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RESUMO

A integracdo da modelagem multi-escala com simulagdo molecular e algoritmos de
aprendizado de maquina representa uma abordagem computacional promissora para
explorar operagdes fisico-quimicas em diversas escalas. Este estudo foca na sinergia
entre algoritmos de aprendizado de maquina, simulacdes moleculares e modelagem
deterministica para investigar a adsorcdo de CO». A aplicagdo baseia-se na mode-
lagem das intera¢des em nanoescala para a adsor¢éo de CO, por métodos de Monte
Carlo no Grande Canénico (GCMC), onde as propriedades em nanoescala séo avali-
adas. Essas propriedades sdo usadas como entradas em Modelos de Aprendizado
de Maquina para prever os indicadores de desempenho que descrevem a Curva de
Ruptura de um sistema de adsorcao em leito fixo (macro escala) para trés materiais
diferentes. Os resultados obtidos usando a metodologia proposta demonstram uma
concordancia satisfatéria, com valores médios do Erro Quadratico Médio (MSE) e
Erro Quadratico Médio da Raiz (RMSE) na validagdo da isoterma de adsorcdo em
nanoescala sendo 1.0955 mol/kg e 0.8588 mol/kg, respectivamente. Na macro escala,
o RMSE foi 0.0565, e o MSE ficou abaixo de 0.0032 para a carga do adsorbato. A
aplicagédo de algoritmos de aprendizado de maquina destaca a superioridade das Re-
des Neurais Artificiais (0.0565, 0.0032, 1.260%, 0.9864), conforme evidenciado por
indicadores como MSE, RMSE e R2, contribuindo para avan¢os na compreenséo da
adsorgéo de CO, e seu impacto nas mudancgas climaticas globais. A metodologia XAl
€ empreendida para verificar se 0s pesos associados a cada variavel ttm uma relacao
fisica com a operacdo macro simulada. A metodologia geral adotada é promissora e
pode ser expandida para a integracao de diferentes modelos e operacdes, aproveitando
suas propriedades de multi-escala.

Palavras-chave:CO, adsorption, Multi-scale, Molecular simulation, Machine learning
algorithms, Breakthrough curve.



ABSTRACT

The integration of multi-scale modeling with molecular simulation and machine learning
algorithms represents a promising computational approach to explore physico-chemical
operations across various scales. This study focuses on the synergy between machine
learning algorithms, molecular simulations, and deterministic modeling to investigate
CO, adsorption. The application relies on the modeling of nanoscale interactions for
CO, adsorption by Grand Canonical Monte Carlo (GCMC) methods, where nano-scale
properties are evaluated. These properties are used as inputs within Machine Learning
Models to predict the performance indicators that describe the Breakthrough Curve of
a fixed-bed adsorption system (macro scale) for three different materials. The results
obtained using the proposed methodology demonstrate satisfactory agreement, with
mean values of Mean Squared Error (MSE) and Root Mean Squared Error (RMSE) in
the validation of the nano-scale adsorption isotherm being 1.0955 mol/kg and 0.8588
mol/kg, respectively. On the macro scale, the RMSE was 0.0565, and the MSE was
below 0.0032 for the adsorbate load. The application of machine learning algorithms
highlights the superiority of Artificial Neural Networks (0.0565, 0.0032, 1.260%, 0.9864),
as evidenced by indicators such as MSE, RMSE, and R?, contributing to advancements
in the understanding of CO», adsorption and its impact on global climate change. XAl
methodology is undertaken to verify if the weights associated with each variable have
a physical relation with the macro-operation simulated. The overall methodology under-
taken is promising and can be expanded towards the integration of different models
and operations, taking advantage of its multi-scale properties.

Keywords:CO, adsorption, Multi-scale, Molecular simulation, Machine learning algo-
rithms, Breakthrough curve.



RESUMO EXPANDIDO

Introducao

A crescente urgéncia das mudangas climaticas, impulsionada pelo aumento das emis-
sOes de gases de efeito estufa, especialmente o didxido de carbono (CO,), demanda
solugdes inovadoras. As tecnologias de Captura, Utilizagcdo e Armazenamento de Car-
bono (CCUS) tém ganhado atencéo significativa para mitigar as emissdes de CO,.
Apesar dos avancgos, ainda existem desafios em escalonar essas tecnologias para
atender as demandas globais. O presente estudo foca no desenvolvimento de méto-
dos computacionais voltados para a adsorgéo de CO», especificamente por meio de
simulagdes moleculares e técnicas de aprendizado de maquina (ML), visando mel-
horar a eficiéncia operacional e a escalabilidade. A pesquisa explora a modelagem
multiescala, com o objetivo de conectar interagées em nivel molecular aos resultados
em larga escala, abordando questbes-chave como a eficiéncia de um leito de adsorcao
analisado por indicadores de operacédo. A integracado de simulagées moleculares in
silico com ML oferece uma abordagem orientada por dados para melhorar a previsibili-
dade e o desempenho da adsor¢éo de CO,. A dissertacdo esta estruturada em torno
de trés componentes principais: experimentacado em nanoescala por meio de simu-
lacbes moleculares, modelagem em macroescala e a aplicacdo de ML para a conexao
entre escalas. O trabalho oferece insights sobre como ferramentas computacionais
avangadas podem aprimorar as tecnologias de captura de CO», proporcionando uma
estrutura inovadora para futuros desenvolvimentos na area.

Objetivos

Os objetivos especificos incluem, primeiramente, modelar a adsor¢édo de CO», em difer-
entes materiais, como zedlitas e estruturas metalo-organicas (MOFs), utilizando simu-
lagdes moleculares. Além disso, serd realizado o estudo de um sistema de adsorgéao
em leito fixo desses mesmos materiais através de modelos deterministicos, validando
os resultados das simulagées moleculares com dados experimentais disponiveis na
literatura. Outro objetivo é desenvolver uma metodologia capaz de integrar dados de
diferentes escalas referentes a adsor¢ao de CO, em um unico conjunto de dados. Por
fim, sera implementado um conjunto de algoritmos supervisionados de aprendizado
de maquina, treinados com dados gerados por simulagées moleculares, para prever
os indicadores de desempenho em simulagcdes em macroescala e fornecer insights
cientificos sobre o campo da adsorc¢ao de CO».

Metodologia

A metodologia desenvolvida para esta tese integra simulacdes em escala nanométrica
e macroscopica com técnicas de Machine Learning (ML) para construir uma estrutura
multiescalar consistente. O fluxo de trabalho consiste em trés ramos principais, cada
um dedicado a aspectos especificos do estudo. O primeiro ramo foca no desenvolvi-
mento de dados em escala nanométrica, particularmente através de simulacdes de
adsorgao de CO, utilizando métodos de Monte Carlo no software RASPA. Essas simu-
lagdes geram saidas em nivel molecular que servem como entradas para aplicacoes
de ML. Os procedimentos incluem a definicdo de arquivos de entrada para simulagdes,
como a estrutura de adsorventes e adsorvatos, campos de forgca e regras de mistura,



garantindo precisdao na representacao das interacées de van der Waals e paramet-
ros potenciais. As simulagdes sdo executadas por meio de scripts de shell em um
ambiente de desenvolvimento integrado (IDE), neste caso, o Visual Studio Code. O
segundo ramo aborda a modelagem macroscopica, que captura o comportamento em
maior escala do sistema sob condigdes termodinamicas semelhantes. As simulacoes
em escala nanométrica e macroscoépica estao interconectadas por restricdes consis-
tentes, particularmente temperatura e pressao, que mantém a correspondéncia fisica
entre as escalas. Embora os fenbmenos ocorram em escalas de tempo muito difer-
entes—nanosegundos na escala nanométrica e horas na escala macroscopica—essas
restricbes comuns garantem que os dados sejam coerentes e estruturados para inte-
gracao em um conjunto de dados unificado. Uma parte essencial deste trabalho é
o contraste entre 0 método de Monte Carlo (GCMC) e modelos de isoterma, que
descrevem a adsorcao de CO» a partir de diferentes perspectivas — estocéstica na
escala nanométrica e deterministica na escala macroscopica. Embora o modelo de
isoterma de Langmuir tenha sido inicialmente considerado, ele foi excluido devido a
sua incapacidade de descrever adequadamente as interagcdes em nivel nanométrico.
Em vez disso, os modelos de Freundlich e SIPS foram empregados para ajustar os
dados do GCMC. Essa abordagem evita inconsisténcias entre as escalas, o que pode-
ria levar a imprecisdes termodinamicas. O terceiro ramo da metodologia detalha o uso
de modelos de ML, especificamente redes neurais e algoritmos de Random Forest.
Esses modelos sao treinados com o conjunto de dados estruturado que resulta nas
saidas das simulacdes em escala nanométrica (entradas) e simulacées em escala
macroscopica (objetivos). Essa abordagem multiescalar, baseada em dados, garante
que as conexdes entre fenbmenos fisicos em diferentes escalas sejam capturadas
eficazmente. No geral, a metodologia estabelece uma estrutura onde propriedades in-
tensivas, como temperatura e pressao, servem como variaveis-chave que conectam os
dominios nanométrico e macroscépico. Essa integracao facilita um modelo multiescalar
confiavel e consistente que impulsiona a capacidade preditiva a partir da computacao
intensiva.

Resultados e Discussao

Simulagdes de GCMC foram realizadas e comparadas com dados da literatura. Todas
as simulagdes desenvolvidas neste estudo foram para um sistema de adsor¢cdo de
um unico componente (CO,). A precisdo das simulagdes foi verificada ao comparar
os dados obtidos com as propriedades de equilibrio termodinamico e o0 modelo deter-
ministico da curva de ruptura do leito. As simulagbes foram realizadas nas mesmas
condicbes (temperatura e pressao) dos estudos de referéncia. As isotermas obtidos por
experimentos in silico foram comparados utilizando erro quadratico médio (MSE), raiz
do erro quadratico médio (RMSE), e raiz do erro quadratico médio relativa (RRMSE),
junto do coeficiente de determinacao (R2). Os indicadores de desempenho mostraram
uma boa concordancia entre a experimentacao in silico e os dados de referéncia, com
um MSE médio de 1.0955 mol/kg e um RMSE médio de 0.8588 mol/kg, equivalente
a 6.633% de erro relativo. O R2 medio geral foi calculado como 0.994, indicando um
bom desempenho geral das simulagbes. No entanto, foi observada uma divergéncia
na simulacao para ITQ-29 a partir de 2 bar de pressao, devido ao ajuste do sistema
para o termo de fugacidade na equacao de Peng-Robinson. Embora o ZIF-8 tenha
mostrado uma boa concordancia com os dados de referéncia a altas pressoes, foi
identificado que os campos de for¢a representam uma barreira significativa para uma



