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RESUMO

Radares de ondas milimétricas (mmWave) alcançam alta resolução sem comprometer
a privacidade, além de não serem afetados por fatores ambientais como chuva, poeira
e neblina. Este estudo explora os desafios do uso de radares mmWave para a detecção
simultânea de pessoas e pequenos animais, uma preocupação em aplicações como
sistemas de transferência de energia sem fio em ambientes internos. Este trabalho pro-
põe metodologias para aprimorar a sensibilidade da detecção e superar as dificuldades
inerentes às diferenças de tamanho e volume dos alvos. Em particular, exploramos
dois cenários de posicionamento distintos de radares que envolvem até quatro radares
mmWave em um ambiente interno para detectar e rastrear tanto humanos quanto pe-
quenos animais. Comparamos os resultados alcançados por meio da implementação
de três métodos diferentes de fusão de dados. Foi demonstrado que o uso de um único
radar sem a aplicação de um algoritmo de rastreamento resultou em uma sensibilidade
de 46,1%. No entanto, essa sensibilidade aumentou significativamente para 97,10%
ao utilizar quatro radares com o método de fusão e rastreamento ótimo. Esta melhoria
destaca a eficácia do emprego de múltiplos radares juntamente com técnicas de fusão
de dados, aumentando a sensibilidade e a confiabilidade na detecção de alvos.

Palavras-chave: Ondas milimétricas, Fusão de dados, Múltiplos radares, Pequenos
animais, Rastreamento de humanos.



ABSTRACT

Millimeter-wave (mmWave) radars attain high resolution without compromising privacy
while being unaffected by environmental factors such as rain, dust, and fog. This study
explores the challenges of using mmWave radars for the simultaneous detection of
people and small animals, a concern in applications like indoor wireless energy transfer
systems. This work proposes methodologies for enhancing detection accuracy and
overcoming the inherent difficulties posed by differences in target size and volume. In
particular, we explore two distinct positioning scenarios that involve up to four mmWave
radars in an indoor environment to detect and track both humans and small animals.
We compare the outcomes achieved through the implementation of three distinct data-
fusion methods. It was shown that using a single radar without the application of a
tracking algorithm resulted in a sensitivity of 46.1%. However, this sensitivity signif-
icantly increased to 97.10% upon utilizing four radars using with the optimal fusion
method and tracking. This improvement highlights the effectiveness of employing multi-
ple radars together with data fusion techniques, enhancing sensitivity and reliability in
target detection.

Keywords: Millimeter-wave, data fusion, multiple radars, small animals, human track-
ing.



RESUMO EXPANDIDO

Introdução
O trabalho investiga o uso de múltiplos radares de ondas milimétricas (mmWave) para
a detecção simultânea de pessoas e pequenos animais. Os radares mmWave pos-
suem alta resolução sem comprometer a privacidade e também não são influenciados
por fatores ambientais adversos, como chuva, poeira e neblina. A detecção precisa
de humanos e pequenos animais é essencial em várias aplicações, como sistemas
de transferência de energia sem fio em ambientes internos. Este estudo propõe me-
todologias para aprimorar a sensibilidade da detecção, buscando superar os desafios
impostos pelas diferenças de tamanho e volume dos alvos.

Objetivos
O principal objetivo do estudo é investigar metodologias para melhorar a sensibilidade
na detecção de humanos e pequenos animais utilizando múltiplos radares de ondas
milimétricas. Especificamente, o estudo busca desenvolver e testar novas técnicas
para aumentar a sensibilidade na detecção, comparar os resultados de três métodos
distintos de fusão de dados e analisar a eficácia de dois cenários diferentes de posicio-
namento de radares em ambientes internos para detectar e rastrear simultaneamente
um humano e um pequeno animal.

Metodologia
A metodologia adotada no estudo foi dividida em três módulos principais: aquisição de
dados, fusão de dados e rastreamento. Na aquisição de dados, cada radar transmite
sinais e registra as reflexões da cena. Os dados coletados são transformados para um
sistema de coordenadas comum, considerando a orientação e posição específica de
cada radar. Na fusão de dados, três métodos distintos foram avaliados. O Método 1
baseia-se na intersecção dos dados detectados individualmente por cada radar. Os
dados são processados usando o algoritmo de clusterização DBSCAN, e apenas as
detecções confirmadas por todos os radares são consideradas. O Método 2 é uma
modificação do Método 1, onde apenas uma combinação mínima (R) de radares entre
o total (M) precisa detectar um alvo para que ele seja considerado detectado. Isso per-
mite maior flexibilidade e aumenta a sensibilidade. O Método 3 combina os pontos de
reflexão de todos os radares antes da aplicação do algoritmo de clusterização, conside-
rando o conjunto total de dados para formar clusters. O rastreamento foi implementado
para associar detecções consecutivas do mesmo alvo, utilizando o algoritmo de atribui-
ção de Munkres para otimizar a associação de detecções dos alvos. O rastreamento
utiliza um filtro de Kalman para prever e corrigir a trajetória dos alvos.

Resultados e discussão



Os testes mostraram que a utilização de um único radar resultou em uma sensibilidade
de 46,1%. Contudo, ao utilizar quatro radares com um dos métodos de fusão de dados
e rastreamento, a sensibilidade aumentou para 97,10%. O estudo revelou que o Método
1 demonstrou alta precisão, mas a sensibilidade diminuiu com o aumento do número de
radares, pois todos os radares precisavam detectar o alvo simultaneamente. O Método
2 ofereceu um equilíbrio entre sensibilidade e precisão, sendo particularmente eficaz
quando pelo menos dois dos quatro radares detectavam o alvo. O Método 3 apresentou
o melhor desempenho, alcançando alta sensibilidade e precisão ao combinar dados
de todos os radares antes da clusterização. Os experimentos foram realizados em
dois cenários: radares alinhados horizontalmente e radares posicionados em cada
parede de uma sala, apontando para o centro. Em ambos os cenários, o método de
combinação de dados (Método 3) superou os outros métodos, demonstrando maior
eficácia na detecção.

Considerações finais
O estudo conclui que a utilização de múltiplos radares mmWave, aliada a técnicas de
fusão de dados, melhora significativamente a detecção de humanos e pequenos ani-
mais. Essa abordagem é promissora para aplicações relacionadas à segurança, onde
a alta sensibilidade é importante. Futuras pesquisas podem explorar a detecção em
ambientes externos e a fusão de dados de radar com outras tecnologias para alcançar
alta sensibilidade e precisão com menos sensores. Além disso, a construção de um
sistema protótipo para transferência de energia sem fio, informado por múltiplos rada-
res para a detecção de humanos e animais, pode proporcionar avanços significativos
em segurança e eficiência.

Palavras-chave: Ondas milimétricas, Fusão de dados, Múltiplos radares, Pequenos
animais, Rastreamento de humanos.
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1 INTRODUCTION

The Internet revolution has significantly altered the way people access, se-
arch, and disseminate information through the interconnection of devices around the
world (AL-SARAWI et al., 2020). The emergence of the Internet of Things (IoT) is
creating a bridge between the virtual and the real world, necessitating scalable mo-
bile networks to accommodate the demands of an estimated dozen billion connected
devices (PERWEJ et al., 2019). Moreover, the processing capabilities must evolve to
handle the vast amount of information generated by these digital entities (PERWEJ et
al., 2019). Projections anticipate a staggering 75 billion connected devices by the end
of 2025 (PATTNAIK et al., 2022). Using advanced sensors, as millimeter wave mmWave
radars, embedded within everyday objects, the IoT empowers intelligent data-driven
decision-making in various industries (AL-SARAWI et al., 2020). MmWave technology is
instrumental in advancing IoT applications across various domains, including smart ho-
mes, wearables, and smart cities, by enhancing, e.g., intelligent surveillance, automated
transportation, and security measures with unparalleled accuracy and efficiency (NATH
et al., 2018). This evolution underscores the growing importance of integrating sen-
sing technologies, such as mmWave radars, into the IoT infrastructure to realize its full
potential in enabling smart environments and applications (CUI, Y. et al., 2021).

With the advances in IoT technologies, the demand for high-precision, secure,
and private location monitoring has increased significantly. Location monitoring and
movement tracking are of critical importance in various scenarios, such as smart ho-
mes, indoor navigation, security surveillance, disaster management, and smart health-
care (LU et al., 2020). Among the array of sensors used to detect people, gestures,
and objects, cameras and radars are known for their cost effectiveness while main-
taining commendable precision levels compared to other sensor technologies (ZHAO
et al., 2019). Current research on detection and tracking employs various sensing ap-
proaches and algorithms, such as passive infrared sensors (PIR) (HUA et al., 2022;
OH et al., 2019), light detection and ranging (LIDAR) (GARROTE et al., 2022; ZHANG
et al., 2022), and digital cameras (ROY et al., 2022; LIU et al., 2023; TSAI et al., 2022).
However, each of these technologies faces challenges related to accuracy, privacy,
and environmental robustness (IOVESCU et al., 2017; HUANG et al., 2022).

