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ABSTRACT

The early stages of the physical design of VLSI (Very-Large-Scale Integration) circuits,
referred to as floorplanning, are critical for achieving quality layouts as they directly
affect subsequent design stages. A typical floorplanning flow consists of pin assignment,
macro placement, and power planning. However, pin assignment and macro placement
are interdependent steps, and their execution order significantly influences floorplanning
outcomes, which is why they are often alternated. For example, the standard floorplanning
flow in the open-source OpenROAD platform performs an initial random pin assignment
followed by macro and global placement, concluding with an extra pin assignment step. In
this approach, pin assignment does not directly influence the macro and global placement
results, potentially missing optimization opportunities. This work explores new enhanced
floorplanning flows within integrated circuit (IC) synthesis using OpenROAD by introduc-
ing an additional non-random pin assignment step. The proposed flows are tested with
two macro placers available in OpenROAD. Experimental results using FreePDK45 test
circuits demonstrated that the proposed flows achieved average reductions in wirelength
and via count of 1.25% and 0.37%, respectively, with TritonMP, and 1.44% and 1.43%,
respectively, with Hierarchical RTL-MP. Specific circuits showed reductions in wirelength
and via count of up to 9.34% and 7.69%, respectively. These results underscore the poten-
tial for further optimizations during the floorplanning stage, highlighting the importance
of addressing pin assignment.
Keywords: Floorplanning, Physical Design, Open Source, Placement.



RESUMO

As etapas iniciais do projeto físico de circuitos VLSI (do inglês Very-Large-Scale Integra-
tion), conhecidas como floorplanning (planejamento de planta baixa), são críticas para
a obtenção de layouts de qualidade, pois afetam diretamente as fases subsequentes do
projeto. Um fluxo típico de floorplanning consiste em assinalamento de pinos, posiciona-
mento de macros e planejamento da distribuição da alimentação. No entanto, a atribuição
de pinos e o posicionamento de macros são etapas interdependentes, e sua ordem de exe-
cução influencia significativamente os resultados do floorplanning, razão pela qual essas
etapas são frequentemente alternadas. Por exemplo, o fluxo padrão de floorplanning na
plataforma de código aberto OpenROAD realiza uma atribuição inicial aleatória de pinos,
seguida pelo posicionamento de macros e posicionamento global, concluindo com uma
etapa extra de atribuição de pinos. Em tal abordagem, a atribuição de pinos não influencia
diretamente os resultados do posicionamento de macros e global, potencialmente perdendo
oportunidades de otimização. Este trabalho explora novos fluxos de floorplanning apri-
morados no contexto da síntese de circuitos integrados (IC) utilizando a OpenROAD,
por meio da introdução de uma etapa adicional de atribuição de pinos não aleatória.
Os fluxos propostos foram testados com dois posicionadores de macros disponíveis no
OpenROAD. Os resultados experimentais, utilizando circuitos de teste do FreePDK45,
demonstraram que o fluxo proposto alcança reduções médias no comprimento total dos
fios e na contagem de vias de 1,25% e 0,37%, respectivamente, com o TritonMP, e de
1,44% e 1,43%, respectivamente, com o Hierarchical RTL-MP. Circuitos específicos apre-
sentaram reduções no comprimento dos fios e na contagem de vias de até 9,34% e 7,69%,
respectivamente. Esses resultados destacam o potencial de otimizações adicionais durante
a etapa de floorplanning, enfatizando a importância de abordar a atribuição de pinos.

Keywords: Floorplanning, Physical Design, Open Source, Placement.
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1 INTRODUCTION

The technological advancements have allowed the fabrication of Integrated Circuits
(ICs) featuring over a billion transistors. The rising complexity of these designs calls for the
extensive use of hierarchical design, functional blocks and an increasing use of Intellectual
Property (IP) blocks. This trend has raised the importance of floorplanning in determining
the quality of a Very-Large-Scale Integration (VLSI) design (LAUNG-TERNG WANG;
CHENG, 2008). With the continuous reduction of technology nodes size, there is also an
increasing demand to improve placement and routing, as the ever so smaller transistors
allow for a greater circuit density that combined with more metal layers in more recent
technology nodes make the total wirelength resistance and capacitance the main cause for
delays and a major part of switching power loss (WESTE; HARRIS, 2011). Due to those
issues, there is a prominent need for good quality floorplan that could lead to high quality
placement and routing solutions.

In recent years many new approaches for VLSI optimization have been introduced
in academia, ranging from an increase in AI-based design optimization for all stages of
the physical synthesis (KAHNG, 2024) to the introduction of changes to the traditional
steps. This latter approach was subject of ICCAD CAD Contests 2020 (HU; YANG, et al.,
2020) and 2021 (HU; YU, et al., 2021) and highlighted that there are many optimization
opportunities arriving from modifying the synthesis flow, either adding extra steps or by
altering the behavior of the existing ones through the integration of new features.

With the growing demand from the Electronic Design Automation (EDA) industry,
there has been a rise in open-source movements led by academia aimed at disseminating
physical design knowledge. Over the years, several tools specific to each step of the synthesis
flow have been developed. To support the rise of those tools, open-source libraries such
as the Ophidian library developed at the Federal University of Santa Catarina (NETTO
et al., 2018) appeared, until more comprehensive projects covering all stages began to
emerge. Among these projects, OpenROAD stands out, a global initiative supported by
several universities and companies, headquartered at UC San Diego, California (KAHNG,
2022), which serves as the foundational infrastructure for the development of this work.

This work investigates how the addition of an extra step of pin assignment impacts
the resulting layouts of physical synthesis. To perform this investigation, the open-source
EDA tool-kit OpenROAD (KAHNG, 2022) was chosen as our test case. We explain
how the standard OpenROAD flow works, presenting its two variations due to the ex-
istence of two available macro placers, TrintonMP and Hierarchical RTL-MP (KAHNG;
VARADARAJAN; WANG, 2023), and compare with three proposed investigative flows
using test designs available within OpenROAD.
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1.1 MOTIVATION AND OBJECTIVES

With modern IC designs growing increasingly complex, featuring billions of tran-
sistors and densely packed functional blocks, even slight inefficiencies in floorplanning can
significantly impact performance, power consumption, and design feasibility. Considering
how recent works add new steps in the global routing stage executing functions associated
with global placement (FONTANA et al., 2021), there is still much to explore in the
interactions between synthesis steps. This work, therefore, seeks to explore the potential
of an altered floorplanning flow by adding an extra pin assignment step to improve routing
efficiency and layout compactness. Using the OpenROAD platform as a test case, this
work aims to identify and quantify the benefits of structured pin assignment, contributing
to more optimized and accessible VLSI design flows, especially within the growing field of
open-source EDA tools.

General Objectives

The general objective of this work is to investigate and introduce a new VLSI
floorplanning flow that considers the dependency relation between the steps of macro
placement, pin assignment and global placement in the physical synthesis process, utilizing
the addition of extra pin assignment steps in order to enhance layout quality, utilizing the
open-source toolkit OpenROAD as a test case. The experimental results will be compared
with those generated by the standard flows avaliable within OpenROAD.

Specific Objectives

• Analyze the impact of pin assignment in relation to macro placement on the floor-
planning outcomes by introducing additional, pin assignment steps within the Open-
ROAD flow;

• Compare the effectiveness of the proposed pin assignment modifications with different
macro placers, TritonMP and Hierarchical RTL-MP, to determine improvements in
layout efficiency, focusing on metrics like wirelength reduction and via minimization;

• Measure the synthesis runtime implications of the proposed flows and assess the trade-
offs between layout quality improvements and computational resource demands;

• Conduct experimental evaluations on diverse OpenROAD test circuits, quantifying
the benefits and limitations of the proposed flows and validating the feasibility of
these approaches for integration in open-source VLSI design workflows.
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2 BACKGROUND

This chapter presents the necessary theoretical knowledge to understand the current
work.

2.1 PHYSICAL SYNTHESIS

The RTL-to-GDSII synthesis flow is a critical process in VLSI circuit design, serv-
ing as the bridge from abstract functional descriptions to the detailed physical layouts
necessary for manufacturing. The Fig. 1 shows the complete RTL-to-GDSII flow, high-
lighting the presence of the Physical Synthesis steps with red colored blocks. This flow
begins at the Register Transfer Level (RTL), where designers use Hardware Description
Language (HDL) like Verilog or VHDL to define the circuit’s functional and timing behav-
ior at a high level. From here, the synthesis process translates this high-level design into
a gate-level netlist, mapping RTL logic to specific gates using standard cells from a given
technology library (WESTE; HARRIS, 2011). This synthesis step optimizes the design
to meet predefined constraints, such as minimizing area or power and ensuring timing
closure, which is crucial for high-speed circuits.

Following synthesis, the flow advances to physical design, where the gate-level
netlist undergoes a series of steps to create a manufacturable layout. Physical design
includes placement, where cells are arranged on the chip 2D surface so as to minimize
both area usage and interconnect delay. After placement, global and detailed routing
phases establish the precise connections between cells, with a focus on minimizing wire
length, reducing crosstalk, and ensuring signal integrity. According to Kahng, Lienig, et al.
(2011), this stage requires iterative optimization to ensure timing closure, particularly
as device sizes shrink and timing constraints grow more stringent. Tools are employed
to refine the layout until timing closure is achieved, ensuring that all paths meet their
designated timing requirements.

Timing analysis and iterative optimization steps follow placement and routing
to ensure that the design meets timing requirements, known as timing closure. Modern
EDA tools employ sophisticated algorithms to achieve this, as timing constraints become
increasingly challenging in smaller technology nodes. The final stage of the RTL-to-GDSII
flow includes Design Rule Check (DRC) and Layout-Versus-Schematic (LVS) verification,
which confirm that the layout complies with manufacturing requirements and matches the
intended design specifications. The output, the GDSII file, contains all the geometric and
layer information needed for photolithographic fabrication, making it the final product of
the digital design flow (WESTE; HARRIS, 2011).
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Figure 1 – Academic RTL-to-GDSII Synthesis Flow.

Source: Adapted from Kahng, Lienig, et al. (2011).

2.2 FLOORPLAN

Floorplanning plays a crucial role in chip layout, specially in the hierarchical ap-
proach to module-based design. It offers preliminary feedback to assess architectural
choices, predict chip areas, and estimate delays and congestion due to interconnections.
As fabrication technology evolves, design complexity increases as more transistors are inte-
grated in a single chip. To address such growing complexity, hierarchical design practices
and IP modules are extensively employed. Consequently, floorplanning has become more
important than ever for ensuring the quality of VLSI designs (LAUNG-TERNG WANG;
CHENG, 2008).