boa correspondéncia entre dados experimentais e simulados. A qualidade das simu-
lacOes foi avaliada pelo desempenho do SWAP, com uma diferenca média de 0.0785%
entre exclusdes e insercdes, confirmando a precisao das simulacdes. Para realizar as
simulacdes em macroscala, o trabalho de Sabouni e colaboradores foi reproduzido e
validado. O sistema fisico em macroscala, conectado aos modelos de aprendizado de
maquina com a escala nanométrica, € descrito por este trabalho de referéncia, essen-
cial para o projeto atual. Os modelos de aprendizado de maquina foram treinados
para prever alvos especificos para esse sistema fisico. A modelagem deterministica da
BKC de adsorgéo de CO» foi desenvolvido em MATLAB. A simulagdo em macroscala
foi avaliada com indicadores de desempenho estatistico semelhantes aos usados na
escala nanométrica. Os resultados foram comparados com dados experimentais de
referéncias da literature. Os resultados mostraram uma boa representacédo dos dados
experimentais, com um RMSE de 0.0565 e um MSE menor que 0.0032 para carga
de adsorvato. O RRMSE de 1.260% e o R? de 0.9864 confirmaram a concordancia.
A utilizacdo de grupos adimensionais permitiu uma melhor descri¢gdo do sistema em
macroscala, reduzindo a complexidade e evitando problemas rigidos, como em ca-
sos de alta pressédo. A qualidade dos algoritmos de regressdo de aprendizado de
maquina foi impactada pela estrutura dos conjuntos de dados, sendo essencial que se-
jam bem estruturados para evitar vieses e complexidades adicionais. O procedimento
de suavizacdo é um passo principal para que cada caracteristica dos isotermas dos
materiais ITQ-29, IRMOF-1 e ZIF-8 seja transformada numericamente, facilitando o
aprendizado de maquina. O ajuste de dados foi realizado em grande maioria o loga-
ritico natural. Este procedimento de regressao apresentou boa concordancia com os
dados computacionais, com um coeficiente de determinacdo médio de 0.9922 e um
desvio padréao de 0.00728. O coeficiente de variagéo € de 0.73%, indicativos de um
bom ajuste. A melhoria dos modelos de RF e ANN seguiu 0s mesmos equivalentes:
variagao dos hiperparametros para encontrar o melhor modelo e conjunto de treina-
mento. Inicialmente, os resultados do RF foram obtidos com base na busca aleatéria
de hiperparametros, e a otimizagdo da arquitetura MLP foi realizada analisando a
funcdo de ativagdo, o niumero de épocas e o tamanho do lote. Ambos os algoritmos
foram aprimorados com base no tempo estequiométrico, aplicando hiperparametros
6timos para o tempo de saturacao e o tempo de quebra diretamente. Para o TC, com
um MAE de 0.00296 e um RMSE de 0.00357, o modelo se ajusta bem aos dados
de treinamento. No entanto, R2 e MSE indicam overfitting, com valores de 0.99999 e
0.00001, respectivamente. Ao aplicar o modelo no conjunto de teste, a adequagéo é
boa, sem indicar viés de overfitting. Indicadores de desempenho mostram variacoes
leves para MAE (0.06087) e RMSE (0.12188), e MSE e R? confirmam um excelente
ajuste. A andlise dos valores SHAP indica que SgeT, presséo e Vpore/H-A Coulomb
sao as principais variaveis para o modelo RF de TC, com valores médios SHAP de
3.4, 0.65 e 0.45, respectivamente, sugerindo que o modelo néo utiliza todo o con-
junto de dados para um ajuste capacitado. As Figuras 22 e 23 ilustram essa andlise e
destacam a importancia de um uso mais equilibrado das distribuicdes de dados para
melhorar o ajuste para o conjunto de teste. Para desenvolver o melhor modelo de rede
neural artificial (ANN), o estudo focou na combinacéo ideal entre fungéo de ativagao,
tamanho do lote e nUmero de épocas, utilizando uma arquitetura de 7 camadas com
15x32x64x32x8x8x1 neurbnios. A funcao RelLu se destacou, superando a sigmoidal e
apresentando melhor desempenho. Testes mostraram que tamanhos de lote menores
e mais épocas melhoram a performance, mas o melhor conjunto foi 10/90 para ReLu. O
modelo ANN alcangcou um MSE médio de 0.0062 e RMSE de 0.0541, com R2 médio de



0.9993, evidenciando um ajuste adequado. A analise SHAP revelou que variaveis como
SgeT € Enthalpy of Adsorption sdo cruciais para a previsao, intengrando informacao
fisica relevante da ramificacdo da nanoescalado junto da abordagem macroescala por
intermedio da abordagem Big data.

Consideracoes Finais

Os resultados do estudo sdo promissores, mas precisam de uma analise critica, espe-
cialmente em relacdo a adsorgéo de CO, em sistemas multicomponentes, que envolve
intera¢cdes complexas com componentes como O, e agua. Essa complexidade exige
uma reavaliagcao de todas as abordagens anteriores, particularmente no modelamento
macroescala, onde as isotermas de difusdo e absor¢ao precisam ser revistas para sis-
temas multicomponentes, o que afetara modelos como o de leito fixo. A incorporacao
de campos de forca com modelos de aprendizado de maquina pode aprimorar 0 mod-
elamento molecular e potencialmente mudar a aplicacao de aprendizado de maquina
em modelagem multiescalar. A analise continua e rigorosa das caracteristicas junto de
outputs é essencial, pois pode impactar significativamente o framework desenvolvido.
No caso das redes neurais artificiais (ANNs), explorar diferentes arquiteturas e hiper-
parametros pode, potencialmente, melhorar o desempenho e a interpretabilidade da
integragéo. O estudo mostrou que as ANNs superaram os modelos de floresta aleatéria
(RF) na previsédo de indicadores como TBK, TC e TS. A integragéo de simulagcdes em
nanoescala com modelagem em macroescala através de aprendizado de maquina
oferece uma abordagem robusta para andlise e previsdo da adsorgdo de CO,, mas
ainda passiva de melhorias.

Palavras-chave:Adsor¢cdo de CO,. Multi-escala. Simulagdo Molecular. Algoritmos de
Aprendizagem de Maquina. Curva de ruptura.
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1 INTRODUCTION

Among all the new century challenges, one has continuously gained attention:
the greenhouse effect and environmental and weather stability. Greenhouse gas (GHG)
emissions are addressed as one of the driving forces towards Global warming. Anthro-
pogenic GHG emissions have been increasing consistently in the last decade (YORO;
DARAMOLA, 2020; GABRIELLI; GAZZANI; MAZZOTTI, 2020), hence the scenario that
humankind faces has gained urgency characteristics. The principal component of this
context, in terms of mass emissions, is carbon dioxide (CO»). The Intergovernmental
Panel on Climate Change (IPCC) is constantly related as a reference, while its content
indicates different scenarios that should be achieved or avoided. Even being criticized
and reviewed consistently (BURGESS et al., 2020a), the data present a continuous
increase in the concentration of CO, reaching values of 420 ppm (BURGESS et al.,
2020b). The consequences of that rate imply several changes in our way of life, re-
sources supply and demand (PUGNAIRE et al., 2019).

To solve that growing urgent problem, Carbon Capture, Utilization, and Storage
(CCUS) technologies are gaining more attention, both on the academic and the in-
dustrial fronts. At the beginning of that value chain, carbon capture has three main
fronts that should be addressed (GABRIELLI; GAZZANI; MAZZOTTI, 2020): 1) Rate
of capture, i.e. basically the amount of CO, uptake from the fonts of emissions and
atmosphere; 2) time and storage, meaning the amount of CO, trapped until the usage
of one pitfall; and 3) scale, since the growth of sources of COs is higher than the growth
of CCUS technologies. Those factors imply an incentive on the way and the velocity
at which engineers develop technologies. In the context of CO,, addressing capturing
technologies that are still in need of improvement at their Technology Readiness Level
(TRL) requires innovative methods to accelerate their development. That is the case
of CO, adsorption (OLECHOWSKI; EPPINGER; JOGLEKAR, 2015), assigned at the
demonstration phase, with TLR addressed as level 7, specifically for Post-Combustion
Adsorption, and Direct Air capture technologies. That leveling indicates that scalability
is still a challenge for the adsorption technologies, with several aspects to be enhanced
(i.e. cost-minimization, operational efficiency, control, and operation). One of the key
aspects thought, still relies on materials screening and effectiveness towards scalability
(BUI et al., 2018)

Gas-solid adsorption is grounded on interaction forces that will trap a gaseous
molecule in a framework. In a multicomponent adsorption system, molecules would
compete for adsorption sites, tending to thermodynamic equilibrium (ZHAO et al., 2021).
Several ways to enhance the technology have been presented in the last years, espe-



Chapter 1. Introduction 23

cially considering the so-called in silico methods, where experimentation is performed
in a virtual system (MIRZAEI, 2020). The attention of this work follows the molecular
simulation technigue where in a confined system the surface phenomena are designed
and modeled. The approach allows one to fundamentally measure inner properties,
evaluate heterogeneous atoms in the constitution of a new framework, analyze the
impact of pore size and structure fails, gradients, and so on (ZHOU, W. et al., 2019;
CASTILLO, 2009; KWON et al., 2017, 2017), throughout visual and intuitive interfaces,
as iRASPA and RASPA 2 software (DUBBELDAM et al., 2016).

Even more recently, another insightful and agile tool has gained attention. Ma-
chine Learning Algorithms have been presented as an opportunity to improve insight-
fully chemical engineering technologies in general. Regarding CO» adsorption, a di-
verse set of applications has already been displayed by academia, from operational
systems, e.g., geological injection (STURLUSON et al., 2019; HU et al., 2019) and
Pressure Swing Adsorption (PSA) (AN et al., 2019; GU, C. et al., 2019), to materials
screening (YAMADA et al., 2019; AGHAJI et al., 2016; FERNANDEZ; BARNARD, 2016)
and synergistic interactions (ZHAO et al., 2021).

Machine Learning is assigned to the data-driven engineering field (MONTANS
et al., 2019). The molecular simulation method, though, is a piece of a bigger picture
with its pros and cons (GE et al., 2019). Suppose one aims to perform detailed simula-
tions connecting scales to enhance a system’s predictability throughout the modeling.
In that case, the system’s degrees of freedom increase as the detailing (more minor
scales) is considered. Therefore, greater detail might leads to higher and makes the
trade-off between informational and precision more challenging. Connecting scales is
a challenge in chemical engineering that generally finds itself in CO, adsorption and
storage (AFAGWU et al., 2021; LE et al., 2020). If overcome, significant improvement
can be made regarding problems such as GHG emissions, carbon capture technology
improvement, adsorption efficiency, etc. Enlighted by the present ideas and concepits,
the primary motivation of the current work is to tackle multiscale modeling by the inno-
vative techniques mentioned and provide a glimpse of the collaborative application of
MLA and MS within the field of Chemical Engineering, more precisely, CO, adsorption.

Finally, to improve the technological face of CO», adsorption operation, the cur-
rent workflow focuses on developing a data-driven method that forecasts multiscale
performance through the integration of Machine Learning ML and Molecular Simulation
MS.
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1.1 STRUCTURE OF THIS DOCUMENT

It is essential to convey the work’s structure: focusing on multiscale modeling for
CO, adsorption. Methodology details result application and implication. For clarity, read-
ers are encouraged to grasp theoretical fundamentals from bottom-up, understanding
nano-scale interactions and their macro consequences. Results presented step-by-
step, rooted in methodology and theoretical background. Methodology grounded in
three main contents.

* Nanoscale in silico experimentation, performed by molecular simulation.
» Macro-scale modeling, employed by classic deterministic modeling.

» The application of Machine Learning models building a connection with
nanoscales and macroscales.

Therefore, some questions are presented that not just anchor the present work
but are also dedicated to displaying an evident comprehension to the reader about the
principles behind it and its physical validation.

The questions that may orient the present study’s development are related to
the mathematical unfolding of the modeling of the same phenomena at different scales.
As the scale of the phenomena is closer and closer to the non-continuum domain, the
interactions’ degrees of complexity increase significantly. A critical notion can be used
to elucidate its complexity. The degrees of freedom of a molecular system can be close
to the unit of thousands. At the same time, a macro-scale model will be stated in the
decimals unit when too complex. How can two distant scales with different complexity
degrees be connected throughout the same mathematical model?

A second question that might instigate the reader toward the present study is
related to the universal approximation principle for neural networks, the Monte Carlo
algorithm, and the deterministic modeling of a physiochemical system. By which means
do those three mathematical approaches find each other and bring to light a direct
connection between scales that are separated by time and space measurements so
discrepant?

From that second question, one more can be formulated. Despite the scale, the
phenomena modeled will follow the dimensions of time regarding its interactions. While
in the nanoscale the time frame of nanoseconds is passive to frame the interaction over
there, at the macro scale, the unit of minutes, hours, and sometimes days is pertinent
for adsorption. To be more precise, a calculus can be done. For example, for every
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hour for the operation of a fixed bed adsorption system, 3.6 x 101 picoseconds are
computed. How, without a high computational cost, can nanoscale attributes be directly
associated with a macro scale system directly and intuitively?

The questions made above are the foundations of the present work. The objec-
tive of the following document is to ground and solve those questions. The core of the
present work, as presented, has three main niches of work, and its final deployment
follows the direct integration of those by a data-driven method. Therefore, the connec-
tions between contents are represented by simple and didactic apparatus throughout
the sections.

Furthermore, the document’s structure comprehends the context, motivation,
and objectives, addressed in the former section. Then, in sequence, the computational
tools used are elucidated, establishing the theoretical background of the protocol devel-
oped. In the third chapter, the reader will be presented with the methodology in general
and specific terms. In chapter four, the top results related to the presented procedures
will be explained and analyzed in two sections, the first dedicated to a general validation
of the methodology, and the second addressing specific applications. The final chapter
will present the main conclusions of the study developed.

1.2 OBJECTIVES

1.2.1 General objective

To integrate Machine Learning Algorithms with Molecular Simulations to enhance
the accuracy and efficiency of CO», adsorption studies.

1.2.2 Specific objectives

1. Model through molecular simulations the CO, adsorption in different materi-
als (Zeolites and MOFs), and a fixed bed adsorption system of those same
materials by deterministic models while validating those molecular simula-
tions with experimental data from the literature.

2. Develop a methodology capable of integrating data from different scales
regarding CO», adsorption in a single dataset.

3. Implement Supervised Machine Learning Algorithms trained on data gener-
ated by molecular simulations towards macroscale simulations performance
indicators and uncover their intelligence toward scientific insights regarding
CO, adsorption field.
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2 THEORETICAL BACKGROUND

To sustain the methodology here developed and evaluate the results right away,
the theoretical background is composed of three main parts. The first introduces the
reader to the fundamentals of CO, adsorption, explaining it from the perspective of the
equilibrium and dynamics of the system. The second part is dedicated to molecular
simulation, where its basics are grounded. Lastly, Machine Learning Algorithms are
established, giving attention to Supervised Machine Learning Algorithms (SMLA).

