible stresses, respectively. As discussed

in Chapter 4, by using the vector-play approach, an explicit approach is defined to evaluate ~Hrev

at each time-step. This notion is here used to define an explicit update of the reversible stress

by2:

σ rev =





σ rev(p) if ‖σ −σ rev(p)‖ ≤ κσ |sign(‖ •
σ‖)|

σ −κσ

σ −σ rev(p)

‖σ −σ rev(p)‖
|sign(‖ •

σ‖)| otherwise.

(5.1.2)

with κσ the pinning stress, σ rev(p) the previous value of the reversible stress, and
•
σ

the time-derivative of the stress. The sign function is introduced such that it ensures a null

2The norm operator of a second-order tensor X is evaluated by ‖X‖=
√

X : X .
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irreversible stress - so no dissipation - to the case of static mechanical loading. Likewise, the

explicit update of ~Hrev is given by:

~Hrev =





~Hrev(p) if ‖~H − ~Hrev(p)‖ ≤ κH |sign(‖
•
~H‖)|

~H −κH

~H − ~Hrev(p)

‖~H − ~Hrev(p)‖
|sign(‖

•
~H‖)| otherwise.

(5.1.3)

with κH the pinning field and ~Hrev(p) the previous value of reversible stress. The sign

function is defined to enforce zero dissipation in the case of static field.

To model the first magnetization curve, symmetric and asymmetric minor loops, a

discrete distribution of κH and κσ can be used. In this case, several pinning fields and pinning

stresses can be considered, defined by the weight ωk that verifies:

N

∑
k=1

ωk = 1. (5.1.4)

The explicit update of reversible field ~Hk
rev and σ k

rev are given by:

σ k
rev =





σ k
rev(p) if ‖σ −σ k

rev(p)‖ ≤ κk
σ |sign(‖ •

σ‖)|

σ −κk
σ

σ −σ k
rev(p)

‖σ −σ k
rev(p)

‖
|sign(‖ •

σ‖)| otherwise,

(5.1.5)

~Hk
rev =





~Hk
rev(p) if ‖~H − ~Hk

rev(p)‖ ≤ κk
H |sign(‖

•
~H‖)|

~H −κk
H

~H − ~Hk
rev(p)

‖~H − ~Hk
rev(p)

‖
|sign(‖

•
~H‖)| otherwise.

(5.1.6)

The magnetization ~M and the magnetostriction strain εµ are evaluated by the weighted

sum:

~M =
N

∑
k=1

ωk ~Mk(σ k
rev, ~H

k
rev) and εµ =

N

∑
k=1

ωkεµ,k(σ k
rev, ~H

k
rev). (5.1.7)
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5.1.1 Reversible behavior

The anhysteretic behavior is modeled using a multiscale approach. As pointed out

in Hubert and Rizzo [2008], texture effects, such as the Villari reversal, have an important

impact on piezomagnetic loops. Therefore, a crystallographic texture is considered here, and a

simplified texture multiscale approach (STMSM) - introduced in Chapter 4 - is recalled here.

Three scales are defined: the domain scale (denoted by the index α), the grain scale (denoted

by the index g), and the polycrystal (or macroscopic) scale. The free-energy density gα at the

domain scale of a domain family α with orientation ~α is given by Bernard et al. [2019]:

gα = g
mag
α +gme

α +gan
α with





g
mag
α =−µ0

~Mα · ~H

gme
α =−ε

µ
α : σ

gan
α = K1

(
α2

1 α2
2 +α2

1 α2
3 +α2

2 α2
3

)
+K2

(
α2

1 α2
2 α2

3

)
,

(5.1.8)

with ~Mα and ε
µ
α the magnetization and the magnetostriction strain at the domain scale,

K1 and K2 the magnetocrystalline anisotropy constants. With the definition of gα , the volume

fraction of a domain family α is evaluated using a Boltzmann relation Bernard et al. [2019]:

pα =
exp(−As gα)

∑
α

exp(−As gα)
(5.1.9)

where As is a material parameter. At the grain scale, the magnetization ~Mg and magne-

tostriction strain εµ
g are evaluated by the weighted sum over all the possible domain orientations:

~Mg = ∑
α

pα ~Mα and εµ
g = ∑

α

pαε
µ
α (5.1.10)

The macroscopic magnetization ~M and magnetostriction strain εµ
g are then calculated

by an operation of volume average over all grains:

~M = ∑
g

pg
~Mg and εµ = ∑

g

pgεµ
g (5.1.11)

with pg the proportion of each grain.

The schematic of the algorithm of the hysteresis model is presented in Fig. 5.1.1.
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5.1.4 Irreversible parameters

The dissipation parameters ωk and κk
H can be identified from measured coercive fields

under increasing peak magnetic field for the stress-free case and are detailed in Chapter 4.

Moreover, the stress-dependent pinning field is also considered here, with parameters identified

in Chapter 4.

The identification of κk
σ follows the same procedure as that of κk

H . However, ex-

perimental setup limitations do not allow measuring a field-free magnetostriction strain under

variable stress. Indeed, the maximum measured magnetostriction for DC04 is about 5.5 10−6

da Silva et al. [2022], and considering a Young modulus of about 192 GPa, a tension of 1 MPa

produces the same elastic strain amplitude as the maximum magnetostriction. Therefore, the

elastic strain hides the magnetostriction during the stress cycle.

It is proposed here to identify κk
σ from piezomagnetic measurements. In this case, the

coercive stress σc is introduced and defined as the mechanical stress when B = Bdc - with Bdc

the bias level of induction (see Fig. 5.1.3 (left)). Because σc is not symmetric with respect to

the σ = 0 axis, σc is given by:

σc =
1

2

(
‖σ+

c ‖+‖σ−
c ‖
)

(5.1.12)

with σ+
c and σ−

c the negative and positive coercive stresses, respectively (see Fig.

5.1.3 (left)). The identification of κk
σ is based on a set of coercive stress σc under increasing

peak stress σpeak. Because the measured induction is close to zero under Hdc = 0 A/m in a

piezomagnetic test (see Fig. 5.1.9), the κk
σ parameter is identified from a level of static field that

is close to zero, but for which the induction has a measurable value. The identification of κk
σ is

performed from measurements under Hdc = 51 A/m. The piezomagnetic loops under increasing

peak stress are depicted in Fig. 5.1.3 (left).

The coercive stress depending on the level of static field Hdc is presented in Fig. 5.1.4.

It can be noted that σc does not vary significantly by increasing Hdc. Therefore, the pinning

stress κk
σ is considered constant under increments of static field in what follows.

The identified continuous distributions of pinning fields and pinning stresses are dis-

cretized into 25 cells, and are depicted in Fig. 5.1.5.
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Figura 5.1.3: Comparison between measured (left) and modeled (right) piezomagnetic loops

under increasing peak stress and static field. The initial induction Bdc is about 0.51 T.

Figura 5.1.4: Coercive stress characteristic under static field.

Figura 5.1.5: Discretized pinning field (left) and pinning stress (right) distributions.

5.1.5 Comparison of the model with anhysteretic measurements

The modeled anhysteretic magnetic response under uniaxial stress is presented in Fig.

5.1.6 (right). By considering a simplified crystallographic texture, the Villari reversal - in the

region of about 2200 A/m - is captured in modeling. Moreover, inflections (or bowing) under

high compression are also captured, though the model overestimates such a texture effect, as

observed in the case under -100 MPa.
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Figura 5.1.6: Comparison between measured (left) and modeled (right) anhysteretic magnetic

behavior under several levels of static uniaxial stress.

The anhysteretic longitudinal magnetostriction strain under static uniaxial stress is

shown in Fig. 5.1.7. The rotation mechanism - depicted by the drop of magnetostriction at

about 1.38 MA/m - is captured by the model. The model captures the trend of the longitudinal

magnetostriction under uniaxial stress.

Figura 5.1.7: Comparison between measured (left) and modeled anhysteretic longitudinal mag-

netostriction under several levels of static uniaxial stress

5.1.6 Comparison of the model with hysteresis measurements

The magnetic hysteresis behavior under static stress is shown in Fig. 5.1.8. As pre-

sented in the anhysteretic modeling results, the texture effects, such as the Villari reversal and

inflections under high compression, are also captured in the modeled magnetic hysteresis. Com-

paring these modeling results those in Chapter 4, where an equivalent single-crystal was consi-

dered, the improvement in the modeled results is notable by considering the simplified crystal-

lographic texture.
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Figura 5.1.8: Comparison between measured (left) and modeled (right) magnetic hysteresis

under several levels of static uniaxial stress.

Applying a magneto-elastic loading of static field and quasi-static uniaxial stress, the

model reproduces the measured symmetric minor loops, as shown in Fig. 5.1.3 (right). Consi-

dering several levels of static field, the modeled piezomagnetic loops are depicted in Fig. 5.1.9.