Traditionally, the floorplanning step is further divided into macro placement, pin
assignment, and power planning (KAHNG; LIENIG, et al., 2011). Among these, macro
placement is particularly vital because it lays the foundation for the overall layout quality
and directly influences key design metrics such as wirelength, congestion, and timing
closure. The process of macro placement ensures that each block generated during the
partitioning stage is assigned a position and shape within the floorplan, aiming to minimize
wirelength and balance the area usage, which is crucial for efficient routing and timing
optimization. In modern VLSI designs, where circuits consist of hundreds to thousands
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of macros, effective placement becomes even more important. Poor macro placement
can lead to long interconnects, resulting in increased signal delay and higher parasitic
capacitances, which degrade performance and power efficiency. Furthermore, congestion in
certain regions due to inefficient placement can create bottlenecks during routing, making
it harder to meet design closure.

Although many advanced algorithms and tools have been developed to automate
macro placement, most designers still rely on handcrafted placements for high-performance
chips to fine-tune critical regions of the design (KAHNG; VARADARAJAN; WANG,
2023). However, current Multiprocessor System-on-Chip (MPSoC) may have thousands of
macros and IP blocks, rendering manual macro placing unfeasible. In such scenario, macro
placement can exploit design hierarchy in such a way that larger macros or modules are
placed before smaller ones, ensuring that major components like memory blocks, processing
units, or high-speed interfaces are optimally positioned.

During the pin assignment step, each incoming and outgoing signal is assigned
to a specific pin location, looking to enhance the overall performance of the design. The
primary goal of pin assignment is to optimize the placement of I/O pins, as it directly
affects the efficiency of signal routing across the chip. By carefully assigning pins, designers
can improve routability, minimize the total wirelength, and reduce the number of vias,
which are critical factors in achieving a more compact and efficient design. Poor pin
placement can lead to long, convoluted routing paths that increase resistance, capacitance,
and signal delay, potentially causing timing violations and negatively impacting the overall
chip performance. According to (KAHNG; LIENIG, et al., 2011) the ideal moment for the
pin assignment is before the macro placement, with the locations being updated during
and after macro placement. In the power planning step, the ground and power nets are
routed in dedicated metal layers, usually the upper ones.

2.3 OPENROAD

With the growing demand in the EDA industry, there has been a surge of open-
source movements led by academia aimed at disseminating knowledge in this field. Among
these projects, OpenROAD stands out, an initiative supported by various universities and
companies worldwide, headquartered at UC San Diego, California (KAHNG, 2022), which
serves as the foundational infrastructure for the development of this work.

OpenROAD, launched in 2019, has the mission to develop a fully open platform,
where the entire synthesis process would be completed within 24 hours without human
intervention (KAHNG, 2022). To achieve this goal, OpenROAD is available in two versions:
the standalone OpenROAD tool, where all commands are manually applied, designed to
support the development of new tools, and a version called OpenROAD Flow Scripts,
which consists of a set of scripts that automatically execute all steps of the tool, made
for ICs designers. As shown in Fig. 2, the flow implemented in OpenROAD resembles
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the theoretical flow identified by (KAHNG; LIENIG, et al., 2011), but it presents certain
modifications and different nomenclatures.

Figure 2 – OpenROAD’s Synthesis Flow.

Source: Adapted from Project (2024a).

Performing the entire RTL-to-GDSII synthesis flow, OpenROAD (KAHNG, 2022)
is composed of several individual tools with a common interface and data types. For the
floorplan step, there are four essential tools: Pin Placer, TritonMP, Hierarchical RTL-MP
and RePlAce. Introduced by Bandeira et al. (2020), the Pin Placer employs a divide-and-
conquer strategy combined with Hungarian matching (KUHN, 1955) to achieve efficient pin
assignment. This method divides the I/O pin assignment problem into smaller, manageable
subproblems, which reduces computational complexity and allows for parallel processing,
resulting in faster runtime and scalability for large designs. The Hungarian matching
algorithm, capable of solving assignment problems optimally (KUHN, 1955), is then used
within each subregion to assign pins while minimizing total wirelength. The tool also offers
alternative assignment methods, such as simulated annealing, which is useful for exploring
a wider solution space at the cost of increased computation time. By balancing precision
with computational efficiency, the Pin Placer tool aims to provide a flexible and scalable
solution for pin assignment in modern, complex integrated circuits.

The macroplacer TritonMP was developed utilizing an implementation of Par-
quetFP, an open-source floorplanning tool introduced by Markov and Adya (2003). Par-
quetFP primarily focuses on fixed-outline floorplanning, an approach that is especially
relevant for hierarchical Application Specific Integrated Circuit (ASIC) and System-on-
Chip (SoC) designs. Unlike classical floorplanning methods, which minimize area and
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wirelength without specific layout boundaries, fixed-outline floorplanning mandates that
the layout conforms to a predetermined outline, making it more applicable to real-world
designs where chip dimensions are constrained. To address the increased complexity of
fixed-outline constraints, ParquetFP incorporates advanced objective functions within
its simulated annealing framework. It uses wirelength minimization based on the Half
Perimeter Wirelength (HPWL) metric and aspect ratio adjustments to handle varying
block shapes effectively. ParquetFP also introduces slack-based moves, which allow for
local adjustments to minimize wirelength while maintaining critical path constraints. This
combination of techniques makes ParquetFP highly effective for both outline-free and
fixed-outline contexts, providing scalable, high-quality floorplanning solutions suitable for
the hierarchical design methodologies employed in modern VLSI layouts

Hierarchical RTL-MP is a sophisticated hierarchical macro placer developed for
OpenROAD to handle the increasing complexity and scale of VLSI designs (KAHNG;
VARADARAJAN; WANG, 2023). With the rise of auto-generated RTL, particularly in
areas like machine learning accelerators, the number of macros can reach several hundred
in a single design, making traditional peripheral placement methods unfeasible. Unlike pre-
vious macro placers that often arranged macros along the periphery, Hierarchical RTL-MP
can place macros within the core of the layout, accommodating large macro numbers and
better maintaining design dataflow. The tool employs a multi-level hierarchical approach,
transforming logical hierarchies from the RTL into physical hierarchies through a novel
autoclustering technique. This technique groups macros into clusters based on design
hierarchy and dataflow, creating physical clusters that mimic the logical relationships.
Additionally, Hierarchical RTL-MP uses a shaping engine to determine allowable cluster
shapes, which it refines through a bottom-up and top-down process to optimize floorplan
utilization and routability. This enables more efficient macro placements that align with
critical timing paths, support power grid generation, and minimize wirelength. Empirical
tests by Hierarchical RTL-MP authors have shown that Hierarchical RTL-MP outperforms
prior placements by reducing timing violations and runtime, making it a valuable addition
to the OpenROAD toolkit for complex IP blocks.

RePlAce is a mixed-size placer developed to enhance solution quality and address
routability challenges in global placement (CHENG et al., 2019). It builds upon ePlace
(LU et al., 2014), a previous analytical placer utilizing an eletrostatic model, by imple-
menting new techniques that improve both placement quality and routability validation.
RePlAce leverages a density function that incorporates local area overflow, allowing it to
address congestion at a finer granularity, per placement bin. This approach enables local-
ized adjustments rather than globally applied density penalties, thus preserving overall
wirelength while effectively managing high-density areas.

To further optimize placement quality, RePlAce integrates a dynamic step size
adaptation method that adjusts optimization effort based on the design’s placement
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state, improving efficiency without increasing runtime significantly. Additionally, RePlAce
includes a routability-driven component, which estimates congestion early in the flow and
performs cell inflation in congested regions to avoid hotspots. This helps in producing
layouts with minimal routing congestion. RePlAce achieves notable improvements in
HPWL and routability across various benchmarks, making it a robust tool for tackling
the challenges of modern, large-scale VLSI designs.

The input to the floorplanning step in OpenROAD is a verilog netlist generated
by the third party logic synthesis tool Yosys (YOSYS HQ, 2024). This file is loaded
and converted into an internal file type. Then, floorplanning starts. The final output of
the floorplanning is a proprietary file called ODB, utilized to transfer information from
OpenROAD’s internal database.

Fig. 3 shows a simplified flowchart of the OpenROAD floorplanning flow using
TritonMP as macro placer, while Fig. 4 shows a similar flowchart using the newer Hierar-
chical RTL-MP as macro placer, hereinafter referred to as flow1_TMP and flow1_hier,
respectively. Each column in the flow chart identifies the tool that executes the step.

The first step of flow1_TMP corresponds to randomly assigning the I/O pins. The
second step is a timing driven mixed-size placement using RePlAce, where the macro
blocks get an initial placement, followed by the refining macro placement with TritonMP.
After the macro placement, tapcells and wellties are inserted, and the power delivery
network is routed. Although OpenROAD classifies this as the end of the floorplanning, the
pin assignment is not finished. After floorplanning, OpenROAD invokes a global placement
ignoring the I/O pins, as they were previously randomly placed. Being classified as part of
placement, the definitive pin assignment is made after the previous global placement step,
and to refine the results, a new global placement step is performed, but now considering
the pin assignment.

The flow using Hierarchical RTL-MP as macro placer, flow1_hier, starts by ran-
domly assigning the I/O pins. But differently from flow1_TMP, in flow1_hier there is
no mixed-size placement using RePlAce. Instead, it goes directly to the macro placement
step with Hierarchical RTL-MP. The rest of flow1_hier undergoes the same steps as
flow1_TMP, with a global placement ignoring the randomly placed I/O pins positions
being the next step, followed by a definitive I/O placement and a final global placement.
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Figure 3 – Original Floorplanning Flow flow1_TMP.

Source: The Author.

Figure 4 – Original Floorplanning Flow flow1_hier.

Source: The Author.
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3 RELATED WORK

The following sections present the most recent works on floorplanning techniques.

3.1 DREAMPLACE

The DREAMPlace framework, presented by Lin et al. (2021), is a GPU-accelerated
tool designed to enhance the speed and scalability of the VLSI placement process by lever-
aging deep learning techniques. Traditional analytical placement methods, though capable
of high-quality results, often suffer from extended runtimes due to the computational com-
plexity involved in optimizing large-scale designs. DREAMPlace addresses this issue by
framing placement as a neural network training problem, which enables efficient gradient
calculations for wirelength and density through GPU acceleration. Utilizing PyTorch, the
framework achieves up to 30× speed improvement over multi-threaded CPU counterparts
like RePlAce, without compromising placement quality. This method not only accelerates
global placement tasks but also ensures legal placement with minimized overlaps, making
it particularly suitable for designs with millions of cells. DREAMPlace has paved the
way for integrating advanced AI tools in EDA, setting a strong foundation for further
GPU-accelerated VLSI design methodologies .

3.2 AUTODMP

The work by Agnesina et al. (2023) explores recent advances in VLSI macro place-
ment by leveraging the DREAMPlace (LIN et al., 2021) GPU-accelerated placer combined
with machine learning-driven optimization strategies, introducing a new macro placer
called AutoDMP. Prior works in macro placement have traditionally divided the problem
into floorplanning and placement of standard cells and macros separately, which can hinder
performance due to limited coordination between these elements. Classical floorplanning
methods include simulated annealing techniques and partitioning-based approaches, while
more recent methods have applied reinforcement learning to achieve competitive place-
ments. However, these approaches either suffer from scalability issues or require significant
computational resources.