This approach also sustains how the methodology was developed, although from
a clear and cohesive perspective. All the details that orchestrate a linear workflow are
detailed in the methodology section. Therefore, since the procedure develops a strategy
for multiscale modeling of CO», adsorption throughout the integration of deterministic
modeling, Molecular Simulation (MS), and Machine Learning Algorithms (MLA), the
objective of this section is to present not just the fundamental concepts that sustain the
physical bases of the methodology developed, but also a mathematical comprehension
and intuitive endeavor of the present work.

2.1 CO, ADSORPTION: FUNDAMENTALS AND MODELING

Before delving into the concepts of adsorption, it’s crucial to understand why
CO, adsorption is a relevant process for addressing climate change. Industrial activities
alone contribute approximately 30% of the U.S. primary energy-related CO, emissions,
amounting to close to 1.36 gigatons in 2020 (BEASLEY; O'KEEFE; RODGERS, 2023a).
This statistic underscores the urgent need for effective strategies to mitigate industrial
emissions and tackle climate change. Adsorption presents itself as a promising ap-
proach due to its modular features, allowing for scalability and adaptability (BEASLEY;
O'KEEFE; RODGERS, 2023b, 2023c). As a process at the forefront of a chain (where
carbon must first be captured for processing), the effectiveness of CO, adsorption
addresses not only environmental concerns but also industrial challenges, offering po-
tential for a range of further applications (BEASLEY; O’KEEFE; RODGERS, 2023d,
2023e, 2023f).

Despite being promising and reliable, CO, adsorption still faces several chal-
lenges, including high selectivity and the renewability of adsorbents (BEASLEY; O'KEEFE;
RODGERS, 2023g). CO, competes with CH,4 for adsorption, making selectivity com-
plex in multi-component adsorption scenarios. Additionally, the presence of humidity
and other components further complicates selectivity (KOLLE; FAYAZ; SAYARI, 2021).
Over time, humidity affects the adsorbent’s capacity, with water clustering at high con-
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centrations and competing with methane and carbon dioxide at medium percentages
(BEASLEY; OKEEFE; RODGERS, 2023g; BAHAMON; VEGA, 2016). Enhancing the
adsorption approach requires leveraging fundamentals to address these challenges
effectively.

Adsorption generally relies on the thermodynamic equilibrium between an ad-
sorbate (the substance or molecules that are being attracted and adhere to a surface),
present in the bulk of the system, and its concentration at the surface of an adsor-
bent, the contact framework. Adsorption is characterized as a superficial phenomenon
(PULLUMBI; BRANDANI, F.; BRANDANI, S., 2019; DABROWSKI, 2001). From the
practical point of view, its final results are the measured capacity of a material to attach
molecules at its surface at determinate conditions (CASTILLO, 2009). The interaction
between the process agents determines the equilibrium concentration, the central as-
pect of adsorption evaluation. Several properties concerning adsorbate and adsorbent
will determine the thermodynamic equilibrium (presence of ions, superficial area, open
sites, etc.), as well as the nature of the interaction: physical (physisorption) or chemical
(chemisorption) (DABROWSKI, 2001).

In the following sections, adsorption focused on CO», will be deepened, relying
upon its equilibrium and dynamic modeling. The text of this section is divided into two
main topics: equilibrium and dynamics. The first conceives the core ideas behind the
nanoscale interactions, leading to the adsorbate/adsorbent complex thermodynamic
equilibrium. The second topic defines the kinetics of the adsorption process in a fixed-
bed system from the perspective of the interactions from small to bigger scales, sup-
ported by mechanistic models. That is the first part of the theoretical background, and
the reader can then regard a deterministic model through intermolecular fundamentals.

2.1.1 Equilibrium

The nature of the CO, adsorption process relies on the equilibrium between
forces of attraction within a system composed of a framework and the gaseous bulk
molecules (DABROWSKI, 2001). The manipulation of temperature and pressure will
imply a new state of thermodynamic equilibrium, where those forces of attraction will
maintain an amount of CO, on the surface of the framework (DABROWSKI, 2001;
CASTILLO, 2009). The thermodynamic equilibrium is determined when a concentration
of equilibrium in the bulk and on the surface is established (WANG, J.; GUO, 2020).
That is the core measurement of a CO, adsorption isotherm or general adsorption
process.
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Before stepping into the isotherms modeling, one should consider what causes
the surface phenomena and its equilibrium. From a primary standpoint, the forces of
attraction between adsorbate and adsorbent determine the degree of attraction of one
molecule to a framework (DABROWSKI, 2001). That degree of attraction will lead to
the concentration of equilibrium. To explain further, the force field on a framework’s
surface interacts with a molecule structure, reducing the potential energy of that free
molecule toward its stabilization on the framework surface (CASTILLO, 2009; VLUGT
et al.,, 2009; DUBBELDAM et al., 2016).

Adsorption is a process where a molecule’s potential energy is reduced, lead-
ing to its transition into a new state known as the adsorbed state. Thermodynamically,
this is associated with the transfer of energy from the adsorbed molecule to the sys-
tem, which gives the fundamental explanation for the exothermic nature of the process
(WANG, J.; GUO, 2020; DABROWSKI, 2001). That nanoscale aspect is fundamental to
the adsorption equilibrium state (HOLLINGSWORTH, Scott A; DROR, Ron O, 2018a).
Considering the interaction between adsorption main agents, the molecule of CO» has
a quadrupole moment, making it easier to be adsorbed within a nonpolar adsorbent
(CHEN, Cong et al., 2020), where van der Waals forces are dominant (ZHOU, W. et al.,
2019). Polar surfaces will eventually create obstacles to an efficient adsorption pro-
cess, especially in the presence of competitive adsorption systems (CHEN, Cong et al.,
2020). Therefore, the forces associated with the composition of the framework will be
significant for the final adsorption equilibrium. Notwithstanding, geometrical and textural
properties will be as sensitive to the process as molecular composition (ANDERSON
et al., 2018).

Regardless of the number of features that will influence the process equilibrium,
the typical approach to determine the equilibrium profile between adsorbate and ad-
sorbent is throughout an isotherm. For a gaseous system, the pressure variation will
affect the equilibrium concentration, which can be described by a mechanistic model
of equilibria, e.g., Langmuir isotherm, Freundlich isotherm, SIPS isotherm, and several
others (WANG, J.; GUO, 2020). The adsorption process can be described as having a
multiscale nature, as a significant determinant of macroscale (mechanistic) models is
the interactions within non-continuous spectra, particularly force field interactions.

Isotherm data can be pursued by in situ approaches (laboratory experimentation)
or in silico approaches (computational modeling) (HUANG, H. et al., 2011). The Lang-
muir isotherm is the most classic model for representing adsorption systems, gaseous
or liquid (DABROWSKI, 2001; GHAEDI, 2021). The deduction of the model will be
described, as well as its hypothesis. In the following, the Freundlich and SIPS model
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will be explained in general terms to finally be interpreted in its physicochemical terms.
The Langmuir model has the following hypothesis:

1. The adsorbent “M” has identical sites to each adsorbate molecule.

2. Every site has a binding process identical to each molecule; hence, the
adsorption energy is equal to every site.

3. The gaseous adsorbate gas has an ideal behavior.
4. Once a gaseous molecule is adsorbed, it stays constant.

5. The adsorption is monolayered, meaning there is no second layer or interac-
tion between adsorbate-adsorbate.

[{sl

Considering that one has an adsorbate “A” and an adsorbent “M” with “n” open
sites.

A+ M — AM (1)

The binding of “A” with “M” generates the complex “AM”. “K” is the constant of

equilibrium, which is determined as the following. “q” stands for the number of moles
of adsorbate attached to the framework per mol of “M” and is calculated by equation (3).

 [AM]
= {AM] @)
[AM]
T i+ tam o
KA
TI=T+KA (4)

The substitution of Equation (3) in Equation (4) can be made, giving Equation (5):

Ms My KA
M~ "M (1 + KA) (5)
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By the consideration that every site has one single bound, quantitatively, the
isotherm is representative of the sum of the “n” sites. Multiplying the equation for the
ratio of the molar mass of “A” by the molar mass of “M” Equation (6) is given:

KA
1+ KA

Q=0Q (6)

The Freundlich equation is an empirical model that relates an adsorbed gas’s
mass ratio to an adsorbent’s mass over the system’s pressure. Equation (7) presents
its model. Differently from Langmuir, the Freundlich isotherm has no mathematical
background (WANG, J.; GUO, 2020). The Freundlich equation, due to its mathematical
features, at higher pressure, may fail at describing the adsorption process (WANG, J.;
GUO, 2020; GHAEDI, 2021). Therefore, the fitting can describe the saturation pressure
of a system improperly.

Q = KA/ (7)

This model has a non-single site consideration; hence, it can describe more
complex systems even being empirical (e.g., heterogeneous surfaces, multilayered sys-
tems). In the face of the Langmuir model, one can infer from the Freundlich equation
several characteristics related to the adsorption mechanism, the nature of the adsor-
bent surface, if monolayer or multilayer adsorption, and so on (WANG, J.; GUO, 2020;
GHAEDI, 2021).

The physical meaning of the coefficients is assigned to, first, K; as the partition-
ing coefficient or the adsorption affinity, and second, as ny, assigned as the Freundlich
constants characteristics of the system, an indication of the adsorption heterogeneity
of the adsorbed-adsorbent system (DEMESSIE; SORIAL; SAHLE-DEMESSIE, 2022;
WANG, J.; GUO, 2020).

The SIPS model is the latest isotherm model of focus. Unlike the previous mod-
els, it features three adjustable parameters. Combining the Langmuir and Freundlich
models, it incorporates the ns exponent, similar to the Freundlich isotherm (THOMAS;
CRITTENDEN, 1998b). This additional term (Qs) represents a mathematical flexibility
for the model, allowing the exponent parameter to compensate for the Ks parameter,
the system’s equilibrium constant. Qs, measured in mg.g~"! stands for the maximum
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adsorbed amount. As a result, the SIPS model can accurately describe heterogeneous
surfaces and complex interactions, overcoming limitations of previous models, such as
Freundlich’s model at high pressures (YANG, R. T., 1997; THOMAS; CRITTENDEN,
1998b). The following equation describes the SIPS isotherm model.

Q-K-[A 1/ns
= 135;]1/ (8)
+ Ks[A]'/Ns

The major advantage of the above equation is its adaptability for the adsorbate
concentration in the system, since it follows the Freundlich model at lower concentra-
tions and, in the opposite context, the Langmuir model (MURPHY et al., 2023). Figure

1 indicates the profile of the models described above, and the adaptability of the SIPS
equation.

Figure 1 — Langmuir, Freundlich, and SIPS profiles

Source: Author (2024). Note: SIPS parameters allow this equation to settle between Langmuir and
Freundlich models since the SIPS model regards a combination of both.

With the apparatus given, one can evaluate data gathered from in situ measure-
ments or, as will be further explored, by in silico methods. Regarding the theme of the
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present work, the equilibrium between adsorbent and adsorbate is mainly driven by
physisorption (THOMAS; CRITTENDEN, 1998c). Hence, temperature and pressure
have a more sensitive impact on the phenomena equilibrium and its dynamics. It is
important to emphasize that, for single-component and multicomponent systems, the
increase in temperature implies a lower adsorption efficiency (WANG, J.; GUO, 2020)
as a consequence of the exothermic adsorption process (THOMAS; CRITTENDEN,
1998b). Reversibility is accessible by the increase of temperature or the reduction
of the pressure (RUTHVEN, Douglas Morris; FAROOQ, Shamsuzzaman; KNAEBEL,
1994) of the system, characterizing Pressure Swing Adsorption (PSA) and Tempera-
ture Swing Adsorption (TSA) operations, respectively (GREEN, 2007). By manipulating
those variables, one restores the previous equilibrium at the initial condition, where CO»
is detached from the framework. The following section will unfold the core of adsorption
dynamics modeling.

2.1.2 Dynamics

The transition between thermodynamic states of equilibrium can embrace the
dynamic of the adsorption system (YANG, R. T., 1997; LETCHER; MYERS, Alan L,
2004). To grasp the dynamics of adsorption, PSA and TSA operations can be used
once conducted on a fixed-bad system, where the concentration versus time curve
describes the phenomena occurring. This plot is the Breakthrough curve, a practical
basis for assessing the behavior of an absorbent in a fixed-bed adsorption system (MY-
ERS, A., 2002). The breakthrough curve (BKC) depends on the bed geometry, diffusion
and transport properties, operational conditions, and, as important as those presented,
the adsorption isotherm of the material present in the bed (THOMAS; CRITTENDEN,
1998d).