The Villari reversal is evident in the piezomagnetic loops by the slightly decreasing behavior

of the induction under high tension. Such a texture-related behavior is captured by the model.

The main differences are noted in the area of the loops (20% difference between modeled and

measured results under Hdc = 233 A/m as the worst case). Despite this difference, the measured

piezomagnetic trends under increasing bias field are captured by the model.

Figura 5.1.9: Comparison between measured (left) and modeled (right) piezomagnetic curves

under increasing static field.

To illustrate the effect of mechanical dissipation, Figure 5.1.10 presents the predicted



5.1 Irreversible stress approach 120

longitudinal magnetostriction under varying stress and Hdc = 0 A/m. The mechanical dissipa-

tion is estimated as about 0.9 kJ/m3. As previously pointed out, limitations in the experimental

setup do not allow the comparison of this prediction with measurements. Specifically, the elastic

strain hides the magnetostriction strain during varying stress.

Figura 5.1.10: Modeling prediction of the longitudinal magnetostriction strain behavior under

varying stress and zero static field.

A more complex validation configuration is when both the magnetic field and stress

vary. Considering the case of the magneto-elastic loading of Fig. 5.1.11 (a), the magnetic

response is shown in Fig. 5.1.11 as a function of the magnetic field (b) and of the stress (c).

A very good agreement is observed between modeling (blue solid lines) and experiments (red

dashed lines). This validation highlights the capabilities of the model to capture the magnetic

hysteresis when both field and stress are quasi-static.

5.1.7 Discussions on the model

To study the energetic consistency of the model, the case of static stress and varying

magnetic field is analyzed. The approach returns to the same thermodynamically consistent

hysteresis model presented in Chapter 4. In the case of varying stress and static magnetic field,

first the Clausius-Duhem inequality for the magneto-mechanical behavior is recalled:

D =−
•
~H ·~B− •

σ : ε − •
g ≥ 0. (5.1.13)

The magnetostriction strain εµ is introduced as internal variable to model the irrever-

sible behavior due to stress variations. In this case, the time-derivatives of the Gibbs free energy

density
•
g are given by:

•
g(σ , ~H,εµ) =

∂g

∂σ
:

•
σ +

∂g

∂ ~H
:

•
~H +

∂g

∂εµ
:

•

εµ . (5.1.14)
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(a)

(b) (c)

Figura 5.1.11: Magnetic response under quasi-static magneto-elastic loading (a). Comparison

between measurements and modeled induction as a function of magnetic field (b) and stress (c).

Replacing (5.1.14) into (5.1.13), it gives:

D =−
[

ε +
∂g

∂σ

]
:

•
σ −

[
~B+

∂g

∂ ~H

]
·

•
~H − ∂g

∂εµ
:

•

εµ ≥ 0. (5.1.15)

From (5.1.15), the following relationships are defined, such that the restrictions of the

second-law of thermodynamics are fulfilled:

ε =− ∂g

∂σ
, (5.1.16a)

~B =− ∂g

∂ ~H
, (5.1.16b)

D =− ∂g

∂εµ
:

•

εµ ≥ 0. (5.1.16c)

The irreversible behavior is characterized by a dissipation function in terms of the

internal variable φd(
•

εµ), which is defined by Miehe et al. [2011]:
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− ∂g

∂εµ
=

∂φd

∂
•

εµ
. (5.1.17)

The dissipation inequality can be written as:

D =
∂φd

∂
•

εµ
:

•

εµ ≥ 0 with φd(0) = 0 and φd(
•

εµ)≥ 0. (5.1.18)

For rate-independent processes, φd is defined as positively homogeneous of degree

one, so that Miehe et al. [2011]:

φd(τ
•

εµ) = τφd(
•

εµ) with τ ∈ Re+. (5.1.19)

Using the chain rule and assuming a positively homogeneous function of degree one,

the following relationship can be defined:

∂φd

∂
•

εµ
:

•

εµ = φd(
•

εµ). (5.1.20)

Therefore, the dissipation function φd(
•

εµ) defines the evolution of dissipation D by:

D = φd(
•

εµ)≥ 0. (5.1.21)

From (5.1.17), a minimization procedure can be established to evaluate the hysteresis

behavior under variable mechanical loadings and static fields. In this case, the energy density g

and the dissipation function φd need to be defined. Following the analogy of the magnetic hys-

teresis with a dry-friction mechanism Bergqvist [1997], Henrotte et al. [2006], the dissipation

function φd is defined as:

φd(
•

εµ) = κσ‖
•

εµ‖, (5.1.22)

with κσ a pinning stress. For sufficient small time-steps, the dissipation φd is appro-

ximated by:

φd(ε
µ)≈ κσ

‖εµ − ε
µ
(p)

‖
∆t

, (5.1.23)
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with ε
µ
(p)

the magnetostriction strain at the previous time-step. From this approxima-

tion, the partial derivative of the dissipation function φd is given by:

∂φd

∂
•

εµ
≈ ∂φd

∂




εµ − ε
µ
(p)

∆t




= ∆t
∂φd

∂εµ
. (5.1.24)

In Chapter 4, the magnetization ~M was introduced as internal variable and a minimi-

zation evaluates the behavior of ~M under static stress and varying field. Here, from the definition

of (5.1.17) and taking into account the approximation (5.1.24), the magnetostriction strain εµ

is calculated from a minimization by:

∂

∂εµ

[
g(σ , ~H,εµ)+∆t φd(ε

µ)
]
= 0 →

εµ = arg min
[
g(σ , ~H,εµ)+κσ‖εµ − ε

µ
(p)

‖
]

subject to tr(εµ) = 0

(5.1.25)

The energy density g(σ , ~H,εµ) can be identified as:

g(σ , ~H,εµ) = f̃ (~H,εµ)−µ0
H2

2
− 1

2

(
C

−1 σ
)

: σ − εµ : σ , (5.1.26)

with f̃ (~H,εµ) a free energy density that can be obtained from the partial numerical

inversion of a magnetic anhysteretic model - here the multiscale approach. The time-derivative
•

f̃ is:

•

f̃ (~H,εµ)=σ rev :
•

εµ −µ0
~M ·

•
~H with

∂ f̃

∂εµ
=σ rev and

∂ f̃

∂ ~H
=−µ0

~M. (5.1.27)

and the reversible stress σ rev is introduced. With the choice of g(σ , ~H, ~M), (5.1.16a)

and (5.1.16b) are:

− ∂g

∂ ~H
= µ0

(
~H + ~M

)
= ~B

− ∂g

∂σ
= C

−1σ + εµ = εµ + εe = ε,

(5.1.28)

under the hypothesis of small strains, with C the stiffness tensor and εe the elastic
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strain. From (5.1.16c):

− ∂g

∂εµ
=− ∂ f̃

∂εµ
+σ =−σ rev +σ = σ irr, (5.1.29)

and the irreversible stress σ irr is introduced, defining the mechanical loading decom-

position into reversible and irreversible parts σ = σ rev +σ irr.

Combining (5.1.25) and (5.1.26), the magnetostriction strain is given by the minimi-

zation:

εµ = arg min
[

f̃ (~H,εµ)− εµ : σ +κσ‖εµ − ε
µ
(p)

‖
]

subject to tr(εµ) = 0

(5.1.30)

considering that C does not depends on εµ ,
(
C

−1 σ
)

: σ is constant, and it can be

neglected in evaluating εµ . Moreover, the term µ0
~H · ~H is also constant, and can be neglected

in the minimization.

As the dissipation φd(ε
µ) in non-differentiable at εµ = ε

µ
(p)

, the subsequent set defines

the derivatives of φd:

∂φd(ε
µ)

∂εµ
∈





σ irr,‖σ irr‖ ≤ κσ , if εµ = ε
µ
(p)

σ irr = κσ

εµ − ε
µ
(p)

‖εµ − ε
µ
(p)

‖
, otherwise.

(5.1.31)

By applying the vector-play approximation, an explicit solution of the model is obtai-

ned, and the reversible stress updates are given by:

σ rev =





σ rev(p) if ‖σ −σ rev(p)‖ ≤ κσ

σ −κσ

σ −σ rev(p)

‖σ −σ rev(p)‖
otherwise.

(5.1.32)

The modeling is thermodynamically consistent in the case of static magnetic fields

and varying mechanical loadings. However, as pointed out in Prigozhin et al. [2016], where

the vector-play approximation is shown to exhibit limitations in the case of 2D spiral magnetic

fields, it is expected that the vector-play approximation for the stress also may show limitations

when complex stress loadings are applied.