AutoDMP advances the field by integrating Bayesian optimization with DREAM-
Place, allowing simultaneous placement of macros and standard cells in a mixed-size
environment. Unlike sequential flows, which may struggle to optimize placement quality
when faced with complex multi-objective goals such as timing, wirelength, and area, the
AutoDMP methodology achieves a Pareto-optimal balance across these competing factors.
By utilizing a multi-objective Tree-Structured Parzen Estimator (MOTPE), AutoDMP
refines parameters to deliver high-quality placements with improved Power-Performance-
Area (PPA) metrics on benchmarks. Additionally, DREAMPlace is extended with features
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like macro halo adjustments and density constraints, which facilitate effective placement
legalization while reducing overlaps. This method has demonstrated comparable or su-
perior performance to industry-standard EDA tools, marking a significant step toward
scalable and efficient VLSI design automation.

3.3 INCREMACRO

IncreMacro, developed by Pu et al. (2024), builds upon DREAMPlace’s analytical
placement capabilities by introducing a targeted approach to incrementally refine macro
placement. Recognizing that placing macros centrally can lead to routing congestion
and timing issues, IncreMacro employs a three-stage methodology: it diagnoses poorly
placed macros using a KD-tree, shifts them towards the periphery through gradient-based
optimization, and finalizes positions using constraint-graph-based linear programming.
This structured approach preserves the relative positioning of macros, thus maintaining
wirelength optimization from the original placement, while eliminating central blockages
that hinder routing. In evaluations on RISC-V benchmarks, IncreMacro shows significant
improvements in PPA metrics compared to DREAMPlace alone, with reductions in wire-
length and power consumption, making it a valuable refinement tool in GPU-accelerated
placement flows.

3.4 GOOGLE’S REINFORCEMENT LEARNING

The work by Mirhoseini et al. (2021) propose a novel approach to chip floorplanning
using deep Reinforcement Learning (RL). This method reformulates the floorplanning
problem as a Markov decision process, leveraging an edge-based graph neural network for
learning effective representations of chip netlists. Their approach optimizes key metrics
such as PPA while considering constraints like routing congestion and density. Notably,
the method produces manufacturable floorplans within six hours, claiming to surpass
or equal human expert designs across metrics. By enabling generalization and transfer
learning, the proposed RL framework not only accelerates the chip design process but also
has the potential to transform other placement optimization tasks beyond chip design.
The methodology was applied in the design of Google’s TPU accelerators.

This work was heavily criticized for its lack of reproducibility, flawed methodologies,
and exaggerated claims. A recent work by Markov (2024) reviews and meta-analyses the
work by Mirhoseini et al. (2021), highlighting several critical shortcomings: the omission
of necessary details for reproducing experiments, reliance on proprietary data, and poorly
documented baselines. Independent evaluations demonstrated that standard techniques
like simulated annealing and commercial EDA tools outperformed the proposed RL ap-
proach. The RL methodology was further questioned for its use of a flawed proxy cost
function, which correlated poorly with actual chip metrics, and for overstating results with-
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out proper statistical analysis. Allegations of research misconduct, including cherry-picking
favorable results, were also reported, raising doubts about the study’s integrity. Despite
the claimed innovation, subsequent investigations revealed that the methodology failed to
surpass state-of-the-art approaches in both performance and efficiency (MARKOV, 2024).

3.5 HIDAP

In the work by Vidal-Obiols et al. (2021), the authors present a novel approach to
macro placement in VLSI design, emphasizing the use of RTL dataflow information. This
method, named HiDaP, stands out from traditional approaches by integrating dataflow-
driven techniques with a hierarchical, multilevel optimization strategy. By leveraging
RTL structural details, such as hierarchy and pipeline register stages, HiDaP calculates
dataflow affinity between blocks based on factors like bitwidth and latency, which aids in
maintaining timing and minimizing wirelength. Unlike typical analytic and partitioning-
based placement methods, this approach emphasizes the interactions between macros
and their surrounding standard cells, optimizing not only for placement quality but also
for ease in meeting timing constraints with minimal manual adjustments. HiDaP uses a
recursive, top-down placement model, which provides a robust structure for managing
large designs with diverse macro requirements and varying block sizes. It is shown to
achieve results that closely rival or even exceed those of handcrafted placements in terms
of timing and wirelength performance, positioning HiDaP as an efficient alternative in
industrial design flows.

3.6 CONCLUSION

The reviewed methodologies address critical aspects of macro placement, the most
computationally intensive part of floorplanning, with unique strengths and limitations,
but do not approach floorplanning as a whole. DREAMPlace establishes a foundation
with GPU-accelerated global placement, achieving substantial speedups without quality
degradation (LIN et al., 2021). However, its focus on general analytical placement leaves
room for specialized improvements in macro handling and specific design constraints.

AutoDMP builds on DREAMPlace, introducing machine learning-driven multi-
objective optimization to tackle mixed-size placement challenges (AGNESINA et al., 2023).
Its integration of Bayesian optimization delivers Pareto-optimal placements across PPA
metrics, though its reliance on extensive computational resources may limit accessibility
for iterative design flows.

IncreMacro refines macro placement incrementally, preserving relative positional
relationships and reducing central blockages that degrade routing (PU et al., 2024). By
employing KD-tree-based diagnosis and gradient-based adjustments, it enhances routabil-
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ity and timing while minimizing disruption to established layouts. However, its benefits
are constrained by reliance on initial placement quality from analytical tools.

The controversial work responsible for Google’s Reinforcement Learning technique
proposed a novel use of RL for macro placement, achieving results comparable to human
experts on proprietary TPU designs (MIRHOSEINI et al., 2021). However, subsequent
critiques (MARKOV, 2024) revealed significant flaws in reproducibility, unverified claims of
superiority over standard methods, and reliance on a proxy cost function poorly correlated
with actual chip metrics.

HiDaP introduces a dataflow-driven, hierarchical approach, leveraging RTL infor-
mation to optimize timing and wirelength while integrating macros and standard cells
(VIDAL-OBIOLS et al., 2021). Its structured top-down process balances scalability with
design-specific adaptability. Despite these advantages, its hierarchical dependency may
complicate integration with flat placement frameworks.

Table 2 lists and compares the main properties of the related work. In the first
column, the reference of the work is listed. In the following columns, it is indicated what
kind of strategy the work implements.

Table 2 – Related work comparison.
Work Macro Placer Machine Learning Bayesian Network Linear Programming Markov Decision Dataflow Driven

(LIN et al., 2021) X
(AGNESINA et al., 2023) X X X
(PU et al., 2024) X X X
(MIRHOSEINI et al., 2021) X X X
(VIDAL-OBIOLS et al., 2021) X X

In conclusion, while DREAMPlace and AutoDMP excel in computational efficiency
and mixed-size optimization, IncreMacro and HiDaP target placement refinement and
structural awareness, respectively. In this work, instead of focusing only on a part of it,
the general floorplanning flow will be approached, independently of the macro placer used.
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4 METHODOLOGY

To elaborate a new VLSI floorplanning flow a profound study of the standard flow
and the properties of each tool in the floorplan is required. This section describes the
main characteristics of the general structure and the used macro placers available in the
OpenROAD toolkit (PROJECT, 2024a).

4.1 OPENROAD STRUCTURE

Utilizing Object-Oriented Programming (OOP), the OpenROAD toolkit is built
in a modular architecture, where every individual tool has its own separate module and
namespace, and connected together with a top module. This top module, aptly named
ord, creates an User Interface (UI) where its possible to individually call all the public
commands created by the individual tool modules. For the industrial use of the toolkit,
instead of utilizing the central ord module, every step of the RTL-GDSII flow is separately
executed, initiating a specific instance of the toolkit for every module to be used. The
toolkit is mostly written in the C++ language, utilizing a few Python scripts for linking
support to the compiler.

The flow is implemented utilizing the GNU Make tool, where every circuit has its
own config.mk file defining environment variables, source HDL description and technology
node used. These files are imported in a central Makefile, where several different Tcl
scripts are executed utilizing the imported information. Every step in the flows described
by figures 4 and 3 is a different Tcl script. To connect this step by step execution approach,
there is an unifying database structure with a proprietary file, the OpenDB module with
its respective .odb files.

The OpenDB module is a comprehensive design database used to support tools for
physical chip design. It is structured to handle various aspects of chip design, including
layout, routing, and technology information. The module follows a design pattern that
separates the interface from the implementation, resulting in public and private classes
for each database object. The odb module uses a system of object tables and pages to
manage database objects efficiently. Each object has a unique identifier (OID) that is
persistent across save/restores, allowing for consistent referencing. The database supports
hierarchical design by allowing blocks to contain other blocks, instances, and modules. This
is managed through various hash tables and vectors that store references to these objects.
The database has support classes that allow event-driven programming by providing hooks
that can be implemented to respond to changes in the database, such as the creation or
destruction of instances and nets. The database is designed to be saved and restored
with exact fidelity, ensuring that the layout and state of the design are preserved across
sessions.

Besides operating with the .odb files, OpenDB also manages the input and output for
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the standard industry file formats Library Exchange Format (LEF) and Design Exchange
Format (DEF), used to describe the physical aspects of ICs during various design stages.
LEF describes the physical characteristics and constraints of standard cells, macros, and
IP blocks in a technology library, while DEF represents the design of an entire chip or a
specific block in terms of placement, routing, and connectivity.

4.2 MACRO PLACERS

TritonMP, as implemented in the MacroPlacer class with the mpl namespece, is the
first implemented macro placer in OpenROAD, being replaced by the newer Hierarchical
RTL-MP. It is designed to place macros or blocks in a circuit layout while considering
various constraints such as halos, channels, and snapping to cell rows. TritonMP offers
two main placement strategies: corner_min_wl and corner_max_wl. These strategies
determine whether the tool should minimize or maximize the wire lengths of connections
between macros, with the maximization strategy forcing the macros to the corners of the
layout. In the standard flow utilizing TritonMP (flow1_TMP), the maximization strategy
is the default. The tool uses a ParquetFP (MARKOV; ADYA, 2003) based annealing
engine to optimize the placement of macros, aiming to minimize or maximize wire lengths
based on the chosen strategy. The code in algorithm 1 shows the internal flow of the
maximum wirelenth strategy.

The function begins by checking if the MacroPlacer is properly initialized in line
1. If not, it returns immediately. Line 4 calculates the initial weighted wire length of
the macros and logs this information. A Layout object is created to represent the area
where macros will be placed in line 5. A Partition object is initialized with all macros,
representing the entire layout area in line 6 to 7. In lines 8 and 9 MacroPartMap is
created to map macros to their respective partitions, and this map is filled using the
makeMacroPartMap function. If the placement is connection-driven, the netlist table is
filled with connection weights using the fillNetlistTable function as seen in line 10 and 11.
The layout is divided into partitions using cut lines, and each partition is annealed using
the ParquetFP engine to explore different macro placements. The function iterates over
all possible partition sets, annealing each one and updating macro locations based on the
best solution found, as seen in lines 17 to 33. After annealing, the function evaluates the
solutions based on the weighted wire length and selects the best one. If a better solution is
found, it updates the macro locations in the database. The function updates the database
with the final macro placements. Both strategies follow this same flow, only changing the
values in line 14 and 28, either choosing the smallest value possible or like seen in the
code choosing the largest value possible.

