

UNIVERSIDADE FEDERAL DE SANTA CATARINA CENTRO DE CIENCIAS FÍSICAS E MATEMATICAS PROGRAMA DE PÓS-GRADUAÇÃO EM QUÍMICA

Samuel Bastos Paim

Desenvolvimento de materiais moleculares discóticos baseados em acilhidrazonas

Florianópolis 2024 Samuel Bastos Paim

Desenvolvimento de materiais moleculares discóticos baseados em acilhidrazonas

Dissertação submetida ao Programa de Pós-Graduação em Química da Universidade Federal de Santa Catarina como requisito parcial para a obtenção do título de Mestre em Química.

Orientador: Prof. Dr. Eduard Westphal

Florianópolis 2024

Ficha de identificação da obra elaborada pelo autor, através do Programa de Geração Automática da Biblioteca Universitária da UFSC

Paim, Samuel Bastos
Desenvolvimento de materiais moleculares discóticos baseados
em acilhidrazonas / Samuel Bastos Paim ; orientador, Eduard
Westphal, 2023.
100 p.
Dissertação (mestrado) - Universidade Federal de Santa
Catarina, Centro de Ciências Físicas e Matemáticas, Programa de
Pós-Graduação em Química, Florianópolis, 2023.
Inclui referências.

Química. 2. cristais líquidos. 3. acilhidrazonas. 4.
discóticos. 5. fotoisomerização. I. Westphal, Eduard . II.
Universidade Federal de Santa Catarina. Programa de PósGraduação em Química. III. Título.

Samuel Bastos Paim

Título: Desenvolvimento de materiais moleculares discóticos baseados em acilhidrazonas

O presente trabalho em nível de Mestrado foi avaliado e aprovado, em 20 de fevereiro de 2024, pela banca examinadora composta pelos seguintes membros:

Prof.(a) Vanderlei Gageiro Machado, Dr.(a) Instituição Universidade Federal de Santa Catarina

Marli Ferreira, Dr.(a) Instituição Silesian University of Technology Centre for Organic and Nanohybrid Electronics

Prof.(a) Patrícia Akemi Tuzimoto, Dr.(a) Instituição Instituto Federal de Santa Catarina

Certificamos que esta é a versão original e final do trabalho de conclusão que foi julgado

adequado para obtenção do título de Mestre em Química

Insira neste espaço a assinatura digital

Coordenação do Programa de Pós-Graduação

Insira neste espaço a assinatura digital

Prof. Dr. Eduard Westphal Orientador

Florianópolis, 2024

Dedico este trabalho a todas as pessoas que compõem trabalhos artísticos e científicos de revolução.

AGRADECIMENTOS

Agradeço aos professores Eduard Westphal e Hugo Alejandro Gallardo Olmedo pelas oportunidades no laboratório e toda orientação oferecida. Também a todos meus companheiros de laboratório, especialmente ao Gustavo por todas as ajudas e conhecimentos. E a minha namorada, Carol, por todas as trocas e momentos juntos. A minha família por todo suporte!

À Universidade Federal de Santa Catarina e Universidade de Bordeaux, pela infraestrutura e ensino de qualidade, também a Central de análises do departamento de Química e ao Laboratório Multiusuário de Difração de Raios X do CFM.

Ao CNPq, CAPES/PROCAD, FAPESC/PRONEX, INCT-INEO e INCT catálise pelo apoio financeiro que possibilitou este trabalho.

"Ceci n'est pas science." La trahison des écrits

RESUMO

Neste projeto, objetivou-se demonstrar o real potencial da aplicação das acilhidrazonas na funcionalização de mesógenos, além de contribuir com o desenvolvimento de novos materiais orgânicos, funcionais e adaptativos, aplicáveis em sistemas complexos. Para tal, foram desenvolvidas quatro moléculas discóticas inéditas funcionalizadas com três grupos acilhidrazonas, em diferentes orientações, bem como com variado números de cadeias periféricas, permitindo-se avaliar o efeito nas propriedades fotocrômicas e mesomórficas. A síntese desses materiais consistiu na produção de dois blocos sintéticos diferentes, o centro rígido e os braços flexíveis, que foram conectados na etapa final. Entre os materiais preparados, apenas os derivados com 6 cadeias alcóxi apresentaram propriedade líquido cristalinas e capacidade de gelificação. As propriedades mesomórficas foram corganização do tipo colunar hexagonal formada. Todos os materiais apresentaram capacidade fotoisomerização, caracterizada por RMN e UV-vis. Além disso, demonstrou-se a capacidade e complexação com Cu²⁺ e a sensibilidade ao íon CN⁻.

Palavras-chave: cristais líquidos, acilhidrazonas, fotoisomerização.

ABSTRACT

In this project, the objective was to demonstrate the real potential of applying acylhydrazones in the functionalization of mesogens, as well as to contribute to the development of new organic, functional, and adaptive materials applicable in complex systems. To achieve this, four novel discotic molecules functionalized with three acylhydrazone groups in different orientations were developed, along with varying numbers of peripheral chains, allowing the evaluation of their effects on photocromic and mesomorphic properties. The synthesis of these materials involved the production of two different synthetic blocks, the rigid core, and the flexible arms, which were connected in the final step. Among the prepared materials, only those derivatives with 6 alkoxy chains exhibited liquid crystalline properties and gelation capacity. Mesomorphic properties were characterized by MOLP, DSC, and XRD, revealing a hexagonal columnar self-organization. All materials demonstrated photoisomerization capability, characterized by NMR and UV-vis. Additionally, the ability for complexation with Cu²⁺ and sensitivity to the CN⁻ ion were demonstrated.

Keywords: liquid crystals, acylhydrazones, photoisomerization.

LISTA DE FIGURAS

Figura 1 - Representação esquemática de diferentes segmentos que podem
compor um mesógeno. Fonte: própria20
Figura 2 - Representação esquemática da anisometria discótica (Dx, Dy >>
Dz)22
Figura 3 - Representação esquemática das mesofases mais comuns para
os CLDs22
Figura 4 - Grupo funcional acilhidrazona
Figura 5 - Representação esquemática da fotoisomerização reversível do
grupo acilhidrazona23
Figura 6 – Tautomerismo ceto-enol e modos de coordenação das AHZN25
Figura 7 - Representação esquemática da formação de um organogel
(adaptado da literatura)
Figura 8 - Ligações de hidrogênio intermoleculares entre moléculas de
simetria C3 funcionalizadas com grupos amida, o que demonstra o favorecimento do
empacotamento molecular
Figura 9 - Estruturas previamente preparadas pelo grupo de pesquisa
GPM3
Figura 10 - Estrutura dos centros idealizados
Figura 11 - Estrutura dos braços projetados
Figura 12 - Estrutura das moléculas finais
Figura 13 - Rota sintética proposta para obtenção dos centros 1,3,5-THZD e
1,3,5-TALD
Figura 14 – Esquema sintético e espectros de RMN – ¹ H da conversão do
1.3.5-TEST (acima) em 1.3.5-THZD (abaixo)
Figura 15 - Esquema sintético, e espectros de RMN – ¹ H. da conversão do
1.3.5-TEST (acima), em 1.3.5 TALC e, seguencialmente, em 1.3.5-TALD (abaixo), 33
Figura 16 - Rota sintética para produção do braço 3.4-ALD
Figura 17 - Espectro de RMN - ¹ H (200 MHz) do braco 3 4-ALD em CDCl ₂
35
Figura 18 - Rota sintética para produção do braço 3 4-HZD 36
Figura 19 – Espectro de RMN – ¹ H (200 MHz) do braço 3.4-HDZ em CDCl ₂
37

Figura 20 - Rotas sintéticas para produção dos braços com três cadeias Figura 21 - Espectro de RMN - ¹H (200 MHz) dos braços 3,4,5- HZD (acima) e 3,4,5-ALD (abaixo), ambos em CDCl₃......38 Figura 22 - Reação entre centros e braços para formação das moléculas Figura 23 - Mecanismo simplificado de formação da acilhidrazona catalisada Figura 24 - Espectro de RMN - ¹H (200 MHz) das moléculas finais, F3 (acima) e F4 (abaixo), em CDCl₃ e gotas de DMSO.40 Figura 25 - Espectro de RMN - ¹H (200 MHz) do composto F1, em CDCl₃ puro (acima) e em CDCl₃ e gotas de DMSO (abaixo).....41 Figura 26 - Espectro de RMN - ¹H (400 MHz) das moléculas finais, F1 (acima) e F2 (abaixo), em C₂H₂Cl₄ (140 °C).....43 Figura 27 - Espectro de RMN - ¹H (200 MHz) da molécula final F4, em CDCl₃ e gotas de DMSO......44 Figura 28 - Espectro de RMN - 1H (200 MHz) da molécula final F1, em CDCl₃ e gotas de CD₃OD.....45 Figura 29 - Curvas de análise termogravimétrica (TGA) para os materiais finais, com rampa de aquecimento de 10 °C min⁻¹ e atmosfera de N₂......46 Figura 30 - Termogramas dos materiais F2 (esquerda) e F4 (direita) no segundo ciclo de aquecimento/resfriamento, com variação de temperatura de 10 °C min⁻¹......47 Figura 31 – Texturas observadas no MOLP para F1 (esquerda), a 240 °C e Figura 32 - Termogramas dos materiais com seis cadeias alcóxis F1 (esquerda) e F3 (direita) no segundo ciclo de aquecimento/resfriamento, com variação de temperatura de 10 °C min⁻¹.....49 Figura 33 - Termograma que apresenta os 3 ciclos de resfriamento do material F1, o que indica leve decomposição......50 Figura 34 – Difratogramas dos compostos F1 (esquerda) e F3 (direita) a 200 °C, no resfriamento, a partir do estado líquido, que indica uma organização do tipo

Figura 37 - Possíveis de estereoisômeros das moléculas finais......56

Figura 42 – Espectro de RMN - ¹H (200 MHz) do composto F2 antes (acima) e após (abaixo) irradiação com luz UV de 365 nm, por 5 minutos......60

Figura 44 - Gel formado pela adição do composto F1 a benzeno (esquerda) e perda de viscosidade do gel após irradiação com luz UV......62

Figura 45- Misturas de nitrato de cobre + clorofórmio (controle), ao centro, e nitrato de cobre + solução dos materiais F1, F2, F3 e F4, aos lados......63

Figura 46 - Solução F4+Cu após ser irradiada com luz UV, por 10 min (esquerda) e solução de F1+Cu e F2+Cu após uma semana (direita)......63

Figura 47 - F	Reação do	composto F1	ao KCN.	64
---------------	-----------	-------------	---------	----

LISTA DE TABELAS

Tabela 1 - Comparação entre os valores teóricos e experimentais da análise
elementar (CHN) de todas as moléculas finais42
Tabela 2 - ^a Temperatura do pico dos termogramas, determinada por DSC. ^b
histerese entre as temperaturas de picos do aquecimento e resfriamento,
determinada por DSC ^c Temperatura de início de perda de massa, determinada por
TGA. Abreviações: Cr = estado cristalino, Iso = líquido isotrópico, CoI_h = mesofase
colunar hexagonal46
Tabela 3 - Dados e parâmetros do DRX, para F1 e F3, a 200 °C52

LISTA DE ABREVIATURAS E SIGLAS

CLs	cristais líquidos
CLTs	cristais líquidos termotrópico
CLL	cristal líquido liotrópico
CLPs	cristais líquidos policatenares
CLCs	cristais líquidos calamíticos
CLDs	cristais líquidos discóticos
Col	mesofase colunar
Colhex	mesofase colunar hexagonal
Colr	mesofase colunar retangular
DSC	calorimetria diferencial exploratória (Differential
	Scanning Calorimetry)
DRX	difratometria de raios X
DMSO	dimetilsulfóxido
IUPAC	União internacional de química pura e aplicada
	(International Union of Pure and Applied Chemistry)
LCD	mostrador de cristal líquido (Liquid Crystal Display)
MOLP	microscopia óptica de luz polarizada
Ν	mesofase nemática
ND	mesofase nemática discótica
OLEDs	diodos orgânicos emissores de luz (Organic Light-
	Emitting Diodes)
OSCs	células solares orgânicas (<i>Organic Solar Cells</i>)
OTFTs	transistores de filmes finos orgânicos (Organic thin
	film field-effect transistors)
ppm	parte por milhão
RMN	ressonância magnética nuclear
Sm	mesofase esmética
SmA	mesofase esmética A
SmC	mesofase esmética C
TGA	análise termogravimétrica
UV-Vis	ultravioleta e visível
AHZN	acilhidrazona

SUMÁRIO

1	INTRODUÇÃO	18
1.1	CRISTAIS LÍQUIDOS	20
1.1.1	CRISTAIS LÍQUIDOS TERMOTRÓPICOS	21
1.1.1.1	Cristais líquidos termotrópicos discóticos	21
1.2	ACILHIDRAZONA	23
1.2.1	Isomerização	23
1.2.2	Complexação	24
1.3	GÉIS	25
2	OBJETIVOS	27
2.1	OBJETIVOS GERAIS	27
2.2	OBJETIVOS ESPECIFICOS	27
3	RESULTADOS E DISCUSSÃO	28
3.1	SÍNTESE E CARATERIZAÇÃO ESTRUTURAL	28
3.1.1	Centros - síntese e caracterização estrutural	30
3.1.2	Braços – síntese e caracterização estrutural	33
3.1.3	Moléculas finais – síntese, caracterização estrutural e pureza	38
3.2	CARACTERIZAÇÃO TÉRMICA E MESOMÓRFICA	45
3.3	FOTOISOMERIZAÇÃO	55
3.3.1	Absorção e Emissão	56
3.3.2	RMN	60
3.4	PROTOTIPAGEM DE SISTEMAS SUPRAMOLECULARES	61
3.4.1	Gelificação	61
3.4.2	Complexação	62
4	CONCLUSÃO	65
5	REFERÊNCIAS	66
6	SEÇÃO EXPERIMENTAL	71
6.1	MATERIAIS E MÉTODOS	71
6.1.1	Materiais	71
6.1.2	Métodos sintéticos	71
6.1.2.1	1,3,5 Benzenotricarboxilato de etila (1,3,5-TEST)	71
6.1.2.2	1,3,5 Benzenotricarboxihidrazida (1,3,5-THZD)	73
6.1.2.3	1,3,5 Benzenotriltrimetanol (1,3,5-TALC)	74

6.1.2.4	1,3,5 Benzenotricarboxaldeido (1,3,5-TALD)	76
6.1.2.5	3,4-Bis(dodeciloxi)benzaldeído (3,4-ALD)	78
6.1.2.6	3,4-Bis(dodeciloxi)benzohidrazida (3,4-HZD)	80
6.1.2.7	3,4,5-Tris(dodeciloxi)benzaldeído (3,4,5-ALD)	82
6.1.2.8	3,4,5-Tris(dodeciloxi)benzohidrazida (3,4,5-HZD)	84
6.1.2.9	Final 1	86
6.1.2.10	Final 2	88
6.1.2.11	Final 3	90
6.1.2.12	Final 4	92
6.1.3 Mét	odos de caracterização	94
6.1.3.1	Caracterização estrutural e pureza	94
6.1.3.1.1	Espectroscopia por ressonância magnética nuclear (RMN).	94
6.1.3.1.2	Análise elementar (CHN)	94
6.1.3.2	Caracterização térmica e mesomórfica	94
6.1.3.2.1	Análise termogravimétrica	94
6.1.3.2.2	Microscopia óptica de luz polarizada (MOLP)	95
6.1.3.2.3	Calorimetria diferencial de varredura (DSC)	95
6.1.3.2.4	Difratometria de raios X (DRX)	95
6.1.3.3	Caracterização da fotoisomerização	95
6.1.3.3.1	Absorção e emissão	95
6.1.3.3.2	RMN	96
6.1.4 Mét	odos de desenvolvimento de sistemas supramoleculares	96
6.1.4.1	Gelificação	96
6.1.4.2	Complexação	96

1 1 INTRODUÇÃO

Dentre os materiais moleculares, os cristais líquidos apresentam-se como
um estado da matéria a parte, com inúmeras formas e combinações de propriedades
e, por isso, tornaram-se interessantes para ciência de base, bem como em diversas
aplicações tecnológicas. Pois, ao funcionalizá-los de forma adequada, é possível
utilizá-los na fabricação de painéis LCD (*Liquid Cristal Display*), OLEDs (*Organic Light Emitting Diodes*) e OSCs (*Organic Solar Cells*), além de outras aplicações^{1,2}.