(??) radars employ short-length electromagnetic waves, resulting in high preci-
sion. Unlike technologies such as cameras and LIDAR, radar measurements are less
affected by environmental factors such as rain, fog, and dust (IOVESCU et al., 2017),
while also preserving privacy. Additionally, radar can achieve high-range and high-
speed object detection (IOVESCU et al., 2017). A prominent example of commercial
radar systems is the IWR6843 mmWave sensor from Texas Instruments (TI) (INSTRU-
MENTS, 2021). These sensors produce point clouds: three-dimensional datasets that
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convey object positions in three axes, Doppler data, angles for each point, and other
relevant information, providing comprehensive environmental data (CUI, H. et al., 2021).
A common use case of mmWave radar is in the detection and tracking of humans.

However, the literature is scarce on methods capable of detecting and tracking
humans and animals in the same environment. By identifying the presence of animals,
sensors facilitate early alerts to drivers, machine operators, security personnel, and ac-
tivation of safety measures, thus reducing the risks of potential incidents (FORSLUND
et al., 2014). Furthermore, the detection of animals through sensors promotes safe
cohabitation in shared environments (FORSLUND et al., 2014). Taking into account
that there are around a billion pets worldwide1 the ability to detect and track humans
and small animals may result in many novel applications.

1.1 RELATED WORK

Several works have explored tracking people using mmWave radar (ZHAO et al.,
2019; PEGORARO et al., 2021; CUI, H. et al., 2021; HUANG et al., 2022). The work
in (ZHAO et al., 2019) presents an identification system named mID, utilizing mmWave
radar technology. Meanwhile, the authors in (PEGORARO et al., 2021) introduce an
extended object-tracking Kalman filter capable of estimating the position, shape, and
extension of the subjects. It integrates a novel deep-learning classifier designed specifi-
cally for efficient feature extraction and rapid inference from radar point clouds. Additio-
nally, the work in (CHEN et al., 2023) implements a mmWave radar-based multi-person
tracking system utilizing a single radar.

Moving forward, combining sensors through data fusion has emerged as a pro-
mising approach to gain additional information in various applications (XU, Y. et al.,
2002). The data fusion process involves multiple stages including detection, associa-
tion, correlation, estimation, and combination (XU, Y. et al., 2002). It encompasses the
fusion of data from similar or dissimilar sensors. For instance, in a multi-sensor system
comprising identical sensors, a target detected by several sensors provides estimation
states to the fusion center for target tracking (XU, Y. et al., 2002). Additionally, the work
in (YAN et al., 2016) showcases the effective fusion of information from multiple radars,
resulting in improved area coverage, probability of detection, localization, and tracking
performance.

In this line, multi-radar tracking can be seen as a way of obtaining a view of
an object from two or more angles simultaneously (COWLEY et al., 1993). According
to (COWLEY et al., 1993), the use of multiple radars has some advantages and di-
sadvantages. Some of the advantages are better resolution in the presence of noise,
detection uncertainties, and more reliable tracking data (COWLEY et al., 1993). The
1 https://www.healthforanimals.org/, accessed on 26.06.2024.

https://www.healthforanimals.org/
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disadvantages would be the constant communication between the radar platforms and
the increased amount of data processing (COWLEY et al., 1993). Various radar fusion
techniques are presented in (XU, Y. et al., 2002), employing a coefficient calculation
method based on the trace of the error covariance matrix. The use of the strong tracking
filter (STF) is introduced in the estimation of the target state, demonstrating superior
performance compared to conventional or extended Kalman filters. This integration
improves the overall target tracking performance.

In (YANG et al., 2017), a simulation utilizing the fusion of multiple radars suggests
that employing two radars results in a higher detection probability and higher precision
compared to a single radar. Furthermore, (LI, S. et al., 2021) introduces a multi-radar
calibration method by tracking pedestrian trajectories. The fusion of multiple radars has
shown utility in estimating human posture. In (SENGUPTA et al., 2020), two mmWave
radars were strategically placed: one detecting (x , y ) data and the other capturing (x , z)
data to collect reflection points. A neural network was used for data fusion. In (BANSAL
et al., 2020), an algorithm called Pontilism was introduced for a system of multiple radars.
This algorithm addresses specular reflections, sparsity, and noise in radar point clouds,
enhancing the radar perception with 3D bounding boxes. The study demonstrated that
the use of multiple radars resulted in a reduced error compared to using a single radar.

There are some works in the literature that use point clouds generated from
multiple radars to specifically detect and track people, as in (LI, W. et al., 2023; HUANG
et al., 2022; SHEN et al., 2023; CUI, H. et al., 2021), where different radar positioning
scenarios were proposed. For example, the work in (LI, W. et al., 2023) introduced a
human tracking system based on mmWave radar, employing two radars placed along
the walls of a room. This setup enabled the detection of moving humans by sparse
point clouds. Similarly, the authors in (HUANG et al., 2022) investigated the use of two
mmWave radar sensors for accurate people detection and tracking. However, their radar
positioning differed, with the radars located at the corners of the room. Furthermore, a
real-time system framework is proposed in (SHEN et al., 2023) to merge radar signals
to track human position and body status. Unlike previous studies, the authors utilized a
configuration involving three radars, one placed on the ceiling and the other two on the
walls, ensuring precise tracking accuracy.

In the pioneering study using point clouds from multiple mmWave radars pre-
sented in (CUI, H. et al., 2021), a software framework capable of communicating with
multiple radars and applying a customized data processing chain is introduced. These
radars were placed on the walls of a room. The conclusion shows that the proposed
system achieves over 90% sensitivity in indoor human detection. In particular, using a
two-radar configuration significantly improves precision from 46.9% to an impressive
98.6%. However, in this case, the sensitivity decreased from 96.4% to 90.4%. Depen-
ding on the application, as those concerned with security or safety aspects, a reduction
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in sensitivity may be unacceptable. Moreover, the authors discuss the potential interfe-
rence among multiple radars, showing that the probability of interference when using
four radars is less than 1%. However, such a probability increases considerably with
more than ten radars, which would then require explicit synchronization between radars
or an interference detection algorithm.

Unlike human detection, the detection of animals presents a distinct challenge,
given the variations in size and shape. The work presented in (TAHMOUSH et al., 2009)
explores in-phase and quadrature (IQ) radar data on humans and animals, focusing
on the extraction of radar data distinguishing features to classify animals versus hu-
mans based on micro-Doppler signatures. Additionally, in (SHRESTHA et al., 2018)
the use of radar micro-Doppler signatures for the automatic contactless identification of
lameness is presented, showing preliminary results for dairy cows, sheep, and horses.
Furthermore, the classification system in (DARLIS et al., 2023) utilizes a mmWave dual
receiver to distinguish between humans and animals. This system uses feedback signal
responses from targets with dual-receiver mmWave radar, utilizing a neural network
based on synthetic 2D tensor data to categorize human and animal features (DARLIS et
al., 2023). However, none of these studies have utilized point clouds from mmWave ra-
dars for simultaneous detection and tracking of people and animals. Although mmWave
radars commonly collect data in IQ format, the point cloud format is advantageous in
terms of external radar processing. Processing IQ data demands a large communication
bandwidth and high computing power (PEARCE et al., 2022). Moreover, receiving data
directly in the point cloud format allows for the application of advanced data processing
techniques like clustering and filtering with enhanced efficiency and speed.

While some existing literature explores the use of multiple radars to detect people
or objects, such as (CUI, H. et al., 2021; HUANG et al., 2022; SHEN et al., 2023; LI, W.
et al., 2023), and there are also studies that focus on animal classification, such as (SH-
RESTHA et al., 2018; DARLIS et al., 2023), none of the previous works addresses the
simultaneous detection and tracking of people and small animals, such as dogs and
cats, using multiple radar systems. Note that a system optimized for detecting people
may be very inefficient in detecting small animals. A relevant application of simultaneous
detection of humans and small animals is in autonomous vehicles. Moreover, another
essential application of human and small animal detection is in the domain of wireless
energy transfer (LÓPEZ et al., 2023), ensuring safety in settings that involve wireless
charging for electronic devices located in areas with frequent presence of animals, the
latter being the case of a modern living room, as illustrated in Figure 1. To avoid expo-
sure to potentially dangerous electromagnetic fields, the wireless charging system can
be turned off upon detection of humans or animals in the environment (LÓPEZ et al.,
2023).
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Figure 1 – An illustrative scenario of the application of mmWave radars for safety-aware
wireless energy transfer. A power beacon charges several devices. If the
presence of humans or animals is detected by means of mmWave radars,
potentially unsafe electromagnetic exposure can be avoided by turning off
the power beacon or even by informing the power beacon to redesign the
beams accordingly.