The fillNetlistTable function in the Partition class executed in line 12 is responsible
for populating a table (net_tbl_) that represents the connectivity and weights between
macros and core edges within a partition. This table is used to guide the macro placement
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Algorithm 1: MaxWL
Input : odb = Internal data structure
Output : odb = Internal data structure

1 if not initialized then
2 return
3 end
4 initial_wl ← calculateInitialWeightedWireLength()
5 layout ← createLayout(lx, ly, ux, uy)
6 partition ← createPartition(ALL, lx, ly, ux - lx, uy - ly)
7 partition.macros ← macros
8 macroPartMap ← createMacroPartMap()
9 makeMacroPartMap(partition, macroPartMap)

10 if connection_driven then
11 partition.fillNetlistTable(macroPartMap)
12 end
13 partitionSets ← getPartitions(layout, partition)
14 bestWwl ← −∞
15 bestSetIdx ← 0
16 foundBest ← False
17 foreach partitionSet in partitionSets do
18 if partitionSet.size() = 1 then
19 continue
20 end
21 foreach curPart in partitionSet do
22 success ← curPart.anneal()
23 if not success then
24 break
25 end
26 end
27 curWwl ← calculateWeightedWireLength()
28 if curWwl > bestWwl then
29 bestWwl ← curWwl
30 bestSetIdx ← indexOf(partitionSet)
31 foundBest ← True
32 end
33 end
34 if foundBest then
35 updateMacroLocations(bestSet)
36 end
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process by providing information about the relative importance of different connections.
This function utilizes a data structure called Core Edges. Instead of considering the
position of the block terminals (BTerm), OpenDB structure for I/O pins, TritonMP only
considers in which of the edges of the circuit the I/O is located. The function begins by
calculating the total number of macro and core edge connections (macro_edge_count)
and resizing the net_tbl_ to accommodate all possible connections. The function then
fills the net_tbl_ with weights for all pairs of macros and core edges.

The Hierarchical RTL-MP is created by the HierRTLMP class. It operates within
the mpl2 namespace and is part of a framework that supports multi-level clustering
and timing-driven macro placement. The class is structured to handle various stages of
macro placement, from initialization to final placement and orientation improvement, each
addressing different aspects of macro placement:

• Multilevel Autoclustering: Converts the logical hierarchy into a physical hierarchy,
setting the stage for subsequent placement steps.

• Coarse Shaping: Determines rough shapes for clusters, focusing on macro sizes and
ignoring standard-cell clusters.

• Fine Shaping: Refines cluster shapes based on parent cluster outlines and locations.

• Hierarchical Macro Placement: Places clusters and macros in a top-down approach,
considering both cluster and macro levels.

• Boundary Pushing: Adjusts macro clusters to design boundaries, ensuring no overlap
with IO blockages or other macros.

• Orientation Improvement: Optimizes macro orientation to improve wirelength re-
duction.

This organization can be seen by the code described in algorithm 2.
In line 1 the multilevel autocluster is called. Line 2 verifies if the hand made macro

placement flag is active, returning if it is. If there are already cells in the macro placer
data structure, it is cleared as seen in lines 5 and 6. In line 8 the Coarse shaping is called.
The function runHierarchicalMacroPlacement in line 9 is responsible for both the macro
placement and the fine shaping. To realize the boundary pushing, it is created a pusher
object, that receives the circuit area and the blockages, and a method of this object is
called, as seen in line 10 and 11. In line 12, the positioned macros are placed in the odb
structure. For the orientation improvement, fake cell placements are made in line 13, and
utilized to change the macro orientations in line 14. The oriented macros are updated on
the data structure. In line 16 a file writer is called, used to generate and odb file with the
macro placement. Lastly, all the constraints and internal structures are cleaned in line 17.
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Algorithm 2: Run_Hier
Input : odb = Internal data structure
Output : odb = Internal data structure,

def = Design placement
1 runMultilevelAutoclustering()
2 if skip_macro_placement then
3 return
4 end
5 if not tree.has_std_cells then
6 resetSAParameters()
7 end
8 runCoarseShaping()
9 runHierarchicalMacroPlacement()

10 pusher ← createPusher(tree.root, block, boundary_to_io_blockage)
11 pusher.pushMacrosToCoreBoundaries()
12 updateMacrosOnDb()
13 generateTemporaryStdCellsPlacement(tree.root)
14 correctAllMacrosOrientation()
15 commitMacroPlacementToDb()
16 writeMacroPlacement(macro_placement_file)
17 clear()

There are two instances of interactions between the circuit I/Os during the execu-
tion of the Hierarchical RTL-MP. The first one happens during the runMultilevelAutoclus-
tering function, where the new hierarchy is created. In this function, the I/O are considered
not by their position, but their connectivity with circuit pins and nets, generating the new
hierarchical blocks. The second interaction within the runCoarseShaping function, where
the placed I/Os are used to created area blockages for the macro placer. This blockage is
used during the runHierarchicalMacroPlacement and the pushMacrosToCoreBoundaries
functions.

The conclusion from this macro placer analysis is that both TritonMP and Hier-
archical RTL-MP do not fully consider the position of the circuit I/Os. TritonMP has
a stronger connection with the I/O locations, as it considers in what position of the
circuit they are for the weight calculation. This justifies the first step of pin placement
in the standard flow (flow1_TMP and flow1_hier) being random, as the following macro
placement step will not consider the exact I/O positions. This disconnection from the
pin placement and macro placement will be addressed in the following section, with the
introduction of new flows.



31

5 PROPOSED FLOWS

After analyzing OpenROAD’s macro placers properties described in the previous
section, it was noticed that the macro placement has a certain independence from the
pin assignment, more prevalent in the newer Hierarchical RTL-MP due to not only this
macro placer consider the I/Os placement just as blockage areas, but also the lack of the
initial mixed-size placement before the macro placement step present in the TritonMP flow.
The mixed-size placement made by the RePlAce tool considers the randomly assigned
I/Os, causing the following macro placement to indirectly consider the I/Os trough the
positioned standard cells. Although the older macro TritonMP considers more of the I/O
positions with the core edges, there is still a degree of independence from the exact I/O
placement. With this in mind, two initial flows were devised, one for each macro placer.

Figure 5 – Proposed Floorplanning Flows flow2_TMP and flow2_hier.

Source: The Author.

The first flow to be examined is called flow2_TMP. The first three steps of
flow2_TMP are the same as flow1_TMP. However, an extra call of the Pin Placer is
added just after the macro placement so as to perform a non random pin assignment
using hungarian matching. After this new step, flow2_TMP follows the same remaining
steps of flow1_TMP, continuing with the global placement using RePlAce, but now con-
sidering the I/O pins in its execution, as seen in Fig. 5, where the new step is colored
green. Flow2_TMP is represented by the red flow line in the start, before converging with
flow2_hier.
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The proposed flow, flow2_hier, follows the same changes as the ones made on
flow2_TMP, i.e., an extra non random pin assignment step is added after the macro
placement, and hence the following global placement step is altered so as to consider the
I/O pins positions during its execution, as it can be seen in Fig. 5, with the new step
is indicated by the green color and flow2_hier being represented by the black flow line
before converging with flow2_TMP.

To explore the optimal timing of pin assignment within the floorplanning and
placement sequence a third set of flows was created. By adding a pin assignment step after
detailed placement made with the RePlAce tool, this third flow tests whether aligning
I/O pin locations closer to the final stages of placement can improve routing efficiency
and performance. These flows aim to determine if late-stage pin assignment offers better
adaptability to the final layout conditions, or if early-stage pin assignment provides more
foundational guidance for placement and routing optimization.

Figure 6 – Proposed Floorplanning Flows flow3_TMP and flow3_hier.

Source: The Author.

The first of these new flows is flow3_TMP and the second is flow3_hier, as seen
in Fig. 6. The flowchart is expanded to include the detailed placement, the step following
the global placement shown in all previous flowcharts, as well as the new late-stage pin
assignment step, colored in blue.
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As all of the previously proposed flows add steps in different parts of the floor-
plan, they do not conflict with each other, allowing for the creation of a final set of
flows, flow4_TMP and flow4_hier, combining together the changes of flow2_TMP and
flow2_hier with flow3_TMP and flow3_hier. With these new flows lies in the potential for
progressively refined pin alignment throughout the placement stages. By incorporating an
initial pin assignment after macro placement, the flow provides an early anchor allowing
global placement to adjust component positioning relative to these key access points.

Following this with a second pin assignment after detailed placement allows for
further optimization, ensuring pin locations align with the nearly finalized layout, thereby
reducing routing complexity and enhancing overall design efficiency. This dual-assignment
approach aims to capitalize on the benefits of early guidance from pin locations while still
providing flexibility to fine-tune these assignments as the layout crystallizes, which could
result in a more optimized, adaptable floorplan. These new flows can be seen with Fig. 7,
where the new steps are painted green and blue.

Figure 7 – Proposed Floorplanning Flows flow4_TMP and flow4_hier.

Source: The Author.

The summary of the flows can be seen in Table 3, where the first column indi-
cates the flow, and the subcolums of the second column indicate where is the extra Pin
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Assignment in the determined flow.

Table 3 – Summary of flow characteristics.

Extra Pin Placement Flow1 Flow2 Flow3 Flow4
After Macro Placement X X
After Detailed Placement X X

5.1 EXPERIMENTAL RESULTS

The experimental evaluation of the proposed flows used eight different designs
available from OpenROAD listed in Table 4. In this table, column 1 gives the names
of the circuits, whereas columns 2, 3 and 4 bring the number of cells, the number of
macros and the number of I/Os, respectively. The circuits use the FreeDPK45-based open-
source NanGate45 enablement. Each circuit was synthesized for each of the eight flows
(flow1_TMP, flow2_TMP, flow3_TMP, flow4_TMP, flow1_hier, flow2_hier, flow3_hier,
flow4_hier) and successively underwent the remaining steps i.e., detailed placement, global
routing and detailed routing. Thus, a total of 64 syntheses were carried out; All executions
used an Ubuntu 22.04.4LTS workstation with an Hexacore Intel® Core® i7 8750H CPU and
16GB RAM at 3200MHz. The OpenROAD Flow Scripts version used in the experiments
was the commit labeled 9f67f4a (PROJECT, 2024b), and the OpenROAD toolkit version
was the commit labeled 57be191. Total Wirelength, Number of Vias and Synthesis Runtime
information was gathered from the OpenROAD reports.

The difference between the results obtained by comparing both macro placers in
flow1_TMP and flow1_hier was not investigated in this work, for it is known that the
new Hierarchical RTL-MP macro placer is still under development and its focused on
state-of-the-art circuits with hundreds of macros and a starting hierarchy defined to be
further altered and improved, something not present in the test circuits used in this work.