Consider now a uniaxial configuration and the application of the loading presented in

Fig. 5.1.12a, in which both field and stress vary sequentially. Field variations are imposed when
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stress is constant, and stress variations are imposed when the field is constant. For simplicity,

only one cell is considered with κH = 200 A/m and κσ = 20 MPa. Under stress variations (see

the A-B segment in Fig. 5.1.12a), the reversible stress will be modified when the threshold κσ

is reached as shown in Fig. 5.1.12b, with the value given by σrev = σ −κσ . The reversible field

remains constant for this loading case. The magnetic response is shown in Fig. 5.1.13. The

induction is close to zero in the A-B segment (see Fig. 5.1.13a), and the magnetostriction strain

evolves with increments in the reversible stress (see Fig. 5.1.13b).

As shown in Fig. 5.1.12a, the stress loading is set constant, and the magnetic field

varies in the B-C segment. The reversible field will be modified only when the threshold κH

is reached, with the value given by Hrev = H − κH . Due to the formulation of the proposed

approach, constant stress yields to σrev = σ , resulting in a discontinuity of the reversible stress,

as observed in the segment B-C in Fig. 5.1.12b. This discontinuity results in a jump in mag-

netostriction strain, as seen in Fig. 5.1.13b. If now the magnetic field is constant and stress

varies, the same discontinuity problem is observed in the reversible field, resulting in jumps in

both induction and magnetostriction strain (see Fig. 5.1.13). Therefore, the model can present

non-physical behavior for some magneto-elastic loadings.

A B C

(a) Magneto-elastic loading

A B C

(b) Reversible quantities

Figura 5.1.12: Modeling application under variations of both field and stress.
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A B C

(a) Induction

A B C

(b) Longitudinal magnetostriction strain

Figura 5.1.13: Modeled magnetic response.

The dissipation due to variations of mechanical loading is modeled from an analogy of

the decomposition of the magnetic field - into reversible and irreversible parts - applied

to the mechanical stress. In this case, an irreversible stress describes the dissipative beha-

vior due to mechanical loading variations. A pinning stress parameter is introduced and

is identified from piezomagnetic measurements. The model captures the piezomagne-

tic behavior, and validation under simultaneously varying stress and magnetic fields is

performed with satisfying agreement. The model can be summarized as two thermody-

namically consistent models in the situation of static stress and varying fields, and in the

situation of static field and varying stress. However, non-physical results are observed

for some magneto-elastic loadings. The model allows for multiaxial magneto-elastic loa-

dings, such that the model could be applied in a complex application under rotating stress

and static field, for example, with thermodynamic consistency.

5.2 Domain volume fraction approach

The dissipation modeling using internal variables is flexible in defining the appropri-

ate quantity to describe the irreversible behavior. The physics of the problem determines such

a choice. The domain volume fractions are a set of common variables for both magnetization

and magnetostriction evaluation. This section uses the domain volume fraction to describe the

dissipation in a thermodynamics framework. The modeling of the magneto-elastic hysteresis

is based on a multiscale model, and three scales are defined: the domain scale (denoted by the

index α), the grain scale (denoted by the index g), and the polycrystalline representative volume

element scale (RVE).
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The magneto-elastic hysteresis modeling starts from the thermodynamics principles,

as the energy-based approach presented in Chapter 4. The Clausius-Duhem inequality given in

terms of the Gibbs free energy g(σ , ~H) is:

D =−
•
~H ·~B− •

σ : ε − •
g ≥ 0. (5.2.1)

In Chapter 4, the magnetization ~M was chosen as internal variable to describe the

irreversible behavior. Here, the domain volume fractions pα are introduced as internal variables.

The domain volume fractions pα are represented under the following constraints:

∑
α

pα = 1 and 0 ≤ pα ≤ 1. (5.2.2)

Inserting the internal variables into the Gibbs free energy, the time-derivative
•
g(σ , ~H, pα)

is given by:

•
g
(

σ , ~H, pα

)
=

∂g

∂σ
:

•
σ +

∂g

∂ ~H
·

•
~H +∑

α

∂g

∂ pα

•
pα . (5.2.3)

Replacing (5.2.3) into (5.2.1) gives:

D =−
(

∂g

∂σ
+ ε

)
:

•
σ −

(
∂g

∂ ~H
+µ0

~M

)
·

•
~H −∑

α

∂g

∂ pα

•
pα ≥ 0. (5.2.4)

The following relationships are defined:

ε =− ∂g

∂σ
,

~B =− ∂g

∂ ~H
,

D =−∑
α

∂g

∂ pα

•
pα ≥ 0,

(5.2.5)

such that (5.2.5) can be considered sufficient conditions to fulfill the second law of

thermodynamics requirements. As in Chapter 4, a dissipation function φd(
•

pα) is introduced,

and the variations of domain volume fractions characterize the dissipation. Moreover, φd(
•

pα)

needs to be defined under the following conditions:

φd(0) = 0 and φd(
•

pα)≥ 0, (5.2.6)

ensuring that D = φd(
•

pα) ≥ 0. Following the same notion presented in Chapter 4,
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from the definition of φd(
•

pα), the following relationship is defined Miehe et al. [2011]:

∂φd

∂
•

pα

+
∂g

∂ pα
= 0, (5.2.7)

which is the basis to solve the model by establishing a minimization procedure. To

fully characterize the evaluation of the domain volume fractions, it remains to define the Gibbs

free energy g(σ , ~H, pα) and the dissipation function φd(
•

pα).

5.2.1 Formulation of the Gibbs free energy

The Gibbs free energy density is developed based on a multiscale approach, conside-

ring stress and field homogeneous within the grain, and under the hypothesis of small strains.

At the domain scale, the Gibbs free energy gα is given by Daniel et al. [2008]:

gα = g
mag
α +gan

α +gme
α with

gan
α = K1

(
α2

1 α2
2 +α2

1 α2
3 +α2

2 α2
3

)
+K2

(
α2

1 α2
2 α2

3

)

g
mag
α =−1

2
µ0

~H · ~H −µ0
~Mα · ~H

gme
α =−1

2
εe : σ − ε

µ
α : σ =−1

2
σ : C

−1 : σ − ε
µ
α : σ .

(5.2.8)

with C the stiffness tensor, considered uniform within the single crystal. To define the

Gibbs free energy at the grain scale, following Tan and Kochmann [2017], the entropy s related

to the volume fractions configuration is first introduced:

s =−k∑
α

pα log pα , (5.2.9)

with k a positive material parameter. The Gibbs free energy at the grain scale is

composed of a weighted sum of the energy of the domains and a contribution of the thermal

energy Tan and Kochmann [2017]:

g
(

σ , ~H, pα

)
= ∑

α

pα [gα + kT log pα ] , (5.2.10)

with T the absolute temperature. The partial derivatives of (5.2.10) in terms of stress

and field are:
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− ∂g

∂σ
= C

−1 : σ +∑
α

pαε
µ
α = εe + εµ = ε

− ∂g

∂ ~H
= µ0

(
~H +∑

α

pα ~Mα

)
= µ0

(
~H + ~M

)
= ~B,

(5.2.11)

such that the macroscopic magnetostriction strain εµ and the macroscopic magneti-

zation ~M are given by:

εµ = ∑
α

pαε
µ
α and ~M = ∑

α

pα ~Mα . (5.2.12)

For a polycrystal, the energy density at the macroscopic scale is evaluated from each

grain contribution Tan and Kochmann [2017]:

g
(

σ , ~H, pα

)
= ∑

g

pg

[

∑
α

pα [gα + kT log pα ]

]
, (5.2.13)

with pg the proportion of each grain orientation. The macroscopic magnetization and

magnetostriction strain for a polycrystal are evaluated by:

εµ = ∑
g

pg

[

∑
α

pαε
µ
α

]
and ~M = ∑

g

pg

[

∑
α

pα ~Mα

]
. (5.2.14)

5.2.2 Anhysteretic magnetic behavior

Neglecting dissipation (φd = 0), the reversible (or anhysteretic) magnetic response

can be evaluated by defining a minimization procedure based on (5.2.7), under the constraints

of (5.2.2):

pα = arg min
n

∑
α=1

pα [gα + kT log pα ]

subject to

(
n

∑
α=1

pα

)
−1 = 0,

0 ≤ pα ≤ 1

(5.2.15)

From the definition of the energy density gα , it is noted that the terms

− 1

2
σ : C

−1 : σ and − 1

2
µ0

~H · ~H, (5.2.16)

are constants, and will not influence in the minimization. Therefore, these terms can
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be neglected in evaluating the domain volume fractions. The Hessian matrix Hg of the Gibbs

free energy g is:

Hg =




∂ 2g

∂ p2
1

∂ 2g

∂ p1∂ p2
· · · ∂ 2g

∂ p1∂ pn

∂ 2g

∂ p2∂ p1

∂ 2g

∂ p2
2

· · · ∂ 2g

∂ p2∂ pn

...
...