The adsorption equilibrium will be reached once passed through a dynamic ad-
sorption system. What regulates this part of the process is the adsorbate’s diffusion
rate, evaluated as the mass transference gradient (LETCHER; MYERS, Alan L, 2004).
Hence, the system’s driving force is the concentration gradient, which is determined
by the difference between the equilibrium (isotherm) and the system’s present state
(THOMAS; CRITTENDEN, 1998b). In simple terms, there will be diffusion of the com-
ponent "i" (adsorbate) while there is a gradient.

The mass transference gradient in a dynamic adsorption system is relative to the
degree of interaction between framework and adsorbate over time, and the inner prop-
erties of those (polar sites, quadrupole moment, heterogeneous surfaces, framework
porosity, and similar (THOMAS; CRITTENDEN, 1998a; ZHOU, W. et al., 2019). These
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properties lead the initial state of a single molecule within the operation to a final state
of equilibrium attached to the adsorbate. With a rate of adsorption taking place, the
overall coverage of the adsorbent surface by the adsorbate is now controlled by bulk
properties, affecting the energy change, flux, and distribution velocity of the gaseous
molecules being adsorbed (LETCHER; MYERS, Alan L, 2004; GHAEDI, 2021). From
these conceptions, adsorption system dynamics can be, then, assessed by a phe-
nomenological approach. The phenomenology of the system, directly designed by the
convergence of the chemical potential of the adsorbed phase and gas phase, allows
one to model the operation in a fixed bed apparatus mechanistically. Operational condi-
tions can be evaluated once the model is stated (LE et al., 2020; AFAGWU et al., 2021).

Overall, the present work focuses on mass transport phenomenon as primary re-
sistances, although it should be mentioned that heat transfer resistance should be kept
in mind for more specific modeling (MAREK, N.; MAREK, S.; JAN, 2022). Ultimately,
the mechanistic modeling that considers intrinsic kinetics and transference resistance
will describe the transient adsorption process in a fixed bed, leading to the BKC curve
shape (SCHILLER; WANG, F., 2018). What has been illustrated so far and the ad-
sorption phenomena are described mathematically by the equations in the subsequent
subsections.

However, before stepping into the presentation of the BKC model, the linear
driving force concept (LDF) and the dimensionless numbers associated with adsorp-
tion will be assigned since those compose the BKC curve model. Diffusion coefficient
correlations will also be assigned.

2.1.2.1 The LDF model

The linear driving force is an approach to describe the diffusion of the adsorption
system directly to the gradient of concentration of a component (SABOUNI; KAZEMIAN;
ROHANI, 2013). It relates the gradient of concentration of the component with the ex-
ternal and internal resistances in a linear model, hence, a linear driving force. This
approach is physically consistent and has a solid literature background (NAIDU; MATH-
EWS, 2021; RUTHVEN, Douglas M., 2003; RAY, 1999).
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The factor k¢ can be described by several correlations, and different authors
present different equations to address it (SABOUNI; KAZEMIAN; ROHANI, 2013; SUN,
L. M.; LE QUERE; LEVAN, 1996). The term g; represents the equilibrium concentration.
Considering the mass transfer resistances as the main limitation of the kinetics phe-
nomena, one can access the LDF model by considering the external mass resistance
being the limitation of the system or the internal mass transfer resistance as the pri-
mary resistance, resuming the model to describe, accurately, the fixed-bed adsorption
system (NAIDU; MATHEWS, 2021; RUTHVEN, Douglas M., 2003)

The LDF correlation used is supported by the experiments of Sabouni et al.
(2013) (SABOUNI; KAZEMIAN; ROHANI, 2013), applying the film mass transfer coef-
ficient directly to the equation. Accordingly, the mass diffusion resistance limitation is
associated with the external mass transfer resistance, so the pores diffusion is negligi-
ble.

0g; _ 3kLo
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In the Equation above, K¢ is the film layer diffusion coefficient in m/s, defined in
the equation (11); u is the interstitial velocity of the gas in the system in m/s; L, is the
characteristic length of the system in the z axis, referred to the length of the bed.

The film layer diffusion coefficient is defined accordingly to Matsumara et al.
(1995) (MATSUMURA; NAYVE JR., 1995) and Sabouni et al. (2013) (SABOUNI; KAZEMIAN;
ROHANI, 2013), where D, is the molecular self-diffusion coefficient in m2/s, Hr is the
viscosity of the fluid phase in Pa.s and p is the density of the fluid in kg/m?.

2 2
_ uy (_Hr \7® (2dpup\73
kf_1.09(€) (po) ( f (11)

2.1.2.2 The breakthrough curve

The breakthrough curve will describe the performance of a fixed bed column and
the column dynamics (THOMAS; CRITTENDEN, 1998d). It is related to several macro
physical properties of the system as the flow rate of the adsorbate, its initial concentra-
tion, the absorbent’s particle size, and the column’s length (CHU, 2020; GHAEDI, 2021).
Regardless of the scale of those characteristics, the breakthrough curve represents the
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adsorbate accumulation within the bed in a time frame. The common approach to plot-
ting the BKC is made with the y-axis representing the ratio of the outlet concentration
by the inlet concentration (C%) and the x-axis the time profile (t). The plot is presented

in figure 2, alongside the main characteristics of a BKC related to time indicators.

As the flow of the inlet passes through the bed, a primary sorption zone develops
through a mass transfer zone (KNOX et al., 2016). Considering the inlet entering at
the bottom of the column, the first fraction of the adsorbate is being captured by the
absorbent, and in the outlet of the column its concentration is near zero (MAREK, N.;
MAREK, S.; JAN, 2022). As the mass transfer zone walks through the column and the
bed constantly captures more and more carbon dioxide, the amount of carbon dioxide
passing through the bed increases as the uptake rate decreases due to the saturation
of every fraction of the bed. After an amount of time, the mass transfer zone will be at
the edge of the column, indicating the saturation of the bed.

Figure 2 — Breakthrough curve time indicators

Source: Author (2024)
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The variation of the column properties will imply different shapes for the BKC,
more straight or elongated. However, regardless of the shape of it, a few features will
be common to all breakthrough curves. From the above physical description of the
breakthrough curve and the column dynamics, two performance indicators associated
with the BKC inherently can be addressed: the breakthrough time (TBK), when the first
5% of the amount of carbon dioxide is measured in the outlet of the bed, that moment is
defined for the aims of the present work, as the breakthrough time; and the saturation
time (TS), when 95% of the C/C, ratio is reached. Different authors determine the
above values differently, although always in the same range (1% < TBK < 5% and 90%
< TS < 100% (KNOKX et al., 2016; YU, Hui et al., 2015). A third indicator can be ad-
dressed when the ratio of the outlet concentration is half of the inlet concentration, the
stoichiometric time (TC) (MESFER et al., 2020; SARKAR; AROONWILAS; VEAWAB,
2017, 2017).

Once all physical features of a fixed bed column are constants, the variation of
temperature and pressure of the system will have the same effect on the shape of the
breakthrough curve as it will have if one changes or varies the physical features of the
fixer bed (MAREK, N.; MAREK, S.; JAN, 2022; SABOUNI; KAZEMIAN; ROHANI, 2013).
It will happen due to the linear driving force correlation used to define the mass transfer
zone of the system (NAIDU; MATHEWS, 2021; RUTHVEN, Douglas M., 2003; RAY,
1999). Finally, changing the temperature and pressure, the mass transfer gradient by
the adsorbate’s local concentration, and the adsorbate’s ideal concentration will inflict
on several shapes of the breakthrough curve, each one with its own set of indicators,
i.,e. TBK, TC, and TS.

To define those performance indicators, the adsorption process can be described
mechanistically. From that, dimensionless numbers will be assigned to the system equa-
tions. The Peclet number fundamentally analyses the ratio between convective trans-
port, addressed in the numerator at Equation (12), and diffusive transport phenomena,
addressed by the mass diffusion coefficient, Dy, in the denominator part of the same
equation (SABOUNI; KAZEMIAN; ROHANI, 2013; MATSUMURA; NAYVE JR., 1995).

Lou convection transport
Pe = = " "
Dy diffusion transport

(12)

From the Equation (12), one can verify that the dimensionless number depends
both on the velocity of the bulk — the superficial gas velocity (u) -, and the characteristic
length of the system — in this case, length of the bed (Lo) (MAREK, N.; MAREK, S.; JAN,
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2022). To calculate the Peclet number, it is necessary to determine, Dy, the axial mass
diffusion. To do so, correlations can be used. In the present work, Dy is calculated by the
correlation of Edwards and Richardson (1970) (HARKER; BACKHURST; RICHARD-
SON, 2002). The axial dispersion is coupled to the molecular diffusion and considers
Wicke’s (1973) approximation for the coefficient y, and Boshoff’s (1969) (HARKER,;
BACKHURST; RICHARDSON, 2002) expression of coefficient 8. The calculus follows
in the equation (13) and is referenced in the papers of Nedoma et al. (2022) (MAREK,
N.; MAREK, S.; JAN, 2022), and Wilkins et al. 2020 (WILKINS; RAJENDRAN; FA-
ROOQ, S., 2020).

Po . (udp)

(ByDm)
1+ N(GAR

DX = YDm+

The equation above presents dp as the pore diameter; R is the universal gas
constant and Mp, is the molar weight of the single component. Dy, stands for the molec-
ular diffusion coefficient for a single component system, defined by Equation (14).

Dm = -~AQ (14)

Q) referes to the average molecular velocity, in m/s, and A to the Free mean
molecular path in m. It should be mentioned the determination of the Pg ~, for particles
with a radius smaller than 0.25 cm -, is determined by Equation (15), accordingly with
Langer (1978) (HARKER; BACKHURST; RICHARDSON, 2002).

Pe,co =6.70dp (15)

Both coefficients, y and 8 are related by Wicke (1973) and Bischoff (1969)
(HARKER; BACKHURST; RICHARDSON, 2002), with porosity of the framework «¢.
The y coefficient is determined in the following, where one can verify the direct relation
with porosity. The 8 coefficient has a more complex relation, determined with Pe », and
a, the velocity distribution.
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By determining a by Equation (18), one can determine 8 in Equation (17). The
physical meaning of those correlations relies on the approximation of the axial disper-
sion by the local velocity in the fixed bed, allowing one to correlate velocity with particle
diameter, which is stated in the following equations.

y = 0.45 + 0.55¢), (16)
1 B

== 17

Pow (17)

o = 8.1352In(dp) + 24.807 (18)

Finally, considering all models, concepts, and equations above, the mechanistic
modeling of the BKC can be designed throughout the following assumptions.

» The system is isothermal, adiabatic, and has equal distribution of temperature
axially.

» The pressure drop of the column is negligible, as well as momentum effects.

» The adsorption equilibrium isotherm can be described by the Langmuir model,
Freundlich model or SIPS model.

» The gas is axially dispersed in the bed, being radially homogeneous regarding
concentration.

» The adsorbent particles are spherical and homogenous in size and density,
and bed porosity is homogeneous.

» The interstitial gas velocity is constant.

» The mass transfer rate between the solid and gas phases is described by the
linear driving force model.

From those hypotheses, the fixed-bed adsorption system can be assigned to the
mathematical modeling of the variation of concentration within time, as follows.

ac; 82c;  dc  (1-¢p)og;
ot =P oz TP ot
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The first left term of Equation (19) describes the concentration of component “”
in the gas phase as a consequence of the convection phenomena. The axial dispersion
is described by the second term of the Equation, directly related to the axial diffusion
coefficient. The amount of gas that accumulates in the packing and the gas adsorption
is described by the third term of Equation (19). The last term of the main equation
of this section expresses the mass transfer as a consequence of the concentration
gradient with the equilibrium, closing the concept of the BKC. The physical properties
are assigned by pp, which stands for the bed-density; and 0g;0z, the concentration of
equilibrium or the mass balance of adsorbed gas in the adsorption framework, deter-
mined by the linear driving force approach, which can be calculated thought correlations
specified before.

2.2 MOLECULAR SIMULATION

One can endeavor the isotherm of an adsorption system from in situ methods,
based on experimental fundamentals, or by in silico methods, where computational
means set the equilibrium curve (DI BIASE; SARKISQOV, 2015; HUANG, L. et al., 2018;
LIU, X.-Q. et al., 2016). A molecular simulation aims to reproduce experiments at a
low investment cost or promote insights through the molecular perspective for macro
behaviors (VLUGT et al., 2009; CASTILLO, 2009). Regarding CO, adsorption, molec-
ular simulation has empowered the academic community to distinguish the properties
of adsorbents towards CO, adsorption, enhancing the process, identifying tendencies,
and designing new materials (BURNS et al., 2020; CHEN, H. et al., 2021). The reader
will be introduced to molecular simulation’s main development protocols, exploring the
basics of the approach to ensure the appropriate fundamentals for the current work.