Table 4 – Main Statistics of the Test Circuits.
Circuit # cells # macros # I/Os

ariane136 175K 136 495
ariane133 167K 133 495
swerv_wrapper 96K 28 1416
black_parrot 302K 24 1198
bp_multi 137K 26 1453
bp_be 50K 11 3029
bp_fe 33K 10 2511
tinyRocket 25K 2 269

Table 5 shows the obtained results for the TritonMP flows circuit analysis. Column
1 gives the name of the circuits, Columns 2 to 5 bring the total wirelength results, in the
internal OpenROAD generic unit of measurement, Columns 6 to 9 show the results of
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numbers of vias, and Columns 10 to 13 display the time, in seconds, taken to run the
complete physical synthesis up to finishing the detailed routing. All results are given as
percentages of those of flow1. Negative percentages correspond to improvements, whereas
positive percentages indicate worsens.

Table 5 – Circuit analysis results for TritonMP flows: flow2, flow3 and flow4 results ex-
pressed as flow1 percentages.

Circuit Total Wirelength Number of Vias Synthesis Runtime
flow1_TMP flow2_TMP flow3_TMP flow4_TMP flow1_TMP flow2_TMP flow3_TMP flow4_TMP flow1_TMP flow2_TMP flow3_TMP flow4_TMP

ariane136 7073k 0.22% 0.00% 0.21% 1337k -0.09% 0.02% -0.06% 5530 71.90% 1.73% 10.51%
ariane133 Failed - - - Failed - - - Failed - - -
swerv_wrapper 4304k 2.70% -0.01% 2.71% 931k 0.93% -0.02% 0.95% 4397 8.99% 0.08% 7.16%
black_parrot 7266k -2.28% -0.02% -2.29% 1304k 0.14% -0.08% 0.10% 2769 18.71% 0.76% 18.33%
bp_multi 4125k -1.67% 0.00% -1.68% 757k -0.19% 0.04% -0.13% 1597 16.67% 0.00% 17.24%
bp_be 2673k -6.17% 0.09% -6.00% 431k -1.40% -0.01% -1.28% 1152 21.50% 0.14% 15.83%
bp_fe 2010k -8.42% 0.10% -8.35% 294k -3.11% -0.13% -2.65% 636 21.18% -0.87% 21.95%
tinyRocket 646k 6.88% -0.05% 6.94% 190k 1.16% 0.03% 1.26% 872 -11.06% 1.26% -14.44%

Average - -1.25% 0.02% -1.21% - -0.37% -0.02% -0.26% - 21.13% 0.44% 10.94%
Median - -1.67% 0.00% -1.68% - -0.09% -0.01% -0.06% - 18.72% 0.14% 15.83%

Regarding total wirelength, flow2_TMP and flow4_TMP achieve reductions of
1.25% and 1.21%, respectively, while flow3_TMP remains nearly neutral with a minor
0.02% increase. These reductions highlight the benefits of the individual and combined tech-
niques in optimizing interconnect length. For via count, both flow2_TMP and flow4_TMP
also show modest improvements, with reductions of 0.37% and 0.26%, respectively, whereas
flow3_TMP has a minor impact, only reducing by -0.02%. This suggests that flow2_TMP’s
approach is slightly more effective in improving layout metrics.

The synthesis runtime analysis offers a contrasting perspective. Flow2_TMP in-
curs a significant average increase of 21.13% in runtime, indicating a trade-off for its
wirelength and via reductions. Flow4_TMP, which combines the methods of flow2_TMP
and flow3_TMP, achieves a more balanced runtime overhead of 10.94%. In contrast,
flow3_TMP demonstrates the lowest runtime increase at only 0.44%, showcasing its
efficiency but with less pronounced improvements in physical metrics.

Outliers like the tinyRocket circuit, where flow2_TMP significantly increases wire-
length (6.88%), but drastically reduces the runtime (-11.06%), emphasize the variability
in flow performance depending on circuit characteristics. Conversely, circuits like bp_be
and bp_fe highlight substantial wirelength reductions (-6.17% and -8.42%, respectively),
validating the effectiveness of flow2_TMP.

Overall, while flow4_TMP offers the best balance between optimization and run-
time, these results underscore the importance of evaluating trade-offs for specific circuit
designs.

Table 6 shows the obtained results for the TritonMP flows circuit analysis. As in
the previous table, Column 1 gives the name of the circuits, Columns 2 to 5 bring the total
wirelength results, in generic units, Columns 6 to 9 show the results of numbers of vias,
and Columns 10 to 13 display the synthesis time, with all results given as percentages of
those of flow1.

The results of the hierarchical RTL-MP flows reveal notable differences compared
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Table 6 – Circuit analysis results results for Hierarchical RTL-MP flows: flow2, flow3 and
flow4 results expressed as flow1 percentages.

Circuit Total Wirelength Number of Vias Synthesis Runtime
flow1_hier flow2_hier flow3_hier flow4_hier flow1_hier flow2_hier flow3_hier flow4_hier flow1_hier flow2_hier flow3_hier flow4_hier

ariane136 8232k -1.21% -0.01% -1.19% 1549k -0.10% 0.05% -0.07% 6714 8.83% 1.77% 9.80%
ariane133 7725k -1.03% -0.01% -1.03% 1473k -0.43% 0.02% -0.44% 7401 -7.64% 3.39% -7.00%
swerv_wrapper 4353k -1.24% -0.21% -1.30% 996k -0.09% -0.20% -0.14% 5372 9.27% -3.58% 16.50%
black_parrot 9010 2.02% 0.01% 1.98% 2185k 0.08% 0.04% 0.04% 4484 23.37% 0.48% 23.52%
bp_multi 4820k -0.23% 0.02% -0.20% 1094k -0.08% 0.01% -0.10% 2329 21.52% 1.49% 21.84%
bp_be 3085k -0.60% -1.72% -0.15% 548k -3.02% -5.77% -2.95% 2000 16.24% -11.57% 26.14%
bp_fe 2332k -9.34% -0.37% -9.23% 353k -7.66% -0.34% -7.69% 1170 -23.05% -0.49% -25.38%
tinyRocket 691k 0.11% -0.07% 0.10% 193k 0.07% 0.07% -0.05% 746 9.96% 3.69% 10.60%

Average - -1.44% -0.30% -1.38% - -1.40% -0.77% -1.43% - 7.31% -0.60% 9.50%
Median - -0.81% -0.05% -0.62% - -0.09% 0.01% -0.12% - 9.62% 0.99% 13.55%

to the initial flow1_hier, with all flows demonstrating distinct advantages depending on
the evaluated metrics. For total wirelength, flow2_hier and flow4_hier achieve average
reductions of 1.44% and 1.38%, respectively, underscoring their effectiveness in minimiz-
ing routing costs, while flow3_hier exhibits a slight increase of 0.30%. These reductions
indicate that flow2_hier and flow4_hier, which focus on optimizing pin assignment in con-
junction with hierarchical placement strategies, are well-suited for improving interconnect
efficiency.

In terms of via count, flow4_hier achieves the largest average reduction of 1.43%,
followed closely by flow2_hier at 1.40%, while flow3_hier again has a smaller impact with
a reduction of only 0.77%. This consistency across wirelength and via count suggests that
flow4_hier effectively combines the strengths of the other two flows while maintaining
minimal design complexity, particularly benefiting circuits such as bp_fe, which shows a
remarkable via count reduction of 7.69%.

The synthesis runtime metric presents a different story, with flow2_hier incurring
an average increase of 7.31%, flow4_hier at 9.50%, and flow3_hier demonstrating a rare
reduction of 0.60%. Notably, the outlier bp_fe achieves significant runtime improvements
across all hierarchical flows, with reductions as high as 25.38% for flow4_hier, emphasizing
the role of specific circuit characteristics in runtime performance. In contrast, circuits like
black_parrot experience runtime increases of over 23%, which could be attributed to the
complexity of balancing macro placement and pin optimization.

Overall, the hierarchical flows validate the benefits of combining macro placement
strategies with advanced pin assignment techniques. Flow4_hier consistently emerges as
the most balanced option, achieving substantial physical optimizations at a moderate
runtime cost.

Table 7 shows the obtained results for the TritonMP flows timing analysis. Column
1 gives the name of the circuits, Columns 2 to 5 bring the worst slack, Columns 6 to 9 show
the results of Total Negative Slack (TNS), and Columns 10 to 13 displays the number of
Design Rule Violation (DRV) errors during the synthesis process. All results are given as
percentages of those of flow1. Negative percentages correspond to improvements, whereas
positive percentages indicate worsens. The circuit ariane_136 is not shown in this table,
as it had no negative slack and no DRV.
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Table 7 – Timing analysis results for TritonMP flows: flow2, flow3 and flow4 results ex-
pressed as flow1 percentages.

Circuit Worst Slack Total Negative Slack DRV
flow1_TMP flow2_TMP flow3_TMP flow4_TMP flow1_TMP flow2_TMP flow3_TMP flow4_TMP flow1_TMP flow2_TMP flow3_TMP flow4_TMP

ariane133 Failed - - - Failed - - - Failed - - -
swerv_wrapper -0.287 21.53% -3.00% 28.77% -91.497 116.53% 5.76% 115.76% 955 9.95% -3.56% 10.37%
black_parrot -2.988 -10.81% 0.11% -10.77% -2.988 -10.81% 0.11% -10.77% 1 0% 0% 0%
bp_multi -3.796 -4.95% -0.08% -5.20% -3.796 -4.95% -0.08% -5.20% 1 0% 0% 0%
bp_be -0.078 112.89% 43.03% 181.85% -6.521 108.58% 48.38% 191.72% 102 5.88% 4.90% 6.86%
bp_fe -0.014 -74.51% 108.39% 171.63% -0.027 -86.57% 112.95% 468.70% 2 -50.00% 50.00% 300.00%
tinyRocket -0.354 -15.30% -0.08% -14.08% -156.529 -6.84% -1.29% -5.82% 616 -4.71% 0.16% -5.03%

Average - 4.81% 24.74% 58.70% - 19.32% 27.64% 125.73% - -6.48% 8.58% 52.03%
Median - -7.88% 0.02% 11.79% - -5.89% 2.94% 55.28% - 0.00% 0.08% 3.43%

For the worst slack metric, flow2_TMP demonstrates a modest average worsening
of 4.81%, whereas flow3_TMP and flow4_TMP show substantial degradations of 24.74%
and 58.70%, respectively. The significant worst slack deterioration in flow4_TMP suggests
that its combined optimizations for wirelength and via count may come at the cost of
reduced timing margins. The main cause for this elevated value is the circuit bp_be, where
the worse slack increased by 112.89%, 43.08% and 181.85% with flow2_TMP, flow3_TMP
and flow4_TMP respectively, but considering the initial worst slack in flow1_TMP for
this circuit is low, the increase in time is not as expressive as the 4.95% reduction in
bp_multi and 10.81% reduction in black_parrot, both with flow2_TMP.