. . .
...

∂ 2g

∂ pn∂ p1

∂ 2g

∂ pn∂ p2
· · · ∂ 2g

∂ p2
n




, (5.2.17)

with (p1, p2, ..., pn) the domain volume fractions. The partial derivatives in the ex-

pression of Hg are given by:

∂g

∂ pα
= gα + kT

(
log(pα)+1

)
,

∂ 2g

∂ pα
2
=

kT

pα
,

∂ 2g

∂ pα pβ
= 0 with α 6= β .

(5.2.18)

The Hessian matrix Hg is then:

Hg =




kT

p1
0 · · · 0

0
kT

p2
· · · 0

...
...

. . .
...

0 0 · · · kT

pn




, (5.2.19)

with positive eigenvalues, such that Hg is positive definite, and as a consequence,

the Gibbs free energy g is a convex function. To evaluate the domain volume fractions that

correspond to a minimum of (5.2.15), the Karush-Kuhn-Tucker (KKT) conditions need to be

satisfied:
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Karush-Kuhn-Tucker conditions

Consider the minimization problem given by Herskovits [1998]:

min f (x)

s.t. g(x)≤ 0,

h(x) = 0

with f : Re
n → Re a real valued function. The function g(x) defines an inequality cons-

traint and h(x) an equality restriction. x∗ is a local minimum if it satisfies the Karush-

Kuhn-Tucker conditions Ali et al. [1997]

∂L (x∗)
∂x

= 0 with L (x,µ,λ ) = f (x)+µ g(x)+λ h(x)

h(x∗) = 0

µ g(x∗) = 0 with µ ≥ 0

g(x∗)≤ 0

L is the Lagrangean, and µ and λ the Lagrange multipliers.

The KKT conditions applied to (5.2.15) are:

∂L

∂ pα
= 0 with L = g+λ



(

n

∑
α=1

pα

)
−1


+

n

∑
α=1

[
µα

1 (pα −1)−µα
2 (pα)

]

(5.2.20a)

(
n

∑
α=1

pα

)
−1 = 0 (5.2.20b)

µα
1 (pα −1) = 0 with µα

1 ≥ 0 (5.2.20c)

µα
2 pα = 0 with µα

2 ≥ 0 (5.2.20d)

0 ≤ pα ≤ 1, (5.2.20e)

with L the Lagrangean, and µα
1 , µα

2 and λ Lagrange multipliers. The KKT conditi-

ons (5.2.20c) and (5.2.20d) will be satisfied when µα
1 = µα

2 = 0.
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The first condition (5.2.20a) gives:

∂L

∂ pα
= gα + kT log(pα)+ kT +λ = 0

pα = exp

[
1

kT
(−gα −λ )−1

]
.

(5.2.21)

Combining (5.2.21) and (5.2.20b) gives:

(
n

∑
α=1

exp

[
1

kT
(−gα −λ )−1

])
−1 = 0

exp

(−λ

kT
−1

)(
n

∑
α=1

exp

(
−gα

kT

))
= 1

λ =−kT log




1

∑
n
α=1 exp

(
−gα

kT

)


− kT.

(5.2.22)

Inserting (5.2.22) into (5.2.21), the domain volume fractions can be evaluated by:

pα =

exp

(−gα

kT

)

∑
n
α=1 exp

(
−gα

kT

) . (5.2.23)

Therefore, the minimization of the Gibbs free energy yields to a Boltzmann distribu-

tion. A different analysis that yields the same result is presented in Tan and Kochmann [2017].

The parameters k and T are approximated to the multiscale modeling parameter As by:

As ≈
1

kT
. (5.2.24)

The material parameter As can be identified from stress-free anhysteretic measure-

ments, and is evaluated by Daniel et al. [2008]:

As =
3χ0

µ0M2
s

, (5.2.25)

with χ0 the initial susceptibility and Ms the saturation magnetization.
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5.2.3 Irreversible behavior

To characterize the irreversible behavior, it is necessary to define the dissipation func-

tion φd(
•

pα) in terms of the rate of the internal variables, here the domain volume fractions. The

dissipation φd(
•

pα) is proposed as:

φd = ∑
α

|κα
•

pα |, (5.2.26)

with κα a pinning parameter and | . | is the absolute value function. For numerical

implementation purposes, the time-derivative of the domain volume fraction
•

pα is approximated

by:

•
pα =

pn+1
α − pn

α

∆t
, (5.2.27)

with pn+1
α and pn

α the current and the previous values of the domain volume fraction.

The derivative of the dissipation function can be approximated as follows:

∂φd

∂
•

pα

≈ ∂φd

∂

(
pn+1

α − pn
α

∆t

) = ∆t
∂φd

∂ pn+1
α

. (5.2.28)

Taking into account the previous approximation into (5.2.7), the following relati-

onship can be defined:

∂φd

∂
•

pα

+
∂g

∂ pn+1
α

≈ ∂

∂ pn+1
α

(
g(σ , ~H, pn+1

α )+∆t φd(pn+1
α )

)
= 0

∂Ω

∂ pn+1
α

= 0 with Ω = g(σ , ~H, pn+1
α )+∆t φd(pn+1

α ),

(5.2.29)

Ω is the objective function to be minimized. The magneto-elastic hysteresis model is

evaluated by the constrained minimization:

min
pα

Ω =
n

∑
α=1

pn+1
α

[
gα +

1

As
log pn+1

α

]
+

n

∑
α=1

|κα

(
pn+1

α − pn
α

)
|

s.t.

(
n

∑
α=1

pn+1
α

)
−1 = 0,

0 ≤ pn+1
α ≤ 1

(5.2.30)
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The numerical implementation of the hysteresis model is detailed in Appendix F using

the interior points method.

Considering a stress-free case and applied uniaxial magnetic field along the [1 0 0]t

direction, the pinning parameter κα can be identified from the domain magnetic energy at the

coercive field. The pinning energy is given by:

κα =−µ0Hc
~h · ~Mα with ~h = [1 0 0]t , (5.2.31)

with Hc the coercive field and~h the unit vector that defines the direction of ~H. The-

refore, each domain orientation will have a different pinning energy. To illustrate the modeling

approach, consider a single crystal consisting of six domain orientations along the < 100 >

directions, with parameters given in Table 5.2.1. The stress-free magnetic response under a

variable magnetic field is presented in Fig. 5.2.1.

Tabela 5.2.1: Parameters of the example.

Ms (A/m) λs (ppm) As (m3/J) Hc (A/m)

1.39106 5.5 1.410−2 200

A B

A B

Figura 5.2.1: Stress-free hysteresis loop (left) and magnetostriction strain (right) considering

six domain orientations. Ms = 1

The hysteretic induction and magnetostriction strain can be explained from the do-

main volume fractions evolution, as seen in Fig. 5.2.2. The volume fractions remain unchanged

until the applied field reaches the coercive field Hc (see the A-B segment in Fig. 5.2.2). As Hc

is reached, the domain family oriented in the direction of the increasing field grows, and the
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other domain families vanish, following the modeling constraints (5.2.2). As seen in Fig. 5.2.1,

~B varies, but little, and εµ remain constant along the segment path A-B and then vary with ~H

variations.

A B

Figura 5.2.2: Domain volume fractions evolution under a magnetic loading.

As observed in Fig. 5.2.1, considering a single pinning energy for each domain orien-

tation does not allow modeling the first magnetization curve and minor loops. Using the same

strategy as in the vector-play model, several coercive fields can be considered to characterize

pinning energies for each domain orientation. These pinning parameters κk are distinguished

by the weights ωk that verify:

N

∑
k=1

ωk = 1, (5.2.32)

with N the total number of coercive fields. For this situation with several pinning

parameters, the magnetostriction strain εµ and magnetization ~M are given by:

εµ =
N

∑
k=1

ωk ∑
g

pg

[

∑
α

pk
αε

µ
α

]
and ~M =

N

∑
k=1

ωk ∑
g

pg

[

∑
α

pk
α
~Mα

]
. (5.2.33)

5.2.4 Anhysteretic test

The magnetic anhysteretic curve can be experimentally obtained by setting the magne-

tic field waveform as an exponentially decaying sine superimposed to a bias field, as presented

in Chapter 3. The model can reproduce the magnetic anhysteretic response using the strategy

of several pinning energies. Fig. 5.2.3 (markers) illustrates the reversible behavior under sta-

tic stresses obtained by the model. The solid lines consist of the results of the anhysteretic

multiscale model. As expected, both models present the same magnetic anhysteretic response.
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Figura 5.2.3: Anhysteretic test under variable field and static stress.