8 A funcionalização de cristais líquidos com acilhidrazonas adiciona ainda 9 mais versatilidade, pois, além do comportamento líquido cristalino, o material pode 10 formar organogéis e agir como complexante de metais. Além disso, há a 11 possibilidade de influenciar nesses processos, de forma remota, através do processo 12 de fotoisomerização reversível das acilhidrazonas. Esses géis são interessantes pois 13 a formação de agregados, com variabilidade de tamanho e forma, influencia as 14 propriedades eletrônicas de sistemas π , quando aplicados a dispositivos. Por isso, 15 os organogéis são uma alternativa, ainda em fase de prova de conceito, para 16 explorar diferentes sistemas supramoleculares capazes de realizar diversas 17 funções.³

18 Dentre os primeiros cristais líquidos funcionalizados com acilhidrazonas 19 estão os metalomesógenos, níquel (II) ou cobre (II), sintetizados por McCabe et al.4 20 em 1993 e Pang *et al.* ⁵ em 1998, baseado em níquel (II) . Em 2011, Singh *et al.*⁶ 21 deram continuidade ao desenvolvimento de metalomesógenos baseados em níquel 22 e nesse mesmo ano Tschierske et al.⁷ publicaram uma série de cristais líquidos 23 policatenares funcionalizados com acilhidrazonas. Já em 2015, Singh et al.8 24 apresentaram alguns mesógenos calamíticos dessa vez sem presença de metais e, 25 Wu et al.9 demonstraram mesomorfismo baseado na formação de em 2016, trímeros e tretâmeros. Em 2018 e 2019, Singh *et al.*^{10,11} desenvolveram novas séries 26 27 de mesógenos policatenares e exemplifica as propriedades gelificantes de alguns 28 dos compostos. Em 2021, nosso grupo sintetizou duas novas séries de materiais 29 policatenares mesomórfico e com propriedades gelificantes^{12,13,14}.

30 Apesar de uma diversidade de estruturas, a grande maioria das 31 anisometrias exploras são do tipo policatenares, que ficam no meio do caminho 32 entre os calamíticos, já bastante explorados, e os discóticos. Em vista disso, este 33 trabalho idealizou novas moléculas discóticas, com objetivo de determinar a versatilidade do grupo funcional nesse tipo de anisometria, bem como explorar a
 relação estrutura X função de mesógenos funcionalizados com acilhidrazonas.

3 Como a variação do número de cadeias influencia as propriedades 4 mesogênicas e gelificantes do composto, tem-se como hipótese que ao aumentar o 5 número de cadeias as temperaturas de transição devem diminuir e a estabilidade do 6 gel será alterada. Já a mudança no sentido do grupo acilhidrazona pode modificar o 7 comportamento mesomórfico, bem como a velocidade de fotoisomerização. Assim, 8 para analisar essas hipóteses, foram desenvolvidas quatro moléculas diferentes, 9 com simetria C3, com duas ou três cadeias alcóxi e duas orientações diferentes para 10 os grupos acilhidrazonas.

CRISTAIS LÍQUIDOS 1 1.1

2

3 Cristais líquidos (CLs) são substâncias que possuem uma fase intermediária, 4 entre o estado líquido e o estado sólido, conhecida como mesofase, a qual mistura 5 fluidez com arranjos bem definidos. As moléculas que compõem esses materiais 6 formadores de mesofase são conhecidas como mesógenos¹⁵.

7 No geral, os mesógenos podem ser considerados anfifílicos, ou seja, são 8 formados por, ao menos, dois segmentos diferentes, considerados incompatíveis 9 (Figura 11). Como um núcleo rígido central e cadeias flexíveis periféricas, grupos 10 polares e apolares, ou uma mistura desses. A formação da mesofase, muitas vezes, 11 envolve a segregação e, portanto, a compartimentalização dessas porções 12 incompatíveis da molécula, com interfaces entre esses compartimentos. Há uma 13 relevante contribuição do efeito entrópico para esse processo. Já a baixa simetria 14 molecular desfavorece entropicamente a cristalização, o que também estabiliza a 15 mesofase.7

> Figura 11 - Representação esquemática de diferentes segmentos que podem compor um mesógeno. Fonte: própria.

20

16 17

18

19

21

22 Relacionar estrutura molecular e propriedades da mesofase é complexo, 23 apenas a anisometria molecular não é o suficiente para explicar as inúmeras 24 possibilidades de organização desses sistemas. A forma molecular, a simetria, 25 microssegregação, nanossegregação, automontagem, auto-organização е 26 interações intermoleculares, como as π - π stacking, dipolo induzido, dipolo

permanente e ligações de hidrogênio são fatores fundamentais para compreender as
 propriedades desses materiais. ^{15,16,17,18}

3 Os CLs podem ser divididos em duas grandes classes: os liotrópicos (CLLs) e 4 termotrópicos (CLTs), os quais se distinguem pela maneira que a mesofase ocorre. 5 Enquanto os CLTs dependem, basicamente, da temperatura (considerando pressão 6 ambiente), os CLLs dependem de temperatura, pH, tipo de solvente, concentração, 7 entre outros parâmetros do sistema. Além disso, existe outra diferença fundamental 8 entre essas duas classes, que é a unidade mesogênica. No caso dos termotrópicos, 9 a unidade é a própria molécula, já nos liotrópicos a unidade é a micela. Neste 10 projeto, têm-se como foco os CLTs.^{5,7}

11

12 1.1.1 CRISTAIS LÍQUIDOS TERMOTRÓPICOS

13

Dentro da classe dos CLTs existem diferentes anisometrias que favorecem o surgimento de propriedades líquidos cristalinas, as mais comuns são as calamíticas e discóticas, seguidas de policatenares e curvadas. Além dessas, existem as anisometrias não convencionais, como borboleta, bastão de hóquei, anel, cone, dentre outras ^{19,20}. Nesse projeto, serão explorados os CLT discóticos, portanto, essa é a classe que será majoritariamente discutida.

- 20
- 21

1.1.1.1

Cristais líquidos termotrópicos discóticos

22

Em geral, um mesógeno do tipo discótico apresenta um núcleo rígido central, geralmente aromático, e cerca de cinco a nove cadeias flexíveis periféricas. No caso dos CLDs, a anisometria apresenta dimensões do tipo Dx e Dy >> Dz. Isso produz uma molécula achatada, com a forma de um disco, como apresentado na Figura 22.

- 2
- 3

Os CLDs podem apresentar diversos tipos de mesofase, onde a nemática
discótica (N_D) é a mais simples, porém não tão comum (Figura 3). Nesse caso, a
direção de orientação média do conjunto de moléculas aponta para uma direção
preferencial, que pode ser definida por um vetor diretor (n) unitário.

8 Assim, os centros de massa encontram-se isotropicamente distribuídos no 9 espaço e a rotação livre é em torno do eixo molecular curto (Dz). Em suma, a 10 mesofase N_D possui ordem orientacional de longo alcance e não possui ordem 11 posicional de longo alcance. No entanto, os CLDs podem apresentar outras mesofases. Dentre essas várias possibilidades, as mais comuns são as colunares 12 13 (Col), onde os mesógenos se empacotam formando colunas de discos, os quais 14 podem apresentar diferentes formas de auto-organização, as quais variam em 15 função do arranjo entre as colunas. Exemplos são as mesofases colunares 16 hexagonais (Col_{hex}) e colunares retangulares (Col_r), conforme ilustrado na Figura 33.

17

19

Figura 33 - Representação esquemática das mesofases mais comuns para os CLDs.

O empilhamento em colunas ocorre de forma eficiente, entre outros fatores,
 em função das interações do tipo π-π *stacking* do núcleo rígido, o que pode produzir
 uma alta mobilidade de cargas nessa porção da molécula. Além disso, as cadeias

flexíveis isolam o núcleo das colunas vizinhas e, assim, possibilitam o transporte de
 cargas de forma praticamente unidimensional. Isso torna esses materiais bastante
 interessantes para aplicações em dispositivos optoeletrônicos orgânicos, como
 OLEDs e células solares orgânicas.²¹

5 6

1.2

ACILHIDRAZONA

7 8

Figura 44 - Grupo funcional acilhidrazona.

9 10

11 As acilhidrazonas (AHZN) (Figura 44) são um grupo funcional 12 constituído por uma amida e uma imina, possuem caráter nucleofílico, boa 13 resistência a oxidação e a hidrólise ácida. Podem ser facilmente preparados pela 14 reação entre hidrazidas com aldeídos ou cetonas e, devido a versatilidade, ao longo 15 do tempo, foram aplicadas em detecção de íons e como quelante de metais.²². No 16 entanto, em CLs, as acilhidrazonas ainda não foram amplamente exploradas, tanto 17 que não é de conhecimento a funcionalização de mesógenos discóticos com esse 18 grupo, apenas em calamíticos e policatenares.^{12,13,14}

Além disso, as acilhidrazonas possuem fortes ligações de hidrogênio intermoleculares e fotoisomerização reversível da ligação C = N. Assim, as acilhidrazonas conseguem desempenhar papéis bastantes diferentes dependendo do sistema em que é inserido e, até mesmo, mais de um papel. Essa polivalência torna esse grupo promissor para aplicação em sistemas supramoleculares e materiais avançados. ^{23,24,25,26,27}

- 25
- 26 1.2.1 Isomerização
- 27

28

Figura 55 - Representação esquemática da fotoisomerização reversível do grupo acilhidrazona.

Apesar dos sistemas fotoisomerizáveis abrirem inúmeras possibilidades, a maioria das aplicações ainda estão em fase de prova de conceito. Isso ocorre por características de boa parte desses sistemas, como a síntese complexa, baixa eficiência na isomerização, relaxamento térmico difícil de controlar e pouca resistência a fadiga.

Também é bastante complexo a inclusão dessa função em sistemas
supramoleculares complexos, pois é necessário orquestrar, de forma bastante fina,
para gerar cascatas de eventos, que permitem o fluxo de informação. Por isso, a
síntese simples, boa resistência e a capacidade de fotoisomerização reversível
(Figura 55) das AHZN tornam esse um grupo funcional promissor para diversas
aplicações.^{24,23,26,27}

12 A rotação pode ocorrer tanto por uma rotação fora do plano, quanto por um 13 mecanismo de inversão do nitrogênio. O isômero Z é menos estável 14 termodinamicamente, mas pode ser estabilizado por ligações de hidrogênio 15 intramoleculares, por exemplo. Já a reação de retorno pode ocorrer tanto 16 fotoquimicamente, quanto termicamente.^{25,26,27}

17

18 1.2.2 Complexação

19 As AHZN podem apresentar uma grande diversidade química de espécies 20 em equilíbrio, como confôrmeros, isômeros e tautômeros, representados na Figura 21 66. É, principalmente, mas não exclusivamente, devido esse equilíbrio tautomérico 22 (ceto-enol), que as AHZN podem atuar como ligantes bastante eficientes e possuem 23 uma ampla literatura para embasar a atuação desse grupo funcional desde a complexação com metais ^{28,29,30}, quanto com íons diversos, como o cianeto.³¹ O tipo 24 25 de complexação pode ser neutra ou aniônica, com complexos com características 26 monoméricas ou diméricas, por exemplo.²⁹

Figura 66 - Tautomerismo ceto-enol e modos de coordenação das AHZN

8 existentes e, dentro desta classe, encontra-se os "π-géis", formados por gelificantes
9 com mais de uma unidade π aromática, fundidas ou conjugadas. A formação desses
10 géis é baseada no mecanismo de crescimento anisotrópico, com a inicial formação
11 de agregados unidimensionais, seguido do entrelaçamento desses agregados para
12 formação de uma rede tridimensional.

14

O solvente é o principal componente dos π-géis, por isso, a natureza do
 solvente é determinante para o processo de gelificação. Comparada a uma solução

homogênea comum, onde a interação solvente-gelificante é predominante, quando o
gel se forma a interação gelificante-gelificante é majoritária. O equilíbrio dessas
interações é determinado, entre outros fatores, pela polaridade, temperatura e
grupos funcionais do solvente.^{3,32}

A estrutura do gelificante também é fundamental para que ocorra formação do gel. Por exemplo, grupos funcionais que realizam múltiplas ligações de hidrogênio modulam o arranjo espacial das moléculas, devido a direcionalidade, especificidade e rigidez destas ligações. As moléculas com simetria C3 possuem uma tendência de interagir entre si (Figura 88), o que também auxilia no processo de automontagem.³³ Além disso, as interações π -stacking dependem da presença, e proximidade, entre os núcleos aromáticos. Já as cadeias carbônicas longas ajudam na segregação entre as diferentes partes da molécula e a manter o equilíbrio entre solubilização e precipitação do gelificante no solvente.³

Figura 88 - Ligações de hidrogênio intermoleculares entre moléculas de simetria C3 funcionalizadas com grupos amida, o que demonstra o favorecimento do empacotamento molecular.

- 1 2 OBJETIVOS

2	
3	2.1 OBJETIVOS GERAIS
4	
5	O objetivo deste trabalho é sintetizar, caracterizar e estudar as propriedades
6	líquido cristalinas, gelificantes e fotofísicas de novas moléculas discoides
7	funcionalizadas com três grupos acilhidrazonas, com a finalidade de avaliar efeito de
8	mudanças estruturais e contribuir com o desenvolvimento de novos materiais
9	orgânicos, funcionais e adaptativos, aplicáveis em sistemas complexos.
10	
11	2.2 OBJETIVOS ESPECIFICOS
12	Planejar, sintetizar e caracterizar novos cristais líquidos discóticos com
13	simetria C3 e funcionalizados com acilhidrazonas.
14	 Investigar as propriedades térmicas e mesomórficas através de MOLP, DSC,
15	TGA, DRX;
16	 Investigar as propriedades fotofísicas através de UV-vis e emissão;
17	Investigar a capacidade de fotoisomerização através de UV-Vis, RMN e
18	MOLP.
19	Determinar o efeito das alterações moleculares sobre as propriedades
20	mesomórficas e fotoquímicas das moléculas preparadas, planejando novas
21	alterações que permitam uma otimização das propriedades.
22	Estudar a gelificação das moléculas finais com diversos solventes e possíveis
23	aplicação em sistemas supramoleculares.
24	
25	
26	

1 2 3

RESULTADOS E DISCUSSÃO

- 3 3.1 SÍNTESE E CARATERIZAÇÃO ESTRUTURAL
- 4

5 Durante trabalhos prévios nosso grupo desenvolveu outras estruturas 6 calamíticas e policatenares funcionalizadas com um ou dois grupos acilhidrazona (Figura 99).^{12,13,14} Baseados nessa experiência e, principalmente, nas dúvidas 7 8 produzidas por esses estudos anteriores, bem como no fato de que outras 9 anisometrias não terem sido exploradas, concebemos quatro estruturas, com 10 potencial para propriedades mesomórficas. Essas novas estruturas visaram 11 aprofundar a compreensão sobre o processo de fotoisomerização e aumentar a 12 diversidade de estruturas produzidas, a fim de demonstrar o real potencial da aplicação das acilhidrazonas na funcionalização de mesógenos. 13

- 14
- 15

16 17 Figura 99 - Estruturas previamente preparadas pelo grupo de pesquisa GPM3.

18 Com esse propósito, projetou-se moléculas discóticas funcionalizadas com 19 três grupos acilhidrazona, em simetria C3, para avaliar a mudança nas propriedades 20 mesomórficas, fotofísicas e de fotoisomerização, devido a inversão do grupo 21 acilhidrazona e variação no número de cadeias flexíveis periféricas.