TNS results reveal a more negative. Flow2_TMP achieves a 19.32% average worsen-
ing, and flow3_TMP a slightly higher average worsening of 27.64%. However, flow4_TMP
exhibits a 125.73% increase, indicating timing degradation. Considering the original val-
ues for TNS, swerv_wrapper shows the worst performance, increasing in all flows, while
tinyRocket shows a considerable reduction of 6.84% from the largest TNS. The DRV anal-
ysis highlights that flow2_TMP and flow3_TMP offer reductions of 6.48% and 8.58%,
respectively, whereas flow4_TMP has a significant DRV increase of 52.03%.

Outlier circuits, such as bp_fe, reveal interesting behaviors. While flow2_TMP
achieves significant improvements in worst slack and TNS (-74.51% and -86.57%, respec-
tively), flow4_TMP suffers from major degradations (171.63% and 468.70%, respectively).

Table 8 shows the obtained results for the TritonMP flows timing analysis. As in
the previous table, Column 1 gives the name of the circuits, Columns 2 to 5 bring the
worst slack, Columns 6 to 9 show the results of TNS, and Columns 10 to 13 displays the
number of DRV errors during the synthesis process, with all results given as percentages
of those of flow1. Like in the previous table, circuit ariane_136 is not shown in the table
due to having no negative slack nor DRV.

For worst slack, flow2_hier achieves the most notable improvement, with an average
reduction of 26.45%, followed by flow4_hier at 18.43%. Flow3_hier shows the smallest
average reduction of 7.57%. While most of the circuits show improvements, the circuit
with the largest worst slack with Hierarchical RTL-MP, bp_multi, shows a 2.94% increase
of its worst slack with flow2_TMP, having the worst performance in this circuit compared
to the other flows.
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Table 8 – Timing analysis results for Hierarchical RTL-MP flows: flow2, flow3 and flow4
results expressed as flow1 percentages.

Circuit Worst Slack Total Negative Slack DRV
flow1_hier flow2_hier flow3_hier flow4_hier flow1_hier flow2_hier flow3_hier flow4_hier flow1_hier flow2_hier flow3_hier flow4_hier

ariane133 -0.093 -23.47% 14.06% 14.22% -38.343 -48.99% 33.32% 41.01% 952 -23.53% 17.54% 26.68%
swerv_wrapper -0.648 14.05% 3.98% 20.38% -601.177 3.97% -4.32% 22.36% 1423 15.25% -2.74% -0.63%
black_parrot -0.647 -16.95% 0.51% -16.86% -0.647 -16.95% 0.51% -16.86% 1 0% 0% 0%
bp_multi -1.928 2.94% 0.22% 1.37% -1.928 2.94% 0.22% 1.37% 1 0% 0% 0%
bp_be -0.871 -61.06% -53.25% -52.31% -89.903 -61.12% -56.93% 53.25% 144 -11.81% -22.92% -18.06%
bp_fe -0.314 -92.47% -14.34% -89.37% -12.498 -99.07% -6.26% -99.12% 177 -94.29% 0.56% -95.48%
tinyRocket -0.273 -8.20% -4.16% -6.44% -112.223 -3.62% -2.16% -2.11% 658 -6.08% -0.15% -5.93%

Average - -26.45% -7.57% -18.43% - -31.83% -5.09% -15.23% - -17.30% -1.10% -13.34%
Median - -16.95% 0.22% -6.44% - -16.95% -2.16% -2.11% - -6.08% 0.00% -0.63%

TNS results are more significative with Hierarchical RTL-MP. Flow2_hier achieves
the most significant improvement, with a reduction of 31.83%, followed by flow4_hier
(-15.23%). Flow3_hier offers a smaller reduction of 5.09%, which still indicates an im-
provement over the baseline flow1_hier. For swerv_wrapper, the circuit with the largest
TNS, flow3_hier is the only to offer a reduction, reducing by 4.32%, while flow2_hier
increases the value by 3.97% and flow4_hier increases by 22.36%.

The DRV analysis reveals consistent reductions across all hierarchical flows, with
flow2_hier achieving the largest reduction (-17.30%), followed by flow4_hier (-13.34%).
Flow3_hier shows the smallest improvement (-1.10%), but its the only flow to reduce the
number of DRV in the circuit with the most of them, swerv_wrapper. Overall, flow2_hier
demonstrates to be better performing in most circuits, followed by flow4_hier, but few
specific circuits benefit more in the timing aspect utilizing flow3_hier, like bp_multi and
swerv_wrapper.
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6 CONCLUSION

In this work, it was investigated alternative floorplanning flows for VLSI physical
design using the OpenROAD toolkit, focusing on optimizing macro placement and im-
proving pin assignment through an additional non-random placement step. By comparing
the proposed flows (flow2_TMP, flow3_TMP, and flow4_TMP) and their hierarchical
versions (flow2_hier, flow3_hier, and flow4_hier) to their respective original versions
(flow1_TMP and flow1_hier) across various test circuits, we demonstrated the poten-
tial benefits of these enhanced methods. In the TritonMP-based flows, flow2_TMP and
flow4_TMP reduced total wirelength by 1.25% and 1.21%, respectively, while maintaining
small reductions in via counts. However, flow3_TMP provided minimal improvements,
emphasizing the importance of flow design in achieving consistent gains. Similarly, in the
hierarchical flows, flow2_hier and flow4_hier achieved average wirelength reductions of
1.44% and 1.38%, respectively, and also exhibited via reductions, particularly benefiting
circuits like bp_fe, which saw a 7.69% decrease in via count.

The hierarchical flows demonstrated slightly lower runtime overheads compared to
their TritonMP counterparts, with flow2_hier incurring an average runtime increase of
7.31%, whereas flow2_TMP increased runtime by 21.13%. Notably, flow3_hier showed
minimal runtime increase of 0.60%, albeit with less significant physical optimizations.
Outliers, such as the tinyRocket and bp_fe circuits, highlighted the variability in flow
performance depending on circuit characteristics, with runtime reductions of up to 25.38%
observed for flow4_hier on bp_fe.

These results underscore the trade-off between improved layout quality and in-
creased computational effort. These findings validate the effectiveness of incorporating
non-random pin assignment and hierarchical placement strategies in enhancing the floor-
planning process. They also highlight the adaptability of open-source EDA tools like
OpenROAD for advancing VLSI design methodologies while addressing specific design
challenges.

6.1 FUTURE WORK

Future research could focus on developing an advanced macro placer that integrates
pin assignment directly into its optimization steps, enabling simultaneous optimization
of macro placement and interconnect routing. By embedding pin assignment within the
macro placement process, such a tool could better address the interdependencies between
these tasks, potentially leading to more significant reductions in wirelength and via count
without the need for a separate pin assignment step. This integrated approach could also
streamline the overall design flow, achieving higher-quality layouts.



40

REFERENCES

AGNESINA, Anthony et al. AutoDMP: Automated DREAMPlace-based Macro
Placement. In: PROCEEDINGS of the 2023 International Symposium on Physical
Design. Virtual Event, USA: Association for Computing Machinery, 2023. (ISPD ’23),
p. 149–157. DOI: 10.1145/3569052.3578923. Disponível em:
https://doi.org/10.1145/3569052.3578923.

BANDEIRA, Vitor et al. Fast and Scalable I/O Pin Assignment with
Divide-and-Conquer and Hungarian Matching. In: 2020 18th IEEE International New
Circuits and Systems Conference (NEWCAS). [S.l.: s.n.], 2020. P. 74–77. DOI:
10.1109/NEWCAS49341.2020.9159791.

CHENG, Chung-Kuan et al. RePlAce: Advancing Solution Quality and Routability
Validation in Global Placement. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, v. 38, n. 9, p. 1717–1730, 2019. DOI:
10.1109/TCAD.2018.2859220.

FONTANA, Tiago Augusto et al. ILP-Based Global Routing Optimization with Cell
Movements. In: 2021 IEEE Computer Society Annual Symposium on VLSI (ISVLSI).
[S.l.: s.n.], July 2021. P. 25–30. DOI: 10.1109/ISVLSI51109.2021.00016.

HU, Kai-Shun; YANG, Ming-Jen, et al. ICCAD-2020 CAD contest in routing with cell
movement. In: 2020 IEEE/ACM International Conference On Computer Aided Design
(ICCAD). [S.l.: s.n.], 2020. P. 1–4. DOI: 10.1145/3400302.3415738.

HU, Kai-Shun; YU, Tao-Chun, et al. 2021 ICCAD CAD Contest Problem B: Routing
with Cell Movement Advanced: Invited Paper. In: 2021 IEEE/ACM International
Conference On Computer Aided Design (ICCAD). [S.l.: s.n.], 2021. P. 1–5. DOI:
10.1109/ICCAD51958.2021.9643568.

KAHNG, A.; LIENIG, J., et al. "VLSI Physical Design: From Graph Partitioning
to Timing Closure". [S.l.]: Springer Netherlands, 2011. DOI:
10.1007/978-90-481-9591-6.

KAHNG, Andrew B; VARADARAJAN, Ravi; WANG, Zhiang. Hier-RTLMP: A
hierarchical automatic macro placer for large-scale complex IP blocks. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems,
IEEE, 2023.

https://doi.org/10.1145/3569052.3578923
https://doi.org/10.1145/3569052.3578923
https://doi.org/10.1109/NEWCAS49341.2020.9159791
https://doi.org/10.1109/TCAD.2018.2859220
https://doi.org/10.1109/ISVLSI51109.2021.00016
https://doi.org/10.1145/3400302.3415738
https://doi.org/10.1109/ICCAD51958.2021.9643568
https://doi.org/10.1007/978-90-481-9591-6


REFERENCES 41

KAHNG, Andrew B. Leveling Up: A Trajectory of OpenROAD, TILOS and Beyond. In:
PROCEEDINGS of the 2022 International Symposium on Physical Design. Virtual
Event, Canada: Association for Computing Machinery, 2022. (ISPD ’22), p. 73–79. DOI:
10.1145/3505170.3511479.

. Solvers, Engines, Tools and Flows: The Next Wave for AI/ML in Physical
Design. In: PROCEEDINGS of the 2024 International Symposium on Physical Design.
Taipei, Taiwan: Association for Computing Machinery, 2024. (ISPD ’24), p. 117–124.
DOI: 10.1145/3626184.3635277.

KUHN, H. W. The Hungarian method for the assignment problem. Naval Research
Logistics Quarterly, v. 2, n. 1-2, p. 83–97, 1955. DOI: 10.1002/nav.3800020109.

LAUNG-TERNG WANG, Yao-Wen Chang; CHENG, Kwang-Ting (Tim). Electronic
Design Automation: Synthesis, Verification, and Test. [S.l.]: Morgan Kaufmann,
2008.

LIN, Yibo et al. DREAMPlace: Deep Learning Toolkit-Enabled GPU Acceleration for
Modern VLSI Placement. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, v. 40, n. 4, p. 748–761, 2021. DOI:
10.1109/TCAD.2020.3003843.

LU, Jingwei et al. ePlace: Electrostatics based placement using Nesterov’s method. In:
2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC). [S.l.: s.n.], 2014.
P. 1–6. DOI: 10.1145/2593069.2593133.