Molecular simulation is designed to measure the system’s macro properties
throughout the molecular interactions of a certain system (DUBBELDAM et al., 2016).
Regarding adsorption, the strategy behind this computational method is to minimize
the conformational energy between adsorbate and adsorbent interaction from the per-
spective of the dynamics or equilibrium. Mathematically, for dynamic properties mea-
surement, the Molecular Dynamics technique will be used. When equilibrium is aimed
to be described, the Monte Carlo algorithm will be the best choice (DUBBELDAM et al.,
2016; VLUGT et al., 2009). To describe those interactions physically, one last agent
is necessary, leveling up the interactions and framing the thermodynamic response of
the system, regardless of the algorithm. That is the force field. Therefore, to perform a
molecular simulation for a determinate adsorption structure, the following points must
be observed (DUBBELDAM et al., 2016; VLUGT et al., 2009):
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* The adsorbent and adsorbate molecular structure.
* The force field that defines the interactions.
» The algorithm (resolving the objective of the in silico experiment).

* Intensive system properties determination (e.g., temperature, pressure, con-
centration).

The above list will be deepened into separate topics, starting with the adsorbent
molecular structure.

2.2.1 The adsorbent and adsorbate molecular structure

To perform a molecular simulation, one must represent all the components con-
stituting the adsorption system computationally. Before calculating the bulk interactions,
those species have to be specified and built computationally (HOLLINGSWORTH,
Scott A.; DROR, Ron O., 2018b). When defined, features essential for the phenom-
ena will be calculated based on critic temperature, critic pressure, and concentration
of a determined set of species that constitutes the bulk (DUBBELDAM et al., 2016;
HOLLINGSWORTH, Scott A.; DROR, Ron O., 2018b). For the sake of an example, fu-
gacity will be calculated by a thermodynamic package, based on the critical properties
of the adsorbate molecules that are present in the system (DUBBELDAM et al., 2016).

After being computationally represented, the next step in performing an adsorp-
tion molecular simulation is to define the freedom of movement for the molecules. In
other words, if those are rigid or flexible. In the present work, only rigid molecules were
adopted. Non-flexible molecules indicate that inner movement terms, like torsion and
bend, will not be considered in the overall interactions (VLUGT et al., 2009; DUREN;
BAE; SNURR, 2009). It does not mean, though, that the polarization of the molecules
and their charge/momentum (e.g., quadrupole moment) will have a higher impact on the
definition of the final system energy equilibrium (CHEN, Cong et al., 2020). Neverthe-
less, the charge of the built molecule is essential for the interaction response between
absorbent and adsorbate (CASTILLO, 2009). Therefore, a specific force field for the
adsorbate must be defined after its structure to assemble molecule charges (AIMOLI;
MAGINN; ABREU, 2014; SMIT, 2008).

For instance, the Trappe forcefield (transferable potentials of face equilibrium)
is an accurate quantitative method that estimates the functional form between atoms
of a built molecule (BAI; TSAPATSIS; SIEPMANN, 2013). Its application allows quan-
tifying interatomic potentials and the molecule’s potential energy. Therefore, in the
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case of a rigid molecule, the potential energy is determined by van der Waals forces
and Coulomb forces, quantified by the Leonard Jones parameters and atoms’ charge
(DUBBELDAM et al., 2016). Several force fields can be used for this task. However, the
advantage of the Trappe force field is that it is based on phase equilibrium data, facilitat-
ing the determination of the saturation value within an isotherm (MARTIN; SIEPMANN,
1998; DUBBELDAM et al., 2016). The following equations describe what above has
been stated. One can verify by Equation (23) that the essential inputs for defining a
molecule’s potential energy are ¢, r, and Z, the depth of the potential energy or the dis-
persion energy coefficient, distance between particles or particles size, and the charge
of a given molecule, respectively. Finally, the distances where the potential energy is
zero, for components i and j are addressed as p.

Etotal = Ebonded + Enon-bonded (20)

Eponded = Ebond + Ebends + Etorsion (21)

Enon-bonded = Ecoulomb + Evan der Waals (22)
127 pi\12_ (B\°®

Enon-bonded = drreg . rij +4eg [(7) - (7) (23)

The framework is also represented computationally, allowing for a thorough anal-
ysis of its properties. Given its larger size compared to the adsorbate, predefined guide-
lines are necessary to construct the adsorbent, addressing size-related challenges
and ensuring the adsorbent meets desired specifications (TURBAN et al., 2016). The
usage of pseudo-atoms is a technique where atomistic structures, repetitive or more
stable (e.g., CH3), are defined previously (DUBBELDAM et al., 2016). It is a common
approach because those structures’ atomic partial charges are balanced a priori. In the
case of zeolites, for instance, the partial charges and the Lennard-Jones parameters
(LJ) interaction sites (that will later interact with the adsorbent charges) are disposed
of alongside the oxygen and silicon atoms. That strategy allows a better distribution of
charges, representing with more fidelity electrostatic interactions (HOLLINGSWORTH,
Scott A; DROR, Ron O, 2018a; MiIGUEZ et al., 2018).

The Trappe Force Field (FF) can also be applied to define the adsorbent, yet
other approaches, such as the DEIDRING and UFF force field, can be used (BAI; TSAP-
ATSIS; SIEPMANN, 2013; RAPPE et al., 1992). Those are notable mentions since they
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can be undertaken to a broader diversity of atomistic combinations, especially in the
case of MOFs (CHUNG, Yongchul G et al., 2014; STURLUSON et al., 2019).

Another vital aspect of adsorbent is its geometry. The final molecule of the ad-
sorbent will be only correctly built once the geometrical structure of its atoms is set.
Considering a three-dimensional space, all atom’s relative positions must be declared,
creating a framework supercell, the framework structure at a molecular level. In ap-
pendix A, one can identify those differences in Figure 41. Every atom has a positional
argument within, framing the adsorbate geometry in the x, y, and z axes. The molecular
simulation’s framework and adsorbate building blocks are set within that last instance
setting. Once the molecular structures are set, one follows the definition of how the
interactions between those building blocks will be quantified, the interaction force field.

2.2.2 The Force field determination

The process to define the FF is based on the molecular energy of the sys-
tem, with terms between bonded and non-bonded interactions. Determining the inter-
molecular interactions focuses on capturing all terms of the chemical entities and their
physical properties, hence, the more terms considered, the more accurately the FF will
describe the interaction (AIMOLI; MAGINN; ABREU, 2014; KOLLE; FAYAZ; SAYARI,
2021; DUBBELDAM et al., 2016).

E = Eponds + Ebends * Etortions + Enon-bonded + - - - (24)

Eponds = »_ BN+ D Eppolriig)+ Y, Egy(r.0) (25)
bond bond-bond bond-bend

Epends = > Eo(0)+ Y Egg,(0,60) (26)
bends bend-bend

Eorions = Y Ep@+ > Erp(ri@.io)+ Y Eop(6,9,60) (27)
torsion bond-torsion bend-torsion

Enon-bonded = Z Ecoulomb(Zi:Zjslij€0) + Z Evaw(pj.pj.r €0) (28)

Coulomb vdW
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Representing the functional form of the FF applied in the present work, Equation
(24) is stated. The main term Ej,qex iS representative of the potential energy associated
with several movements or features that an adsorbate may have within an adsorbent.
The equation was broken into four other terms, for clarity. The first parameter (Equation
(25)) regards the bonded energy and its derivatives (e.g., Bond-Bond and Bond-Bend
potentials, which are related to the stretching and compression of the molecules’ bonds,
and the the cross term with bends. The second term regards the bends on their com-
pleteness (Equation (26)), considering every interaction that concerns a certain angle
as a consequence or as a cause of the molecular interactions (e.g., Bend-Bend). The
third term regards torsion (Equation (27)), considering the forced rotations caused by
the layers of molecules alongside the process of adsorption, for example. The torsion
potential itself (E;ytion) is described as a three-term Fourier expansion itself, allowing
one to comprehend the complexity for an accurate approximation that regards a FF.
The last term, the non-bonded therm, (Equation (28)) is used to consider not just the
van der Walls potentials, but also the Coulomb potentials, as a way to discretize for the
reader the variety of interactions that functional form of a FF has to capture. The units of
the present Equation are referenced to a spherical coordinate system (6, r, ), precisely
due to the best presentation for torsion and rotation, regardless of its application in the
present work.

Even presenting several terms, it is reinforced that all those are fundamentally cal-
culated by a handful of parameters, as presented in the definition of the CO, molecule
for intermolecular interactions. Nevertheless, the LJ parameters (eo, r, and p) and a
force constant (k), when considering bending and torsion potentials are requested to
solve every term of the equation. Furthermore, the fictionalization of every term is a
chapter apart due to its deduction procedure (DUBBELDAM et al., 2016). As a disclaim
for the reader, it is recommended the review the RASPA Software Manual, where every
term is deepened ((DUBBELDAM et al., 2016)) in a close format of the one presented

in the set of equations above.

The Equation (24) represents a general force field definition. However, it has a
general limitation that should be pointed out. The development of a precise FF, even
for a specific application, is stated as an obstacle to scientific development (AIMOLI;
MAGINN; ABREU, 2014; BOOTHROYD et al., 2023; EMELIANOVA et al., 2023). It hap-
pens because the number of degrees of freedom that a molecular system has, at the
order of 103 degrees, and difficult to define without a numerical approach (VLUGT et al.,
2009). Therefore, all simulations developed were compared with previous experimental
procedures to validate the simulations developed herein.
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Since non-bonded interactions have an essential role in the CO», adsorption
(CHEN, Cong et al., 2020), the concept of cut-off distance has to be defined since it
has relevant mathematical and physical implications on the final measurement of E, g,
(SMIT, 2008; HOLLINGSWORTH, Scott A.; DROR, Ron O., 2018b). Figure 3 demon-
strates the shape of attractive and repulsive forces between two particles. By summing
those potentials, one has the potential energy of interaction measurement in Joules.
The potential energy lower point is representative of €,. The cut-off is represented by
r, truncating or defining all interactions in a higher radius as zero. Computationally, it
diminishes the operational cost and improves calculation speed. Interactions of an r
higher than r¢, are negligible.

In addition to the cut-off concept, the most noteworthy aspect of the computed
FF terms in this study is associated with the non-bonded terms, as illustrated in Equa-
tion (28). These terms, along with their derivatives, result from the characteristics of the
ensemble employed to describe adsorption interactions. Subsequent sections will delve
into a comprehensive discussion of all thermodynamic terms considered in the molec-
ular simulation conducted in this work, from the intensive and extensive properties of
the system.

Once the interaction FF is stated, it is possible to determine the algorithm to iter-
ate the arguments of the previously presented equations, finally defining the equilibrium
or dynamic properties of the adsorption in silico experiment.

2.2.3 The Algorithm specifications

There are two main methods to solve a molecular simulation. Before stating
those, it is necessary to establish its fundamentals, grounded on thermostatistics. A
molecular simulation has a significant number of degrees of freedom. Mathematically,
the theoretical apparatus to represent that physical aspect has to consider several
possibilities of the system arrangement (DUBBELDAM et al., 2016). Physically, the ther-
mostatistics principle which sustains that approximation is the ergodic principle (VLUGT
et al., 2009). That proposition contemplates the feasibility of every microstate of a sys-
tem after an appropriate amount of time. Those microstates have an equal possibility
to occur precisely due to the high degree of freedom of the nanoscale system. Through
this hypothesis, the system is physically represented and mathematically approachable
by algorithms, such as the Monte Carlo (MC) method.

The MC method applied to molecular simulations of adsorption is based, as the
name says, on the Monte Carlo classical simulations. Briefly, this model is used to
define the probability of a different resolution of a system, representing its occurrence
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Figure 3 — Repulsion and attraction energy of two molecular entities defined by the
distance between molecules

Source: Author (2024)

rate (KANG et al., 2020; KUMAR, K.; KUMAR, A., 2018). Nevertheless, first, one needs
to set a previous number of features to a variable of uncertainty. Multiple results will
then be calculated by the convergence of that variable of uncertainty until its stabiliza-
tion, allowing, by consequence, the definition of those preassigned variables by their
average over iterations.