A síntese de cristais líquidos, normalmente, consiste na produção de dois segmentos: o centro, mais rígido, e os braços, mais flexíveis. Essas duas partes são unidas para formação da molécula final. Baseado nisso, a síntese das moléculas alvo deste projeto foi dividida em três etapas.

26 Neste projeto, a primeira parte envolveu a síntese de dois centros discóticos, 27 com padrão de substituição 1,3,5, o que permitiu a adição das 3 unidades de acilhidrazonas e a simetria planejada. Um desses centros possui três grupos
 hidrazida (1,3,5-THZD), enquanto o outro, três grupos aldeído (1,3,5-TALD),
 conforme ilustrado na Figura 1010.

Na ultima etapa, o centro funcionalizado com hidrazidas (1,3,5-THZD) fol
reagido com os braços funcionalizado com aldeído (3,4-ALD e 3,4,5-ALD), para
formar a acilhidrazona. Já o centro funcionalizado com aldeído (1,3,5-TALD) reagiu
com os braços funcionalizados com hidrazida (3,4-HZD e 3,4,5-HZD), o que também
levou à formação da acilhidrazona, mas com o sentido invertido. Isso totalizou quatro

moléculas diferentes, com diferença no número de cadeias alcóxi e no sentido do
 grupo acilhidrazona (Figura 1212).

7

8 3.1.1 Centros - síntese e caracterização estrutural

9

10 Para otimizar o desenvolvimento, projetamos as rotas sintéticas dos centros 11 da forma mais convergente possível, conforme ilustrado na Figura 1313. Assim, 12 ambos centros partiram do 1,3,5-benzenotricarbonil triclorado disponível 13 comercialmente, que pôde ser convertido em 1,3,5-benzenotricarboxilato de etila 14 (1,3,5-TEST), um intermediário chave. Quando o 1,3,5-TEST foi tratado com hidrato 15 de hidrazina (NH₂NH₂.H₂O), levou prontamente ao primeiro dos centros idealizados, 16 1,3,5-THZD.

- 17
- 18
- 19

Figura 1313 - Rota sintética proposta para obtenção dos centros 1,3,5-THZD e 1,3,5-TALD.

4 5

6 Com objetivo de evidenciar a obtenção desse produto, pôde-se demonstrar, 7 no espectro de RMN - ¹H (Figura 1414), o desaparecimento do quarteto, em 4,45 8 ppm, e do tripleto, em 1,44 ppm, referentes aos hidrogênios dos grupos etil, presente 9 no 1,3,5-TEST. Além disso, há o aparecimento de dois simpletos, em 4,60 ppm e 10 9,84 ppm, respectivos aos hidrogênios da amina terminal e da amida. Essa grande 11 diferença de deslocamento químico ocorre devido à forte ressonância do par de 12 elétrons do nitrogênio, da amida, com o oxigênio da carbonila. Isso faz com que o 13 nitrogênio fique mais deficiente em elétrons, o que desblinda o núcleo do hidrogênio 14 ligado a ele, e, assim, desloca o sinal para campo baixo do espectro. Com o intuito 15 de melhorar a visualização dos sinais, principalmente dos multipletos, todos 16 espectros apresentados neste trabalho possuem diferentes faixas de deslocamento 17 e, por isso, não é possível comparar de forma visual o deslocamento dos sinais em 18 produtos subsequentes.

19

1 2

Figura 1414 – Esquema sintético e espectros de RMN – ¹H da conversão do 1,3,5-TEST (acima) em 1,3,5-THZD (abaixo).

5 Já a síntese do centro 1,3,5-TALD foi realizada através da redução do 1,3,5-6 TEST com hidreto de alumínio e lítio (LiAIH₄), para a formação do 1,3,5-7 benzenotriltrimetanol (1,3,5-TALC), seguida da oxidação com clorocromato de 8 piridínio (PCC), um agente oxidante brando. Para realizar a redução de três grupos 9 éster é necessário um agente redutor bastante reativo e, devido a disponibilidade no 10 laboratório, utilizou-se uma solução 1 M de LiAlH₄ em THF. Na etapa de oxidação do 11 1,3,5-TALC com PCC, a reação apresentou boa performance, com 75% de 12 rendimento, porém, com a formação de uma graxa muito difícil de limpar e rica em 13 resíduos de cromo. Essa graxa precisou ser tratada com ácido sulfúrico diluído e 14 solução de bissulfato de sódio, para limpeza e redução do cromo, o que possibilitou 15 o descarte seguro.

16 É possível evidenciar toda essa seguência de transformações na Figura 1515, 17 onde, na etapa de redução, há o desaparecimento do guarteto e do tripleto, 18 referentes ao grupo éster do composto 1,3,5-TEST, com o aparecimento de um 19 dupleto, em 4,47 ppm, e de um tripleto, em 5,15 ppm. Esses multipletos são 20 derivados do acoplamento entre a ponte metilênica e a hidroxila do álcool benzílico, 21 do intermediário 1,3,5 TALC. Com a redução, também, ocorreu o deslocamento do 22 hidrogênio aromático para campo mais alto do espectro, de 8,55 ppm para 7,12 23 ppm, visto que, há o desaparecimento do grupo carbonila, um grupo retirador de

1 2

elétrons forte. Com a posterior oxidação e formação do centro 1,3,5-TALD, apenas
dois simpletos passam a ser visíveis no espectro, um em 8,66 ppm, relativo aos
hidrogênios aromáticos e outro, em 10,22 ppm, característico do grupo funcional
aldeído. Pode-se perceber que, após a oxidação, com volta do grupo carbonila,
houve retorno do hidrogênio aromático para campo mais baixo.

- 6
- 7 8

Figura 1515 - Esquema sintético, e espectros de RMN – ¹H, da conversão do 1,3,5-TEST (acima), em 1,3,5 TALC e, sequencialmente, em 1,3,5-TALD (abaixo).

- 9
- 10
- 11

12 3.1.2 Braços – síntese e caracterização estrutural

13

A síntese dos braços também foi elaborada de forma a reduzir o número de intermediários, o que resultou em uma síntese convergente, a fim de aumentar a eficiência do processo. Porém, como o aldeído 3,4-dihidroxibenzaldeído é um reagente comercial disponível, de custo semelhante ao ácido 3,4-dihidroxibenzóico, e devido a possibilidade de convertê-lo ao braço idealizado (3,4-ALD) em apenas
 uma etapa, optou-se por usá-lo (Figura 1616).

5 6

3 4

7 Essa etapa consistiu em uma eterificação de Williamson, com 1-8 bromododecano como agente alquilante. No entanto, a performance da reação não 9 ocorreu como esperado, devido a formação do produto monoalquilado, mesmo com 10 a substituição do catalizador de transferência de fase, TBAB, por éter 18-coroa-6. 11 Por isso, foi necessário purificar o material através de cromatografia em coluna 12 empregando sílica-gel como fase estacionária e mistura de hexano e acetato de etila 13 como eluente. Outra rota sintética para a obtenção desse produto também foi 14 explorada, baseado nos intermediários da 3,4-HZD, com objetivo de desviar da 15 formação do produto monoalquilado.

16 Pode-se ver no espectro de RMN - ¹H do 3,4-ALD (Figura 1717) sinais em 17 campo alto, referentes as cadeias alcóxi, o que indica o sucesso na inserção das 18 cadeias flexíveis. Além disso, na região aromática há sinais com um padrão de 19 desdobramento adequado e que indicam a substituição 1,3,4 do benzeno. Ou seja, 20 um dupleto (H_d), em 6,95 ppm, um simpleto (H_b), em 7,39 ppm, e um dupleto (H_c), 21 em 7,43 ppm. O dupleto H_c aparece com uma constante de acoplamento pequena, o 22 que indica na verdade que ele está presente como um duplo dupleto, enquanto o 23 simpleto em 7,39 ppm é um dupleto com acoplamento J⁴. Porém, devido um 24 pequeno alargamento dos sinais e sua sobreposição, não fica explícito esse 25 acoplamento de maior distância (J⁴), que é típico nesse padrão de substituição do 26 anel aromático. O simpleto, em 9,83 ppm, é um sinal característico de aldeídos, o 27 que demonstra a presença do grupo funcional.

6 Em paralelo, foi realizada a síntese do braço 3,4-HZD (Figura 1818). Para 7 isso, iniciou-se com a proteção do grupo ácido carboxílico, do ácido 3,4-8 dihidroxibenzóico, o que torna possível realizar a reação subsequente, uma 9 eterificação de Williamson, apenas nas posições pretendidas. Nesse caso, a etapa 10 de eterificação não apresentou a formação do produto monoalquilado e a reação 11 teve ótima performance. Por fim, o éster 3,4-bis(dodeciloxi)benzoato de etila foi 12 tratado com hidrazina aquosa em grande excesso (10 mmol/mol substrato), para 13 evitar a formação de dímeros e, com isso, obter o braço 3,4-HZD.

3 Uma observação interessante é que os intermediários que levam à 3,4-HZD, 4 também, permitem a síntese de 3,4-ALD por uma rota alternativa à apresentada 5 anteriormente. Essa rota segue a mesma lógica que foi apresentada na síntese do 6 centro 1,3,5-ALD, ou seja, a redução do grupo éster, com LiAlH₄, seguido da 7 oxidação com PCC. Isso foi relevante para o desenvolvimento deste trabalho, devido 8 a problemáticas envolvendo a purificação do composto final F1, e que serão tratados 9 adiante.

10 O espectro de RMN da 3,4-HZD (Figura 1919), também possui um padrão de 11 desdobramento adequado para o padrão de substituição 1,3,4 do benzeno, sendo, 12 neste caso, possível observar os acoplamentos do tipo J⁴. Assim, em campo baixo 13 há um dupleto (H_d), em 6,85 ppm, e, sobreposto ao clorofórmio, um duplo dupleto (H_c), em 7,24 ppm, que acopla J^3 com H_d e J^4 com H_b. Além disso, há um dupleto 14 15 (H_b), em 7.35 ppm, devido ao acoplamento J⁴ com H_c. Também há um simpleto (H_a), 16 em 7,4 ppm, que compõem a fração amida do grupo hidrazida. Já os sinais da 17 fração amina provavelmente, estão sobrepostos com o sinal do He, relativo aos 18 grupos -CH₂- ligados diretamente ao oxigênio, nas cadeias alcóxi. Isso pode ser 19 evidenciado por um ombro no multipleto, em 4,0 ppm, e pela integral do ser relativo 20 a 6H, ao invés de 4H, como seria esperado para duas cadeias (conferir sessão 21 6.1.2.6).

Por fim, a síntese de ambos os braços com 3 cadeias parte do ácido gálico,
que também teve o grupo ácido protegido por uma reação de esterificação, antes de
seguir com a adição das cadeias alquílicas, através da eterificação de Williamson.
Com a obtenção desse intermediário protegido e alquilado, há uma bifurcação na
rota sintética (Figura 2020), onde foi possível reduzir e oxidar, para dar origem ao
3,4,5-ALD, ou reagir com hidrazina, em excesso, para formar a 3,4,5-HZD.

11 12

13

Figura 2020 - Rotas sintéticas para produção dos braços com três cadeias alcóxi, 3,4,5-HZD e 3,4,5-ALD.

- 14 15
- 40

Ao comparar os braços de duas com o de três cadeias alcóxi, percebe-se a diminuição no número de sinais, relacionada ao aumento da simetria da molécula. Como existe uma simetria na disposição das 3 cadeias alcóxi, os dois hidrogênios aromáticos (H_b) são quimicamente idênticos e aparecem como um simpleto em 6,94 pmm na 3,4,5- HZD, e em 7,08 ppm no 3,4,5-ALD. Além disso, pode-se ver o hidrogênio da fração amida da 3,4,5- HZD, em 7,51 ppm, como um simpleto 1 alargado. Já no 3,4,5-ALD pode-se ver o sinal característico do grupo aldeído, em

- 2 9,82 ppm.
- 3
- Figura 2121 Espectro de RMN ¹H (200 MHz) dos braços 3,4,5- HZD (acima) e 3,4,5-ALD (abaixo), ambos em CDCl₃.

13 2222) foram obtidas através de uma reação de formação de acilhidrazonas, com
14 etanol como solvente e ácido acético como catalisador, que atua fornecendo
15 prótons, em uma etapa chave do mecanismo (Figura 2323).

No caso de F3 e F4 a reação não é tão dependente do catalisador e ocorre
de forma satisfatória mesmo sem a adição de ácido, pois o nucleófilo, hidrazida, está
mais ativado devido a cadeia alcóxi na posição para. No entanto, em F1 e F2 o
nucleófilo não possui grupo doadores conjugados e, por isso, essa reação é bem
mais dependente da adição de catalisador e praticamente não ocorre sem adição de
ácido.

Figura 2323 - Mecanismo simplificado de formação da acilhidrazona catalisada por ácido.

1 Todos os compostos finais são bastante solúveis em clorofórmio, o que é 2 prático, quando comparado a trabalhos anteriores do grupo, onde a baixa 3 solubilidade em solventes, polares ou apolares, foi um problema recorrente ^{12,13,14}. No entanto, quando solubilizados em clorofórmio, o espectro de RMN - ¹H de todas 4 5 as moléculas finais apresentam péssima resolução dos sinais, devido a formação de 6 agregados ^{12,34}. Para isso, adicionou-se gotas de DMSO-d₆, pois a adição de um 7 solvente polar rompe os agregados ³⁴. Apesar disso, como todos os compostos são 8 insolúveis em solventes polares, a quantidade de DMSO-d₆ que pode ser adicionada 9 é limitada, pois resulta na precipitação do produto, caso esse limite seja 10 ultrapassado.

11 No caso dos compostos derivados do centro 1,3,5-TALD, isso não foi um 12 grande problema e os sinais ficaram bem resolvidos após a adição de DMSO-d₆, 13 como pode ser observado na Figura 2424. Na porção aromática desses espectros 14 de RMN - ¹H, é possível ver o padrão de desdobramento relativo ao braço com duas 15 cadeias alcóxi, entre 6,8 ppm e 7,8 ppm. Já no caso da F4, observa-se a 16 simplificação do espectro na região referente ao braço devido ao amento da simetria 17 do braço com três cadeias, com apenas um simpleto em 7,2ppm. Além disso, para 18 ambos os casos, observasse ainda os sinais referentes ao anel aromático central (≈ 19 8,5 ppm) e aos dois hidrogênios dos grupos funcionais acilhidrazona (C-H e N-H).

- 20
- 21 22

Figura 2424 - Espectro de RMN - ¹H (200 MHz) das moléculas finais, F3 (acima) e F4 (abaixo), em CDCl₃ e gotas de DMSO.

No entanto, apesar de todas as quatro moléculas finais serem obtidas com a
mesma reação e os espectros serem realizados da mesma forma, os materiais
derivados do centro 1,3,5-THZD, F1 e F2, proporcionaram moléculas com espectros
mais complexos. Nesses espectros o artificio de adicionar DMSO-d₆ não foi o
suficiente para resolver completamente e os sinais relativos ao centro e a imina
ficaram sobrepostos (Figura 2525).

11 12

Além disso, há a presença de sinais de baixa intensidade muito similares a
de impurezas, mas que não desapareciam mesmo com recristalizações sucessivas.
Essa era a única forma de purificação para esses materiais, disponível no
laboratório. Visto que não é possível realizar cromatografia em sílica gel comum,

1 devido às fortes ligações de hidrogênio dos grupos acilhidrazona, e a alumina 2 básica, mesmo encomendada, não chegou a tempo de ser utilizada.

3 No caso da molécula F1, outra estratégia foi utilizada para tentar obter um 4 material mais puro, pois uma das hipóteses seria a presença de contaminante 5 monoalquilado. A fim de evitar essas possíveis impurezas, seguiu-se um caminho 6 sintético alternativo para síntese do braço 3,4-ALD, baseado nos intermediários da 7 síntese do braço 3,4-HZD, como mencionado anteriormente. No entanto, mesmo 8 com essa rota alternativa, onde não houve sinais de subprodutos monoalquilado, o 9 espectro de RMN - ¹H de F1 continuou mal resolvido e com a presenca dos mesmos 10 sinais de baixa intensidade. Os quais, ao que tudo indicava, tratava-se de 11 impurezas.