1.2 NOVELTY AND CONTRIBUTION

This work introduces a strategy for the simultaneous detection of humans and
small animals employing multiple mmWave radars. The decision to limit our study to
these two targets is with the intention of exploring one of the challenging scenarios for
radar detection, particularly when potential targets significantly differ in terms of energy
signatures, which depend on their size. It is considerably challenging to optimize a radar
system to effectively detect targets with large deviations in energy signatures. If the
radar setting is optimized to minimize false negatives for a target with a small energy
signature, such as a small animal, this optimization could compromise the accuracy of
detecting larger targets, like humans, thereby increasing the risk of false positives for
the latter. Detecting multiple humans is in principle less challenging than detecting a
small animal and a human in the same scene. Thus, our selection of a small animal
and a human as targets stems from viewing them as an ideal benchmark for testing
the limits of radar sensitivity and detection capabilities. Then, the primary objective
is to demonstrate the enhanced detection efficacy achievable by multiple radars. It
is shown that algorithms relying solely on a single radar may not capture sufficient
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reflection points from small animals, potentially leading to their misclassification as
noise or remaining undetected. To the best of the authors’ knowledge, this is the first
work to use point clouds from up to four mmWave radars to detect and track people
and small animals in the same environment. We explore two different radar positioning
scenarios and present a comparative analysis of their respective results. Furthermore,
this study includes an examination of three data-fusion methodologies. Importantly, our
focus is on target detection, not on the classification of the target. The goal is to highlight
the increased efficacy in target detection using multiple radars, showcasing how this
approach overcomes limitations associated with the use of a single radar for targets
with diverse shapes and sizes.

The proposed system achieves 97.1% sensitivity and up to 91.4% precision in
the detection of humans and small animals in an indoor environment, considering the
best fusion strategy. The contribution of this work can be summarized as follows.

• We investigate the use of multiple mmWave radars to detect people and
small animals, analyzing the impact of different data fusion and radar position
strategies.

• We show that data fusion from multiple radars can significantly improve sen-
sitivity and precision, enabling the simultaneous detection of small animals
and humans.

This work was published in (MATTOS et al., 2024). The rest of this work is struc-
tured as follows. The principles of mmWave radar are reviewed in Section 2. Section 3
describes the proposed approach, while Section 4 introduces the implementation de-
tails and the test setup. Section 5 evaluates the system, while Section 6 concludes
the work.
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2 MMWAVE RADAR PRELIMINARIES

Radar systems emit electromagnetic waves that interact with objects in their path.
By capturing reflected signals, these systems extract valuable information about the
range, Doppler velocity, and angular positioning of the objects. Radars can be categori-
zed into two types based on the signal they employ: frequency modulated continuous
wave (FMCW) radar and pulsed radar (IOVESCU et al., 2017). For example, the radar
used in this study, the IWR6843 Industrial Starter Kit (ISK) 2.0 from TI, as shown in
Figure 2, is an FMCW radar operating in the mmWave 60 GHz to 64 GHz band, equip-
ped with four reception channels and three transmission channels (INSTRUMENTS,
2021).

FMCW radars transmit a continuous frequency-modulated signal, allowing mea-
surement of range, angle, and velocity (IOVESCU et al., 2017). This stands in contrast
to traditional pulsed-radar systems that periodically transmit short pulses (IOVESCU et
al., 2017). In the case of FMCW radar, the transmitted signal is called a chirp, which is
a sinusoidal signal characterized by a linear increase in frequency over time (IOVESCU
et al., 2017). A chirp is characterized by initial frequency fc , bandwidth B, and duration
Tc . The slope S of the chirp defines the rate at which the frequency increases with time.
A sequence of chirps forms a frame (IOVESCU et al., 2017).

The illustration in Figure 3 presents the block diagram that describes the operati-
onal principle of an FMCW radar. The radar functions as follows: a chirp is generated by
a synthesizer, sent through the transmit (TX) antenna, partially reflected by a target, and
finally reaches a set of receive (RX) antennas (IOVESCU et al., 2017). After mixing and

Figure 2 – The IWR6843ISK radar next to a coin for size comparison.
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low-pass filtering, an object in front of the radar generates an IF signal with a constant
frequency (IOVESCU et al., 2017). Then, such an IF signal is sampled by an analog-to-
digital converter (ADC), so that the ADC data is processed (IOVESCU et al., 2017). In
the processor, the standard mmWave radar processing chain initially accepts ADC data
as input. It then executes range and Doppler fast Fourier transform (FFT) operations,
subsequently engaging in non-coherent detection through the implementation of the
constant false alarm rate (CFAR) algorithm (TEXAS INSTRUMENTS, INC, 2019). The
final step involves estimating the angle using a 3D-FFT technique, which results in the
generation of detected points termed point cloud data (TEXAS INSTRUMENTS, INC,
2019). Further details regarding the mmWave radar processing chain will be elaborated
on in the following subsections.
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Figure 3 – Diagram of the detection process of a target using an FMCW radar.

2.1 RANGE ESTIMATION

As previously stated, an object in front of the radar reflects the transmitted chirp.
Therefore, the received chirp is a version of the transmitted signal, delayed by (IO-
VESCU et al., 2017)

τ =
2d
c

, (1)

where d is the distance to the detected object and c is the speed of light (RAO, 2017).
If multiple objects are positioned in front of the radar, the radar receives back multiple
chirps. Each chirp experiences a distinct delay, relative to the distance of the specific
object.

When an object is located at a distance d from the radar, the resulting IF signal,
after mixing with the transmitted chirp and low-pass filtering, becomes (IOVESCU et al.,
2017)

xIF(t) = A sin (2πf0t + Φ0), (2)

where f0 = S·2d
c is a constant frequency tone and Φ0 = 2πfcτ is the initial phase of

the IF signal. Figure 4 illustrates a transmitted chirp, the reflected signal from an object
with a delay τ, and the resulting IF frequency f0 after mixing. Therefore, ranging can
be translated as finding the frequency f0 of the IF signal. Typically, for that sake, the IF
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Figure 4 – Representation of the transmitted chirp, the signal reflected by an object
within the radar range (causing a delay τ in the reflected chirp), and the
resulting IF tone f0 after mixing with the transmitted chirp.

signal is digitized and an FFT operation is performed on the ADC data. In addition, in
most implementations the so-called range-FFT is done inline prior to storing the ADC
samples in memory.

2.2 DOPPLER ESTIMATION

For the Doppler estimation process, the radar must transmit more than two chirps,
each separated by time intervals Tc . Consequently, the range-FFT, corresponding to
these successive chirps, displays peaks at identical positions but with distinct phases
(IOVESCU et al., 2017). The phase difference is

ΔΦ =
4πvTc

λ
, (3)

where λ = c/fc is the wavelength, and from which the velocity v can be readily achieved.

2.3 CFAR ALGORITHM

The constant false alarm rate (CFAR) algorithm is one of the key technologies
of radar signal processing (XU, C. et al., 2021). It estimates the average power of the
background according to the reference cells around the cell under test (CUT) as the
threshold to detect targets, which maximizes the target’s detection probability while
maintaining a constant probability of false alarm. Therefore, the tracker can follow the
detected targets effectively (XU, C. et al., 2021). Two-pass CFAR detection is used on
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the range Doppler heat map to perform object detection. The first pass is made per
Doppler bin along the range domain. The second pass in the Doppler domain is used
to confirm the detection of the first pass (MANI et al., 2018).

2.4 ANGLE ESTIMATION

An FMCW radar system has the ability to estimate the angle of a reflected signal
with respect to the horizontal plane. A small change Δd in the distance of an object
from the radar, such as that induced by the separation of multiple RX antennas, causes
a phase shift ΔΦ = 4πΔd /λ in either the range-FFT or Doppler-FFT peak. A minimum of
two RX antennas are required for such angle estimation. Assuming a planar wavefront
geometry, the angle of arrival (AoA) becomes

θ = arcsin

λΔΦ

2πl


, (4)

where l is the minimum separation between RX antennas. Radar systems have a
maximum field of view, allowing for the partial reflection and subsequent detection
of targets within this range. The maximum angular field of view is closely linked to
the maximum detectable AoA (IOVESCU et al., 2017). To ensure an unambiguous
measurement of angle, |Δω| < 180◦, where ω = 2π

λ
d sin θ denotes the phase difference

between consecutive chirps for the respective targets (RAO, 2018).

2.5 OUTPUT DATA

The main information in the payload is the point clouds, which contain reflections
from the radar, positioning on the (x , y , z) axes, velocity, and signal strength. The term
“radar point cloud” universally defines a compilation of detected objects reflected by the
radar processing chain (MAFUKIDZE et al., 2022). Originally, the concept of a point
cloud emerged to characterize multi-dimensional data points derived from sensors like
LIDAR and range cameras (MAFUKIDZE et al., 2022). In some literature, point cloud
data is described as a flexible information model commonly used to condense object
signature(MAFUKIDZE et al., 2022). Essentially, point cloud data comprises numerous
sets of individual points positioned uniquely in Euclidean space (MAFUKIDZE et al.,
2022).

A primary advantage of this representation lies in its ability to convey crucial
object information while demanding minimal computational and memory resources
(MAFUKIDZE et al., 2022). This quality renders it suitable for devices with limited
resources, such as the TI mmWave radars(MAFUKIDZE et al., 2022). Additionally,
point clouds represent target signatures in point form, enabling the representation of
complex targets using only a few data points. In contrast, a typical LIDAR point cloud
data frame, sampled from scene surfaces, may contain thousands or millions of data
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points. This quantity surpasses the data points collected from a scene via mmWave
radar, where streaming raw IQ data without additional hardware is impossible due to
memory and hardware constraints in the single-chip radar (MAFUKIDZE et al., 2022).