By assigning to the main variable of the Monte Carlo approach the system’s
potential energy defined by the interaction FF, one has the MC applied to adsorption
molecular simulation. By converging the potential energy to a stable value, which indi-
cates convergence of the algorithm, properties of the system are calculated over that
estimation. Looking at the physical aspect and its mathematical representation within
the MC algorithm, several physiochemical variables must be a priori determined to
guarantee statistical equilibrium. In other words, one provides a path to derivate proper-
ties of an ideal thermodynamic system that resembles reality. The algorithm, therefore,
works to find that constant value over a set of iterations. This idealization regards an
ensemble, a group of thermodynamic variables determined to be constant in the system
(VLUGT et al., 2009).
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Those ensembles of variables combined with the stochastic methods respect the
ergodicity principle by replicating the system on its several possibilities. There are more
than a few ensembles that can be cited (LANDAU; BINDER, 2021; VLUGT et al., 2009).
However, this work focuses on the Grand Canonical Ensemble (GCMC), where the
chemical potential (u), absolute temperature (T), and volume (V) are considered con-
stants. The micro-canonical ensemble, for instance, considers the number of molecules
(n), absolute temperature (T), and volume (V) as constants. It is precisely due to its
characteristics that the Grand Canonical Monte Carlo (GCMC) method is applicable
efficiently for isotherms definitions in silico (DUBBELDAM et al., 2016). The algorithm
converges to the thermodynamic equilibrium of an adsorption system since the method
will converge to a value of chemical potential that dictates equilibrium between inter-
actions of adsorbate and adsorbent. Another important aspect is the definition of the
number of molecules not needed in the ensemble. That definition allows one to deter-
mine an estimative of adsorption sites or surfaces properly, embracing the hypothesis
that all sites of the framework supercell interact with the adsorbate molecules.

Another method to implement molecular simulation is Molecular Dynamics (MD).
Instead of calculating the equilibrium regarding adsorption, MD is applied to define
the dynamic properties of the system (HOLLINGSWORTH, Scott A.; DROR, Ron O.,
2018b). Since one of the inputs for its application is the time step, diffusion, for instance,
can be calculated by the mean displacement of molecules over the system. The num-
ber of molecules also has to be defined, being the ensemble, therefore, different than
the GC. MD is a method where the equation of motion of the particles (in the case of
adsorption, the adsorbate) is solved numerically (DUBBELDAM et al., 2016). Hence,
the solution of the system is done in a time discretization when the thermodynamic
properties of the system, as well as kinetics, can be determined.

It is important to emphasize that, even though it is a method that solves the
equation of motion of particles numerically, it is still a thermostatistics method based on
statistical mechanics. Moreover, the present work solely develops in silico experiments
utilizing the GCMC method. Therefore, MD will not be as deepened as GCMC was.

The algorithm specification is the last building block for the execution of a molec-
ular simulation, alongside the force field and the computation representation of molec-
ular structures defined. With all those in hand, one is capable of performing a proper
molecular simulation. With that stated, the in silico experiment of adsorption needs to
comprehend what is measured within the molecular simulation, nothing else than the in-
tensive and extensive properties of the system. Even though it is a fundamental aspect
of physics, it is deepened with a didactic purpose. Since it helps the reader comprehend
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what is measured at the nanoscale, the core of the strategy for developing the present
work relies on the intensive properties of the system. Those determine what in the fu-
ture will be assigned as instances, regarding Machine learning methods. A data-driven
approach is then developed based on the intensive properties of the adsorption system.

2.2.4 Extensive and intensive properties of the nanoscale system

The definition of the intensive properties of the adsorption system is fundamen-
tal to calculating its extensive properties employing a molecular simulation approach.
Intensive properties are features that do not change in every fraction of the system
(BORGNAKKE; SONNTAG, 2020). These properties are independent of the mass
amount in a thermal equilibrium system. Temperature, in this case, is one physically
intensive property.

In the case of the Grand Canonical ensemble, one can relate that the essential
properties of the simulated system are the chemical potential and temperature. Consid-
ering that, for a single temperature, several points of mass equilibrium are related for a
given pressure (e.g., isotherm for an adsorption system), one can define the same for
pressure.

An adsorption system at an equilibrium point of temperature and pressure has
more intensive properties assigned, such as density, for example. However, the density
of an adsorption system is a posteriori-defined value, not a priori, as temperature and
pressure, since the density regards the amount of mass adsorbate added to the mass
of the framework and volume. Even though not an extensive property of the system, it
is a consequence of a priori physical definition. The same follows for the heat capacity
of the adsorbate-adsorbent complex.

On the other hand, the enthalpy of adsorption depends on the number of molecules
interacting with the framework, therefore it is an extensive property of the system. Fur-
thermore, due to their basic definition, van der Waals energy, Coulomb energy, and
differentials regarding the adsorbate and adsorbent within each other are also exten-
sive.

Finally, the extensive properties of an adsorption system are a direct conse-
quence of the number of interactions between adsorbate and adsorbent. Considering
the GCMC method, those properties are calculated by the average number of iterations
or cycles convenient for convergence.
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Table 1 resumes the adsorption system’s intensive and extensive properties in
silico developed. More features can be defined regarding the approach and method
of calculation. However, the ones present in Table 1 are applied to the present work’s
development, all based on the RASPA manual (DUBBELDAM et al., 2016)

Table 1 — Properties from molecular simulation

Property Int/ext  Post/Prio
Pressure Intensive Priori

Temperature Intensive Priori

Final host/adsorbate energy Extensive Posteriori
Final host/adsorbate vdW energy Extensive Posteriori
Average volume Extensive Posteriori
Average density Intensive  Posteriori
Average heat capacity Intensive  Posteriori
Total energy Extensive Posteriori
Enthalpy of adsorption Extensive Posteriori
Average derivative of the chemical potential Intensive  Posteriori
Average adsorbate-adsorbate energy total Extensive Posteriori
Average adsorbate-adsorbate energy vdW Extensive Posteriori
Average adsorbate-adsorbate energy coulomb Extensive Posteriori
Average host-adsorbate energy total Extensive Posteriori
Average host-adsorbate energy vdW Extensive Posteriori
Average host-adsorbate energy coulomb Extensive Posteriori
Total vdW Extensive Posteriori
Total coulomb Extensive Posteriori

Source: Author (2024)

Special attention must be given to the units associated with the variables men-
tioned above. In the upcoming sections, we will delve into the methodologies of data
wrangling and manipulation employed to standardize the input data for our machine-
learning applications. To streamline the entire process, we have opted to utilize the
internal energy units from the RASPA software, referred to in this work as "U" (DUBBEL-
DAM et al., 2016).

These internal units in the software are defined by a coefficient equivalent to the
ratio of the Boltzmann factor to molar energy units (e.g., J/mol). The following example
(Equation (29)) illustrates the conversion from the internal units of the RASPA software
to molar energy units. For the following equation, kp stands for the Boltzmann constant,
and the 300 U value is related to the temperate of simulation, since in practical terms
U=K.
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Ky 8.314446 kJ
U=831446 -0~ —eg. =(-2000 U~300 U)="r-0= =19.123_— (29)

Briefly, the main topics that the reader should keep in mind from this section can
be summarized in the following:

+ GCMC methods can be used to define equilibrium in a molecular adsorption
simulation, having an isotherm of adsorption as its main result.

» Extensive properties of the system and posterior intensive properties are
determined by a priori intensive variables, such as temperature and pressure.

* The GCMC method has "u" being defined by the convergence of the phe-
nomena, and the convergence process expresses the ergodic principle being
calculated.

Concluding the present subsection, it was presented all building blocks and prop-
erties measured for a molecular simulation of adsorption. From the knowledge above,
several materials can be developed in silico. Hence, the materials developed in the
present work will be presented next to its molecular simulation parameters.

2.2.5 Materials simulated

Several materials can be applied to the adsorption of CO,, as Activated carbons,
Zeolites, and Metal-Organic Frameworks (MOFs). The materials developed in the com-
putational experiments in the present work are Zeolites and MOFs.

Zeolites are based on Alumina and Silica, being crystalline materials with micro-
porous of a magnitude ranging from 0.5 to 1.2 nm (COLELLA; WISE, 2014). Zeolites
are stable materials with a high surface area and strong adsorption sites. MOFs are
porous crystalline solids alongside zeolite imidazolate frameworks ZIFs. A MOF can
be conceived as a structure where organic compounds link metallic clusters (CHUNG,
Yongchul G et al., 2019a). The highlighting aspect related to the MOFs materials is their
commonly high superficial area and their diversity since the synthesis is accessible
and the open metal sites - a fundamental aspect of its composition - present a trend to
form strong links with CO, (GHANBARI; ABNISA; DAUD, 2020; LIU, C. et al., 2021).
A ZIF framework can be addressed as a MOF derivate, being a porous crystalline ma-
terial. However, its resemblance with zeolites makes them more comprehensive when
one realizes its structures are built with transition metals despite silica. ZIFs can be
understood as frameworks with features close to Zeolites and MOFs, since their basic
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compounds have the same geometry as Zeolites but are built with metal links.

The present work follows the development of three materials, each representa-
tive of the three above classes of reviewed materials for CO, adsorption applications:
IRMOF-1, representative of MOF’s structures; ZIF-8, representatives of ZIF structures;
and ITQ-29, representative of zeolites. In Figure 4, one can verify more specific differ-
ences in the structure of each material addressed in the present work. Unit cells are
presented at an angle of 60° on the z-axis, in a projection perspective, rotated on the x-
axis. Cells are adapted from the iRASPA visualization software for materials. Chemical
composition is presented too (DUBBELDAM et al., 2016). Table 2 is presented in the
following where SBET, pore volume, pore diameter, and particle density.

Figure 4 — Molecular unit cell of IRMOF-1, ITQ-29 and ZIF-8, and chemichal composi-
tion

Source: Author (2024)

IRMOF-1 has the chemical formula of Zn4O(BDC)3, where BDC stands for 1,4-
benzene-dicarboxylate. IRMOF-1 exhibits interconnected channels; that feature aper-
tures measuring 12 A and 15 A in size, having as base an octahedral module built
with Zn4O cores (BABARAO et al., 2007a, 2007b). Alongside carboxylate connectors,
the structure presents a three-dimensional cubic form, resulting in a highly porous
framework. This specific material is also known to have isoreticular structures, such
as IRMOF-3, IRMOF-10, and several others, commonly related to structural flexibility
(BABARAO et al., 2007a). This feature is not studied in association with IRMOF-1 in
the present work.

ITQ-29 is a zeolite with a relevant channel diameter compared to other common
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Table 2 — Materials simulated properties

Material ITQ 29 ZIF 8 IRMOF1
SBET area [m?/g] 629.000 1386.000 1810.000
Pore Volume [cm®/g] 0.300 0.730 0.552
Pore diameter [m] 1.907 2.106 1.219
Particle density [kg/m®] 1432.806 924.468 593.306
Reference (TISCORNIA  (SAEEDIRAD (BABARAO

et al., 2008) et al., 2020) et al., 2007a)
Source: Author (2024)

zeolites, such as BEA and MFI (TISCORNIA et al., 2008; MARTIN-CALVO et al., 2018).
ITQ-29 is a silica Linde type A zeolite with a constitution of 3d-cages connected. The
result of its basic constitution is the presence of large cavities. A relevant aspect asso-
ciated with zeolites is the Si/Al ratio, a feature normally used to describe several other
properties. However, ITQ-29 is a Zeolite with no presence of Alumina, being replaced
by Germanium, which, considering other factors, is associated with the ITQ-29 zeolite
thermal and acidity resistance (MARTIN-CALVO et al., 2018).

Finally, ZIF-8 is structured by Zn sites, presenting a significant surface area. The
basic constitution of ZIF-8 is imidazole bonds, which comprehend its overall structure
according to its crystallographic information (SAEEDIRAD et al., 2020). Links of Zn - N
and C - N are notable aspects of the ZIF-8 structure (MARTIN-CALVO et al., 2018).

Closing this section, in the last part of the Theoretical Background Chapter, the
reader will be introduced to Machine Learning Algorithms, data set structures, concepts,
and methods to step into the methodology section.

2.3 MACHINE LEARNING ALGORITHMS

Before starting this section, some concepts should be introduced to clarify the
additional ideas that will be expressed. First, every area of science is expected to have
nomenclatures for a distinguished class within. It is no different in the context of data
science and machine learning. For instance, the variables of a phenomenon can be
described or assigned to the name of "features." If one has more contact with deter-
ministic and mechanics frameworks, the variables of a system (e.g., density, number
of molecules, loss of charge) can be understood as "features" too. In parallel, every
individual experimentation that describes a phenomenon’s outcome, a particular proce-
dure, defines the concept of "instance" for the ML context. It is important to emphasize
that an instance can be a value of pressure, time, temperature, and other examples
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that the reader may think. Given that, for every instance, there is a measurement of
all the features of the phenomena associated once one is working with ML. In other
words, a feature is a characteristic of the phenomena. At the same time, the instance is
a singular execution of that phenomenon. A simple way to understand that is by look-
ing at a spreadsheet, where every line corresponds to an instance, and every column
corresponds to a feature. Finally, a designed feature, or a couple of it, can be assigned
as a target or output. The rest of the features are assigned to inputs. Thus, from those
inputs, MLAs are trained to predict the outputs.