The anhysteretic test can also be performed under variations of mechanical loading

and a static field. As an example, a uniaxial stress waveform is defined as an exponentially

decaying sine superimposed to a bias stress and the magnetic field is static. The resulting

anhysteretic piezomagnetic curves are shown in Fig. 5.2.4, and again, the anhysteretic test

(illustrated by the markers) gives the same results as using the multiscale model (the solid

lines).

Figura 5.2.4: Anhysteretic test under variable stress and static field.
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5.2.5 Identification of parameters

The number of domain orientations is limited to six for numerical implementation

purposes, corresponding to the < 100 > directions. Moreover, the crystallographic orientations

are described by the texture of a < 111 > fiber, as depicted in Fig. 5.1.2. The single crystal

parameters are taken from pure iron. The parameters Ms and λ100 are adapted to the modeling

results to match the stress-free hysteresis measurements. The reversible parameters are listed in

Table 5.2.2.

Tabela 5.2.2: Single crystal parameters.

Ms (A/m) λ100 (ppm) λ111 (ppm)

1.39106 14 −14

Considering a uniaxial stress-free case, the pinning energies κk are evaluated from

(5.2.31), based on a set of coercive fields. The respective weights ωk can be fitted from measu-

red stress-free hysteresis loops under increasing magnetic field, as depicted in Fig. 5.2.5 (left).

Table 5.2.3 gives the fitted weights from a set of stress-free coercive fields.

0 MPa 0 MPa

Figura 5.2.5: Stress-free hysteresis loops under increasing magnetic field. Comparison between

measurements (left) and model (right).

Tabela 5.2.3: Identified weights from a set of coercive fields.

Hc (A/m) 0 25 50 100 200 350

ω 0.05 0.05 0.1 0.1 0.45 0.25

From this set of coercive fields, the pinning parameters κα are identified from the

magnetic energy at the domain scale. The same proposition previously used in the vector-play
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model is utilized here to model the mechanical loading influence in the pinning parameter κα .

From the identified pinning parameter from stress-free measurements κα(0), the weight ω is

kept constant under stress. The stress-dependent pinning parameter κ(σ) is given by:

κα(σ) = a(σeq)κα(0) with a(σeq) =
Hc(σ)

Hc(0)
, (5.2.34)

with a(σeq) a function that is fitted in order to match with the measured Hc(σ)/Hc(0).

As presented in Chapter 4, the coercive field characteristic a(σeq) is described by:

a(σeq) = a1 exp
(
−exp(a2 +a3σeq)

)
+1. (5.2.35)

5.2.6 Modeling results compared to the measurements

By using the strategy of several pinning parameters, the model reproduces the stress-

free symmetric minor loops under increasing magnetic field, as shown in Fig. 5.2.5 (right).

The modeling results under static uniaxial stress and quasi-static magnetic field are presented

in Fig. 5.2.6. Despite the model captures the increasing of losses under compression, the shape

of the hysteresis loop in this mechanical configuration results in a difference of about 24% in

evaluating the losses.

Figura 5.2.6: Comparison between measured (left) and modeled (right) hysteresis loops under

uniaxial stress.

The longitudinal magnetostriction strain is presented in Fig. 5.2.7, and it is noted that

the model captures the measured trend under static uniaxial stress. Notably, the model also

simulates the inversion on the sign of the longitudinal magnetostriction under high tension.
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Figura 5.2.7: Comparison between measured (left) and modeled (right) magnetostriction strain

under uniaxial stress.

Considering a variable mechanical loading and a static magnetic field, the modeled

piezomagnetic loops are depicted in Fig. 5.2.8. A characteristic of the domain volume fraction

approach can be highlighted: the model reproduces the piezomagnetic loops from the same set

of parameters identified in the case of static stress and variable magnetic field.

Figura 5.2.8: Comparison between measured (left) and modeled (right) piezomagnetic loops.

Considering that both the magnetic field and stress are variable, the model also re-

produces the characteristic of the induction as a function of magnetic field and stress 5.2.9.

However, significant differences are observed, especially under high compression, where the

modeled induction tends to zero. In this situation where both field and stress vary, the total

dissipation can be either evaluated from the sum of the numerical integration of the εµ(σ) and

B(H) loops, or from the dissipation function (5.2.26).
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Figura 5.2.9: Magneto-mechanical loading (top) and comparison between measured and mo-

deled induction as a function of magnetic field (bottom left) and mechanical stress (bottom

right).

5.2.7 Discussions on the model

In Section 5.1, limitations of the model with irreversible stress were presented when

applying a sequential magneto-elastic loading. For simplicity, consider the domain volume frac-

tion approach with a single pinning energy for each domain orientation (with Hc = 200 A/m)

under the application of a sequential uniaxial magneto-elastic loading shown in Fig. 5.2.10.

Fig. 5.2.11 presents the modeled magnetic response. It can be noted that the modeled induc-

tion and magnetostriction strain do not present discontinuities when the loadings stop varying.

Therefore, the domain volume fraction approach improves the physical modeling description

compared to the modeling presented in Section 5.1.
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Figura 5.2.10: Uniaxial magneto-elastic loading.

(a) Induction (b) Longitudinal magnetostriction strain

(c) Induction hysteresis loop under field

variations

(d) Magnetostriction hysteresis under

stress variations

Figura 5.2.11: Modeled magnetic response.

One might ask if the pinning energy can be identified from magnetostriction strain

measurements under variable stress. In this case, a coercive stress σc defines the pinning energy

at the domain scale. Considering a uniaxial example with σc = 20 MPa, the pinning energy is

evaluated by:

κα =−σc σuni : ε
µ
α with σuni = [1 0 0 0 0 0], (5.2.36)
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with σuni the second-order tensor that defines the stress direction in Voigt notation.

Under variations of magnetic field and static stress, the resulting hysteresis behavior is depicted

in Fig. 5.2.12b. For this case, the domain volume fractions evolution is represented in Fig.

5.2.12a. Constraints (5.2.2) are fulfilled, but it is observed that the volume fractions parallel to

the applied field change first. Subsequently, the volume fractions perpendicular to the applied

field are changed. This difference in the thresholds results in a modeled hysteresis behavior

with stair shape, especially in the region of low magnetic fields, as seen in Fig. 5.2.12b.

(a) Domain volume fractions evolution (b) Hysteresis behavior

Figura 5.2.12: Modeled magnetic response under static stress and variable field.

If variable stress and a static field are applied now, the previous threshold problem

is no longer observed. The domain volume fractions evolve when the stress reaches κσ = 20

MPa, as seen in Fig. 5.2.13a, resulting in the piezomagnetic loop depicted in Fig. 5.2.13b.

A proper definition of the pinning energy in terms of both coercive field and coercive stress

could replace the empirical description given by (5.2.34), such that the model would require

only stress-free measurements (under varying field) and field-free tests (under varying stress)

for parameter identification.

(a) Domain volume fractions evolution (b) Piezomagnetic behavior

Figura 5.2.13: Modeled magnetic response under static field and variable stress.
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Another problem of the domain volume fraction approach implemented in this section

is the limitation to only six domain orientations - related to the easy axis for a cubic symme-

try. Due to the minimization numerical routine of the model, increasing the number of domain

orientations can yield prohibitive simulation time. For instance, Fig. 5.2.14 illustrates the stress-

free magnetic hysteresis behavior considering 652 possible domain orientations. The simulation

time increases about 800 times compared to the approach with only six possible domain orienta-

tions. However, by limiting the model to only the easy axis orientations, significant effects, such

as anisotropy, are not captured in the simulation. Attempts were made to produce an explicit

model for this domain volume fraction approach - based mainly on the vector-play approxima-

tion presented in Chapter 4. However, the need to impose the volume fraction constraints makes

it difficult to solve the model explicitly.

Figura 5.2.14: Stress-free hysteresis loop.
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By considering the domain volume fractions as internal variables to describe the magnetic

hysteresis behavior, any magneto-elastic loading can be simulated, and the thermodyna-

mic consistency is ensured due to the formulation of the model based on an energetic

description. Here, the main goal is to give a route to future works, as the domain volume

fraction seems to be an appropriate variable to describe the dissipation under variations

of magnetic field and stress. Complementary works are required to improve the appro-

ach. One important task will be to increase the number of domain orientations so that

anisotropy effects can be described. It may be a challenging task using a minimization

approach; therefore, defining an explicit solution to the model, ensuring that the cons-

traints of the domain volume fraction formulation are respected, is an important aspect.

Moreover, the pinning energies are identified from a stress-free uniaxial configuration.