2.6 RADAR CONFIGURATION

The mmWave radar used, IWR6843ISK (INSTRUMENTS, 2021), provides a
high degree of flexibility in the configuration of chirp parameters and also allows mul-
tiple chirp configurations within a single frame (TEXAS INSTRUMENTS, INC, 2019).
Among the many configurable parameters are the maximum and minimum detection
distances of a radar sensor, range resolution (the ability to distinguish nearby objects),
and parameters for maximum velocity, velocity resolution, and angular resolution. The
threshold of the CFAR algorithm is also configurable, making it possible to filter out
detected points outside the specified limits in the range domain or the Doppler domain.
Initially, the configuration file is transmitted to the radar via a serial port, which requires
a connection to a central processor and consumes a short period of time. However,
once established, the configuration can be hard coded, allowing the device to auto-
nomously boot, configure, emit chirps, and transmit output data through a serial port
without additional user intervention.
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3 PROPOSED APPROACH

This work considers the use of point clouds generated by M different mmWave
radars to detect both people and small animals. The proposed approach consists of
three sequential modules: data acquisition, data fusion, and tracking.

(1) Data Acquisition. Each FMCW radar transmits mmWave chirps and records
reflections from the scene. Subsequently, it processes the dynamic point
clouds, identifying and eliminating points corresponding to static objects.

(2) Data Fusion. The data obtained by each of the radars are transformed into
a common coordinate system so that a method for data fusion and clustering
can be implemented.

(3) Tracking. The system associates the same human/small animal in consecu-
tive frames and uses a multiple-object tracking algorithm to maintain their tra-
jectories.

3.1 DATA ACQUISITION

As previously stated, the FMCW radar operates by transmitting mmWave signals
and capturing their reflections within a scene at a moment in time. The returned signal
undergoes preliminary processing on the sensor, which then computes the point clouds.
Reflections from static elements such as the ground, door frame, ceiling, walls, and fur-
niture introduce a notable challenge (TEXAS INSTRUMENTS, INC, 2023b). To enhance
the distinction between objects of interest and the background scene, a calibration step
is incorporated into the system. In the installation phase, the device captures radar
returns from the background, establishing a reference dataset in an environment free
of humans and animals. This process is repeated every time the radars are restarted.
Through the variation of the Doppler effect, static points are detected and only dynamic
points are utilized. This recorded background information is then subtracted from the
current frame during operation, facilitating the identification of newly introduced objects
in the scene (TEXAS INSTRUMENTS, INC, 2023b).

The resulting data are transmitted into a central processor, where rotation and
translation matrices are computed individually for each radar, incorporating their specific
orientations and positions within the system. This process is facilitated by the known
spatial coordinates and orientations of each radar unit. Subsequently, the data acquired
from each radar undergo a transformation to align with a unified coordinate system,
ensuring a consistent and coherent spatial reference across all radar sources.
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3.2 DATA FUSION

The generated points of each radar are placed into one coordinate system,
and the data go through a clustering process. Three data-fusion methodologies are eva-
luated.

3.2.1 Method 1 (CUI, H. et al., 2021)—Intersection of Detected Data

The first approach is based on the method introduced in (CUI, H. et al., 2021)
and is illustrated in Figure 5, considering M = 4 radars. In Figure 5a, we present the
raw data from each radar, as points in different colors. The data gathered by each
radar, stored in (x , y , z) coordinate formats, is processed via the density-based spatial
clustering of applications with noise algorithm (DBSCAN). In the realm of density-based
clustering algorithms, DBSCAN stands out as a widely embraced algorithm within this
classification (PEGORARO et al., 2021), having demonstrated successful application
in clustering radar point clouds, as indicated in (ZHAO et al., 2019; CUI, H. et al., 2021;
PEGORARO et al., 2021; HUANG et al., 2022). A major feature is that it does not
require the number of clusters to be specified a priori (ZHAO et al., 2019). Furthermore,
DBSCAN detects clusters of arbitrary shapes, while it can automatically mark outliers to
cope with noise, enhancing its effectiveness in handling noisy data (ZHAO et al., 2019;
ESTER et al., 1996).

The assignment of a point to a cluster in the DBSCAN algorithm depends on the
neighborhood of the point around a radius ε (ESTER et al., 1996). Then, this algorithm
classifies points into three distinct categories: core, a point within a cluster that boasts
a minimum of minpts neighbors within its ε-neighborhood; border, a point within a
cluster that possesses fewer than minpts neighbors in its ε-neighborhood; and noise,
an outlier that does not align with any cluster (ESTER et al., 1996; THE MATHWORKS,
INC., 2023b). For a point to be considered part of a cluster, it must be located in a
dense region of points (ESTER et al., 1996). Otherwise, it is considered noise (ESTER
et al., 1996).

The clusters detected by each radar are illustrated by ellipses in Figure 5a. After
evaluating the clusters’ dimensions and positions, the system proceeds to compute the
eigenvectors specific to each cluster (CUI, H. et al., 2021). Subsequently, the algorithm
estimates distances and identifies overlapping regions between clusters from different
radars, preserving the groups where the centroids align closely and most of their areas
intersect (CUI, H. et al., 2021). Unlike the methodology in (CUI, H. et al., 2021), which
uses only two radars, here, we extend the method for up to four radars. Consequen-
tly, in this case, a positive decision necessitates detection from all radars; otherwise,
the input is classified as noise. Figure 5b illustrates the final result of this method by
another ellipse. Note that all radars must detect the target; otherwise, it is not detected
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in the final step. This can be a problem for detecting small animals, as they generate
fewer points than humans and may not be detected by all radars simultaneously, thus
potentially missing detection. Thus, one should expect a decrease in sensitivity with
the increase of M. This issue can be alleviated by considering a relatively small va-
lue of minpts in DBSCAN, but at the potential cost of increasing the occurrence of
false positives.
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Figure 5 – The raw and detected data at each radar are shown in (a). Method 1, based
on the intersection of individually detected data, is illustrated in (b). Method
3, based on the combination of raw data, is shown in (c).

3.2.2 Method 2—R out of M

The second fusion method is a modified version of Method 1 (CUI, H. et al.,
2021). Unlike the original methodology, where detection relied on the intersection of
individual detections of all M radars, this adapted method introduces flexibility by varying
R, the minimum number of detecting radars to confirm a detection event. The approach
of Method 1 is applied in each possible combination of R out of M radars, leading to
M!/(R!(M – R)!) possible intersections. For instance, in the case of M = 4 radars and
R = 2, the method proposed in (CUI, H. et al., 2021) is applied separately in each
possible pair among the four radars. Taking Figure 5a as an example, Method 2 would
consider the following set of intersections: {(Radar 1, Radar 2), (Radar 1, Radar 3),
(Radar 1, Radar 4), (Radar 2, Radar 3), (Radar 2, Radar 4), (Radar 3, Radar 4)}. In this
example, it is sufficient for a target to be successfully detected if any R = 2 of the M = 4
radars detect it. Clearly, when R < M, the sensitivity should be increased with respect
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to Method 1, but at the cost of precision.

3.2.3 Method 3—Combining the Raw Data

In the third and final method, clustering is not applied individually in the raw
data of each radar, as in Methods 1 and 2 above. Rather than using individual radar
data independently, the collected data from all radars undergo processing in a unified
coordinate system through the DBSCAN algorithm. Consequently, the point clouds
from each radar are collectively considered for clustering. The procedure is illustrated
again with the aid of Figure 5, where the final result of Method 3 is shown in Figure 5c.
Therefore, unlike Method 1, when the number of radars M increases, the sensitivity
also tends to increase due to the availability of more points, making undetected targets
much less frequent.

3.3 TRACKING

To enhance the detection rate, a tracking algorithm is implemented, similar to
the one proposed in (ZHAO et al., 2019). The tracking module takes as input a vec-
tor of cluster measurements, including positioning on the (x , y , z) axes and velocity
information from the radars. Tracking both a human and a small animal through the
continuous capture of individual point clouds requires the efficient temporal association
of detection, alongside noise correction and prediction in sensor data. The flow of the
multi-target tracker system is illustrated in Figure 6.

Detections
Create

Tracks

Detection

Association

Maintain

Tracks

Update

Tracks

Correct

Tracks

Figure 6 – Block diagram of the proposed tracking process.

In this work, tracks are established to detect multiple individuals, whether people
or small animals, in each frame. While (ZHAO et al., 2019) utilizes the Hungarian algo-
rithm for target association across frames, this work opts for James Munkres’s variant of
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the Hungarian assignment algorithm (MUNKRES, 1957). The Hungarian algorithm re-
presents a combinatorial optimization method (ZHAO et al., 2019). It operates through
a distance matrix, which holds the Euclidean distances between every pair of tracks
along the matrix rows and detections in the columns (HAMUDA et al., 2018). These
distances are computed from the centroids of predicted and detected objects, where
smaller distances correspond to a greater likelihood of correctly associating detections
with predictions (HAMUDA et al., 2018).