Following through, machine learning applications have received significant atten-
tion in recent years (FOTOOHI et al., 2016; LEE, Y. et al., 2018; PILANIA et al., 2013).
Due to their capacity for prediction, forecasting, and classification, Machine Learning
Algorithms are tools applied to discover patterns or predict a target, a discrete, contin-
uum, or class type of value. There are two main archetypes of algorithms: unsupervised
and supervised models (GERON, 2021).

Those two paradigms, unsupervised and supervised, are assigned to unlabeled
and labeled data sets. Regarding Supervised Machine Learning Algorithms (SMLA),
when one has a labeled dataset, it is common sense that it was previously reviewed or
verified by an expert since every feature is described or named (RASCHKA; MIRJALILI,
2019). On the other hand, unsupervised Machine Learning Algorithms (UMLA) are ori-
entated to discover hidden data patterns, becoming specialists (RASCHKA; MIRJALILI,
2019). One can distinguish SMLA and UMLA by the perspective, where the first applies
to regression and classification, and the second by grouping or clustering data. The
present work uses SMLA exclusively.

Despite the archetype, the application of MLA is vast (RACCUGLIA et al., 2016;
POURSAEIDESFAHANI et al., 2018). An expressive application niche is Material Sci-
ence and multiscale modeling, the core of this work. Regarding chemical engineering,
it is almost impossible to punctuate MLA applications in the present document.

Since SMLA are an essential component of the present work, the algorithms’
fundamentals and nature will be presented and elucidated before explaining the case
study. The third part of the fundamental methodologies of the present work will present
the principles that regard all MLA alongside artificial neural networks (ANN) structures
and famous applications. Random forest (RF) will be clarified in the following subsec-
tion. Dataset structures will be explained further regarding the importance of that aspect
for the case study. Finally, a brief review of the most vital related applications will be
presented within the concept of data-driven engineering.



Chapter 2. Theoretical Background 53

2.3.1 Machine Learning Algorithms general specifications

MLA is predicated on statistical and mathematical methods; every model has
its inner approach assigned. The capacity of an MLA is based on its learning expe-
rience and a model’s training process to estimate an outcome from related inputs
(GERON, 2021; RASCHKA; MIRJALILI, 2019). This process is based on describing
a phenomenon by a set of features and instances arranged in a dataset. From that
dataset, the learning process of an MLA starts.

Once it is started, it is optimized by a priori error standard or several iterations.
To find an optimum result, two main aspects are looked upon in the initialization of the
model: the optimization method and the loss function (GERON, 2021). To create a first
prediction of the outcome, a random set of numbers is determined by the optimizer
to the weights of the model. After evaluating if the initial weight can perform a good
prediction, the optimizer updates the model weights to minimize the loss function (e.g.,
accuracy). Different optimizers (e.g., gradient descent, Adaptive Moment Estimation
(ADAM)) can be set to undertake the minimum value for that task (BANGERT, 2021).
Finally, a linear regression can be set between the actual and predicted outcomes. In
simple terms, the weights assigned to the current model have changed according to
the angle of the regression closeness to the 452, the linear regression optimum result.
That 45° angle line represents the loss function minimum.

Just as the optimization method can be set, several other steps can build a su-
pervised machine learning algorithm (SMLA). However, some standard methods grip
the final model performance, regardless of the optimization method. Those procedures
are related to the data preparation phase, specifically, dataset subdivision and feature
scaling (BANGERT, 2021).

The division of the dataset is done in two or, in some cases, three parts to train
and validate a model. The first division is dedicated to model training when iterations for
comprehending the inner patterns are developed. At this moment, the model “learns”
from data. The second part is dedicated to validating the build model, and the third part,
when used, is dedicated to the final result evaluation. A random splitting of the data is
done within this process to avoid biases.

Data preparation is also executed by scaling the data (BANGERT, 2021). Scal-
ing can be done by normalization or standardization. Normalization bounds the range
of the values between two numbers, commonly -1 and 1, while standardization will
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transform the data to have the mean at the zero point and a variance of 1 (KROESE
et al., 2019). Both techniques will make data unitless; thus, regardless of normalization
or standardization, that approach is relevant when the scale of the features can be dis-
crepant. By putting them on the same scale, the SMLA is not induced to consider one
more than the other, avoiding favoring one over the other based on the measurement
and emphasizing the information gain the data offers to the model.

The scaling procedure improves the learning rate of the machine learning al-
gorithm (GERON, 2021). For example, if X1 is much higher than X2, the optimization
method may take a long time to converge. When X1 and X2 are scaled, the learning
rate is accelerated. It has to be clear that, regardless of the usage of normalization or
standardization, the variance and distribution of data are not affected. Another aspect is
that the correlation coefficient of a scaled variable is the same as that unscaled variable,
with a target or output (GERON, 2021). The gain is related to the learning rate of the
machine learning algorithm within the optimization method.

Until now, it has been presented to the reader three main points for the devel-
opment of a general MLA: optimization method, dataset division, and features scaling.
Several algorithms can be used for a regression problem (e.g., Support Vector Machine
SVM), decision tree (DT), logistic regression, etc.). However, what model should be
used to perform a good prediction of outcomes? Artificial Neural Networks (ANNs) are
highlighted in this aspect due to their fundamentals when looking toward the application
in Chemical Engineering.

2.3.2 Artificial neural networks

ANNSs are mathematically based on the Universal Approximation Theorem (UAT)
(NISHIJIMA, 2021). Considering a finite number of dimensional spaces in a Euclid-
ian domain, it states that a feedforward multi-layer perceptron can characterize an
expressive number of functions, hence, universal approximators (NISHIJIMA, 2021).
Regarding the present work, it is fundamental that the reader keeps in mind that neural
networks can characterize functions by fitting weights within the model and approximat-
ing values from one domain to another.

Going further on the Neural Network comprehension, starting with its creation
motive is vital. ANNs are inspired by the human brain’s neurons, whereas income goes
forward within a web of connections (AMBAW, 2005). Mathematically, those neurons
are settled by graphs and their connections by vectors. Figure 5 illustrates that central
conception represents multiple inputs and multiple outputs neural networks. Strong
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color vectors represent absolute higher weights. Nevertheless, the aspects that made
ANNSs so effective on approximation tasks can be summarized by their architecture, the
number of inner layers, and the initialization functions of every neuron (AMBAW, 2005).

Figure 5 — Multi-layer perceptron neural network

Source: Author (2024)

Efficient estimation and process modeling pose consistent challenges in the con-
text of CO, adsorption (DOBBELAERE et al., 2021; WANG et al., 2017; REBELLO
et al., 2022). Consequently, efforts focusing on ANN-based strategies offer feasible ap-
proaches to predict additional indicators beyond efficiency. The literature demonstrates
direct applications of ANN in modeling the full PSA cycle (YE et al., 2019).

ANNSs play a crucial role in comprehending CO» adsorption phenomena, as illus-
trated in Figure 6, where their usage is prevalent in the field. When considering deep
learning, ANN-derived approaches encompass 52% of the techniques employed in this
area, based on the reviewed literature for the present work. Notably, ANN approaches
outperform other methods like decision trees and meta-heuristic. Furthermore, this
technique allows for the investigation of time-dependent systems, providing a reliable
approach to process modeling (YE et al., 2019; LEPERI et al., 2019). Regarding CO»
adsorption application, the advancement of different architectures, beyond the MLP



Chapter 2. Theoretical Background 56

one, is not vast, but present in the literature (WANG, Zhenguang et al., 2022; MARTINS
et al., 2021; OLIVEIRA et al., 2020). Insights from ANN’s are still scarce, leaving sev-
eral points to be explored, connected with data and MLA intelligence, going beyond the
present literature.

Figure 6 — Machine Learning Algorithms most used in the CO, adsorption field

Source: Author (2024); Note: The information presented is derived exclusively from the set of articles
reviewed for this work

2.3.3 Random Forest

RF procedures are grounded in the Decision Tree algorithm (GERON, 2021;
BIAU; SCORNET, 2016). The mathematical approach that bases DT divides the dataset
into small groups separated by their internal resemblance and external differences. Fun-
damentally, a DT will learn from observations regarding heterogeneity and homogeneity
from the dataset. Random Forest will follow the same, although with some enhance-
ments, where a decision tree is developed for every prediction class instead of finding
the differences and similarities between a dataset subset (GERON, 2021). A random
forest algorithm can be summarized as a group of decision trees, adding the principle
that a group of moderately independent models (trees) functioning collaboratively as a
committee will outperform any individual model (GROMPING, 2009).

The random forest can be applied for classification and regression tasks. De-
spite the application, this model’s hyperparameters are related to the structure of a
decision tree, with some concerns related to the size of every tree inside the forest
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structure (GROMPING, 2009). For instance, the number of trees in every node may
affect prediction performance since many trees affect information discretization. At the
same time, the number of features used to split a node directly affects the model’s
computational cost. Lastly, the number of subsets will affect the data entropy, impacting
the model performance (ORNSTEIN; WEISS, 1993). Finally, a detailed description of
the algorithm will be synthesized to clarify how RT approaches a dataset.

» The dataset will be split into subsets by a random subspace choice or boot-
strapping, following a hyperparameter definition.

» A decision tree is trained for every subset, where every decision tree has a
singular way of determining the outcome.

« All trees are aggregated by the ones with the best performance on subset
outcome estimation.

Out of that list, two concepts are behind the whole procedure. First, data entropy
is deeply related to the RT method since it will not just define the informational value
that the dataset has (ORNSTEIN; WEISS, 1993); it will be applied directly to define the
division of subsets following the principle that subsets have to be homogeneous inside
but heterogeneous from the outside. Second, every decision tree within the forest is
related to the subset data entry; hence, the results of best-performance decision trees
are averaged to detach the model from its dependency on data entry. From that, a
random forest reduces biases and avoids overfitting (KROESE et al., 2019).

Notwithstanding, the hyperparameters definition of a Random Forest will be re-
lated to the trade-off between data entropy, model capacity, and computational costs.
The consequence of those choices will impact every decision tree within the random
forest, where a blueprint of the subset related is stated in the format of heuristics.

2.3.4 Models interpretability: Opening the Black Box

Interpretability is an important factor to be kept in mind when a mathematical
approach is applied. The same follows to MLA. However, the term black box is com-
monly relatable with MLA since those can have several shells, making them complex to
understand when compared to a deterministic function, for example (GUNNING et al.,
2019; MESSALAS; KANELLOPOULQOS; MAKRIS, 2019). A deterministic equation’s
applicability and physical relations are reachable by analyzing the units from its coef-
ficients and scales. Mathematical operators will also present clearly how those units
and coefficients are related and, lastly, how those affect the dependent variable. MLA
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are built with several coefficients, weights, and heuristics, making those models hard to
read by the same means as a classic equation. The explainable artificial intelligence
approach (XAl) can open the so-called black boxes (DAS; RAD, 2020).

SHAP is an explainable artificial intelligence approach (XAl). It is one of the most
popular due to its practical aspects accessible for Scikit Learn and Keras, the basic ML
packages used in the present work (DAS; RAD, 2020). SHAP stands for Shapley’s Ad-
ditive explanation, and the mathematical approach under it is grounded on cooperative
game theory, where the expected marginal contribution of each feature is calculated.
The expected marginal contribution is the SHAP value (DAS; RAD, 2020).

The most relevant SHAP aspect regarding its application in this work is to ex-
plain how each feature has contributed to a forecast application. By doing so, one can
understand if the MLA application considers features with physical meaning relatable to
the target or if the most relevant features agree with the literature. The scheme entitled
Expected marginal contribution of two features, representative of the SHAP analysis,
is resented at Figure 7. Fundamentally, the illustration represents a didactic way to
comprehend how the SHAP values are measured.

Figure 7 — Expected marginal contribution of two features - SHAP analysis

Source: Author (2024)

Firstly, the target Cx,y,O is a prediction by the MLA called "x,y,0", being "x" and
"y" two features that one aims to understand its contribution to the model, and "0" rep-
resents all the features standardly used in the model. When the "y" and "0" features are

not present, "x" can predict the target as being 3.5. For the "y" feature solely predicting
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the target, it defines it as being equal to 5.0. The model "x,y,0" defines the target value

of 10.0. To calculate the marginal contribution of "x" and "y," the average between the
theoretical importance of "x" to the final model and the individual contribution of "x" to a
model where just "x" and "0" are present (C) value and Cx") defines the SHAP value

of "x," hence, its contribution in the final model.

The reader should notice that the summing of the SHAP values with Cg repre-
sents the final model forecast, which does not mean the final model makes the best
prediction. One has to assume that the final model performs well, defined by different
methods, being those statistical or comparative.