12 Entretanto, com a obtenção de resultados da análise elementar (CHN), com 13 erros dentro do padrão ouro, ou seja, cerca de ± 0,4% ^{35,36} (Tabela 11), houve a 14 necessidade de explorar outras possibilidades alternativas para explicar os 15 espectros obtidos. Dentre essas possibilidades estavam isômeros, formas 16 tautoméricas e conformações alternativas. Pois, na fração amida, a ressonância do 17 par de elétrons do nitrogênio com o oxigênio da carbonila, gera um caráter de dupla, 18 na ligação C-N, e, devido a isso, ocasiona a restrição parcial na rotação da ligação. 19 Assim, existe a possibilidade de confôrmeros periplanar, antiperiplanar, s-trans e s-20 cis.

- 21 22 23

Tabela 11 - Comparação entre os valores teóricos e experimentais da análise elementar (CHN) de todas as moléculas finais

		%C	%Н	%N
Acetanilida (padrão)	Teórico	71,09	6,71	10,36
	Experimental	71,19	6,73	10,30
	Erro	0,10	0,02	0,06
F1	Teórico	75,51	10,44	5,18
	Experimental	75,35	10,75	5,18
	Erro	0,06	0,29	0,06
F2	Teórico	76,19	11,12	3,86
	Experimental	76,20	11,49	4,07
	Erro	0,09	0,35	0,15
F3	Teórico	75,51	10,44	5,18
	Experimental	75,55	10,90	5,14
	Erro	0,06	0,44	0,02
F4	Teórico	76,19	11,12	3,86
	Experimental	76,57	11,64	3,76
	Erro	0,28	0,50	0,04

1 Em parceria com a universidade de Bordeaux, realizou-se o espectro de 2 RMN - ¹H a 140 °C, para avaliar uma possível dependência da temperatura no 3 fenômeno que influenciava o espectro. Para isso, foi empregado o solvente 4 tetracloroetano deuterado (C₂H₂Cl₄). Esse aumento de temperatura melhorou 5 bastante a resolução dos sinais, mas não eliminou a presença dos sinais de baixa 6 intensidade (Figura 2626).

7

8 9

Figura 2626 - Espectro de RMN - ¹H (400 MHz) das moléculas finais, F1 (acima) e F2 (abaixo), em C₂H₂Cl₄ (140 °C).

11

12

13 No espectro de F1, devido ao padrão de substituição, é possível calcular as 14 constantes de acoplamento (J) dos dupletos He e Hf, que são 2,1 Hz e 1,8 Hz, 15 respectivamente. Ao comparar esses valores com o J dos dupleto, em baixa 16 intensidade, 2,1 Hz e 1,7 Hz, pode-se inferir que a espécie química presente em 17 baixa quantidade possui estrutura química semelhante ao composto F1, devido aos 18 valores iguais, ou, ao menos semelhantes, de J.

19 Já no espectro de F2, por ser composto apenas de simpletos, não é possível 20 calcular as constantes de acoplamento. Mas é possível perceber, em F2, o mesmo padrão de sinais, de baixa intensidade que, também, está presente em F1. Essas
 evidências apontam para a presença de mais de uma espécie química em solução,
 com estrutura correlacionada aos compostos projetados.

4 No entanto, caso a espécie química presente em baixa quantidade fosse 5 proveniente de um equilíbrio conformacional, com o aumento da temperatura, os 6 sinais duplicados deveriam coalescer em um único sinal, devido ao aumento a 7 frequência rotacional das ligações, mas isso não ocorre ^{29,37,38}. Além disso, um olhar 8 mais atento nos espectros de F3 e F4 permite perceber que um padrão de sinais 9 similar está presente, mas em baixíssima intensidade (Figura 2727). Assim, todos os 10 materiais produziram o mesmo padrão de sinais mesmo com blocos de construção 11 totalmente independentes.

12 13 14

Figura 2727 - Espectro de RMN - ¹H (200 MHz) da molécula final F4, em CDCl₃ e gotas de DMSO.

15

16 Com os estudos de fotoisomerização, foi possível demonstrar que esses 17 sinais não são derivados de isômeros E e Z, pois não variam de intensidade quando 18 expostos a luz UV e alguns são, até mesmo, duplicados. Isso será explorado em 19 mais detalhes na seção 3.3.2, dedicada ao processo de fotoisomerização desses 20 compostos.

21 Com objetivo de resolver melhor o espectro, diversos solventes deuterados 22 em diferentes proporções foram utilizados, por exemplo, clorofórmio, DMSO, TFA, 23 metanol e benzeno. Infelizmente, os compostos desenvolvidos neste trabalho são 24 insolúveis, em solventes polares, como DMSO e metanol, por isso, não toleram 25 grandes quantidades desses solventes, isso limita a possibilidade de desfazer os 26 agregados formados. 1 Mas ao adicionar um solvente polar doador de ligação de hidrogênio, como 2 metanol (Figura 2828), há melhora da resolução do espectro e desaparecimento do 3 simpleto da fração amida, devido a troca com o deutério do metanol. Por isso, é 4 razoável relacionar esses sinais de baixa intensidade com a formação de agregados 5 e não a impurezas. Adicionalmente, não são observados indícios de impureza 6 durante as investigações térmicas dos materiais.

- 7
- 8 Figura 2828 Espectro de RMN 1H (200 MHz) da molécula final F1, em CDCl₃ e gotas de CD₃OD.

- 9 10
- 11

3.2 CARACTERIZAÇÃO TÉRMICA E MESOMÓRFICA

12 Com o fim da etapa de síntese e caracterização estrutural, iniciaram-se as 13 etapas de caracterização das propriedades do material. Para demonstrar o 14 comportamento mesomórfico e identificar as estruturas envolvidas nos processos de 15 transições de fase, quatro técnicas são fundamentais: TGA, DSC, MOLP e Raios x. 16 Cada uma dessas técnicas ajudou a montar um conjunto de evidências robusto 17 sobre as propriedades líquidos cristalinas desses materiais.

18 Apesar de a primeira técnica de investigação das propriedades térmicas ser 19 o MOLP, por sua simplicidade e elevado grau de informação, o primeiro dado a ser 20 discutido aqui será o de TGA, grupos gráficos estão apresentados na Figura 2929. 21 Nestes, fica evidente que as mudanças estruturais propostas durante o 22 planejamento sintético não afetaram a estabilidade térmica de forma considerável. 23 Todos os materiais apresentaram perda de massa acima de 300 °C, o que indica 24 uma boa estabilidade para maioria das aplicações. Esse valor está na mesma 25 faixa, até mesmo um pouco acima, dos valores encontrados para materiais 26 policatenares preparados pelo grupo em projetos anteriores ^{12,13,14}. Além disso, é 27 possível perceber que os derivados com três cadeias alcóxi, F2 e F4, possuem 28 uma temperatura de perda de massa ligeiramente maior.

2 Figura 2929 - Curvas de análise termogravimétrica (TGA) para os materiais finais, com rampa de aquecimento de 10 °C min⁻¹ e atmosfera de N₂.

Isso permite afirmar que resultados obtidos no DSC não são provenientes da perda de massa do material, devido a degradação térmica, sendo assim possível relacionar os picos e entalpias no DSC, bem como as texturas no MOLP, ao comportamento do próprio material.

Molécula	Aquecimento	Resfriamento	T dec / °C ^c	
F1	Cr -10,9 [XX] → Col _h 244,7 [4,5]	Iso 240,8 [4,5] → Col _h ₋16,6	283	
	\rightarrow lso	$[XX] \rightarrow Cr$		
F2	Cr 236,4 [46,8] → Iso	lso 205,5 [39,3] → Cr	294	
F3	$Cr -7,2 [XX] \rightarrow Col_h 233,3 [22,1]$	lso 222,9 [22,2] → Col _h -	283	
	\rightarrow lso	12,6 [XX] → Cr		
F4	Cr 235,4 [44,7] → Iso	lso 205,6 [40,2]→ Cr	302	

Investigações por MOLP e DSC (Figura 3030) demonstraram que os produtos finais contendo braços com três cadeias alcóxi, F2 e F4, comportam-se como sólidos ordinários, ou seja, não apresentaram comportamento líquido cristalino. Através do MOLP, determinou-se a temperatura de fusão dos materiais e observou-se uma aparente ausência de cristalização e de texturas coerentes com mesomorfismo. Já 1 por DSC, tanto a fusão como a cristalização do material foram nitidamente 2 detectadas (Figura 3030 e Tabela 22), observando-se uma grande histerese térmica 3 entre ambas. É sabido que para esse tipo de material, a histerese térmica de 4 transições é normalmente pequena, sendo muitas vezes menor do que 1 °C 39, porém podendo chegar a valores de até 5-10 °C em casos específicos. Já para F2 e 5 6 F4, essas ficaram na faixa de 30 °C. Pelo termograma, também foram determinadas 7 que as entalpias de transição de fase apresentam valores bastante elevados (≈ 40 8 kJ mol⁻¹), que são muito superiores ao observados para transições envolvendo 9 cristais líguidos (1 – 10 kJ mol⁻¹) 40.

Portanto, com base nesses fatos, descarta-se mesomorfismo para ambos os
produtos. A única anormalidade é que, após a fusão dos materiais, não ocorre
cristalização visível na MOLP, permanecendo em um estado completamente amorfo.
É importante ressaltar que pelo DSC, detectou-se ainda uma segunda transição de
fase, em temperaturas negativas. Não foi possível realizar observações através de
MOLP, mas acredita-se tratar de uma transição do tipo cristal-cristal.

16

Figura 3030 - Termogramas dos materiais F2 (esquerda) e F4 (direita) no segundo ciclo de aquecimento/resfriamento, com variação de temperatura de 10 °C min⁻¹.

19

Já os materiais com duas cadeias alcóxi, F1 e F3, foi observado um comportamento diferente, pois a temperatura ambiente o produto já apresentava textura cerosa e, no MOLP, foi possível notar uma ausência de cristalinidade, porém altíssima viscosidade. No aquecimento dos materiais, não se observou fusão propriamente dita, apenas a transição para o líquido isotrópico. Já no resfriamento do material, a partir do líquido isotrópico, foram observadas texturas bastante bonitas (Figura 3131) do tipo pseudo-focais cônicas, com regiões birrefringentes e

1 de alinhamento homeotrópico. Isso indica a presença de uma mesofase do tipo 2 colunar, especialmente do tipo colunar hexagonal (Col_h), onde as porções 3 birrefringentes são produto de defeitos no alinhamento molecular e as 4 homeotrópicas ocorrem devido ao alinhamento das colunas paralelo à direção de propagação da luz polarizada (normal à superfície). Outra prova de que as texturas 5 6 formadas se referem à mesofases é que a lamínula de vidro, que recobre a amostra, 7 pode ser deslizada com auxílio de uma haste metálica, o que desmancha 8 completamente a textura. Além disso, ambos materiais mantém as texturas, e, 9 portanto, as estruturas formadas na mesofase, ao serem resfriadas até a 10 temperatura ambiente, sugerindo a ausência de cristalização.

11

12 13 **Figura 3131 –** Texturas observadas no MOLP para F1 (esquerda), a 240 °C e aumento de 100x, e F3 (direita), a 220 °C e aumento de 200x.

14 15

16 As transições de fase foram ratificadas por DSC. De forma geral, observa-se 17 que apesar a mudança no sentido do grupo funcional acilhidrazona afeta 18 ligeiramente as temperaturas de transição, visto que, em F1 e F3, as temperaturas 19 foram de 244,7 e 233,3 °C, respectivamente. Por outro lado, as entalpias envolvidas 20 no resfriamento e no aquecimento são significativas diferentes. Para o F1, a entalpia 21 da transição de fase Isso-Col é de 4,44 kJ.mol⁻¹, um valor coerente com a literatura 22 para transições Iso \rightarrow Col, que normalmente possui valores entre 1 e 10 kJ.mol^{-1.41} 23 Já F3, com uma entalpia de 22 kJ.mol⁻¹ para a mesma transição, encontra-se acima 24 da faixa esperada, mas abaixo da faixa de cristalização, que fica entre 30 e 50 25 kJ.mol^{-1,41} Apesar de incomum, entalpias de transição acima de 10 kJ.mol⁻¹ ocorrem 26 principalmente no caso de mesofases mais organizadas, ou que apresentem forcas 27 de interações intermoleculares mais fortes, por exemplo, ligações de hidrogênio.

Isso pode ser o motivo da magnitude das entalpias reportadas neste trabalho, para o
 F3, bem como para outras acilhidrazonas já reportadas na literatura ^{12,7}.

3 Através dos dados obtidos pelo DSC, observa-se também uma variação na 4 histerese térmica dos picos de transição Col-Iso, sendo de 3,9 e 10,4 °C, para F1 e F3, respectivamente (Figura 3232). O valor relativamente maior observado para o 5 6 composto F3 não é incomum, especialmente para mesofases colunares mais 7 viscosas ou com maiores interações, como também já reportado anteriormente para 8 algumas acilhidrazonas ou moléculas discóticas 7,12,42. Já para processos de 9 cristalização, valores maiores de histerese são esperados, como os encontrados em 10 F2 e F4.

Apesar desses dados incomuns para o F3, suas propriedades mesomórficas
 são demonstradas por MOLP e, conforme relatado abaixo, também por DRX.

13

Figura 3232 - Termogramas dos materiais com seis cadeias alcóxis F1 (esquerda) e F3 (direita) no segundo ciclo de aquecimento/resfriamento, com variação de temperatura de 10 °C min⁻¹.

17

Ainda no DSC dos compostos F1 e F3, é possível observar transições alargadas, por volta de -15 °C, isso pode indicar a temperatura de fusão (Cr-Col) e cristalização (Col-Cr) dos compostos. Entretanto, como essas medidas não podem ser feitas no MOLP, devido às limitações do equipamento, não se pode verificar esse dado de forma cruzada e independente. Apesar disso, a ausência de outros picos de transição de fase no DSC, demonstra que os materiais permanecem na mesofase na temperatura ambiente, o que é algo de grande relevância e interesse.

Em suma, ao relacionar MOLP e DSC, é possível afirmar que F1 e F3 são CL
 a temperatura ambiente. Entretanto, os materiais perderam a fluidez, característica

da mesofase, possivelmente, devido a um grande aumento da viscosidade, que
ocorre com a diminuição da temperatura. Visto que a viscosidade elevada é uma
característica típica de CLD. Todas as informações mencionadas acima foram
sumarizadas na Tabela 22.

5 Além disso, investigações mais prolongadas, no MOLP, especialmente a altas 6 temperaturas, demonstraram alteração no comportamento térmico do material F1, o 7 que indicou uma leve decomposição, apesar do TGA não indicar perda de massa. 8 Para avaliar esse fenômeno de forma independente, um estudo foi realizado por 9 DSC, com ciclos sequenciais de resfriamento e aquecimento (Figura 3333). Neste 10 estudo, observa-se que, a cada ciclo de aquecimento/resfriamento do material, a 11 temperatura da transição Iso-Col se desloca levemente para menores valores. 12 Também houve alargamento do pico de transição, o que sugere uma lenta 13 decomposição do material a altas temperaturas. Isso não ocorre com F3, o qual 14 apresentou boa reprodutibilidade nos picos do termograma, quando submetido a 15 múltiplos ciclos de aquecimento e resfriamento.

16

17 18

19

20

A fim de elucidar de forma mais precisa as mesofases de F1 e F3, realizou-se um experimento de DRX. Com isso, baseado na lei de difração de Bragg (Equação 1), é possivel obter um padrão de difração que, ao ser adquadamente processado, revela o tipo de organização molecular na mesofase.