The main difference between the Hungarian algorithm and the Munkres variant
lies in how it iterates through the cost matrix to find the optimal solution for assignment
problems. The Munkres algorithm employs alternating path and labeling techniques to
identify and update assignments more efficiently, reducing computational complexity
compared to the original version of the Hungarian algorithm (MUNKRES, 1957). Similar
to (ZHAO et al., 2019), a new track is initiated for each detection, originating either
from the first incoming frame or those not associated with an existing track. Tracks
that remain undetected for a continuous duration of U frames are flagged as inactive
and excluded from subsequent associations. Furthermore, a Kalman filter is employed
for trajectory forecasting and adjustments. Further elaboration on these processes is
provided below.

3.3.1 Tracks Creation and Association

At the beginning of the tracking process, an empty track is created, with each
track being a structured representation of a target detected by the radars. This structu-
red format aims to maintain the state of a tracked target. After data fusion, centroids and
bounding boxes are returned if any target is detected. To maintain continuous tracking
of individual point clouds for people or animals, an effective temporal association of
detection is crucial.

The association method assigning detections tracks is facilitated through the
application of James Munkres’s variant of the Hungarian algorithm, which manages the
assignment problem between existing tracks and new detections (THE MATHWORKS,
INC., 2023a). The association process employs a cost matrix C, with rows representing
tracks and columns representing detections (MUNKRES, 1957). The element Cij in the
matrix delineates the cost of assigning detection j to track i (MUNKRES, 1957), and it
is calculated using the Euclidean distance between the predicted location of the track
and the detected object’s centroid:

Cij =


(xtrack,i – xdetect,j )
2 + (ytrack,i – ydetect,j )

2, (5)

where xtrack,i and ytrack,i are the coordinates of the i-th track’s predicted position,
and xdetect,j and ydetect,j are the coordinates of the j-th detection. The algorithm then
processes this cost matrix to determine the optimal assignment of detections to tracks,
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minimizing the total cost (MUNKRES, 1957). This yields the indices for both assigned
and unassigned tracks and detections, allowing for the updating of existing tracks and
the creation of new ones for unassigned detections. Through this method, the tracking
system ensures the continuous monitoring of targets by dynamically managing the cre-
ation of new tracks and the association of detections to existing tracks, optimizing the
tracking process over time (MUNKRES, 1957; THE MATHWORKS, INC., 2023a).

3.3.2 Track Prediction, Update and Correction

To effectively track the movement of humans and animals across frames, pre-
dicting their future locations is important. The previous motion patterns feed the pre-
dictions, which are performed using a Kalman filter (KALMAN, Rudolph E, 1995; THE
MATHWORKS, INC., 2023a). The Kalman filter is essential for predicting an object’s
future location, accounting for process noise (Q) and measurement noise (R). It main-
tains a state (x) for each track, comprising location and velocity along the (x , y , z) axes.
The state for each track at time k is updated based on the previous state at time k – 1
and the current measurements (KALMAN, Rudolph Emil, 1960; HAMILTON, 1994).
The state prediction equation is given by

x̂k |k–1 = Fkxk–1 + Bkuk , (6)

where x̂k |k–1 is the predicted state estimate at time k , given all available information up
to time k – 1, Fk is the state transition model applied to the previous state xk–1, Bk is
the control input model applied to the control vector uk , which represents any known
external influences on the state, while xk–1 is the state estimate at time k – 1 (KALMAN,
Rudolph Emil, 1960).

The covariance prediction equation is

Pk |k–1 = FkPk–1F
⊤
k + Qk , (7)

where Pk |k–1 is the predicted estimate covariance (KALMAN, Rudolph Emil, 1960).
In the tracking algorithm, the function responsible for updating each assigned

track seamlessly incorporates the corresponding detection information. It accurately
calls the method to correct the location estimate, storing the new bounding box in
the process. This update is performed in a frame-by-frame manner during the post-
processing stage. When a new measurement zk is received, the update and correction
steps are performed as follows (KALMAN, Rudolph Emil, 1960):

Kk = Pk |k–1H
⊤
k (HkPk |k–1H

⊤
k + Rk )–1, (8)

xk = x̂k |k–1 + Kk (zk – Hk x̂k |k–1), (9)

Pk = (I – KkHk )Pk |k–1, (10)
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where Kk is the Kalman gain, zk is the measurement vector, and Hk is the mea-
surement model. In addition, Pk is the updated estimate covariance, and I is the
identity matrix.

These steps ensure that the tracker accurately predicts the object’s movement
across frames, incorporating both model predictions and real measurements to refine
the position and velocity estimates (KALMAN, Rudolph E, 1995; THE MATHWORKS,
INC., 2023a).

3.3.3 Track Maintenance

Within each frame, detections are either linked to existing tracks or remain un-
linked, leading to what we term “invisible” tracks for those without corresponding de-
tections. New tracks are initiated from unassigned detections. Importantly, we manage
each track’s visibility by incrementally tracking the number of consecutive frames it
remains unlinked. This count is crucial for determining when a track should be conside-
red inactive and subsequently removed, indicating that the object has likely exited the
observable area.

For a given track Ti , let us denote its visibility count as Vi , a method to avoid
confusion with the cost matrix C. This visibility count is updated as follows:

Vi =

0 if Ti is linked to a detection,

Vi + 1 if Ti is not linked to a detection.
(11)

A track is considered for removal if its visibility count Vi exceeds a predefined threshold
θ, indicating prolonged absence from the field of view:

if Vi > θ, then remove Ti . (12)

This mechanism underlines the dynamic nature of tracking, where the sensitivity and
accuracy are notably enhanced by the process (THE MATHWORKS, INC., 2023a).

Figure 7 displays the trajectory of an identified target. In this scenario, a small
animal enters the scene and moves toward the positive y-axis. Four radars are em-
ployed for detection. The blue dots in Figure 7 represent the detections made by the
radars that were confirmed by the tracking process. The red dots are the detections
that were missed by the radars but that were included after the tracking process. Note
the relevance of tracking in this application, as it clearly increases the sensitivity.
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Figure 7 – Two-dimensional superior view plot example of an animal being tracked
using the tracking algorithm. One small animal was present in the scene,
and four radars were utilized. The blue dots are the radars’ detections that
were confirmed by the tracking, while the red dots are those detections
missed by the radars but that were included by the tracking process.
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4 IMPLEMENTATION

4.1 RADAR CONFIGURATION

As the purpose of this work is to detect not only humans but also small animals,
the typical configurations provided by the manufacturer need to be adjusted to fit the
project goals. An adequate threshold was set for the CFAR algorithm with the aim of
obtaining sufficient data for post-processing. Given the objective to detect both small
animals and humans, capturing a greater number of point clouds than those solely for
humans is crucial, as animals may generate fewer point clouds due to their smaller
size and distinct shapes. The radars are configured for an indoor environment, with a
maximum distance of 5 meters, range resolution of 7 cm, maximum radial velocity of
2.4 m/s, velocity resolution of 0.15 m/s and frame duration of 100 ms. The mmWave
radars were configured for an azimuth opening angle of 120◦ and an elevation angle of
30◦. However, these configurations can be adjusted if necessary to better suit specific
requirements or environmental conditions.

When employing multiple radars, understanding signal interference becomes
crucial. As stated in (CUI, H. et al., 2021), the probability of interference remains below
1% when utilizing four radars, but this probability escalates with the use of more than
ten radars. In such cases, explicit synchronization among the radars or implementation
of an interference detection algorithm becomes necessary. Consequently, it can be
inferred that the likelihood of interference is minimal when concurrently operating up to
four radars, aligning with the approach proposed in this study.

4.2 SETUP

The experiments were conducted in a 4 m × 4 m empty room. The animal detec-
ted in the test is a small dog, weighing approximately 3 kg and 40 cm tall. During tests,
a camera is used to monitor the environment and the radars operate unsynchronized.
As detecting a small animal is more challenging than detecting a human, we set that
during 66.67% of the time only the animal was in the area and 33.33% of the time
there was a human and an animal. The system was operated for 3,000 frames. Once
configured, the radars were placed in two different scenarios for the tests. In the first
scenario, the radars were horizontally aligned, as shown in Figure 8a, separated by the
same distance between them. In the second scenario, the radars were each positioned
close to one of the four walls, at the center of each wall, all pointing towards the center
of the room, as depicted in Figure 8b. These two scenarios were proposed to analyze
the detection performance in different radar positions and to obtain data at different
angles. In the images, the dashed line illustrates the opening angle of the radars. Gi-
ven the radar’s lower elevation angle compared to the azimuth angle as a result of
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(a) Scenario 1.

(b) Scenario 2.

Figure 8 – The two scenarios with their radar placement and field of view for human
and animal detection tests.

antenna disposition, the radars were placed at the typical animal’s height. Following
the manufacturer’s suggestions, none of the radars were placed on the ceiling (TEXAS
INSTRUMENTS, INC, 2023a).

4.3 DBSCAN ALGORITHM

For each one of the data fusion methods and for each radar placement, the
DBSCAN algorithm was calibrated to detect both people and small animals, aiming
for a balanced value of sensitivity and precision by varying the minimum number of
points and the value of (ε). Small animals generate fewer reflection points, even with
a lower threshold in the CFAR algorithm, whereas humans generate more reflection
points, making it a challenge to detect both of them simultaneously. However, with the
use of multiple radars, a sufficient number of points can be generated to detect even
small animals.
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4.4 TRACKING ALGORITHM

The tracking algorithm was implemented to improve the detection rate and pre-
vent the generation of ghost targets. The algorithm thresholds are configured with the
aim of improving the detection rate, especially when using fewer radars. It is important
to note that depending on the distance and movement of the target, there might be fra-
mes where no point cloud data is transmitted, emphasizing the importance of tracking
for successful detection.