The impact of this choice in validating the model under rotating fields or stresses needs

to be further analyzed.
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6 Conclusion

The present thesis deals with the modeling of the hysteretic magneto-elastic behavior

of ferromagnetic materials. Experimental characterization of the magneto-elastic behavior is

performed in Chapter 3. A uniaxial magneto-mechanical bench is utilized, and tests are carried

out on low-Carbon DC04 steel with mechanical loadings below the elastic limit. First, the mag-

netic response under static stress and varying magnetic loadings is measured. The experimental

results show the expected behavior for a material with positive magnetostriction: compression

deteriorates the initial permeability, the remanent induction, and the coercive field and increases

the hysteresis losses. The application of tension presents a non-monotonic behavior: the initial

permeability is increased until a certain stress value and then decreases under further tension.

Experimental tests under varying stress and static fields highlighted another feature

of the magneto-mechanical behavior. For low static fields, magnetization increases with stress

(increasing from compression to tension). On the contrary, for high static field, magnetization

decreases with stress. This change in the magnetization behavior is due to the Villari reversal.

In addition, anhysteretic behavior, hysteresis with asymmetric minor loops, and piezomagnetic

loops were obtained. The set of experimental data built during this thesis represents a reliable

basis for the development and validation of magneto-elastic hysteresis models.

The multiscale nature of the magneto-mechanical behavior is used in an anhysteretic

modeling approach, such that the magnetic response of a polycrystal can be simulated, allowing

for multiaxial loading conditions. Classical modeling for the hysteresis behavior, such as the

Jiles-Atherton and Preisach models, lack thermodynamic consistency and are usually restricted

to uniaxial loadings. A promising approach but limited so far in the literature to purely magnetic

hysteresis modeling is based on an energy description allowing 3D magnetic field loadings. It

uses the analogy of a dry-friction mechanism and can be approximated by a vector-play model

under some restrictions.

An extension of the energy-based hysteresis approach to the case when static stress

is applied is proposed. An equivalent single-crystal simulates a representative volume element

of the material. To describe the magneto-elastic hysteresis behavior, a stress dependence of

the pinning field - the quantity that defines the coercive field and, thus, the dissipation - is

proposed. The pinning field is defined in terms of an equivalent stress, allowing to capture the

influence of a multiaxial stress state on the coercive field. Another feature of the proposed
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approach is the use of a second-order development in the definition of the magneto-elastic

energy. Such an inclusion allows to capture the non-monotonic stress effect on the magnetic

behavior. A new formulation of this second-order magneto-elastic energy is proposed, in terms

of an equivalent scalar stress, so that its definition is reduced to only one parameter σm. The

modeling parameters of the magneto-elastic hysteresis approach can be separated into those

related to the anhysteretic behavior and the ones related to the dissipation, and they are all

identified from uniaxial measurements along one direction only.

The validation of the modeling is verified by using a different set of measurements

than those used for parameter identification. Notably, no additional parameter is required to

model asymmetric minor loops in the hysteresis behavior under uniaxial stress when conside-

ring a magnetic field waveform with harmonic content. Besides, the model captures the trend of

hysteresis losses of DC04 under uniaxial stress. Though the second-order term in the magneto-

elastic energy allows the capture of the non-monotonic stress effect on the magnetic behavior.

The approach forces the magnetic behavior to be symmetric with respect to σm, such that the

model underestimates the permeability at low fields under high tension.

The proposed hysteresis model allows multiaxial loadings. The approach is tested un-

der multiaxial stress and alternating field conditions to test the modeling capabilities in complex

magneto-elastic cases. In this case, two sets of experimental measurements previously perfor-

med at Aalto University on a non-oriented Fe-Si were used: tests under uniaxial loadings along

rolling direction only are used to identify the modeling parameters, and measurements under

biaxial mechanical loadings are employed for validation. Cases under biaxial stress showed

that the model captures the trend of hysteresis losses when the magnetization is along rolling

or transverse directions. However, the error in the simulated results increases when magne-

tization is considered along transverse direction. Main drawbacks are observed under shear

stress configurations. It was shown that the modeled anhysteretic behavior is not sensitive to

this mechanical loading condition, which seems not compatible with the measurements. The

use of stress localization schemes is expected to be a possible solution to this problem. On

the other hand, the coercive field trend under shear is captured by modeling. The model is

further validated under magneto-elastic loadings for rotating field and multiaxial stress state.

A known limitation of the energy-based hysteresis approach is that it does not capture the va-

nishing of rotating hysteresis losses under high induction. A mathematical modification of the

pinning field is applied to correct this drawback, enforcing that the pinning field vanishes when
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the magnetization approaches saturation. Applying the measured magnetic field waveform as

the input of the model, the model reproduces the hysteresis behavior under several multiaxial

stress loadings with satisfying agreement. Therefore, the proposed magneto-elastic hysteresis

is predictive in the sense that from parameters identified from uniaxial measurements, it can be

applied to several multiaxial loading conditions with reasonable accuracy.

Inspired from the energy-based approach, the hysteresis behavior under static mag-

netic field and variable stress is modeled through the definition of an irreversible stress. A

pinning stress is introduced to control the dissipation under mechanical loadings. This irrever-

sible stress parameter is identified from uniaxial piezomagnetic loop measurements. The model

can satisfactorily represent the piezomagnetic behavior under increasing static field. Moreover,

the mechanical losses - namely, the magnetostriction strain variation under stress - can be esti-

mated. The proposed energy-based vector-play approach presented in this thesis can represent

the hysteresis behavior under static field and variable stress, as well as under static stress and

variable field, in multiaxial loading configurations, ensuring thermodynamic consistency.

The model is further applied under a more complex loading configuration with both

field and stress variations. A very satisfying agreement was demonstrated between measu-

rements and modeling. However, limitations are noted in this approach: sequential stress and

field loadings yield non-physical behavior in the modeled induction and magnetostriction strain.

The non-physical behavior is inherent to the proposed approach, in which both induction and

magnetostriction are given simultaneously in terms of reversible field and reversible stress.

To fix these limitations, a route for future works is presented in which the dissipative

effects are captured through the rate of domain volume fractions. Such an approach is inspi-

red by ferroelectric hysteresis models. The domain volume fraction is a common variable in

evaluating both magnetization and magnetostriction and seems to be an adequate internal varia-

ble to capture the irreversible behavior for any magneto-elastic loading. A dissipation function

based on the rate of volume fractions is proposed. Pinning energies that act as threshold for

the evolution of the volume fractions are introduced. The pinning energies are directly related

to the coercive field and are identified from stress-free hysteresis measurements. Moreover, no

further parameter is necessary to model the piezomagnetic loops and the hysteresis behavior

under variations of both field and stress. The approach is thermodynamically consistent for any

magneto-mechanical loading. However, limitations in capturing the measured results are obser-

ved and attributed to the small number of domain orientations considered in the model. Ideas
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to improve the domain volume fraction approach are suggested:

• Propose an explicit solution for the domain volume fractions approach

The domain orientations are usually determined by minimizing the potential energy at

the domain scale Daniel et al. [2008]. In Daniel and Galopin [2008], a dense meshed

unit sphere is introduced with nodes corresponding to the possible domain orientations

to avoid numerical minimization. This proposition significantly reduces the anhysteretic

simulation time.

In the presented hysteresis approach given in terms of the rate of domain volume fracti-

ons, only six domain orientations corresponding to the easy axis of cubic symmetry were

considered. This choice reduces the predictive capabilities of the model. The minimiza-

tion evaluation of the hysteresis model makes the simulation of a polycrystal impractical

with a great number of domain orientations as given by the nodes of a dense meshed unit

sphere. An explicit scheme in the implementation of the model would be very beneficial

to avoid minimization ensuring that the volume fractions constraints are respected.

• Investigate the influence of coercive stress in the pinning energy

The pinning energy was identified from stress-free measurements using the coercive field.

If the field-free magnetostriction loop under variable stress was available, the pinning

energy could be identified from the coercive stress. However, simulations showed that

the model presents limitations in representing the hysteresis behavior when the pinning

energy is identified from the coercive stress. The relationship between coercive stress and

coercive field in defining the pinning energy must be clarified. It could be a route to avoid

the phenomenological description of the stress-dependent pinning energy, as shown in

Chapter 5.

Next steps regarding the magneto-elastic vector-play model are also suggested:

• Magnetic measurements of a giant magnetostrictive material

The low magnetostriction strain of the tested material (DC04) did not allow the valida-

tion of the modeled magnetostriction under variations of mechanical loadings. Due to

this limitation, the pinning stress was identified from piezomagnetic loops. To validate

the modeled magnetostriction strain and to analyze the pinning stress parameter identi-

fication, measuring the hysteresis magnetostriction of giant magnetostrictive materials,
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such as Galfenol, under several static field levels is suggested. Moreover, when both fi-

eld and stress vary, the magnetostriction strain response could also be used for modeling

validation.