MARKOV, Igor L. Reevaluating Google’s Reinforcement Learning for IC Macro
Placement. Commun. ACM, Association for Computing Machinery, New York, NY,
USA, v. 67, n. 11, p. 60–71, Oct. 2024. ISSN 0001-0782. DOI: 10.1145/3676845.

MARKOV, Igor L.; ADYA, Saurabh N. Fixed-Outline Floorplanning: Enabling
Hierarchical Design. IEEE Trans. on VLSI Systems, 2003.

MIRHOSEINI, Azalia et al. A graph placement methodology for fast chipdesign.
Nature, v. 594, n. 7862, p. 207–212, June 2021. ISSN 1476-4687. DOI:
10.1038/s41586-021-03544-w.

https://doi.org/10.1145/3505170.3511479
https://doi.org/10.1145/3626184.3635277
https://doi.org/10.1002/nav.3800020109
https://doi.org/10.1109/TCAD.2020.3003843
https://doi.org/10.1145/2593069.2593133
https://doi.org/10.1145/3676845
https://doi.org/10.1038/s41586-021-03544-w


REFERENCES 42

NETTO, Renan et al. Ophidian: an Open-Source Library for Physical Design Research
and Teaching. In: FIRST Workshop on Open-Source EDA Technology. [S.l.: s.n.], 2018.
Disponível em: https://woset-workshop.github.io/PDFs/2018/a25.pdf.

PROJECT, The OpenROAD. OpenROAD. [S.l.]: GitHub, 2024.
https://github.com/The-OpenROAD-Project/OpenROAD.

. OpenROAD Flow Scripts. [S.l.]: GitHub, 2024.
https://github.com/The-OpenROAD-Project/OpenROAD-flow-scripts.

PU, Yuan et al. IncreMacro: Incremental Macro Placement Refinement. In:
PROCEEDINGS of the 2024 International Symposium on Physical Design. Taipei,
Taiwan: Association for Computing Machinery, 2024. (ISPD ’24), p. 169–176. DOI:
10.1145/3626184.3633321. Disponível em:
https://doi.org/10.1145/3626184.3633321.

VIDAL-OBIOLS, Alex et al. Multilevel Dataflow-Driven Macro Placement Guided by
RTL Structure and Analytical Methods. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, v. 40, n. 12, p. 2542–2555, 2021. DOI:
10.1109/TCAD.2020.3047724.

WESTE, Neil H.; HARRIS, David Money. CMOS VLSI Design a Circuit and
Systems Perspective. [S.l.]: Addison-Wesley, 2011.

YOSYS HQ. Yosys Open SYnthesis Suite. [S.l.]: GitHub, 2024.
https://github.com/YosysHQ/yosys.

https://woset-workshop.github.io/PDFs/2018/a25.pdf
https://github.com/The-OpenROAD-Project/OpenROAD
https://github.com/The-OpenROAD-Project/OpenROAD-flow-scripts
https://doi.org/10.1145/3626184.3633321
https://doi.org/10.1145/3626184.3633321
https://doi.org/10.1109/TCAD.2020.3047724
https://github.com/YosysHQ/yosys


Appendix



44

APPENDIX A – FLOWS SOURCE CODE

The flows proposed and utilized for this work are available in the following open
repository: https://github.com/rafaelmoresco/ScriptsTCC
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APPENDIX B – SBC PAPER

The following pages have an alternative version of this work for publication following
the model of the Sociedade Brasileira de Computação.
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Abstract. The early stages of the physical design of VLSI (Very-Large-Scale In-
tegration) circuits, referred to as floorplanning, are critical for achieving quality
layouts as they directly affect subsequent design stages. A typical floorplanning
flow consists of pin assignment, macro placement, and power planning. How-
ever, pin assignment and macro placement are interdependent steps, and their
execution order significantly influences floorplanning outcomes, which is why
they are often alternated. For example, the standard floorplanning flow in the
open-source OpenROAD platform performs an initial random pin assignment
followed by macro and global placement, concluding with an extra pin assign-
ment step. In this approach, pin assignment does not directly influence the macro
and global placement results, potentially missing optimization opportunities.
This work explores new enhanced floorplanning flows within integrated circuit
(IC) synthesis using OpenROAD by introducing an additional non-random pin
assignment step. The proposed flows are tested with two macro placers avail-
able in OpenROAD. Experimental results using FreePDK45 test circuits demon-
strated that the proposed flows achieved average reductions in wirelength and
via count of 1.25% and 0.37%, respectively, with TritonMP, and 1.44% and
1.43%, respectively, with Hierarchical RTL-MP. Specific circuits showed reduc-
tions in wirelength and via count of up to 9.34% and 7.69%, respectively. These
results underscore the potential for further optimizations during the floorplan-
ning stage, highlighting the importance of addressing pin assignment.

1. Introduction

The technological advancements have allowed the fabrication of Integrated Circuits
(ICs) featuring over a billion transistors. The rising complexity of these designs calls
for the extensive use of hierarchical design, functional blocks and an increasing use
of Intellectual Property (IP) blocks. This trend has raised the importance of floor-
planning in determining the quality of a Very-Large-Scale Integration (VLSI) design
[Laung-Terng Wang and Cheng 2008]. With the continuous reduction of technology
nodes size, there is also an increasing demand to improve placement and routing, as
the ever so smaller transistors allow for a greater circuit density that combined with
more metal layers in more recent technology nodes make the total wirelength resistance
and capacitance the main cause for delays and a major part of switching power loss
[Weste and Harris 2011]. Due to those issues, there is a prominent need for good quality
floorplan that could lead to high quality placement and routing solutions.

In recent years many new approaches for VLSI optimization have been introduced
in academia, ranging from an increase in AI-based design optimization for all stages
of the physical synthesis to the introduction of changes to the traditional steps. This



latter approach was subject of ICCAD CAD Contests 2020 [Hu et al. 2020] and 2021
[Hu et al. 2021] and highlighted that there are many optimization opportunities arriving
from modifying the synthesis flow, either adding extra steps or by altering the behavior of
the existing ones through the integration of new features.

With the growing demand from the Electronic Design Automation (EDA) indus-
try, there has been a rise in open-source movements led by academia aimed at dissemi-
nating physical design knowledge. Over the years, several tools specific to each step of
the synthesis flow have been developed. To support the rise of those tools, open-source
libraries such as the Ophidian library developed at the Federal University of Santa Cata-
rina [Netto et al. 2018] appeared, until more comprehensive projects covering all stages
began to emerge. Among these projects, OpenROAD stands out, a global initiative sup-
ported by several universities and companies, headquartered at UC San Diego, California
[Kahng 2022], which serves as the foundational infrastructure for the development of this
work.

This work investigates how the addition of an extra step of pin assignment impacts
the resulting layouts of physical synthesis. To perform this investigation, the open-source
EDA tool-kit OpenROAD [Kahng 2022] was chosen as our test case. We explain how
the standard OpenROAD flow works, presenting its two variations due to the existence of
two available macro placers, TrintonMP and Hierarchical RTL-MP [Kahng et al. 2023],
and compare with three proposed investigative flows using test designs available within
OpenROAD.

1.1. Motivation and Objectives
With modern IC designs growing increasingly complex, featuring billions of transistors
and densely packed functional blocks, even slight inefficiencies in floorplanning can sig-
nificantly impact performance, power consumption, and design feasibility. Considering
how recent works add new steps in the global routing stage executing functions associated
with global placement [Fontana et al. 2021], there is still much to explore in the interac-
tions between synthesis steps. This work, therefore, seeks to explore the potential of an
altered floorplanning flow by adding an extra pin assignment step to improve routing effi-
ciency and layout compactness. Using the OpenROAD platform as a test case, this work
aims to identify and quantify the benefits of structured pin assignment, contributing to
more optimized and accessible VLSI design flows, especially within the growing field of
open-source EDA tools.

General Objectives
The general objective of this work is to investigate and introduce a new VLSI floorplan-
ning flow that considers the dependency relation between the steps of macro placement,
pin assignment and global placement in the physical synthesis process, utilizing the addi-
tion of extra pin assignment steps in order to enhance layout quality, utilizing the open-
source toolkit OpenROAD as a test case. The experimental results will be compared with
those generated by the standard flows avaliable within OpenROAD.

Specific Objectives
• Analyze the impact of pin assignment in relation to macro placement on the floor-

planning outcomes by introducing additional, pin assignment steps within the
OpenROAD flow;



• Compare the effectiveness of the proposed pin assignment modifications with dif-
ferent macro placers, TritonMP and Hierarchical RTL-MP, to determine improve-
ments in layout efficiency, focusing on metrics like wirelength reduction and via
minimization;

• Measure the synthesis runtime implications of the proposed flows and assess the
trade-offs between layout quality improvements and computational resource de-
mands;

• Conduct experimental evaluations on diverse OpenROAD test circuits, quantify-
ing the benefits and limitations of the proposed flows and validating the feasibility
of these approaches for integration in open-source VLSI design workflows.

2. Background

This section presents the necessary theoretical knowledge to understand the current work.

2.1. Physical Synthesis

The RTL-to-GDSII synthesis flow is a critical process in VLSI circuit design, serving as
the bridge from abstract functional descriptions to the detailed physical layouts neces-
sary for manufacturing. The Fig. 1 shows the complete RTL-to-GDSII flow, highlighting
the presence of the Physical Synthesis steps with red colored blocks. This flow begins
at the Register Transfer Level (RTL), where designers use Hardware Description Lan-
guage (HDL) like Verilog or VHDL to define the circuit’s functional and timing behavior
at a high level. From here, the synthesis process translates this high-level design into a
gate-level netlist, mapping RTL logic to specific gates using standard cells from a given
technology library [Weste and Harris 2011]. This synthesis step optimizes the design to
meet predefined constraints, such as minimizing area or power and ensuring timing clo-
sure, which is crucial for high-speed circuits.

Following synthesis, the flow advances to physical design, where the gate-level
netlist undergoes a series of steps to create a manufacturable layout. Physical design in-
cludes placement, where cells are arranged on the chip 2D surface so as to minimize both
area usage and interconnect delay. After placement, global and detailed routing phases
establish the precise connections between cells, with a focus on minimizing wire length,
reducing crosstalk, and ensuring signal integrity. According to [Kahng et al. 2011], this
stage requires iterative optimization to ensure timing closure, particularly as device sizes
shrink and timing constraints grow more stringent. Tools are employed to refine the lay-
out until timing closure is achieved, ensuring that all paths meet their designated timing
requirements.

Timing analysis and iterative optimization steps follow placement and routing to
ensure that the design meets timing requirements, known as timing closure. Modern
EDA tools employ sophisticated algorithms to achieve this, as timing constraints become
increasingly challenging in smaller technology nodes. The final stage of the RTL-to-
GDSII flow includes Design Rule Check (DRC) and Layout-Versus-Schematic (LVS)
verification, which confirm that the layout complies with manufacturing requirements
and matches the intended design specifications. The output, the GDSII file, contains all
the geometric and layer information needed for photolithographic fabrication, making it
the final product of the digital design flow [Weste and Harris 2011].