4.5 PERFORMANCE METRICS

The evaluation of the detection system involved the use of the following key
metrics1:

• Positives (P): Human and/or animal present in the area.

• True Positives (TP): Human and/or animal in the detection area that is suc-
cessfully detected by the radar.

• False Positives (FP): Noise or other objects in the detection area that are
falsely detected as humans or animals.

• Sensitivity (TP/P): The ability to detect humans and/or animals when they
are in the detection area.

• Precision (TP/(TP+FP)): The ability to distinguish human and/or animal from
false detection.

An ideal system should exhibit high sensitivity and high precision (CUI, H. et al.,
2021), but that is a very challenging task. Moreover, in safety-related applications, such
as those related to wireless energy transfer (LÓPEZ et al., 2023), sensitivity is more
relevant than precision.

1 The F1-score of each test was also analyzed; however, it did not yield different conclusions from those
shown by precision and sensitivity. Therefore, for the sake of brevity, it is omitted here.
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Tabela 1 – System performance with DBSCAN thresholds optimized for animal detec-
tion only, for human detection only, or for both, with a single radar in the first
scenario.

DBSCAN optimized for Precision Sensitivity

Small animals 52.8% 81.4%
Humans 100% 32.6%

Both 67.1% 75.2%

5 RESULTS

Tests were carried out using the two radar-placement options mentioned in
Section 4, and the three data fusion methods in Section 3.2 were applied.

5.1 SINGLE RADAR

First, a test was performed using a single radar in order to highlight the motivation
to use multiple radars. For the sake of brevity, the results are presented only for the
first scenario and utilize the tracking algorithm. The conclusions are very similar for
the second scenario. Then, the sensitivity and precision achieved are presented in
Table 1. The parameters used in DBSCAN algorithm optimized for human detection
were those proposed in (ZHAO et al., 2019), while for the detection of small animals,
the number of required point clouds was reduced to around 1/8 of the total points. In
the optimized scenario for detecting both humans and small animals, the parameters
were adjusted to achieve optimal performance. The goal was to attain high sensitivity
while maintaining balanced precision, thus avoiding significant discrepancies between
the two parameters.

Analysis of the data in Table 1 reveals notable differences: when using DBSCAN
parameters specifically optimized for the detection of small animals, higher sensitivity
is achieved, as expected, but a larger incidence of ghost detections is also observed,
reducing precision. This situation is illustrated in Figure 9, which shows the results of
the DBSCAN algorithm in a situation where both an animal and a human were present
in the scene. Note that an additional ghost target was detected. In contrast, when
optimizing the parameters for human detection, there is a decrease in true positives,
often resulting in the failure to detect the animal and a decrease in sensitivity, leading
to the results shown in Table 1, where the sensitivity is severely compromised, but the
precision becomes very high. Finally, when the system is optimized to detect both
humans and animals, a more balanced performance is achieved, but it is probably still
insufficient for many applications, such as those related to safety. A possible solution to
increase both the sensitivity and the precision is to use multiple radars.
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Figure 9 – Detection of three targets in a scene that contained only two (a small animal
and a human) using optimized DBSCAN parameters for the detection of
small animals only.

Another test was conducted switching the tracking algorithm on and off. The test
considered the optimized DBSCAN parameters for detecting both humans and animals,
and the results are shown in Figure 10. Examining the data makes it evident that
the integration of the tracking algorithm significantly increases the sensitivity, which is
fundamental for high-performance applications. In the next subsection, the performance
of the tracking algorithm with multiple radars is presented.

off

on
75.2

46.1

67.1

86.5

T
ra
ck
in
g

Sensitivity (%) Precision (%)

Figure 10 – System performance with and without the tracking algorithm for Scenario 1
and a single radar.
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5.2 MULTIPLE RADARS

Next, we discuss the results of applying the methodology proposed in Section 3,
considering the three data-fusion strategies and the two radar-placement scenarios.
First, we demonstrate the algorithm performance in tracking a person and an animal,
aiming to discern the algorithm behavior with the employment of multiple radar systems.
Specifically, in this case, we utilized the third fusion method. The results obtained are
displayed in Figure 11. It becomes clear that tracking is enhanced with the use of mul-
tiple radars; the analysis reveals that while a single radar setup provides a baseline
capability for object tracking, the integration of two, three, or four radars significantly
amplifies the sensitivity and accuracy. Notably, it is observed that when employing one
and two radars, the system occasionally confuses the tracks, mistakenly swapping the
person for the animal and vice versa. This issue, however, is effectively mitigated with
the deployment of three and four radar configurations, wherein such inaccuracies do
not occur. This progressive enhancement in tracking performance underlines the im-
portance of multi-radar configurations for high-fidelity tracking in complex environments.
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Figure 11 – Operation of the tracking algorithm with 1 to 4 radars. Each subfigure illus-
trates the tracking behavior as the number of radars increases.

The progressive enhancement in tracking performance underlines the impor-
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tance of multi-radar configurations for high-fidelity tracking in complex environments.
It is important to underscore a key advantage of our multi-radar configuration, which
is particularly demonstrated in scenarios of visual obstruction, such as when a large
human obscures a small animal from the view of one radar. In these cases, the pro-
bability remains high that other radars in the system will have an unobstructed view
of the animal, ensuring its continuous detection and tracking. This benefit is notably
pronounced in our implementation of the second and third fusion methods, where the
detection of a target by all radars is not a prerequisite for its positive detection. Such a
feature underscores the strategic advantage of employing multiple radars, as it allows
for the maintenance of tracking accuracy and system resilience even when individual
radars face visual obstructions.

Figure 12 shows the precision and sensitivity results for data fusion Methods
1 and 3, respectively, “Intersection of Detected Data” and “Combining the Raw Data”,
versus the number of radars M. Clearly, when the number of radars increases, Method
1 performs better in terms of precision but loses considerably in terms of sensitivity.
This is because every radar must detect the target to be finally considered detected.
In the case of small animal detection, it is plausible that radars might not simultaneously
detect the target, reducing the sensitivity. With the same arguments, when all radars
detect a target, it is very probable that this is a true positive, increasing the precision.

(a) Method 1 (b) Method 3
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Figure 12 – Precision and sensitivity for Methods 1 and 3 in the first scenario versus
the number of radars M.

Note that a completely different behavior is observed with Method 3, as both
precision and sensitivity increase with M. As this method includes all available raw
data in a unique clustering process, having more radars improves performance in both
aspects, achieving more than 90% in sensitivity and precision for M ≥ 3. Such a capa-
bility to achieve high sensitivity and high precision at the same time is very interesting
from the point of view of safety-related applications. Figure 13 shows similar results,
but for the second scenario, where the radars are on each of the walls. The same trends
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are observable, although it is clear that a better performance was obtained in the first
scenario, where the radars are side by side.

Figure 14 illustrates the performance of Method 2 for both scenarios. Recall that
Method 2, R out of M, is an alternative to Method 1, where here only R of the M radars
have to detect a target to be finally detected. We consider M = 4 radars and vary R from
1 to 4. Note that a much more balanced performance than that obtained by Method 1
can be achieved, especially with R = 2 and for the first scenario. That is very reasonable
since a positive detection can now be achieved even if some of the radars missed the
target. However, as illustrated in Table 2, where we consider only the best-performing
configurations for each method, the performance of Method 3 is still the best, being
able to achieve both higher sensitivity and higher precision than Method 2.
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Figure 13 – Precision and sensitivity for Methods 1 and 3 in the second scenario versus
the number of radars M.
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Figure 14 – Precision and sensitivity for Method 2 in the first and second scenarios,
considering M = 4 radars, versus R, the number of radars required for de-
tection.
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Tabela 2 – Best performance for Method 3 and Method 2 in Scenarios 1 and 2.

Scenario 1 Scenario 2
Method Precision Sensitivity Precision Sensitivity

Method 2 89.2% 96.9% 79.9% 87.9%
Method 3 91.4% 97.1% 88.5% 97.1%
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6 CONCLUSION

In this work, the detection and tracking of humans and small animals was inves-
tigated using multiple mmWave radars. First, the sensitivity of using a single radar to
detect humans and animals simultaneously was shown to be relatively low, motivating
the use of multiple radars. Then, two radar-positioning scenarios and three data-fusion
strategies were analyzed. We showed that the data-fusion strategy that combines the
raw data before applying a clustering algorithm performs best, achieving high levels
of sensitivity and precision. The results demonstrate that the use of multiple radars
to detect people and small animals is very promising, even in safety-related applicati-
ons where sensitivity must be high. A somewhat straightforward extension of this work
would be the application of multiple radars to detect both humans and animals in bigger
indoor environments and outdoor environments, as well as in settings with animals and
people of different sizes. A perhaps more challenging and rewarding future work would
be the fusion of radar data with other technologies so that high sensitivity and precision
can be achieved with fewer sensors.