1	Equação 1 – Lei de difração de Bragg
2	$n\lambda = 2dsen(\theta)$
3	
4	n = número inteiro
5	$\lambda = comprimento de onda dos raios X$ d
6	d = distância entre planos
7	= distância entre planos
8	$oldsymbol{ heta}=\hat{a}ngulo\ entre\ feixe\ incidente\ e\ os\ planos$
9	Os gráficos da Figura 3434 apresentam os difratogramas de F1 e F3 obtidos
10	na temperatudas de 200 °C, ou seja, na mesofase de ambos os compostos. Nesse
11	caso, observou-se que ambos apresentaram padrões de difração parecidos e picos,
12	em baixo ângulo, que apresentam uma relação de 1, 1/ $\sqrt{3}$ e 1/2 em relação ao pico
13	de maior intensidade e menor ângulo. Isso permitiu indexar os picos $como d_{10}, d_{11} e$
14	d_{20} e as mesofases como colunar hexagonal (Figura 3434 e Tabela 33) 43 . Além
15	disso, em F3, é possivel ver dois picos largos, em ângulos mais altos, d_{diff} e $\pi\text{-}$
16	stacking, relacionados a ordem de curto alcance. Estes correspondem a distância
17	média entre as cadeias periféricas e a distância média intracolunar,
18	respectivamente. Já em F1 é possivel ver apenas o pico d_{diff} . A ausência de picos
19	agudos em ângulos mais altos, é indício que o material não se encontra no estado
20	cristalino.

Figura 3434 – Difratogramas dos compostos F1 (esquerda) e F3 (direita) a 200 °C, no resfriamento, a partir do estado líquido, que indica uma organização do tipo Col_h para ambos.

Equação 2 – Relação utilizada para obter o parâmetro de cela (a) para mesofases Col_h.

$$\alpha = \frac{2}{n\sqrt{3}} \left(d10 + d11\sqrt{3} + 2d20 + d21\sqrt{7} + 3d30 + \dots \right)$$

α = parâmetro de cela
 n = número de picos do difratogramad =
 d =
 Tabela 33 - Dados e parâmetros do DRX, para F1 e F3, a 200 °C

Tabela 33 - Dados e parâmetros do DRX, para F1 e F3, a 200 °C. F1 Indices de Miller F3 d_{obs} / nm d_{calc} / nm d_{obs} - d_{calc} / (hk) nm **F1 F1 F1** 3,77 3,82 F3 F3 F3 α 10 3,25 3,32 3,26 3,31 0,01 0,01 d_{diff} 0,46 0,47 11 1,89 1,91 1,88 1,91 0,01 0,00 0,35 π 20 1,63 1,65 1,63 1,65 0,00 0,00 Ζ 2,08 1,65

7

Através dos valores dos picos em baixo ângulo, e com a relação geométrica
entre os picos em uma mesofase Col_h, foi possivel calcular o valores médio dos
picos para obter o parâmetro de cela (α), através da Equação 3. Esse parâmetro α
está relacionado a periodicidade de longo alcance da estrutura hexagonal e também
corresponde ao diâmetro de um disco, ou a distância intercolunar (Figura 35).

13 Posteriormente, com o parâmetro de cela e a relação descrita na Equação 2, 14 foram determinados os valores teóricos esperados para cada pico do difratograma 15 (d_{calc}), com base nisso, pode-se comparar os valores calculados e os obtidos 16 experimentalmente. Essa comparação permitiu determinar se os picos e as 17 indexações foram coerentes, ou seja, se possuiam um erro pequeno. Conforme apresentado na Tabela 22, esses erros foram baixos (≤0.01 nm), o que indicou um 18 19 bom padrão de difração e, também, uma indexação adequada, o que reforçou a 20 atribuição de uma mesofase do tipo Col_h.

21

22 23

Equação 3 – Relação entre os índices de Miller (*hk*), o valor da distância relacionada ao pico de difração (d_{*hk*}) e o parâmetro de cela (α).

24 $\frac{1}{d_{hk}^2} = \frac{4}{3} \cdot \frac{h^2 + k^2 + hk}{\alpha^2}$ 25d =26 $\alpha = parâmetro de cela$ 27k =28h = distância entre mesógenos29
30

10 O parâmetro de cela e, por consequência, o diâmetro do disco determinado a 11 partir dos difratogramas para F1 e F3 foi de 3,77 nm e 3,82 nm, respectivamente. A 12 fim de comparação, o diâmetro estimado para cada uma das moléculas obtido 13 através do software ChemBio3D, com as cadeias nas conformações mais 14 estendidas, foi de 4,4 e 4,5 nm (Figura 3636). Quando se comparou esses valores 15 de diâmetros experimentais aos diâmetros teóricos, calculados pelo software, 16 observou-se que o valor experimental é menor, com uma razão de 0,85 17 (experimental/teórico). Essa variação de tamanhos é comum em cristais líquidos e 18 foi interpretado, principalmente, como resultado da interdigitação das cadeias 19 periféricas, mas também pode ter contribuições do fato das cadeias não estarem em 20 sua conformação mais estendida e de distorções da estrutura ^{42,44}.

- 21
- 22 23

24

25

Figura 3636 - Diâmetro teórico calculado, de forma simplificada pelo *software* ChemBio3D, para as moléculas F1 e F3, com as cadeias alifáticas em conformação estendida (*all-trans*).

Ao obter o diâmetro do disco e estipular que a altura (h) é igual ao valor do pico relacionado ao empacotamento molecular, foi calculado o volume do disco. No

1 caso da F3, como o sinal do π -stacking aparece no difratograma, foi empregado 2 esse valor como h, pois se rerefe à periodicidade do empacotamento dos discos. Já 3 para F1 foi necessário aproximar a altura do disco para 0,46 nm (d_{diff}). Em seguida, 4 ao comparar com o volume de uma única molécula e presumir que em sistemas 5 fluidos espaços vazios são evitados, determinou-se o número de moleculas que 6 fazem parte de um disco (Z). Essa comparação foi realizada de forma direta através 7 da Equação 4, ao assumir que a densidade do material (ρ) é 1,00 g. mL⁻¹. Com 8 essas considerações, os valores de Z encontrados foram de 2,08 e 1,65, 9 respectivamente. Ou seja, cada disco na mesofase é constituído, de maneira geral, 10 por duas moléculas.

Equação 4 - Relação utilizada para obter o número de moléculas por disco, em mesofases

Colh

 $Z = \frac{V disco}{V mol \acute{e} cula} = \frac{\sqrt{3} \alpha^2 h \rho}{2M}$

- 11
- 12

13

14

15

16	Na = número de Avogrado
17	M = massa molar
18	$oldsymbol{ ho}=densidade$ do material
19	$\alpha = par$ âmetro de cela

h = distância entre mesógenos

20 21

22 Neste ponto, é necessário enfatizar que os cristais líquidos são sistemas 23 fluidos e dinâmicos, dessa forma, os mesógenos, na maioria dos casos, não estão 24 firmemente conectados para formar discos discretos. Esses são mantidos unidos por 25 forças coesivas, o que resulta na nanossegregação de diferentes partes das 26 moléculas, com o núcleo rígido aromático no centro, cercado por várias cadeias 27 alifáticas não polares, dispostas de maneira aleatória e parcialmente interdigitadas. 28 Portanto, as moléculas não mantêm posições estáticas e definidas dentro da coluna, o que ajuda a compreender o número fracionário de Z. Além disso, esses cálculos 29 30 são valores aproximados, mas proporcionam uma boa estimativa sobre as 31 características do material e como ocorre o empacotamento para formar colunas e, 32 consequentemente, mesofases.

33 É possível que os espaços vazios entre os braços do mesógeno promova, de 34 alguma forma, esse empacotamento especial que necessita de 2 moléculas. Isso encontra respalto em pesquisas anteriores do grupo de pesquisa, nas quais se
observou que, para um mesmo centro molecular, estruturas mais compactas
necessitavam de apenas 1 molécula para constituir um disco. Por outro lado,
estruturas expandidas, com braços que saim radialmente do centro, assim como as
estruturas sintetizadas neste trabalho, agregavam-se para formação de um disco e
gerar mesomorfismo colunar ⁴².

Para os compostos F1 e F3, as medidas de DRX também foram realizadas
a temperatura ambiente. Nesse caso,não houve alteração significativa no
difratograma ou aparecimento de picos adicionais, principalmente, em ângulos
maiores, o que indicaria a cristalização do material. Isso está de acordo com o
observado por MOLP e DSC, sugerindo que o material é cristal líquido a temperatura
ambiente de forma estável.

3.3 OUTRO ASPECTO INTERESSANTE, É QUE APENAS AS MOLÉCULAS
COM 6 CADEIAS NO TOTAL APRESENTARAM MESOMORFISMO. É POSSÍVEL
QUE AS 9 CADEIAS ALIFÁTICAS DOS DERIVADOS F2 E F4, ALIADO AO FATO
QUE 2 MOLÉCULAS PRECISARIAM SE UNIR PARA CONSTITUIR UM DISCO,
RESULTARIA EM UM EMPACOTAMENTO MOLECULAR NÃO EFETIVO PARA O
MESOMORFISMO. FOTOISOMERIZAÇÃO

19 A fim de avaliar a propriedade de fotoisomerização dos materiais 20 desenvolvidos, realizou-se estudos de RMN - ¹H, espectroscopia de absorção no 21 UV-vis e emissão. Para isso, foi necessário irradiá-los com luz UV (310nm ou 22 365nm) e avaliar a variação da intensidade, ou deslocamento, das bandas, ou 23 sinais, dos espectros gerados. Além disso, é importante considerar que os materiais 24 em estudo possuem três acilhidrazonas, praticamente, independentes, como 25 demostrado na Figura 3737. Isso é válido tanto para o processo de 26 fotoisomerização, o que dificulta a conversão completa para o isômero Z, quanto 27 para as propriedades fotofísicas, pois o padrão de substituição 1,3,5 coloca os 28 braços em posição meta, isso impede a conjugação entre os braços, no estado 29 fundamental.45

30 Como não foi possível determinar por medidas de UV-vis qual 31 estereoisômero era predominante em cada momento, as isomerizações discutidas a 32 seguir serão descritas na forma de duas espécies. A primeira dessas é a forma *E*, 33 relacionada ao produto *EEE*, enquanto a outra é a forma *Z*, que pode ser 34 relacionada a qualquer uma das formas isomerizadas, onde a *ZZZ* é a mais provável. Além do mais, em nenhum dos compostos foi possível realizar a
 fotoisomerização reversa, com a irradiação de luz UV, como ocorreu em trabalhos
 prévios realizados pelo grupo.¹⁴

- 4
- 5

- 6
- 7

8 3.3.1 Absorção e Emissão

 $R = H, OC_{12}H_{25}$

9 Os compostos F1 e F2, derivados do centro tri-hidrazida 1,3,5-THZD, 10 possuem um máximo de absorção em 338 nm e 332 nm, conforme apresentado na 11 Figura 3838. Por isso, para a foto-isomerização, optou-se por irradiá-los com luz UV 12 de 365 nm. Essa irradiação levou a redução da intensidade da banda, em, 13 aproximadamente, 330 nm, relativa ao isômero E. De forma simultânea, houve a 14 formação de dois ombros, relativos ao isômero Z, em, aproximadamente, 275 nm e 15 390 nm, para ambos os materiais. Também ocorreu o deslocamento hipsocrômico, 16 do máximo de absorção, em 25 nm e 40 nm, respectivamente.

Figura 3838 - Gráficos de absorção (esquerda) e emissão (direita), para compostos derivados do centro 1,3,5-THZD, F1 (acima) e F2 (abaixo). As moléculas F1 e F2 foram excitadas em 340 e 330 nm, respectivamente, para obtenção dos espectros de emissão. A lâmpada utilizada para a isomerização foi uma lanterna LED de 365 nm e 10w de potência. Todos os espectros foram realizados com uma concentração de a 10⁻⁵ mol. L⁻¹, em CICH₃.

1

2

5 Os máximos de emissão, do isômero E, dos compostos F1 e F2, são em 461 6 476 respectivamente. Ε, quando submetidos nm, ao processo de е 7 fotoisomerização, tiveram um deslocamento hipsocrômico de 48 nm e 29 nm, 8 respectivamente. Pois, como o isômero Z possui maior energia, evidenciado pela 9 absorção maiores energias, em relação ao isômero E, o estado excitado dessa 10 espécie deve possuir uma energia ainda maior, o que resulta em uma emissão com 11 menor comprimento de onda. No entanto, a intensidade de emissão variou de forma 12 antagônica nesses compostos, pois, após a isomerização, F1 teve um aumento, 13 enquanto F2 teve uma redução na intensidade de emissão. Ambos os compostos 14 tiveram perda de luminescência no espectro visível, após a irradiação com luz UV, 15 como é apresentado na Figura 3939.

Figura 3939 - Perda de luminescência no espectro visível, com a irradiação de luz UV 365 nm dos

compostos F1 (esquerda) e F2 (direita). Em ambos, o isômero E está à esquerda e o Z está à

direita.

- 16
- 17 18

9		-
		-
		-
		•

3 As moléculas derivadas do centro 1,3,5-TALD, F3 e F4, apresentam bandas 4 de absorção com máximos centrados em 319 nm e 315 nm (Figura 4040), levemente deslocados em relação a F1 e F2. Desta forma, optou-se por irradiá-los 5 6 com luz UV de 310 nm. Nesse caso, assim como em F1 e F2, houve redução na 7 intensidade da banda, relativa ao isômero E, em 320 nm, e o aparecimento de dois 8 ombros, em 264 nm e 360 nm. Em F3 e F4, também ocorreu o deslocamento 9 hipsocrômico do máximo de absorção, no entanto foi de apenas 5 nm e 13 nm, 10 respectivamente, valores menores que os encontrados em F1 e F2.

11

18

1 2

Figura 4040 - Gráficos de absorção (esquerda) e emissão (direita), a 10⁻⁵ mol. L⁻¹, em CICH₃, dos compostos derivados do centro 1,3,5-TALD, F3 (acima) e F4 (abaixo). As moléculas F3 e F4 foram excitadas em 320 e 310 nm, respectivamente, para obtenção dos espectros de emissão. A lâmpada utilizada para a isomerização foi uma lanterna fluorescente de 310 nm e 10 w de potência. Todos os espectros foram realizados com uma concentração de a 10⁻⁵ mol. L⁻¹, em CICH₃.

Já as emissões dos compostos F3 e F4 tiveram um deslocamento batocrômico de 11 e 8 nm, respectivamente, mas as intensidades se comportaram de maneira similar a F1, ou seja, houve aumento da intensidade de emissão do isômero *Z* em relação ao isômero *E*.

No espectro de absorção do composto F4 apresentado na figura na Figura
4141, é possível visualizar dois pontos isosbésticos, em 284 nm e 344 nm, ao
menos nas primeiras medidas, enquanto ainda não houve variação na linha base.
Essa variação pode ter ocorrido devido a presença de várias espécies em equilíbrio,
provenientes do fato de que os três braços podem isomerizar de forma
independente, como demonstrado na Figura 3737. A presença desses pontos
isosbésticos reforça a ideia de interconversão dos isômeros *E/Z*.

- 14
- 15 16

Figura 4141 - Gráfico de absorção do composto F4, a 10⁻⁵ mol. L⁻¹, em CICH₃, até 210 s, com dois pontos isosbésticos, em 284nm e 344 nm.

1 3.3.2 RMN

2 Todos os materiais foram submetidos a experimentos para detecção dos 3 sinais do isômero Z no RMN - ¹H. No caso dos compostos F1 e F3 não se observou 4 mudanças significativas, no espectro, que pudessem ser relacionadas, de forma 5 inequívoca, ao processo de fotoisomerização. Apenas os compostos F2 e F4, com 6 três cadeias alcóxi, produziram mudanças significativas quando irradiado com luz 7 UV. Percebe-se que com a isomerização parcial há a perda de simetria da molécula. 8 isso tem como consequência a complexificação do espectro. Caso a conversão E/Z 9 fosse completada, a molécula deveria recuperar simetria e o espectro simplificaria 10 novamente, mas isso não foi observado pelo período e condições analisadas.