• Simulation of an electrical machine

The proposed models could be used to simulate the magnetic behavior of an electrical

machine to analyze the impact of the magneto-mechanical coupling in losses, compa-

red to classical approaches usually performed in the machinery literature. This requires

the magneto-elastic vector-play approach to be numerically inverted to properly plug the

model into a vector potential finite element formulation. The numerical inversion of

the stress-free energy-based hysteresis model is presented in Jacques [2018], while the

inversion of the anhysteretic multiscale approach is proposed in Bernard et al. [2019].

Combining both procedures can lead to a magneto-elastic hysteresis model with input

magnetostriction strain and induction and outputs magnetic field and stress.

• Influence of plasticity on the magnetic hysteresis

In this thesis, mechanical loadings were considered below the elastic limit. However,

plasticity effects induced by manufacturing or assembly processes can significantly mo-

dify the magnetic characteristic of magnetic materials and increase hysteresis losses Do-

menjoud and Daniel [2023], El Youssef et al. [2021], Maazaz et al. [2024]. Modifications

in anhysteretic multiscale modeling to consider the influence of plasticity are proposed in

Domenjoud and Daniel [2023], Taurines et al. [2024]. Incorporating such extensions in

the vector-play approach is a promising prospect.
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A Appendix A: Elements of convex analysis

In this appendix, some elements of convex analysis discussed in the work are intro-

duced. First, it is introduced the notion of convex set. A set S is convex if, for any elements

x1,x2 ∈ S, a line segment that connects x1 and x2 is also in S, so Boyd and Vandenberghe [2004]:

αx1 +(1−α)x2 ∈ S with 0 ≤ α ≤ 1 (A.0.1)

A function f : Re
n → Re is convex on a convex set S if, for any x1,x2 ∈ S, it satisfies

Boyd and Vandenberghe [2004]:

f
(
αx1 +(1−α)x2

)
≤ α f (x1)+(1−α) f (x2) (A.0.2)

As an example, consider the concave function f represented in Fig. A.0.1. The ine-

quality requirement of (A.0.2) means that the line segment connecting x1 and x2 lies above the

graph of the function for all 0 ≤ α ≤ 1.

x1 x2✁1x1+(1-✁1)x2✁2x1+(1-✁2)x2

✁1f(x1)+(1-✁1)f(x2)

✁2f(x1)+(1-✁2)f(x2)

f(✁1x1+(1-✁1)x2)

f(✁2x1+(1-✁2)x2)

Figura A.0.1: Example of a convex function.

An important element of convex analysis used in this work is the notion of subdiffe-

rential. At x, the subdifferential of a convex function f is defined by Prigozhin et al. [2016]:

∂ f (x) :=
{

z ∈ Re
n : f (y)≥ f (x)+ zt(y− x), ∀ y ∈ Re

n
}

(A.0.3)

with z the subgradients of f at x. The subgradients are a generalization of the concept

of gradient to a non-differentiable function. If the function is differentiable, then:

∂ f (x) = grad f (x) (A.0.4)
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For example, the convex function f (x)= ‖x‖ illustrated in Fig. A.0.2 is non-differentiable

at x = 0. In this case, from the definition of (A.0.3) the subgradient results in:

‖y‖ ≥ zy → z ∈ [−1,1] (A.0.5)

For x > 0 and x < 0, the function is differentiable and results in sign(x). The subdif-

ferential for this example then is:

∂ f (x) =





−1, if x < 0

[−1,1] , if x = 0

1, if x > 0

(A.0.6)

f(x)

x1 x2

f(x1)+z1(y-x1)

f(x2)+z2(y-x2)

z4 y

z3 y
z5 y

Figura A.0.2: Example of a non-differentiable convex function.
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B Appendix B: Identification of the magnetostriction cons-

tant λ ′
s

The identification of the second-order magnetostriction constant λ ′
s is obtained from

the analysis of the anhysteretic relative magnetic permeability µanh
r (σ), considering isotropic

materials, and the magnetic field in the direction of the uniaxial stress da Silva et al. [2022].

The starting point is the expression of the magnetization given bellow (see (67) from Hubert

[2019]).

M =
∫ π

0




Ms cosφe

(
3χ0H

Ms
cosφ+B(σ)(cos2 φ−1/3)

)

∫ π
0 e

(
3χ0H

Ms
cosφ+B(σ)(cos2 φ−1/3)

)

sin(φ)dφ

sinφdφ


 (B.0.1)

where B(σ) is:

B(σ) = 1.5Asλ
′
s

(
σ2 +σ

λs

λ ′
s

)

= 1.5Asλ
′
s



(

σ −
(−λs

2λ ′
s

))2

−
(−λs

2λ ′
s

)2


 .

(B.0.2)

The quantity −λs/2λ ′
s (homogeneous to a stress) is denoted by σm. It can be noticed

that, for any stress σ , one has B(σm +σ) = B(σm −σ). This shows that independently of the

magnetic field, the magnetization as a function of stress is always symmetric with respect to

σ = σm. Such symmetry is naturally inherited by the relative permeability. Furthermore to

prove that µanh
r is maximal at σm, we first carry out the integration with respect to φ in (B.0.1)

which yields:

M = Ms




eB

(
e

3χ0H

Ms − e
− 3χ0H

Ms

)
e

(
9H2χ0

2

4Ms2B

)

√
Bπ

(
erfi
(√

B− 3Hχ0

2Ms

√
B

)
+ erfi

(√
B+ 3Hχ0

2Ms

√
B

)) − 3Hχ0

2MsB



, (B.0.3)

where erfi is the imaginary error function given as:

erfi(x) =
2√
π

∫ x

0
et2

dt. (B.0.4)
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Upon taking the limit of ∂M/∂H at H → 0 one gets:

µanh
r (σ) = 1+3χ0

(
eB(σ)

√
B(σ)π erfi(

√
B(σ))

− 1

2B(σ)

)
. (B.0.5)

This gives an analytical expression of the relative magnetic permeability, in the case

of isotropic materials when the uniaxial loading is applied parallel to the magnetic field. By

studying the function µanh
r (σ), one can show that: (a) it is maximal at σm =−λs/2λ ′

s , (b) it has

σ = σm as an axis of symmetry, (c) it has µanh
r = 1 as a horizontal asymptote and (d) equals

1+χ0 for σ = 0 (using a second-order Taylor series expansion).













D APPENDIX D: CONSERVATION OF ENERGY 172

D Appendix D: Conservation of energy

Considering an arbitrary volume B with boundary ∂B, the first law of thermodyna-

mics for the magneto-mechanical case can be stated as Kovetz [2000]:

•
E = Pmec +Pmag +Pth, (D.0.1)

with
•
E the time-derivative of the total energy E, Pmec the mechanical power, Pmag the

magnetic power, and Pth the thermal power. The total energy E can be expressed in terms of the

internal energy u and the kinetic energy by:

E =
∫

B

[
u+

1

2
ρ

•
~u ·

•
~u

]
dv. (D.0.2)

with
•
~u the time-derivative of the displacement ~u, and ρ the mass density. From the

continuum mechanics framework presented in Chapter 2, the mechanical power is defined by:

Pmec =
∫

B

~b ·
•
~u dv+

∫

∂B

(σ~n) ·
•
~u ds

=
∫

B

~b ·
•
~u dv+

∫

B

div(σ ·
•
~u) dv

=
∫

B

~b ·
•
~u dv+

∫

B

[
σ : grad

•
~u+

•
~u ·divσ

]
dv

=
∫

B

[
•
~u ·
(
~b+divσ

)
+σ : grad

•
~u

]
dv,

(D.0.3)

with~b the body forces and σ the symmetric second-order stress tensor. The surface

integral is transformed into a volume integral by using the divergence theorem. From the ba-

lance of linear momentum, it is defined the following identity Kovetz [2000]:

ρ
d

dt

•
~u =~b+divσ . (D.0.4)

The mechanical power is then:

Pmec =
∫

B

[
•
~u ·ρ d

dt

•
~u+σ : grad

•
~u

]
dv. (D.0.5)

The magnetic power is defined by Kovetz [2000]:
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Pmag =−
∫

∂B

~n ·
(
~E × ~H

)
ds =−

∫

B

div(~E × ~H) dv, (D.0.6)

with ~E the electrical field, and ~H the magnetic field. The term (~E × ~H) represents

the electromagnetic power density, also denoted as Poynting vector. By using the Maxwell

equations under quasi-static regime, the divergence of the Poynting vector can be expanded as:

div(~E × ~H) = curl~E · ~H −~E · curl ~H =−
•
~B · ~H −~E · ~Jc, (D.0.7)

with ~Jc the current density. The magnetic power is then:

Pmag =
∫

B

[ •
~B · ~H +~E · ~Jc

]
dv. (D.0.8)

The thermal power is written as Kovetz [2000]:

Pth =
∫

B

r dv−
∫

∂B

~q ·~n ds =
∫

B

r dv−
∫

B

div~q dv, (D.0.9)

with r the heat power source, and ~q the heat flux. Combining the previous equations,

the energy balance can be written as:

d

dt

[
u+

1

2
ρ

•
~u ·

•
~u

]
=

•
~u ·ρ d

dt

•
~u+σ : grad

•
~u−

•
~B · ~H −~E · ~Jc + r−div~q

•
u = σ : grad

•
~u−

•
~B · ~H −~E · ~Jc + r−div~q.