Moreover, despite the success in achieving high sensitivity in the detection and
tracking of humans and animals, we may encounter limitations when the targets remain
in close proximity over extended periods, moving together. Thus, another potential
future work is the thorough investigation of the effects, and the corresponding solutions,
of grouped targets on tracking accuracy.

Finally, as a practical step forward, we plan the construction of a prototype
system for wireless power transfer informed by multiple radars for the detection of both
people and animals. This system holds the potential to enhance safety and efficiency
in various environments, addressing the unique challenges posed by the coexistence
of humans and animals of different sizes.



41

REFERENCES

BANSAL, Kshitiz; RUNGTA, Keshav; ZHU, Siyuan; BHARADIA, Dinesh. Pointillism:
Accurate 3d bounding box estimation with multi-radars. In: PROCEEDINGS OF THE
18TH CONFERENCE ON EMBEDDED NETWORKED SENSOR SYSTEMS.
[S.l.: s.n.], 2020. P. 340–353.

CHEN, Weiyan; YANG, Hongliu; BI, Xiaoyang; ZHENG, Rong; ZHANG, Fusang;
BAO, Peng; CHANG, Zhaoxin; MA, Xujun; ZHANG, Daqing. Environment-Aware
Multi-Person Tracking in Indoor Environments with MmWave Radars. Proc. ACM
Interact. Mob. Wearable Ubiquitous Technol., Association for Computing Machinery,
New York, NY, USA, v. 7, n. 3, set. 2023.

COWLEY, Derek C; SHAFAI, Bahram. Registration in multi-sensor data fusion and
tracking. In: IEEE. 1993 American Control Conference. [S.l.: s.n.], 1993. P. 875–879.

CUI, Han; DAHNOUN, Naim. High precision human detection and tracking using
millimeter-wave radars. IEEE Aerospace and Electronic Systems Magazine, IEEE,
v. 36, n. 1, p. 22–32, 2021.

CUI, Yuanhao; LIU, Fan; JING, Xiaojun; MU, Junsheng. Integrating Sensing and
Communications for Ubiquitous IoT: Applications, Trends, and Challenges. IEEE
Network, v. 35, n. 5, p. 158–167, 2021.

DARLIS, Arsyad R.; IBRAHIM, Nur; SUBIANTORO, Aries; YUSIVAR, Feri;
ALBAQAMI, Nasser Nammas; PRABUWONO, Anton Satria;
KUSUMOPUTRO, Benyamin. Autonomous Human and Animal Classification Using
Synthetic 2D Tensor Data Based on Dual-Receiver mmWave Radar System. IEEE
Access, v. 11, p. 80284–80296, 2023.

ESTER, Martin; KRIEGEL, Hans-Peter; SANDER, Jörg; XU, Xiaowei et al. A
density-based algorithm for discovering clusters in large spatial databases with noise.
In: 34. KDD. [S.l.: s.n.], 1996. v. 96, p. 226–231.

FORSLUND, David; BJÄRKEFUR, Jon. Night vision animal detection. In: 2014 IEEE
Intelligent Vehicles Symposium Proceedings. [S.l.: s.n.], 2014. P. 737–742.



REFERENCES 42

GARROTE, Luís; PERDIZ, João; SILVA CRUZ, Luís A. da; NUNES, Urbano J. Point
Cloud Compression: Impact on Object Detection in Outdoor Contexts. Sensors, v. 22,
n. 15, 2022. ISSN 1424-8220.

HAMILTON, J. The Kalman Filter. Time Ser Anal, Princeton University Press New
Jersey, USA, v. 13, 1994.

HAMUDA, Esmael; MC GINLEY, Brian; GLAVIN, Martin; JONES, Edward. Improved
image processing-based crop detection using Kalman filtering and the Hungarian
algorithm. Computers and Electronics in Agriculture, v. 148, p. 37–44, 2018. ISSN
0168-1699.

HUA, Xiaoqiang; ONO, Yusuke; PENG, Linyu; XU, Yuting. Unsupervised Learning
Discriminative MIG Detectors in Nonhomogeneous Clutter. IEEE Transactions on
Communications, v. 70, n. 6, p. 4107–4120, 2022.

HUANG, Xu; TSOI, Joseph K. P.; PATEL, Nitish. mmWave Radar Sensors Fusion for
Indoor Object Detection and Tracking. Electronics, v. 11, n. 14, 2022. ISSN
2079-9292.

INSTRUMENTS, Texas. IWR6843, IWR6443 Single-Chip 60-to 64-GHz mmWave
Sensor. [S.l.], 2021. SWRS219E, Rev. E. Disponível em:
https://www.ti.com/lit/ds/symlink/iwr6843.pdf.

IOVESCU, Cesar; RAO, Sandeep. The fundamentals of millimeter wave sensors.
[S.l.: s.n.], 2017. P. 1–8. Texas Instruments. Disponível em:
https://www.ti.com/lit/wp/spyy005a/spyy005a.pdf.

KALMAN, Rudolph E. An introduction to Kalman filter. University of North Carolina
at Chapel Hill, Department of Computer Science, TR, p. 41–95, 1995.

KALMAN, Rudolph Emil. A new approach to linear filtering and prediction problems,
1960.

LI, Shuai; GUO, Junchen; XI, Rui; DUAN, Chunhui; ZHAI, Zhengang; HE, Yuan.
Pedestrian trajectory based calibration for multi-radar network. In: IEEE. IEEE
INFOCOM 2021-IEEE CONFERENCE ON COMPUTER COMMUNICATIONS
WORKSHOPS (INFOCOM WKSHPS). [S.l.: s.n.], 2021. P. 1–2.

https://www.ti.com/lit/ds/symlink/iwr6843.pdf
https://www.ti.com/lit/wp/spyy005a/spyy005a.pdf


REFERENCES 43

LI, Wei; WU, Yuan; CHEN, Ruizhi; ZHOU, Haitao; YU, Yue. Indoor Multi-Human
Device-Free Tracking System Using Multi-Radar Cooperative Sensing. IEEE Sensors
Journal, IEEE, 2023.

LIU, Jiang-Jiang; HOU, Qibin; LIU, Zhi-Ang; CHENG, Ming-Ming. PoolNet+: Exploring
the Potential of Pooling for Salient Object Detection. IEEE Transactions on Pattern
Analysis and Machine Intelligence, v. 45, n. 1, p. 887–904, 2023.

LÓPEZ, Onel LA; ROSABAL, Osmel M; AZARBAHRAM, Amirhossein;
KHATTAK, A Basit; MONEMI, Mehdi; SOUZA, Richard D; POPOVSKI, Petar;
LATVA-AHO, Matti. High-power and safe RF wireless charging: Cautious deployment
and operation. arXiv preprint arXiv:2311.12809, 2023.

LU, Chris Xiaoxuan; ROSA, Stefano; ZHAO, Peijun; WANG, Bing; CHEN, Changhao;
STANKOVIC, John A; TRIGONI, Niki; MARKHAM, Andrew. See through smoke: robust
indoor mapping with low-cost mmwave radar. In: PROCEEDINGS OF THE 18TH
INTERNATIONAL CONFERENCE ON MOBILE SYSTEMS, APPLICATIONS, AND
SERVICES. [S.l.: s.n.], 2020. P. 14–27.

MAFUKIDZE, Harry D.; MISHRA, Amit K.; PIDANIC, Jan; FRANCOIS, Schonken W. P.
Scattering Centers to Point Clouds: A Review of mmWave Radars for
Non-Radar-Engineers. IEEE Access, v. 10, p. 110992–111021, 2022.

MANI, Anil; RAO, Sandeep; NAYYAR, Jasbir; YAN, Mingjian; JOHNSON, Brian.
Introduction to the DSP Subsystem in the IWR6843. [S.l.], 2018. Application Report.
Disponível em: https://www.ti.com/lit/an/swra621/swra621.pdf.

MATTOS, Ana Beatriz Rodrigues Costa De; BRANTE, Glauber;
MORITZ, Guilherme L.; SOUZA, Richard Demo. Human and Small Animal Detection
Using Multiple Millimeter-Wave Radars and Data Fusion: Enabling Safe Applications.
Sensors, v. 24, n. 6, 2024. ISSN 1424-8220.

MUNKRES, James. Algorithms for the assignment and transportation problems.
Journal of the society for industrial and applied mathematics, SIAM, v. 5, n. 1,
p. 32–38, 1957.

NATH, Rajdeep Kumar; BAJPAI, Rajnish; THAPLIYAL, Himanshu. IoT based indoor
location detection system for smart home environment. In: 2018 IEEE

https://www.ti.com/lit/an/swra621/swra621.pdf


REFERENCES 44

INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS (ICCE).
[S.l.: s.n.], 2018. P. 1–3.

OH, Hyungkook; NAM, Haewoon. Energy Detection Scheme in the Presence of Burst
Signals. IEEE Signal Processing Letters, v. 26, n. 4, p. 582–586, 2019.