11 Nos estudos realizados foi possível produzir mudanças significativas apenas 12 no espectro de F2, quando irradiado por 5 minutos, com luz UV de 365 nm (Figura 13 4242), e de F4, quando exposta por 2 horas à luz UV 310 nm (Figura 43). Após uma 14 semana, essa mesma amostra de F4 isomerizado, foi reanalisada e, com isso, ficou 15 claro a capacidade de fotoisomerização reversível das acilhidrazonas, visto que o 16 espectro retornou, exatamente, ao padrão inicial. Esse processo de retorno, muito 17 provavelmente, poderia ser acelerado com o aumento da temperatura.

Figura 4242 – Espectro de RMN - ¹H (200 MHz) do composto F2 antes (acima) e após (abaixo) irradiação com luz UV de 365 nm, por 5 minutos.

11 3.4.1 Gelificação

Durante trabalhos prévios, entramos em contato com as propriedades gelificantes de mesógenos funcionalizados com acilhidrazonas. Além disso, centros baseados na 1,3,5 amida são amplamente relatados na literatura como formadores de arranjos supramoleculares, similares aos necessários para formar géis.

Tanto o composto F1 e F3 formaram géis, mas apenas o formado a partir do
F1 foi reprodutível. No caso do F3, houve formação de gel nos tubos de RMN, com
soluções de clorofórmio e DMSO, no entanto, isso não foi possível reproduzir de
maneira intencional em sistemas maiores.

De todas as possibilidades avaliadas, de forma qualitativa, apenas a mistura do composto F1, com concentração de, aproximadamente, 80 mg/mL, em benzeno, foi capaz de produzir um gel, não muito forte. Esse gel, luminescente, quando irradiado com luz UV 365 nm por 10 minutos, perde bastante a viscosidade e, se posteriormente aquecido, não consegue mais formar gel durante o resfriamento (Figura 4444). Esse último resultado pode estar relacionado à isomerização reversa *Z/E* lenta, baseado no fato de que o isômero *Z* não é efetivo para a formação do gel.

9 10 11

12 13

8

Figura 4444 - Gel formado pela adição do composto F1 a benzeno (esquerda) e perda de viscosidade do gel após irradiação com luz UV.

Foi difícil encontrar um solvente com as propriedades adequadas para a formação de géis, pelo menos em concentrações de até 80 mg/mL. Devido a altíssima solubilidade dos materiais em clorofórmio, ou THF, e a baixa solubilidade em etanol, acetato, butanona e hexano, por exemplo. É possível que ocorra a formação de géis em clorofórmio e THF, mas concentrações bem mais altas, talvez para concentrações de 200 mg/mL ou acima.

20

21 3.4.2 Complexação

É bastante relatado na literatura a capacidade de complexação com metais, ou a detecção de íons, das acilhidrazonas. Para avaliar esse potencial, realizou-se um ensaio bastante simples, onde um sal insolúvel em clorofórmio, nitrato de cobre, foi adicionado a soluções, contendo cerca de 5 mg de F1, F2, F3 e F4, em clorofórmio. A solução desses materiais, quando em contato com nitrato de cobre, passa de transparente para amarelo, o que indica uma reação com sal, mais provavelmente com cátion do cobre (Figura 4545).

Figura 4545- Misturas de nitrato de cobre + clorofórmio (controle), ao centro, e nitrato de cobre + solução dos materiais F1, F2, F3 e F4, aos lados.

Além disso, quando o material F4 foi irradiado com Luz UV 310 nm, por 10 minutos,
houve a formação de precipitado, como é possível ver na Figura 4646. Isso sugere a
possibilidade de interagir com o processo de complexação através da irradiação com
luz UV. E, no caso da F1 e F2, após uma semana houve a precipitação de um
material azulado e o clareamento da solução.

11
12Figura 4646 - Solução F4+Cu após ser irradiada com luz UV, por 10 min (esquerda) e solução de
F1+Cu e F2+Cu após uma semana (direita).

13 14

Para verificar a sensibilidade dos materiais a cianeto, misturou-se o gel com uma ponta de espátula de KCN, como não houve reação, devido à baixa solubilidade do KCN em benzeno, foi necessário adicionar duas gotas de DMSO, para permitir a interação entre as espécies. Isso desfez o gel, mas permitiu a reação entre F1 e o cianeto, o que ficou evidente com a mudança de cor, a qual passou de transparente para um amarelo forte. Com isso ficou demonstrado o potencial do material como um sensor de ânions CN⁻.

Figura 4747 - Reação do composto F1 ao KCN.

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	

1 4 CONCLUSÃO

2

3 Neste trabalho, foram desenvolvidas quatro moléculas discóticas inéditas 4 funcionalizadas com três grupos acilhidrazonas, com variação nos números de cadeias periféricas e inversão do sentido do grupo acilhidrazona. A síntese desses 5 6 materiais consistiu na produção de dois blocos sintéticos diferentes: o centro rígido e 7 os braços flexíveis. A inversão dos grupos funcionais, aldeído e hidrazida, teve como 8 objetivo avaliar o impacto nas propriedades fotocrômicas e mesomórficas. A 9 caracterização estrutural foi realizada por RMN – ¹H e ¹³C, já a pureza foi 10 determinada por CHN, onde demonstrou-se que os resultados experimentais 11 corroboraram com os esperados teoricamente, indicando a obtenção dos produtos 12 com estrutura e grau de pureza adequados.

13 Entre os materiais preparados, apenas os derivados com 6 cadeias alcóxi, F1 14 e F3, apresentaram propriedade líquido cristalinas e capacidade de gelificação. As 15 propriedades mesomórficas foram caracterizadas por MOLP, DSC e DRX, os guais 16 revelaram estruturas do tipo colunar hexagonal, com discos formados por duas 17 moléculas. Além disso, demonstram que a inversão do grupo não afetou muito o 18 comportamento mesomórfico, o qual teve influência mais significativa do número de 19 cadeias. Os dados de MOLP e DSC e DRX, também, sugeriram que o material é 20 cristal líquido a temperatura ambiente de forma estável.

21 Todos os materiais apresentaram capacidade fotoisomerização, 22 caracterizada por RMN – ¹H e espectroscopia de absorção no UV-vis e a inversão 23 do grupo acilhidrazona não influenciou substancialmente velocidade ou efetividade 24 do processo de isomerização. Além do mais, demonstrou-se a capacidade e complexação com Cu²⁺ e a sensibilidade ao íon CN⁻. Todas essas características 25 26 indicam a polivalência do material, com bastante potencial para aplicações em 27 sistemas supramoleculares complexos.

- 28
- 29
- 30
- 31
- 32
- 33

- 1 5 REFERÊNCIAS
- 2
- Goodby, J. W., Bruce, D. W., Hird, M., Imrie, C. & Neal, M. A introduction to
 materials discussion no. 4: Molecular topology in liquid crystals. *J. Mater. Chem.* 11, 2631–2636 (2001).
- Benanti, T. L. & Venkataraman, D. Organic solar cells: An overview focusing on
 active layer morphology. *Photosynthesis Research* vol. 87 73–81 (2006).
- 8 3. Babu, S. S., Praveen, V. K. & Ajayaghosh, A. Functional π-Gelators and Their
 9 Applications. *Chem. Rev.* **114**, 1973–2129 (2014).
- Abser, M. N., Bellwood, M., Holmes, M. C. & McCabe, R. W.
 Aroylhydrazinatonickel(II) and copper(II) complexes; a new class of
 metallomesogens. *J. Chem. Soc. Chem. Commun.* 1062–1063 (1993)
 doi:10.1039/C39930001062.
- Lai, C. K., Tsai, C. H. & Pang, Y. S. Discotic metallomesogens: Mesophase
 crossover of columnar rectangular to hexagonal arrangements in
 bis(hydrazinato) nickel(II) complexes. *J. Mater. Chem.* 8, 1355–1360 (1998).
- Singh, S. K., Vikram, K. & Singh, B. Synthesis, characterisation and
 mesomorphic properties of ester containing aroylhydrazones and their nickel(II)
 complexes. *Liq. Cryst.* 38, 1117–1129 (2011).
- Shanker, G., Prehm, M., Yelamaggad, C. V. & Tschierske, C.
 Benzylidenehydrazine based room temperature columnar liquid crystals. *J. Mater. Chem.* 21, 5307–5311 (2011).
- Singh, S. K., Kumar, V., Singh, H. K., Kanth, P. & Singh, B. Microwaveassisted synthesis, characterisation and mesomorphic investigations of novel disubstituted aroylhydrazones. *Lig. Cryst.* 42, 1179–1190 (2015).
- Guo, H., Fang, X., Yang, F. & Wu, Y. Syntheses and room mesomorphic
 properties of novel gallic trimer and tetramer based on acylhydrazone
 structures. *Mol. Cryst. Liq. Cryst.* 630, 180–187 (2016).
- Singh, H. K. *et al.* Substituted Aroylhydrazone Based Polycatenars: Tuning of
 Liquid Crystalline Self-Assembly. *ChemistrySelect* 3, 4027–4037 (2018).
- 31 11. Singh, H. K. *et al.* Synthesis and self-assembly of aroylhydrazone based
 32 polycatenars: A structure-property correlation. *J. Mol. Liq.* 284, 282–290
 33 (2019).
- 34 12. Oliveira, W. A. de, Mezalira, D. Z. & Westphal, E. Acylhydrazones liquid

- crystals: effect of structure over thermal behaviour and molecular switching.
 Liq. Cryst. 48, 88–99 (2021).
- 3 13. Oliveira, W. A. de & Westphal, E. UNIVERSIDADE TECNOLÓGICA FEDERAL
 4 DO PARANÁ. (2019).
- 5 14. Oliveira, W. A. de & Westphal, E. Dissertação de Mestrado CRISTAIS 6 LÍQUIDOS POLICATENARES CONTENDO DUAS UNIDADES 7 ACILHIDRAZONA: Orientador: Prof . Dr . Eduard Westphal CRISTAIS 8 LÍQUIDOS POLICATENARES CONTENDO DUAS UNIDADES 9 ACILHIDRAZONA : MESOMORFISMO FOTOISOMERIZAÇÃO Е . 10 GELIFICAÇÃO Po. (2021).
- Bechtold, I. H. Cristais líquidos: um sistema complexo de simples aplicação.
 Rev. Bras. Ensino Física 27, 333–342 (2005).
- 13 16. Saez, I. M. & Goodby, J. W. Supermolecular liquid crystals. *Journal of Materials Chemistry* vol. 15 26–40 (2005).
- 15 17. Tschierske, C. Microsegregation: From Basic Concepts to Complexity in Liquid
 16 Crystal Self-Assembly. *Isr. J. Chem.* **52**, 935–959 (2012).
- 17 18. Tschierske, C. Development of structural complexity by liquid-crystal self18 assembly. *Angewandte Chemie International Edition* vol. 52 8828–8878
 19 (2013).
- 20 19. Goodby, J. W. Symmetry and Chirality in Liquid Crystals. *Handb. Liq. Cryst.*21 115–132 (1998) doi:10.1002/9783527620760.CH5.
- 22 20. Demus, D., Goodby, J., Gray, G. W., Spiess, H. -W. & Vill, V. Handbook of
 23 Liquid Crystals Set. Handbook of Liquid Crystals Set (Wiley, 1998).
 24 doi:10.1002/9783527619276.
- 25 21. Kaafarani, B. R. Discotic liquid crystals for opto-electronic applications. *Chem.*26 *Mater.* 23, 378–396 (2011).
- 27 22. Van Dijken, D. J., Kovaříček, P., Ihrig, S. P. & Hecht, S. Acylhydrazones as
 28 Widely Tunable Photoswitches. *J. Am. Chem. Soc.* 137, 14982–14991 (2015).
- 29 23. Cvrtila, I., Fanlo-Virgós, H., Schaeffer, G., Monreal Santiago, G. & Otto, S.
 30 Redox Control over Acyl Hydrazone Photoswitches. *J. Am. Chem. Soc.* 139,
 31 12459–12465 (2017).
- 32 24. Shao, B. & Aprahamian, I. Hydrazones as New Molecular Tools. *Chem* 6,
 33 2162–2173 (2020).
- 34 25. Van Dijken, D. J., Kovaříček, P., Ihrig, S. P. & Hecht, S. Acylhydrazones as

- 1 Widely Tunable Photoswitches. J. Am. Chem. Soc. **137**, 14982–14991 (2015).
- Leigh, D. A. *et al.* Pyridyl-Acyl Hydrazone Rotaxanes and Molecular Shuttles. *J. Am. Chem. Soc.* **139**, 7104–7109 (2017).
- 4 27. Toro, P. M. *et al.* Spectroscopic Study of the E/Z Photoisomerization of a New
 5 Cyrhetrenyl Acylhydrazone: A Potential Photoswitch and Photosensitizer⁺.
 6 *Photochem. Photobiol.* **97**, 61–70 (2021).
- 7 28. Chaur, M. N. Aroylhydrazones as potential systems for information storage:
 8 photoisomerization and metal complexation. *Rev. Colomb. Química* 41, 349–
 9 358 (2012).
- Hincapié-Otero, M. M., Joaqui-Joaqui, A. & Polo-Cerón, D. Synthesis and
 characterization of four N-acylhydrazones as potential O,N,O donors for Cu2+:
 An experimental and theoretical study. *Univ. Sci.* 26, 193–215 (2021).
- 13 30. Ding, Y. *et al.* A dual-functional chemosensor based on acylhydrazone
 14 derivative for rapid detection of Zn (II) and Mg(II): Spectral properties,
 15 recognition mechanism and application studies Production and hosting by
 16 Elsevier. **16**, 104603 (2023).
- Sharma, S., Kumari, M. & Singh, N. A: C 3-symmetrical tripodal acylhydrazone
 organogelator for the selective recognition of cyanide ions in the gel and
 solution phases: Practical applications in food samples. *Soft Matter* 16, 6532–
 6538 (2020).
- 32. Sandeep, A., Praveen, V. K., Shankar Rao, D. S., Krishna Prasad, S. &
 Ajayaghosh, A. Transforming a C 3-Symmetrical Liquid Crystal to a π-Gelator
 by Alkoxy Chain Variation. *ACS Omega* 3, 4392–4399 (2018).
- 24 33. Liu, Y., Tan, Y., Liu, Z. & Che, G. Construction of a hydroxide responsive C325 symmetric supramolecular gel for controlled release of small molecules. *Soft*26 *Matter* 17, 7227–7235 (2021).
- 34. Murugesan, J. R. *et al.* Revealing dye and dye-drug aggregation into nanoentities using NMR. *Dye. Pigment.* **153**, 300–306 (2018).
- 35. Kuveke, R. E. H. *et al.* An International Study Evaluating Elemental Analysis.
 ACS Cent. Sci. 8, 855–863 (2022).
- 36. Kandioller, W., Theiner, J., Keppler, B. K. & Kowol, C. R. Elemental analysis:
 An important purity control but prone to manipulations. *Inorg. Chem. Front.* 9,
 412–416 (2022).
- 34 37. Munir, R. et al. Synthesis of Novel N-Acylhydrazones and Their C-N/N-N Bond

- Conformational Characterization by NMR Spectroscopy. *Mol. 2021, Vol. 26, Page 4908* 26, 4908 (2021).
- 3 38. Lopes, A. B. *et al.* Characterization of Amide Bond Conformers for a Novel
 Heterocyclic Template of N-acylhydrazone Derivatives. *Mol. 2013, Vol. 18, Pages 11683-11704* 18, 11683–11704 (2013).
- Goodby, J. W. GOODBY, J. W., Phase Transitions: General and Fundamental
 Aspects, in Handbook of Liquid Crystals, GOODBY, J. W.; TSCHIERSKE, C.;
 RAYNES, P.; GLEESON, H.; KATO, T.; COLLINGS, P. J., Editors.
 201410.1002/9783527671403.hlc004, 1-18. (2014).
- 40. Properties, A. & Liquid, C. D. BODEN, N.; MOVAGHAR, B., Applicable
 Properties of Columnar Discotic Liquid Crystals, in Handbook of Liquid
 Crystals, DEMUS, D.; GOODBY, J. W.; GRAY, G. W.; SPIESS, H.-W.; VILL,
 V., Editors. Wiley-VCH: Weinheim, Germany. 1998, Vol. 2b, 781-798. (1998).
- 14 41. Singh, S. Phase transitions in liquid crystals. *Phys. Rep.* **324**, 107–269 (2000).
- 42. Westphal, E., Windisch, A. C., Zambelli Mezalira, D. & Gallardo, H. Reaching
 Room-Temperature Mesomorphism through Expansion of the
 Tristriazolotriazine Core with Alkoxybenzoate Units. *European J. Org. Chem.*2022, (2022).
- 19 43. Wöhrle, T. et al. Discotic Liquid Crystals. Chem. Rev. 116, 1139–1241 (2016).
- 44. Cheng, X. *et al.* Self-assembly of imidazolium-based rodlike ionic liquid
 crystals: transition from lamellar to micellar organization. *Chem. A Eur. J.* 16,
 4588–4601 (2010).
- 45. Detert, H., Lehmann, M. & Meier, H. Star-shaped conjugated systems. *Materials (Basel).* 3, 3218–3330 (2010).
- 46. Kathiresan, M., Walder, L., Ye, F. & Reuter, H. Viologen-based benzylic
 dendrimers: selective synthesis of 3,5-bis(hydroxymethyl)benzylbromide and
 conformational analysis of the corresponding viologen dendrimer subunit. *Tetrahedron Lett.* **51**, 2188–2192 (2010).
- 47. Davis, M. C. Tricarbamate of 1,3,5-triaminobenzene via Curtius rearrangement
 of trimesic acid and subsequent nitration. *Synth. Commun.* **37**, 1457–1462
 (2007).
- 48. Moses, J. E. et al. A click chemistry approach to C3 symmetric, G-quadruplex
 stabilising ligands. Organic and Biomolecular Chemistry vol. 8 (2010).
- 34 49. Reger, D. L., Watson, R. P., Smith, M. D. & Pellechia, P. J. Controlling the

addition of metal centers to a bis(pyrazolyl)methane starburst ligand: Direct
 routes to mono-, bi-, and trimetallic rhenium(I) complexes. *Organometallics* 25,
 743–755 (2006).