2.4 MULTI-SCALE MODELING THEORETICAL BACKGROUND INTEGRATED WITH
MACHINE LEARNING AND MOLECULAR SIMULATION

The integration of Machine Learning Algorithms (MLA) and Molecular Simula-
tion (MS) in the development of multi-scale modeling introduces a novel perspective.
Traditionally, the multi-scale approach in chemical engineering has centered on non-
dimensional numbers (e.g., Reynolds, Weber, Chyly modulus, etc.) (KEVLAHAN, 2012),
respecting constitutive relations in the scales interfaces. However, when considering
a macro work frame and a defined control volume, specifically adopting a Newtonian
approach to the system, non-dimensional numbers capture only a facet of the system
that does not encompass each particle necessarily. Instead, they reflect a common
behavior associated with all entities governed by constitutive relations and boundary
conditions. Musti-scale modeling, aiming to capture the individual physics of every
molecule within the system linked with larger scales, introduces a new set of variables
as the scale changes, with attention given to error propagation across scales (HOEK-
STRA; CHOPARD; COVENEY, 2014).

The exploration of chemical reactions emerges as an intuitive pathway, particu-
larly when attempting to depict every molecule interaction within the controlled volume.
In recent years, the design of chemical reactors based on insightful molecular simu-
lations has gained relevance (KEIL, 2018). However, the increased level of detail and
discretization comes at a mathematical (and computational) cost. In the realm of molec-
ular simulation (e.g., Grand Canonical Monte Carlo (GCMC) and Molecular Dynamics
(MD)), the integration of Machine Learning (ML) is considered a strategic approach for
determining GCMC potentials, thereby balancing the computational cost required for
multi-scale modeling (MS) (YANG, Wuyue et al., 2020; KEIL, 2018). For illustrative pur-
poses, although not the focus of this work, it is worth mentioning the application of ML
alongside MD, especially when the time framework of the procedure can be extended
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without a loss of information or biases due to Machine Learning contribution (BOTU;
RAMPRASAD, 2015).

As relevant as reactor modeling, multi-scale modeling finds application in ma-
terial analysis, where structural molecular assessments rely on the parametrization
of material history and mechanical state space (KARAPIPERIS et al., 2021). Once
again, computational cost remains a significant challenge (KARAPIPERIS et al., 2021;
KEIL, 2018; YANG, Wuyue et al., 2020). However, exploring the interface between
molecular-level interactions and process-level descriptions becomes relevant, encom-
passing considerations such as the accuracy of MS (e.g., force field fidelity) - and
already considering CO, adsorption - precise material composition data, the impact
of surface heterogeneity, crystal formation, and synergistic effects (FARMAHINI et al.,
2018).

Attempts to improve force fields deserve special attention, as this is a problem
extensively discussed in the theoretical background of Molecular Simulations, partic-
ularly within the Force Field subsection. The in silico modeling of gas-solid interac-
tions serves to explore and complement the design of new materials, employing a
combination of a priori simulations with the Density Function Theory approach—a
popular method in recent years (XIANG et al., 2010; MAHAJAN; LAHTINEN, 2022;
MORGANTE; PEVERATI, 2020). However, a challenge arises from the trade-off be-
tween enhanced FF accuracy through a priori approaches and the associated increase
in computational cost. This imbalance becomes pronounced when aiming for precise
multi-scale modeling to connect nano-scale behavior with macro-operation indicators
of performance. The summation of challenges becomes larger and larger.

A term that encapsulates the solution presented in this work is "Bridge". Con-
necting molecular-scale data with process descriptors involves the application of ML
within the methodology outlined in the following section. Upon validating MS outputs
with experimental data, the generated information can be utilized to incorporate these
insights into industrial-scale operations (VEGA; BAHAMON, 0000; BAHAMON; VEGA,
2016).
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3 METHODOLOGY

The conceptual background that sustains the methodology detailed in the current
section was presented. Following through, the present chapter is divided into three main
branches to present the workflow developed constructively. These branches maintain a
connection to the theoretical background but with a focus on practical aspects, which
are crucial for building the final result. The three branches are as follows:

» The first branch outlines the data development procedures at the nanoscale.

» The second branch delves into the development of targets at the macroscale
and emphasizes the reliability of physics in both scales.

 The third branch elaborates on the method used for performing artificial neu-
ral networks’ multilayer perceptron, Random Forest, and the software for
conducting all simulations.

To provide a visual representation of the entire protocol and simplify the under-
standing of the process, a schematic flowchart entitled Simplified flowchart methodol-
ogy is included (Figure 8).

Figure 8 — Simplified flowchart of the methodology

Source: Author (2024)

Figure 8 presents an intuitive notion of how the dataset was built and illustrates
an interface dedicated to interaction with the protocol as a unit. A good starting point
is comprehending that nanoscale simulations have their inputs. Once performed, the
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outputs from molecular simulations of CO, have transformed into inputs for Machine
Learning (ML) applications. Similarly, macroscale simulations also have their inputs.
Once those are determined through the BKC simulation, their outputs are transformed
into targets in ML applications. Briefly, the outputs of nanoscale and macroscale simula-
tions are inputs and targets, respectively, from the perspective of the Machine Learning
approach. Another important aspect is that considering the interface with the ML models,
the inputs for that interface are the same regarding nanoscale inputs and macroscale
inputs, closing the information workflow. Lastly, it is essential to recall that the inputs for
nano and macroscale approaches are detailed in the theoretical background.

Before stepping into a deeper outline of the methodology, some principles follow
through every step of it. The present work’s final deployment follows a direct integration
of three work niches: nanoscale simulations, macroscale simulations, and Machine
Learning Algorithms. Although properly related within a data-driven approach, one has
to be concerned with the structure where multiscale data are assembled and the keys
that allow them to be connected in a single dataset. Going straight forward, the keys
that differentiate every instance are the core points of a structured dataset.

The physical connection between scales plotted in a structured dataset is related
in this work to the keys of every instance. So, the phenomena modeled at the nanoscale
occur in a fraction of a second, measured in nanoseconds or picoseconds. Furthermore,
the same phenomena modeled on a macro scale develop itself in a time frame of hours.
However, regardless of scale, Pressure and Temperature are framed equally. Intuitively,
it can be understood as an absolute correspondence between scales. That principle
allows one to build a structured data set, which would not occur if time was used as a
granularity key (level of detailment). On that account, the level of detail of the dataset
regards temperature and pressure sets, allowing the whole dataset to be structured for
thermodynamic equilibrium for each material being used as the framework.

An important point should be addressed regarding the contrast that GCMC and
isotherms models have. Both of them describe the same phenomena, but from different
perspectives: one macro, the other micro. One should note that the macro-modeling of
the isotherm considers constrains over what happens with the system at a nano-scale.
Those constrains should match between scales, while the constrains of the macro
model should consider all the measured interactions at nano-scale. Anything differ-
ent than that would result in a multi-scale model inconsistency or, in a more detailed
evaluation, a thermodynamic inconsistency. Although the Langmuir isotherm initially
appears to fit well across various temperatures and materials, it was excluded from the
isotherm model fitting due to its limitations in defining nano-scale interactions. Instead,
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the Freundlich and SIPS models were used to fit the GCMC data.

Since both scales represent the same phenomenon (CO, adsorption) but use
different methods — Monte Carlo stochastic algorithms at the nano-scale and deter-
ministic modeling at the macro-scale — validating data at both scales is essential.
Experimental validation is crucial for ensuring that models accurately reflect the phys-
ical causality between scales, not just statistical correlations. At the nano-scale, the
isotherms developed by Monte Carlo stochastic algorithms are compared with previous
works and experimental results to validate the frameworks studied. For the macro-scale
data, the model used was required to describe the experimental data also from experi-
mental data from the literature.

Summing up the theoretical approach, the core of the present thesis relies on the
approach where intensive properties of a system describing a particular phenomenon
can be used as instances to ensemble features from different scales in a structured
dataset. This sentence resumes the principal concept of this work leading to its results.

3.1 MOLECULAR SIMULATION PROCEDURES - FIRST BRANCH

The simulations regarding CO, adsorption were performed in the RASPA soft-
ware, a general-purpose simulation package (DUBBELDAM et al., 2016). The software
has a pre-definition regarding its compilation, assembled in C++ language, requiring a
few libraries and specific compilers (e.g., the GNU Compiler Collection, 'GCC’, and the
Intel C++ Compiler, ’ICC’).

To proceed with simulations, the user needs to define the following files:

« ‘simulation.input’: A file where the specification of the simulation is defined
alongside the primary orientation of the characteristic of the simulation.

 ‘FRAMEWOKR:.cif’: where the structure of the adsorbent is defined in the
format of a “.cif’ file or *.xyZz’ file.

+ ADSORBATE.def’: where the structure of the adsorbate is defined (e.g.,
atoms positions, rigid/flexible, critical constants, bonds)

* ‘ForceField.def’: where the van der Waals potentials are listed, alongside tail-
corrections, cutoffs, mixing rules definition, and, lastly, Leds parameters and
charges.

* ‘ForceFieldMixingRules.def’: used when the ‘ForceField.def’ is not present,
specifying the same information from the pair’s definition despite individual
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atom values.

To properly run the software beyond the above-cited specification, a file named
“‘RUN” must be called in the integrated development environment (IDE). The “run” file
is a shell script directing the software to a directory where the above files are resi-
dent. At the same time, this file is also commanding the software to run by the ter-
minal. The whole package for RASPA software can be found in a GitHub repository
(http://github.com/irapa/RASPA2). The simulations performed in the present work were
performed through the IDE Visual Studio Code v. 1.78.0.

3.1.1 Molecular simulation specifications

The “simulation.input” file is the document that assembles the principal specifi-
cations for the CO, adsorption simulation to all materials developed. This file is where
the specifications for the isotherm calculation are presented, hence, being a central
file. A sample of it will be detailed in the following, although the reader should keep in
mind that the nature of this code, which is embedded with the RASPA software, has its
syntax. The complete code concerning the “simulation.input” file is presented in Figure
9 to then be elaborated.

Figure 9 — General simulation inputs for RASPA2 software simulation framed in the
"simulation.input” file

Source: Addapted from Dubbeldam, D. et al. (2015)
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The first part of the code, declared in Figure 9, follows the definition of the simu-
lation type, number of cycles, and initiation cycles. The printing definitions are essential
since the RASPA software output is presented in a report format. Therefore, defining
the printing parameters is crucial since it is related to the amount of information the
software reports.

Figure 10 — Initial features for GCMC simulation - simulation inputs for RASPA2 soft-
ware "simulation.input" file

Source: Addapted from Dubbeldam, D. et Al. (2015)

In the same frame, going further to what is presented in Figure10, the force field
and charges are specified. Further, the framework has to be embodied in the code.
Some unit cells regard a cubic constitution of the final framework super-cell, where
adsorption will be evaluated. Therefore, one needs to understand that a definition of
1x1x1 represents a super-cell that has 8 replicates of the original “framework.cif” file.
In Appendix A, Figure 41 illustrates super-cell computation as the number of cells in-
creases. Finally, those definitions are specified closely in Figure 11”.

Figure 11 — Framework and isotherm equilibrium points definitions - simulation inputs
for RASPA2 software "simulation.input” file

Source: Addapted from Dubbeldam, D. et al. (2015)

Lastly, the adsorbate is defined. The adsorbate is called by its file name (CO2.def),
alongside the force field of its structure definition. Motion definitions are settled in the
same snipped code - variables directly related to the simulation type. These variables’
probability values were studied and balanced with the number of cycles. The more
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cycles the simulation has, the more efficient the convergence, although the time cost
gets higher. Incrementing the probability of adsorbate motion diminishes time but raises
biases, forcing the addition of initialization cycles. Small probabilities inflict late conver-
gence, forcing the increment of cycles as well. Figure 12 indicates those definitions
declaration.

Figure 12 — Adsorbate features defintions - simulation inputs for RASPA2 software "sim-
ulation.input" file

Source: Addapted from Dubbeldam, D. et al. (2015)

3.1.2 Molecular simulation evaluation

To evaluate the molecular simulation for adsorption, swap probability has particu-
lar relevance since the swap move acceptance enforces a chemical equilibrium between
the system and the adsorbate (DUBBELDAM et al., 2016; HOLLINGSWORTH, Scott A.;
DROR, Ron O., 2018b). It can be understood since adsorption modeling is done over
a framework computationally represented in a set of cells (unit-cells), also regarding
the adsorbate motion through the unit cells where an imaginary reservoir surrounds the
computational system. Then, to control the addition and deletion of those molecules
within the system, when an individual molecule is close to the edges of a unitary cell, it
is deleted from that side and added to the other side of the cell, representing a constant
number of molecules in the system towards the chemical equilibrium. The swap proba-
bility, then, considers the chance of that molecule being deleted or added since a good
agreement between swap addition and swap deletion represents a good performance
of the Monte Carlo simulation. For every simulation, swap deletion and addition were
evaluated.

Another factor to validate the isotherm physical consistency is comparing the
in silico experimental data representative of the present work with the previous liter-
ature. Briefly, isotherms were compared by statistical indicators, the mean squared
error (MSE), residual mean squared error (RMSE) and relative residual mean s