PATTNAIK, Sushant Kumar; SAMAL, Soumya Ranjan; BANDOPADHAYA, Shuvabrata;
SWAIN, Kaliprasanna; CHOUDHURY, Subhashree; DAS, Jitendra Kumar;
MIHOVSKA, Albena; POULKOV, Vladimir. Future Wireless Communication
Technology towards 6G IoT: An Application-Based Analysis of IoT in Real-Time
Location Monitoring of Employees Inside Underground Mines by Using BLE. Sensors,
v. 22, n. 9, 2022. ISSN 1424-8220.

PEARCE, Andre; ZHANG, J. Andrew; XU, Richard. A Combined mmWave Tracking
and Classification Framework Using a Camera for Labeling and Supervised Learning.
Sensors, v. 22, n. 22, 2022. ISSN 1424-8220.

PEGORARO, Jacopo; ROSSI, Michele. Real-Time People Tracking and Identification
From Sparse mm-Wave Radar Point-Clouds. IEEE Access, v. 9, p. 78504–78520,
2021.

PERWEJ, Yusuf; HAQ, Kashiful; PARWEJ, Firoj; MUMDOUH, M; HASSAN, Mohamed.
The internet of things (IoT) and its application domains. International Journal of
Computer Applications, v. 975, n. 8887, p. 182, 2019.

RAO, Sandeep. Introduction to mmWave sensing: FMCW radars. Texas Instruments
(TI) mmWave Training Series, Texas Instruments Dallas, TX, USA, p. 1–11, 2017.

RAO, Sandeep. MIMO Radar. [S.l.: s.n.], jul. 2018. Application Report, Rev. A.
Disponível em: https://www.ti.com/lit/an/swra554a/swra554a.pdf.

ROY, Arunabha M; BOSE, Rikhi; BHADURI, Jayabrata. A fast accurate fine-grain
object detection model based on YOLOv4 deep neural network. Neural Computing
and Applications, v. 34, p. 1–27, mar. 2022.

AL-SARAWI, Shadi; ANBAR, Mohammed; ABDULLAH, Rosni; AL HAWARI, Ahmad B.
Internet of things market analysis forecasts, 2020–2030. In: IEEE. 2020 FOURTH
WORLD CONFERENCE ON SMART TRENDS IN SYSTEMS, SECURITY AND
SUSTAINABILITY (WORLDS4). [S.l.: s.n.], 2020. P. 449–453.

https://www.ti.com/lit/an/swra554a/swra554a.pdf


REFERENCES 45

SENGUPTA, Arindam; JIN, Feng; ZHANG, Renyuan; CAO, Siyang. mm-Pose:
Real-time human skeletal posture estimation using mmWave radars and CNNs. IEEE
Sensors Journal, IEEE, v. 20, n. 17, p. 10032–10044, 2020.

SHEN, Zichao; NUNEZ-YANEZ, Jose; DAHNOUN, Naim. Multiple Human Tracking
and Fall Detection Real-Time System Using Millimeter-Wave Radar and Data Fusion.
In: IEEE. 2023 12TH MEDITERRANEAN CONFERENCE ON EMBEDDED
COMPUTING (MECO). [S.l.: s.n.], 2023. P. 1–6.

SHRESTHA, Aman et al. Animal lameness detection with radar sensing. IEEE
Geoscience and Remote Sensing Letters, IEEE, v. 15, n. 8, p. 1189–1193, 2018.

TAHMOUSH, Dave; SILVIOUS, Jerry. Remote detection of humans and animals. In:
IEEE. 2009 IEEE APPLIED IMAGERY PATTERN RECOGNITION WORKSHOP (AIPR
2009). [S.l.: s.n.], 2009. P. 1–8.

TEXAS INSTRUMENTS, INC. Best Practices for Placement and Angle of mmWave
Radar Devices. [S.l.: s.n.], 2023. Application Brief. Disponível em:
https://www.ti.com/lit/ab/swra758/swra758.pdf.

TEXAS INSTRUMENTS, INC. MMWAVE SDK User Guide. [S.l.: s.n.], 2019.
Document Version 1.0. Disponível em:
https://e2e.ti.com/cfs-file/__key/communityserver-discussions-components-

files/1023/7801.mmwave_5F00_sdk_5F00_user_5F00_guide.pdf.

TEXAS INSTRUMENTS, INC. Static Detection CLI Commands. [S.l.: s.n.], 2023.
Application Note. Disponível em:
https://dev.ti.com/tirex/content/radar_toolbox_1_30_01_03/source/ti/

examples/Area_Scanner/docs/static_detection_cli_commands.html.

THE MATHWORKS, INC. Get Started with Computer Vision Toolbox. [S.l.: s.n.],
2023. Online. Disponível em: https://www.mathworks.com/help/vision/getting-
started-with-computer-vision-system-toolbox.html.

THE MATHWORKS, INC. Statistics and Machine Learning Toolbox™ User’s Guide
R2023b. [S.l.: s.n.], 2023. ISBN 252.2277014. Disponível em:
https://www.mathworks.com/help/pdf_doc/stats/stats.pdf.

https://www.ti.com/lit/ab/swra758/swra758.pdf
https://e2e.ti.com/cfs-file/__key/communityserver-discussions-components-files/1023/7801.mmwave_5F00_sdk_5F00_user_5F00_guide.pdf
https://e2e.ti.com/cfs-file/__key/communityserver-discussions-components-files/1023/7801.mmwave_5F00_sdk_5F00_user_5F00_guide.pdf
https://dev.ti.com/tirex/content/radar_toolbox_1_30_01_03/source/ti/examples/Area_Scanner/docs/static_detection_cli_commands.html
https://dev.ti.com/tirex/content/radar_toolbox_1_30_01_03/source/ti/examples/Area_Scanner/docs/static_detection_cli_commands.html
https://www.mathworks.com/help/vision/getting-started-with-computer-vision-system-toolbox.html
https://www.mathworks.com/help/vision/getting-started-with-computer-vision-system-toolbox.html
https://www.mathworks.com/help/pdf_doc/stats/stats.pdf


REFERENCES 46

TSAI, Yu-Shiuan; MODALES, Alvin V.; LIN, Hung-Ta. A Convolutional
Neural-Network-Based Training Model to Estimate Actual Distance of Persons in
Continuous Images. Sensors, v. 22, n. 15, 2022. ISSN 1424-8220.

XU, Chuanwen; WANG, Fenggui; ZHANG, Yanbo; XU, Li; AI, Mingshun; YAN, Guang.
Two-level CFAR Algorithm for Target Detection in MmWave Radar. In: 2021
INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING AND
APPLICATION (ICCEA). [S.l.: s.n.], 2021. P. 240–243.

XU, Yu; JIN, Yihui; ZHOU, Yan. Several methods of radar data fusion. In: 2002 3rd
International Symposium on Electromagnetic Compatibility. [S.l.: s.n.], 2002.
P. 664–667.

YAN, Junkun; LIU, Hongwei; PU, Wenqiang; JIU, Bo; LIU, Zheng; BAO, Zheng. Benefit
Analysis of Data Fusion for Target Tracking in Multiple Radar System. IEEE Sensors
Journal, v. 16, n. 16, p. 6359–6366, 2016.

YANG, Xuan; TANG, Jun; LIU, Yaqi. A novel multi-radar plot fusion scheme based on
parallel and serial plot fusion algorithm. In: IEEE. 2017 2ND INTERNATIONAL
CONFERENCE ON FRONTIERS OF SENSORS TECHNOLOGIES (ICFST).
[S.l.: s.n.], 2017. P. 213–217.

ZHANG, Yihuan; WANG, Liang; JIANG, Xuhui; ZENG, Yong; DAI, Yifan. An efficient
LiDAR-based localization method for self-driving cars in dynamic environments.
Robotica, Cambridge University Press, v. 40, n. 1, p. 38–55, 2022.

ZHAO, Peijun; LU, Chris Xiaoxuan; WANG, Jianan; CHEN, Changhao; WANG, Wei;
TRIGONI, Niki; MARKHAM, Andrew. mID: Tracking and Identifying People with
Millimeter Wave Radar. In: 2019 15TH INTERNATIONAL CONFERENCE ON
DISTRIBUTED COMPUTING IN SENSOR SYSTEMS (DCOSS). [S.l.: s.n.], 2019.
P. 33–40.


	Title page
	Approval
	Agradecimentos
	Resumo
	Abstract
	Resumo expandido
	List of figures
	List of tables
	List of acronyms
	List of symbols
	Contents
	Introduction
	Related Work
	Novelty and Contribution

	mmWave Radar Preliminaries
	Range Estimation
	Doppler Estimation
	CFAR Algorithm
	Angle Estimation
	Output Data
	Radar Configuration

	Proposed Approach
	Data Acquisition
	Data Fusion
	Method 1 4—Intersection of Detected Data
	Method 2—R out of M
	Method 3—Combining the Raw Data

	Tracking
	Tracks Creation and Association
	Track Prediction, Update and Correction
	Track Maintenance


	Implementation
	Radar Configuration
	Setup
	DBSCAN Algorithm
	Tracking Algorithm
	Performance Metrics

	Results
	Single Radar
	Multiple Radars

	Conclusion
	REFERENCES

		2024-08-12T18:00:39-0300


		2024-08-13T00:19:25-0300