(D.0.10)

The velocity gradient tensor grad
•
~u can be split into a symmetric and anti-symmetric

parts as:

grad
•
~u =

1

2

[
grad

•
~u+

(
grad

•
~u

)T
]
+

1

2

[
grad

•
~u−

(
grad

•
~u

)T
]
. (D.0.11)

Due to the symmetry of the stress tensor, the product of σ with the second term on

the right side of (D.0.11) is zero. From the small strain hypothesis, the first term on the right

side (D.0.11) is the rate of the strain tensor ε . Neglecting the electric field contribution and the

heat power source, the first law of thermodynamics for the magneto-mechanical case is:
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•
u = σ :

•
ε + ~H ·

•
~B−div~q. (D.0.12)
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E Appendix E: Identification of the pinning field distribution

The identification of the pinning field distribution was performed following the proce-

dure given in Henrotte et al. [2014], Jacques et al. [2018]. Starting from the demagnetized state,

after the application of a unidirectional magnetic field Ha, the homogenized reversible field is

Hrev(0 → Ha) =
∫ ∞

0
max(Ha −κ,0) ω(κ)dκ = F(Ha), (E.0.1)

where the max operation indicates that only the cells with κ < Ha will be modified.

An auxiliary function F(H) is then defined:

F(H) =
∫ H

0
ω(κ)(H −κ) dκ, (E.0.2)

with first and second derivatives:

∂F(H)

∂H
=
∫ H

0
ω(κ) dκ and

∂ 2F(H)

∂H2
= ω(H). (E.0.3)

From the previous magnetic state, if now the magnetic field is decreased until the

coercive field −Hc, with 0<Hc <Ha, the homogenized reversible field is Henrotte et al. [2014],

Jacques et al. [2018]:

Hrev (0 → Ha →−Hc) = F(Ha)−2F

(
Ha +Hc

2

)
. (E.0.4)

Because the magnetization is null at the coercive field M(Hrev(0 → Ha →−Hc)) = 0

Henrotte et al. [2014], Jacques et al. [2018]:

F(Ha)−2F

(
Ha +Hc

2

)
= 0. (E.0.5)

Therefore, the identification of F(H) can be performed through experimental measu-

rements of coercive field curve under increasing magnetic field Hc(Hpeak) Henrotte et al. [2014].

The pinning field distribution is evaluated from (E.0.3).

The steps to construct F(H) are Henrotte et al. [2014], Jacques et al. [2018]:

• Starting from a saturating magnetic field Hs, where Hc(Hs) = Hmax
c , from (E.0.2) is ob-

served that:
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F(Hs) = Hs −Hmax
c with Hmax

c =
∫ Hs

0
κω(κ)dκ. (E.0.6)

• Because Hc(H)< H:

H +Hc(H)

2
< H. (E.0.7)

A strictly decreasing series is defined:

Hn =
Hn−1 +Hc(H

n−1)

2
< Hn−1, (E.0.8)

with

F(Hn) =
F
(

Hn−1
)

2
. (E.0.9)

For numerical simulation purposes, a discrete approximation of ω(κ) can be evalua-

ted. The magnetic field is decomposed into N discrete parts and the discrete set (ωk,κk)k=1,...,N

is Henrotte et al. [2014]:

ωk =
∫ Hk

Hk−1
ω(κ)dκ =

∂F(Hk)

∂H
− ∂F(Hk−1)

∂H

κk =

∫ Hk

Hk−1 κω(κ)dκ
∫ Hk

Hk−1 ω(κ)dκ
=

[
H∂HF(H)−F(H)

]Hk

Hk−1

ωk
.

(E.0.10)
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F Appendix F: Numerical implementation of the minimiza-

tion

The minimization of the magneto-elastic hysteresis model with the domain volume

fractions as internal variables is here detailed. The minimization problem is defined in Chapter

5 and is given by:

min
pα

Ω =
n

∑
α=1

pn+1
α

[
gα +

1

As
log pn+1

α

]
+

n

∑
α=1

|κα

(
pn+1

α − pn
α

)
|

s.t.

(
n

∑
α=1

pn+1
α

)
−1 = 0,

0 ≤ pn+1
α ≤ 1

(F.0.1)

To avoid the derivative, the absolute value function is replaced by the constant yα ,

defined by:

|κα

(
pn+1

α − pn
α

)
|= yα , (F.0.2)

with additional constraints added to the minimization problem:

− yα ≤ κα

(
pn+1

α − pn
α

)
≤ yα , (F.0.3)

such that the minimization problem is given by:

min
pα

Ω =
n

∑
α=1

pn+1
α

[
gα +

1

As
log pn+1

α

]
+

n

∑
α=1

yα

s.t.

(
n

∑
α=1

pn+1
α

)
−1 = 0,

− yα ≤ κ
(

pn+1
α − pn

α

)
≤ yα .

(F.0.4)

Following the interior-point methodology, the inequality constraints are transformed

to equality constraints by introducing the slack variables Griva et al. [2008], Krabbenhoft et al.

[2007]. By using this strategy, a penalty term is added to the objective function:
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min
pα

Ω =
n

∑
α=1

pn+1
α

[
gα +

1

As
log pn+1

α

]
+

n

∑
α=1

yα +µi

[
log(s1)+ log(s2)

]

s.t.

(
n

∑
α=1

pn+1
α

)
−1 = 0,

κ
(

pn+1
α − pn

α

)
+ yα − s1 = 0,

−κ
(

pn+1
α − pn

α

)
+ yα − s2 = 0,

with s1,s2 ≥ 0,

(F.0.5)

with s1, s2 slack variables and µi a small positive constant. The Lagrangean can be

build as:

L (pα ,s,λ ,µ
α) = Ω+λ



(

n

∑
α=1

pα

)
−1


+µα

1

[
κ
(

pn+1
α − pn

α

)
+ yα − s1

]
+

+µα
2

[
−κ
(

pn+1
α − pn

α

)
+ yα − s2

]
.

(F.0.6)

The necessary and sufficient Karush-Kuhn-Tucker (KKT) conditions are:

∂L

∂ pn+1
α

= 0 (F.0.7a)

∂L

∂yα
= 0 (F.0.7b)

∂L

∂ s
= 0 (F.0.7c)

∂L

∂λ
= 0 (F.0.7d)

∂L

∂ µα
= 0. (F.0.7e)

From the KKT conditions, the residual vector is given by:
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Ra =
∂L

∂ pn+1
α

= exp
[
As

(
−gα −λ +κ(−µα

1 +µα
2

)
−1
]
− pn+1

α = 0,

Rb =
∂L

∂yα
= 1+µα

1 +µα
2 = 0,

Rc =
∂L

∂ s1
=−s1µα

1 +µi = 0,

Rd =
∂L

∂ s2
=−s2µα

2 +µi = 0,

Re =
∂L

∂λ
=

(
n

∑
α=1

pα

)
−1 = 0,

R f =
∂L

∂ µα
1

= κ
(

pn+1
α − pn

α

)
+ yα − s1 = 0,

Rg =
∂L

∂ µα
2

=−κ
(

pn+1
α − pn

α

)
+ yα − s2 = 0.

(F.0.8)

The variables are iteratively solved using a Newton method Griva et al. [2008]:




R
(k)
a

R
(k)
b

R
(k)
c

R
(k)
d

R
(k)
e

R
(k)
f

R
(k)
g




=−




∂R
(k)
a

∂ pn+1
α

∂R
(k)
a

∂yα

∂R
(k)
a

∂ s1

∂R
(k)
a

∂ s2

∂R
(k)
a

∂λ

∂R
(k)
a

∂ µα
1

∂R
(k)
a

∂ µα
2

...
...

...
...

...
...

...

∂R
(k)
g

∂ pn+1
α

∂R
(k)
g

∂yα

∂R
(k)
g

∂ s1

∂R
(k)
g

∂ s2

∂R
(k)
g

∂λ

∂R
(k)
g

∂ µα
1

∂R
(k)
g

∂ µα
2







∆pα

∆yα

∆s1

∆s2

∆λ

∆µα
1

∆µα
2




, (F.0.9)

with k indicating the iteration step.
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