4 50. Zhang, Q. *et al.* Facile bottom-up synthesis of coronene-based 3-fold
5 symmetrical and highly substituted nanographenes from simple aromatics. *J.*6 *Am. Chem. Soc.* **136**, 5057–5064 (2014).

- 7 51. Peng, X. *et al.* Synthesis and self-assembly of photoresponsive and
 8 luminescent polycatenar liquid crystals incorporating an azobenzene unit
 9 interconnecting two 1,3,4-thiadiazoles. *New J. Chem.* 41, 2004–2012 (2017).
- 10 52. Zhu, X. *et al.* Self-assembled structures formed by a wedge-shaped molecule
 in 2D and 3D: The role of flexible side chains and polar head groups. *Phys.*12 *Chem. Chem. Phys.* **12**, 1444–1452 (2010).

~ ~

6 SEÇÃO EXPERIMENTAL

2 3

6.1 MATERIAIS E MÉTODOS

4

5 **6.1.1 Materiais**

6 Os reagentes e solventes foram obtidos de fontes comerciais (Sigma-Aldrich, 7 Synth, Vetec e Acros) e serão utilizados sem purificação prévia. Já os solventes 8 orgânicos adquiridos em grande escala (hexano, diclorometano, clorofórmio e 9 acetato de etila) foram destilados antes do uso. No caso dos solventes secos 10 utilizados, THF e diclorometano, optou-se pelo uso de peneiras moleculares 3A°, da 11 Sigma-Aldrich. As moléculas foram purificadas através de recristalização com 12 solventes comerciais de grau P.A. ou cromatografia em coluna, com sílica gel 70-13 230 mesh (Sigma-Aldrich).

- 14
- 15

6.1.2 Métodos sintéticos

16

17

6.1.2.1 *1,3,5-Benzenotricarboxilato de etila (1,3,5-TEST)*

18 Dissolver 1,0 g (3,7 mmol) de 1,3,5-benzenotricarbonil triclorado em 50 mL de 19 etanol (preferencialmente seco/absoluto, mas funciona com o azeotrópico), aquecer até a mistura atingir refluxo e deixar por, ao menos, 6 horas. Logo no início a 20 21 solução fica transparente, após alguns minutos um precipitado branco, como uma 22 nuvem, aparece. Em seguência, a mistura se torna cinza e posteriormente volta a se 23 tornar uma solução transparente. Após finalizar o período sob refluxo, a solução foi 24 resfriada lentamente, apenas desligando a chapa de aquecimento e não removendo 25 do banho de óleo, com isso, o produto precipita na forma de agulhas, com bom grau 26 de pureza. Rendimento: 88%. p.f.: 133 – 135 °C (lit. 136 °C) ⁴⁶. RMN -¹H (CDCI₃, 200 27 MHz) δ (ppm): 1,44 (t, J=7,0 Hz, 9 H, -CH₂CH₃), 4,45 (q, J=7,0 Hz, 6 H, -CH₂CH₃), 28 8,85 (s, 3 H, Ar-<u>H</u>). RMN -¹³C (CDCl₃) δ (ppm): 14,28; 61,67; 131,43; 134,38; 165,03. 29

1 6.1.2.2 1,3,5-Benzenotricarboxihidrazida (1,3,5-THZD)

2

3 Dissolver 1,0 g (3,3 mmol) de 1,3,5-TEST em 50 mL de etanol, em seguida, 4 adicionar 1,9 mL (39,54 mmol) de hidrazina monoidratada. Aquecer essa mistura e 5 deixar sob refluxo por 24 horas. Usa-se um excesso molar de x molar, cerca de 4x 6 por cada grupo éster que será substituído. O produto precipita como um sólido 7 branco e amorfo, a mistura pode ser filtrada ainda quente, pois o produto (252,25 8 g/mol) formado é bastante insolúvel na maioria dos solventes. Rendimento: 85%. p.f.: >300 °C decomp. (lit. >300 °C decomp.) 47. RMN -1H (DMSO-d₆, 200 MHz) δ 9 10 (ppm): 4.60 (s, 6 H, -NHN<u>H</u>2) 8.28 (s, 3 H, Ar-<u>H</u>), 9.88 (s, 3 H, -N<u>H</u>NH2). RMN -¹³C (DMSO-d₆) δ (ppm): 128,46; 134,29; 165,43. 11

1 6.1.2.3 *1,3,5-Benzenotriltrimetanol (1,3,5-TALC)*

2 Dissolver 2,0 g de 1,3,5-TEST em 50 mL de THF seco, para garantir a 3 completa solubilização. Adicionar essa solução, gota a gota, em 37 mL de uma 4 solução (Sigma- Aldrich) de LiAlH₄ em THF (1 mol/L), resfriada de 0 a 5 °C. Foram 5 empregados 4,5 equivalentes de LiAIH₄ em relação ao 1,3,5-benzenotricarboxilato 6 de etila (1), ou seja, 0,5 mol de excesso por grupo éster que será reduzido. Após a 7 completa adição, a mistura foi deixada em agitação, à temperatura ambiente, 8 durante 14 horas. Caso a reação seja realizada utilizando a solução comercial de 9 LiAlH₄, será possível ver uma série de trocas de cores, como laranja, amarelo e 10 verde, a reação finaliza, quando a mistura se torna branca. Também é necessário 11 ressaltar a importância do LiAlH₄ estar novo e bastante reativo, caso contrário, a 12 reação não terá uma boa performance.

13 Após isso, adicione 20 g de uma mistura 1:1 de celite e NaHSO₄, em 14 pequenas porções e sob agitação. Para evitar aquecimento excessivo, pode-se 15 utilizar banho de gelo. Posteriormente, adicionar cerca 1,5 mL de água e 1,5 mL de 16 uma solução de NaOH 15%, ou até a completa neutralização do LiAlH₄. Acrescentar 17 THF até a mistura atingir uma consistência mais fluida, filtre e lave o precipitado com 18 éter etílico. O solvente deve ser evaporado para se obter um sólido branco, com 19 bom grau de pureza. Rendimento: 70%. p.f: 74 - 76 ° C (lit. 75 °C)⁴⁸. RMN -¹H 20 (DMSO-d₆, 200 MHz) δ (ppm): 4.47 (d, J=5.6 Hz, 6H, Ar-C<u>H</u>₂-OH) 5.15 (t, J=5.6Hz, 21 3H, -O<u>H</u>) 7.12 (s, 3 H, Ar-<u>H</u>). RMN -¹³C (DMSO-d₆) δ (ppm): 63,05; 122,99; 142,06.

22 23

24

25 26

27

28

29

30

1 6.1.2.4 1,3,5-Benzenotricarboxaldeido (1,3,5-TALD)

2 Incorporar 0,75 g do 1,3,5-TALC (1,3 mmol) a 50 mL de diclorometano seco e 3 posteriormente adicionar 5 g de celite, ou sílica, agitar esta mistura por 15 minutos. 4 Em seguida, adicionar 1,0 g de PCC (Clorocromato de piridínio), cerca de 3,5 5 equivalentes. Deixar essa mistura a temperatura ambiente, sob agitação, durante 14 6 horas. Logo após, diluir a solução com 20 mL de éter etílico e filtrar. Lavar o filtrado 7 com diclorometano e evaporar o solvente para obter um óleo escuro. Esse óleo foi 8 então filtrado em sílica, com diclorometano como solvente. Rendimento: 75%. p.f.: 152 – 162 °C (lit. 154-159 °C)⁴⁹. RMN -¹H (CDCl₃, 200 MHz) δ (ppm): 8,66 (s, 3 H, 9 10 Ar-<u>H</u>), 10,22 (s, 3H, -O=C-<u>H</u>). RMN -¹³C (CDCl₃, 50 MHz) δ (ppm): 134,74; 137,81; 11 189,79.

1 6.1.2.5 3,4-Bis(dodeciloxi)benzaldeído (3,4-ALD)

2 Adicionar 5,53 g (40 mmol) de carbonato de potássio (K₂CO₃), seguidos de 50 3 mL de butanona, 0,7 g (5,0 mmol) de 3,4 dihidroxibenzaldeido e uma ponta de 4 espátula de éter 18-coroa-6. Posteriormente, adicionar 3,11 g (12,47 mmol) de 1bromododecano. Aquecer a mistura até o refluxo e deixar por 24 horas. Após isso, 5 filtrar a mistura ainda quente e lavar o sólido com butanona quente. Evaporar o 6 7 solvente para obter um sólido branco. Recristalizar em etanol, sem aquecer muito, devido ao baixo ponto de fusão. Rendimento: 80%. p.f.: 69,5 - 71,5 °C (lit. 69-70 8 °C)⁵⁰. RMN -¹H (CDCl₃, 200 MHz) δ (ppm): 0.88 (t, 6 H, -CH₂C<u>H₃</u>), 1.21-1.38 (m, 32H, 9 -CH2-),1.39-1.56 (m, 4 H, -OCH2CH2-), 1.84 (m, 4H, -OCH2CH2-), 4.06 (m, 10 11 4H, -OCH2-), 6.95 (d, 1H, Ar-H), 7.39 (s, 1H, Ar-H), 7.44 (d, 1H, Ar-H), 9.83 (s, 1H, O=C-<u>H</u>). RMN -¹³C (CDCI₃, 50 MHz) δ (ppm): 14,08; 22,67; 25,93; 25,97; 28,97; 12 29,06; 29,34; 29,58; 29,64; 29,66; 31,90; 69,13; 111,01; 111,77; 126,53; 129,86; 13 14 149,43; 154,68; 190,93.

Hb

H _{Ha}

C₁₂H₂₅O

He

Hg

1 6.1.2.6 *3,4-Bis(dodeciloxi)benzohidrazida (3,4-HZD)*

2 Adicionar 3,0 g (5,78 mmol) de 3,4-bis(dodeciloxi)benzoato de etila um balão 3 de 100 mL, seguido de 50 mL de etanol (ou butanol) e 2,6 mL (57,8 mmol) de 4 hidrazina monoidratada 65% (m/m). Aquecer a mistura reacional até refluxo e deixar 5 por 24 horas. Após isso, verter a mistura quente em 200 mL de água e gelo, filtrar 6 sob vácuo e lavar com água. Recristalizar o sólido resultante em etanol, filtrar a 7 vácuo e lavar com etanol gelado. Rendimento: 78%. P.f.: 104 - 106 °C (lit. 101-102 8 ^oC)⁵¹. RMN -¹H (CDCI₃, 200 MHz) δ (ppm): 0.88 (s, 6 H, -CH₂CH₃), 1.20-1.36 (m, 32H, 9 -CH2-),1.37-1.54 (m, 4 H, -OCH2CH2CH2-), 1.83 (m, 4H, -OCH2CH2-), 4.02 (m, 4H, 10 -OCH2-), 6.85 (d, J=8,3 Hz 1H, Ar-H), 7.24 (dd, J=8,3 Hz, 1H, Ar-H), 7.35 (d, 1H, Ar-<u>H</u>), 7.40 (s, 1H, O=C-N<u>H</u>-). RMN -¹³C (CDCI₃, 50 MHz) δ (ppm): 14,09; 22,67; 11 25,97; 29,09; 29,18; 29,34; 29,37; 29,60; 29,61; 29,67; 31,90; 69,10; 69,34; 112.36; 12 13 112.48; 119.48; 124.94; 149.05; 152.28; 168.51.

1 6.1.2.7 *3,4,5-Tris(dodeciloxi)benzaldeído (3,4,5-ALD)*

2 Adicionar 2,0 g (3,02 mmol) de 3,4,5 tris(dodeciloxi)fenil)metanol e 75 mL de 3 diclorometano seco a um balão de 150 mL. Em seguida, refrigerar o sistema a 0 °C, 4 com banho de gelo, para poder adicionar 0,65 g (3,02 mmol) de PCC, em cerca de 5 cinco pequenas porções, com intervalo de 10 min entre cada adição. Após a 6 completa adição do PCC, retirou-se o banho de galo e se deixou a mistura a 7 temperatura ambiente, sob agitação, durante 3 horas. Evaporou-se o solvente para 8 obter uma resina escura, que foi purificada em cromatografia em coluna, com 9 diclorometano como solvente. A resina escura pode ser limpa das vidrarias 10 utilizando ácido sulfúrico diluído e bissulfato de sódio pode ser utilizado para 11 redução do cromo. Rendimento: 75%. P.f.: 48 - 49 °C (lit. 48,4 °C) ⁵². RMN -¹H 12 (CDCl₃, 200 MHz) δ (ppm): 0.88 (t, 9 H, -CH₂CH₃), 1.16 - 1.40 (m, 48H, -CH₂-), 1.41 -13 1.53 (m, 6H, -OCH₂CH₂CH₂-), 1.79 (m, 6H, -OCH₂CH₂-), 4,04 (m, 6H, -OCH₂-), 7,08 (s, 2H, Ar-H), 9,82 (s, 3H, -O=C-H). RMN -¹³C (CDCI₃, 50 MHz) δ (ppm): 14,10; 14 15 22,69; 26,07; 29,38; 29,69; 31,93; 69,27; 73,64; 107,90; 131,45; 143,90; 153,53; 16 191,25.

1 6.1.2.8 3,4,5-Tris(dodeciloxi)benzohidrazida (3,4,5-HZD)

2 Adicionar 3,0 g (4,26 mmol) de 3,4,5-tris(dodecilóxi)benzoato de etila a um 3 balão de 100 mL, seguido de 50 mL de etanol (ou butanol) e 1,4 mL (42,6 mmol) de 4 hidrazina monoidratada 65% (m/m). Aquecer a mistura reacional até refluxo e deixar 5 por 24 horas. Após isso, verter a mistura quente e em 200 mL água e gelo, filtrar sob 6 vácuo e lavar com água. Recristalizar o sólido resultante em etanol, filtrar a vácuo e lavar com etanol gelado. Rendimento: 82%. p.f: 112 °C (lit. 114-115 °C)⁵¹. RMN -¹H 7 8 (CDCI₃, 200 MHz) δ (ppm): 0.88 (t, 9 H, -CH₂CH₃), 1.18 - 1.39 (m, 48H, -CH₂-), 1.40 -1.54 (m, 6H, -OCH2CH2CH2-), 1.76 (m, 6H, -OCH2CH2-), 3.98 (m, 6H, -OCH2-), 9 10 6.94 (s, 2H, Ar-<u>H</u>), 7.51 (s, 1H, O=C-N<u>H</u>). RMN -¹³C (CDCI₃, 50 MHz) δ (ppm): 13,44; 22,03; 25,42; 28,71; 28,73; 28,92; 28,99; 29,04; 29,07; 29,66; 31,27; 68,69; 72,86; 11 12 104,87; 126,77; 140,81; 152,55.

1 6.1.2.9 *Final 1*

Adicionar 50 mg (0,1983 mmol) de 1,3,5-THZD, seguido de 25 mL de etanol e 3 338 mg (0,71 mmol) de 3,4-ALD. Aquecer a mistura reacional até refluxo e deixar 4 por 24 horas. Após isso, filtrar sob vácuo a mistura ainda quente e lavar o sólido com 5 etanol quente. Para recristalizar o sólido resultante, adicionar THF quente até a 6 completa solubilização, adicionar o mínimo de etanol para formar um precipitado 7 persistente, aquecer novamente até a completa solubilização e deixar resfriar 8 lentamente. Filtrar a vácuo, lavar com etanol gelado e secar.

9 Pode ser necessário recristalizar sucessivamente para produzir um material 10 de alta pureza, com objetivo de minimizar perdas, uma centrifuga pode ser 11 empregada para evitar filtrações desnecessárias. Solubilizar em clorofórmio o sólido 12 puro, filtrar em celite e evaporar o solvente, para obter um sólido amarelado com 13 aspecto ceroso. Rendimento: 50%. p.f.: 241 – 246,9 °C RMN -¹H (C₄D₂Cl₄, 400 14 MHz, 140 °C) δ (ppm): 0,97 (t, 27 H, -CH₂CH₃), 1,32 – 1,50 (m, 96H, -CH₂-), 1,51 – 15 1,62 (m, 12H, -OCH₂CH₂CH₂-), 1,85 (m, 12H, -OCH₂CH₂-), 4,09 (m, 12H, -OCH₂-), 16 6,93 (d, J=2,1 Hz, 3H, Ar-H), 7,20 (d, J=1,8 Hz, 3H, Ar-H), 7,37 (s, 1H, Ar-H), 8,22 17 (s, 3H, -C=N-H), 8,63 (s, 3H, Ar-H), 9,43 (s, 3H, O=C-NH). RMN -¹³C (CDCI₃ + 18 DMSO-d₆, 50 MHz) δ (ppm): 13,52; 21,98; 25,37; 28,65; 28,98; 31,21; 68,56; 109,85; 112.02; 120,88; 122,31; 126,32; 133,77; 148,95; 150,76; 162,68. 19

- 20
- 21

22 23

1 6.1.2.10 Final 2

2 Adicionar 50 mg (0,1983 mmol) de 1,3,5-THZD, seguido de 25 mL de etanol e 3 470 mg (0,71 mmol) de 3,4,5-ALD. Aquecer a mistura reacional até refluxo e deixar 4 por 24 horas. Após isso, filtrar sob vácuo a mistura ainda quente e lavar o sólido com 5 etanol quente. Para recristalizar o sólido resultante, adicionar THF quente até a 6 completa solubilização, adicionar o mínimo de etanol para formar um precipitado 7 permanente, aquecer novamente até a completa solubilização e deixar resfriar 8 lentamente. Filtrar a vácuo, lavar com etanol gelado e secar.

9 Pode ser necessário recristalizar sucessivamente para produzir um material 10 de alta pureza, com objetivo de minimizar perdas, uma centrifuga pode ser 11 empregada para evitar filtrações desnecessárias. Solubilizar em clorofórmio o sólido 12 puro, filtrar em celite e evaporar o solvente, para obter um sólido branco com 13 aspecto ceroso. Rendimento: 60%. P.f.: 230 – 239 °C. RMN -¹H (C₄D₂Cl₄, 400 MHz, 140 °C) δ (ppm): 0,97 (t, 27 H, -CH₂CH₃), 1,32 – 1,51 (m, 144H, -CH₂-), 1,51 – 1,63 14 15 (m, 18H, -OCH₂CH₂CH₂-), 1,85 (m, 18H, -OCH₂CH₂-), 4,09 (m, 18H, -OCH₂-), 6.99 16 (s, 6H, Ar-H), 8,21 (s, 3H, -C=N-H), 8,70 (s, 3H, Ar-H), 9,09 (s, 3H, O=C-NH). RMN 17 -¹³C (CDCl₃ + DMSO-d₆, 50 MHz) δ (ppm): 13,51; 22,00; 25,58; 28,70; 29,02; 31,25; 18 68,30; 72,54; 105,03; 128,52; 129,23; 133,73;139,58; 148,81; 152,89; 162,90.

1 6.1.2.11 Final 3

Adicionar 50 mg (0,3083 mmol) de 1,3,5-TALD, seguido de 25 mL de etanol e 560 mg (1,10 mmol) de 3,4-HZD. Aquecer a mistura reacional até refluxo e deixar por 24h. Após isso, filtrar sob vácuo a mistura ainda quente e lavar o sólido com etanol quente. Para recristalizar o sólido resultante, adicionar THF quente até a completa solubilização, adicionar o mínimo de etanol para formar um precipitado permanente, aquecer novamente até a completa solubilização e deixar resfriar lentamente. Filtrar a vácuo, lavar com etanol gelado e secar.

9 Pode ser necessário recristalizar sucessivamente para produzir um material 10 de alta pureza, com objetivo de minimizar perdas, uma centrifuga pode ser 11 empregada para evitar filtrações desnecessárias. Solubilizar em clorofórmio o sólido 12 puro, filtrar em celite e evaporar o solvente, para obter um sólido amarelado com 13 aspecto ceroso. Rendimento: 80%. P.f.: 225,5 – 237,5 °C. RMN -¹H (CDCI₃ + DMSOd₆, 200 MHz) δ (ppm): 0,88 (t, 27 H, -CH₂CH₃), 1,18 – 1,39 (m, 96H, -CH₂-), 1,37 – 14 15 1,59 (m, 12H, -OCH₂CH₂CH₂-), 1,80 (m, 12H, -OCH₂CH₂-), 4,04 (m, 12H, -OCH₂-), 6,91 (d, J=8.3 Hz, 3H, Ar-H), 7,58 (dd, 3H, Ar-H), 7,63 (d, 1H, Ar-H), 8,10 (s, 3H, -16 17 C=N-H), 8,48 (s, 3H, Ar-H), 11,67(s, 3H, O=C-NH). RMN -¹³C (CDCI₃ + DMSO-d₆, 18 50 MHz) δ (ppm): 14,11; 22,70; 26,10; 29,40; 29,75; 31,95; 69,03; 112,13; 113,02; 19 121,13; 124,86; 133,30; 135,09; 148,87; 152,61. 20

22

21

1 6.1.2.12 Final 4

Adicionar 50 mg (0,1983 mmol) de 1,3,5-TALD, seguido de 25 mL de etanol e 765 mg (1,10 mmol) de 3,4,5-HZD. Aquecer a mistura reacional até refluxo e deixar por 24h. Após isso, filtrar sob vácuo a mistura ainda quente e lavar o sólido com etanol quente. Para recristalizar o sólido resultante, adicionar THF quente até a completa solubilização, adicionar o mínimo de etanol para formar um precipitado permanente, aquecer novamente até a completa solubilização e deixar resfriar lentamente. Filtrar a vácuo, lavar com etanol gelado e secar.

9 Pode ser necessário recristalizar sucessivamente para produzir um material 10 de alta pureza, com objetivo de minimizar perdas, uma centrifuga pode ser 11 empregada para evitar filtrações desnecessárias. Solubilizar em clorofórmio o sólido 12 puro, filtrar em celite e evaporar o solvente, para obter um sólido branco com 13 aspecto ceroso. Rendimento: 80%. P.f.: 230 - 238,8 °C °C. RMN -1H (CDCl3 + 14 DMSO-d₆, 200 MHz) δ (ppm): 0,88 (t, 27 H, -CH₂C<u>H₃</u>), 1,18 – 1,39 (m, 144H, -C<u>H₂-</u>), 15 1,41 – 1,58 (m, 18H, -OCH2CH2CH2CH2-), 1,78 (m, 18H, -OCH2CH2-), 4,02 (m, 18H, -16 OCH₂-), 7,21 (s, 6H, Ar-H), 8,15 (s, 3H, -C=N-H), 8,52 (s, 3H, Ar-H), 11,74(s, 3H, O=C-NH). RMN -¹³C (CDCI₃ + DMSO-d₆, 50 MHz) δ (ppm): 13,51; 22,00; 25,58; 17 18 28,70; 29,02; 31,25; 68,30; 72,54; 105,03; 128,52; 129,23; 133,73; 139,58; 148,81; 19 152,89; 162,90.

20

6.1.3 Métodos de caracterização

6.1.3.1 *Caracterização estrutural e pureza*

3

4

2

6.1.3.1.1 Espectroscopia por ressonância magnética nuclear (RMN)

5 Os espectros de RMN de ¹H e de ¹³C das moléculas intermediárias e finais 6 foram obtidos através de um espectrômetro da marca Bruker, modelo AVANCE 7 DRX, operando na frequência de 200 e 50,4 MHz, para os núcleos de ¹H e ¹³C, 8 respectivamente. Os deslocamentos químicos foram apresentados em parte por 9 milhão (ppm), em relação ao padrão interno - tetrametilsilano (TMS). Os solventes 10 utilizados são, são clorofórmio (CDCl₃), dimetilsulfóxido (DMSO-*d*₆) e metanol 11 (MeOD - *d*₄).

Para os espectros dos compostos finais, utilizou-se cerca de 6 mo de 12 13 material, dissolvidos em 500 µL de clorofórmio e 100 µL de DMSO ou metanol. No 14 caso dos espectros de ¹³C, também foi utilizado a mesma concentração e mistura de 15 solvente. As únicas exceções são os espectros realizados a alta temperatura, os 16 quais foram obtidos, em parceria com a o grupo de Pesquisa do Dr. Harald Bock, no 17 Centre de Recherche Paul Pascal (CRPP) (Bordeaux, França), em um 18 espectrofotômetro JEOL ECS-40 operando a 400 MHz, a 140 ° C e tetracloroetano 19 $(C_2D_2CI_2)$ como solvente.

20

21 6.1.3.1.2 Análise elementar (CHN)

Para determinar os teores de CHNS/O e, portanto, a pureza dos materiais,
 empregou-se um analisador elementar modelo 2400 Série II, da marca PerkinElmer.

As amostram foram secas a 120 °C, em estufa a vácuo, por 3 horas, para remoção de qualquer água, ou solvente, residual.

26

27

6.1.3.2 Caracterização térmica e mesomórfica

28

29 6.1.3.2.1 Análise termogravimétrica

A temperatura de perda de massa das moléculas finais foi determinada com
um analisador termogravimétrico modelo TGA-50, da marca Shimadzu, com
aquecimento de 10 °C a 900 °C, a uma taxa de 10 °C·min⁻¹, fluxo de nitrogênio de 50
mL·min⁻¹ e célula de platina.

2 6.1.3.2.2 Microscopia óptica de luz polarizada (MOLP)

Os pontos de fusão, de todas as moléculas, e as imagens das texturas, dos
materiais mesomórfico, foram obtidos com auxílio um microscópio óptico de luz
polarizada modelo BX53, equipado com uma câmera DP73, ambos da marca
Olympus, e uma e placa de aquecimento modelo FP 82 HT Hot-Stage, da marca
Mettler Toledo.

8

9

6.1.3.2.3 Calorimetria diferencial de varredura (DSC)

As análises de variação de entalpia e temperaturas de transição, para as moléculas finais, foram realizadas em um calorímetro modelo Q2000, da marca TA com uma faixa de trabalho entre -50 °C e 250 °C, com taxa de aquecimento, ou resfriamento, de 10 °C·min⁻¹, e um fluxo de nitrogênio de 50 mL·min⁻¹.

14

15 6.1.3.2.4 Difratometria de raios X (DRX)

16 Para a obtenção dos difratogramas dos compostos finais se utilizou um 17 difratômetro modelo X'Pert-Pro, equipado com um detector X'Celerator, ambos da 18 marca Malvern Panalytical. A radiação utilizada Cu K α (λ = 1,5418 Å), com uma 19 potência aplicada de 1,2 kVA. A variação de temperatura foi controlada pela Unidade 20 de Controle de Temperatura TCU2000 (Anton Paar). A preparação da amostra 21 envolveu a deposição de uma pequena quantidade do composto em um substrato 22 de vidro, que foi então aquecido até atingir a fase isotrópica e rapidamente resfriado 23 até a temperatura de medição. A temperatura selecionada, para ambos os materiais, 24 foi de 200 °C, com objetivo de minimizar a degradação térmica, principalmente para 25 o F1. Posteriormente, outros espectros foram obtidos até atingir a temperatura 26 ambiente.

27

28

6.1.3.3

Caracterização da fotoisomerização

29

30 6.1.3.3.1 Absorção e emissão

Para a obtenção dos espectros de absorção, na região UV-vis, das moléculas
finais, executou-se as análises em um espectrofotômetro espectrômetro UV-2600i,
da marca Shimadzu. Preparou-se soluções com concentrações de 10⁻⁵ mol.L⁻¹ e
clorofórmio como solvente, que também foram usadas nos experimentos de

emissão. As cubetas utilizadas foram de quartzo, com 1 cm de caminho ótico. Para
os experimentos de fotoisomerização, irradiou-se as amostras de forma periódica,
em uma caixa escura, equipada com uma lâmpada fluorescente de 310 nm, de 10
W, ou uma lanterna LED de 365 nm, de 10 W. Entre cada uma dessas irradiações,
registrou-se os espectros de absorção.

Para o experimento de emissão, utilizou-se um Fluorímetro F7000, da marca
Hitachi, com cubeta de quartzo de 4 faces polidas, com 1 cm de caminho ótico. As
soluções foram excitadas em seus máximos de absorção. As soluções referentes
aos isômeros *Z* foram provenientes do experimento de absorção, assim que não
houve mais variação da absorção com a incidência de luz UV, considerou-se
conversão total e se realizou a medida de emissão.

12

13 6.1.3.3.2 RMN

Para os experimentos de fotoisomerização, no RMN, utilizou-se o mesmo espectrômetro modelo AVANCE DRX (200 MHz). Os espectros foram realizados com 6 mg de material, dissolvidos em 500 µL de CDCl₃ e 100 µL de DMSO-d₆. Para executar a irradiação de luz da amostra, transferiu-se do tubo de RMN para uma cubeta de quartzo. Como fonte de luz UV, empregou-se a lanterna LED de 365 nm, 10 W, e a lâmpada fluorescente de 310 nm, 10 W, para F2 e F4, respectivamente, assim como nos experimentos de absorção.

21

22 6.1.4 Métodos de desenvolvimento de sistemas supramoleculares

23

24 6.1.4.1 Gelificação

Para a formação do gel se adicionou 40 mg de F1 em 380 µL de benzeno e
se aqueceu para completar a solubilização, o gel se formou no resfriamento. A fonte
de luz UV utilizada para irradiar o gel foi a lanterna led de 365 nm e 10 W de
potência.

29

30 6.1.4.2 Complexação

Para demonstrar, de forma simples, a capacidade desses materiais se complexarem com metais, preparou-se quatro misturas, com 2 mL de uma solução com 3 mg/mL de cada um dos materiais (F1, F2, F3 e F4), solubilizados em clorofórmio, e uma ponta de espátula de nitrato de cobre. Além disso, uma quinta
 mistura, apenas com clorofórmio e nitrato de cobre, também, foi preparada para ser
 utilizada como referência.