Figure 1. Academic RTL-to-GDSII Synthesis Flow.

2.2. Floorplan

Floorplanning plays a crucial role in chip layout, specially in the hierarchical ap-
proach to module-based design. It offers preliminary feedback to assess architectural
choices, predict chip areas, and estimate delays and congestion due to interconnec-
tions. As fabrication technology evolves, design complexity increases as more transis-
tors are integrated in a single chip. To address such growing complexity, hierarchical
design practices and IP modules are extensively employed. Consequently, floorplan-
ning has become more important than ever for ensuring the quality of VLSI designs
[Laung-Terng Wang and Cheng 2008].

Traditionally, the floorplanning step is further divided into macro placement, pin
assignment, and power planning [Kahng et al. 2011]. Among these, macro placement
is particularly vital because it lays the foundation for the overall layout quality and di-
rectly influences key design metrics such as wirelength, congestion, and timing closure.
The process of macro placement ensures that each block generated during the partitioning
stage is assigned a position and shape within the floorplan, aiming to minimize wirelength
and balance the area usage, which is crucial for efficient routing and timing optimization.
In modern VLSI designs, where circuits consist of hundreds to thousands of macros, ef-
fective placement becomes even more important. Poor macro placement can lead to long
interconnects, resulting in increased signal delay and higher parasitic capacitances, which
degrade performance and power efficiency. Furthermore, congestion in certain regions
due to inefficient placement can create bottlenecks during routing, making it harder to
meet design closure.



Although many advanced algorithms and tools have been developed to auto-
mate macro placement, most designers still rely on handcrafted placements for high-
performance chips to fine-tune critical regions of the design [Kahng et al. 2023]. How-
ever, current Multiprocessor System-on-Chip (MPSoC) may have thousands of macros
and IP blocks, rendering manual macro placing unfeasible. In such scenario, macro place-
ment can exploit design hierarchy in such a way that larger macros or modules are placed
before smaller ones, ensuring that major components like memory blocks, processing
units, or high-speed interfaces are optimally positioned.

During the pin assignment step, each incoming and outgoing signal is assigned to
a specific pin location, looking to enhance the overall performance of the design. The pri-
mary goal of pin assignment is to optimize the placement of I/O pins, as it directly affects
the efficiency of signal routing across the chip. By carefully assigning pins, designers can
improve routability, minimize the total wirelength, and reduce the number of vias, which
are critical factors in achieving a more compact and efficient design. Poor pin placement
can lead to long, convoluted routing paths that increase resistance, capacitance, and sig-
nal delay, potentially causing timing violations and negatively impacting the overall chip
performance. According to [Kahng et al. 2011] the ideal moment for the pin assignment
is before the macro placement, with the locations being updated during and after macro
placement. In the power planning step, the ground and power nets are routed in dedicated
metal layers, usually the upper ones.

2.3. OpenROAD

With the growing demand in the EDA industry, there has been a surge of open-source
movements led by academia aimed at disseminating knowledge in this field. Among
these projects, OpenROAD stands out, an initiative supported by various universities and
companies worldwide, headquartered at UC San Diego, California [Kahng 2022], which
serves as the foundational infrastructure for the development of this work.

OpenROAD, launched in 2019, has the mission to develop a fully open platform,
where the entire synthesis process would be completed within 24 hours without human
intervention [Kahng 2022]. To achieve this goal, OpenROAD is available in two versions:
the standalone OpenROAD tool, where all commands are manually applied, designed to
support the development of new tools, and a version called OpenROAD Flow Scripts,
which consists of a set of scripts that automatically execute all steps of the tool, made
for ICs designers. As shown in Fig. 2, the flow implemented in OpenROAD resembles
the theoretical flow identified by [Kahng et al. 2011], but it presents certain modifications
and different nomenclatures.

Performing the entire RTL-to-GDSII synthesis flow, OpenROAD [Kahng 2022] is
composed of several individual tools with a common interface and data types. For the
floorplan step, there are four essential tools: Pin Placer, TritonMP, Hierarchical RTL-MP
and RePlAce. Introduced by [Bandeira et al. 2020], the Pin Placer employs a divide-and-
conquer strategy combined with Hungarian matching [Kuhn 1955] to achieve efficient
pin assignment. This method divides the I/O pin assignment problem into smaller, man-
ageable subproblems, which reduces computational complexity and allows for parallel
processing, resulting in faster runtime and scalability for large designs. The Hungarian
matching algorithm, capable of solving assignment problems optimally [Kuhn 1955], is



Figure 2. OpenROAD’s Synthesis Flow.

then used within each subregion to assign pins while minimizing total wirelength. The
tool also offers alternative assignment methods, such as simulated annealing, which is
useful for exploring a wider solution space at the cost of increased computation time. By
balancing precision with computational efficiency, the Pin Placer tool aims to provide a
flexible and scalable solution for pin assignment in modern, complex integrated circuits.

The macroplacer TritonMP was developed utilizing an implementation of Par-
quetFP, an open-source floorplanning tool introduced by [Markov and Adya 2003]. Par-
quetFP primarily focuses on fixed-outline floorplanning, an approach that is especially
relevant for hierarchical Application Specific Integrated Circuit (ASIC) and System-on-
Chip (SoC) designs. Unlike classical floorplanning methods, which minimize area and
wirelength without specific layout boundaries, fixed-outline floorplanning mandates that
the layout conforms to a predetermined outline, making it more applicable to real-world
designs where chip dimensions are constrained. To address the increased complexity
of fixed-outline constraints, ParquetFP incorporates advanced objective functions within
its simulated annealing framework. It uses wirelength minimization based on the Half
Perimeter Wirelength (HPWL) metric and aspect ratio adjustments to handle varying
block shapes effectively. ParquetFP also introduces slack-based moves, which allow for
local adjustments to minimize wirelength while maintaining critical path constraints. This
combination of techniques makes ParquetFP highly effective for both outline-free and
fixed-outline contexts, providing scalable, high-quality floorplanning solutions suitable
for the hierarchical design methodologies employed in modern VLSI layouts

Hierarchical RTL-MP is a sophisticated hierarchical macro placer developed
for OpenROAD to handle the increasing complexity and scale of VLSI designs
[Kahng et al. 2023]. With the rise of auto-generated RTL, particularly in areas like ma-
chine learning accelerators, the number of macros can reach several hundred in a single
design, making traditional peripheral placement methods unfeasible. Unlike previous



macro placers that often arranged macros along the periphery, Hierarchical RTL-MP can
place macros within the core of the layout, accommodating large macro numbers and bet-
ter maintaining design dataflow. The tool employs a multi-level hierarchical approach,
transforming logical hierarchies from the RTL into physical hierarchies through a novel
autoclustering technique. This technique groups macros into clusters based on design
hierarchy and dataflow, creating physical clusters that mimic the logical relationships.
Additionally, Hierarchical RTL-MP uses a shaping engine to determine allowable cluster
shapes, which it refines through a bottom-up and top-down process to optimize floorplan
utilization and routability. This enables more efficient macro placements that align with
critical timing paths, support power grid generation, and minimize wirelength. Empirical
tests by Hierarchical RTL-MP authors have shown that Hierarchical RTL-MP outperforms
prior placements by reducing timing violations and runtime, making it a valuable addition
to the OpenROAD toolkit for complex IP blocks.

RePlAce is a mixed-size placer developed to enhance solution quality and address
routability challenges in global placement [Cheng et al. 2019]. It builds upon ePlace
[Lu et al. 2014], a previous analytical placer utilizing an eletrostatic model, by imple-
menting new techniques that improve both placement quality and routability validation.
RePlAce leverages a density function that incorporates local area overflow, allowing it to
address congestion at a finer granularity, per placement bin. This approach enables lo-
calized adjustments rather than globally applied density penalties, thus preserving overall
wirelength while effectively managing high-density areas.

To further optimize placement quality, RePlAce integrates a dynamic step size
adaptation method that adjusts optimization effort based on the design’s placement state,
improving efficiency without increasing runtime significantly. Additionally, RePlAce in-
cludes a routability-driven component, which estimates congestion early in the flow and
performs cell inflation in congested regions to avoid hotspots. This helps in producing
layouts with minimal routing congestion. RePlAce achieves notable improvements in
HPWL and routability across various benchmarks, making it a robust tool for tackling the
challenges of modern, large-scale VLSI designs.

The input to the floorplanning step in OpenROAD is a verilog netlist generated
by the third party logic synthesis tool Yosys [Yosys HQ 2024]. This file is loaded and
converted into an internal file type. Then, floorplanning starts. The final output of the
floorplanning is a proprietary file called ODB, utilized to transfer information from Open-
ROAD’s internal database.

Fig. 3 shows a simplified flowchart of the OpenROAD floorplanning flow using
TritonMP as macro placer, while Fig. 4 shows a similar flowchart using the newer Hier-
archical RTL-MP as macro placer, hereinafter referred to as flow1 TMP and flow1 hier,
respectively. Each column in the flow chart identifies the tool that executes the step.

The first step of flow1 TMP corresponds to randomly assigning the I/O pins. The
second step is a timing driven mixed-size placement using RePlAce, where the macro
blocks get an initial placement, followed by the refining macro placement with TritonMP.
After the macro placement, tapcells and wellties are inserted, and the power delivery net-
work is routed. Although OpenROAD classifies this as the end of the floorplanning, the
pin assignment is not finished. After floorplanning, OpenROAD invokes a global place-



ment ignoring the I/O pins, as they were previously randomly placed. Being classified as
part of placement, the definitive pin assignment is made after the previous global place-
ment step, and to refine the results, a new global placement step is performed, but now
considering the pin assignment.

Figure 3. Original Floorplanning Flow flow1 TMP.

The flow using Hierarchical RTL-MP as macro placer, flow1 hier, starts by ran-
domly assigning the I/O pins. But differently from flow1 TMP, in flow1 hier there is
no mixed-size placement using RePlAce. Instead, it goes directly to the macro place-
ment step with Hierarchical RTL-MP. The rest of flow1 hier undergoes the same steps
as flow1 TMP, with a global placement ignoring the randomly placed I/O pins positions
being the next step, followed by a definitive I/O placement and a final global placement.

Figure 4. Original Floorplanning Flow flow1 hier.



3. Related Work
This section present the most recent works on floorplanning techniques.

3.1. DREAMPlace
The DREAMPlace framework, presented by [Lin et al. 2021], is a GPU-accelerated tool
designed to enhance the speed and scalability of the VLSI placement process by leverag-
ing deep learning techniques. Traditional analytical placement methods, though capable
of high-quality results, often suffer from extended runtimes due to the computational com-
plexity involved in optimizing large-scale designs. DREAMPlace addresses this issue by
framing placement as a neural network training problem, which enables efficient gradient
calculations for wirelength and density through GPU acceleration. Utilizing PyTorch, the
framework achieves up to 30× speed improvement over multi-threaded CPU counterparts
like RePlAce, without compromising placement quality. This method not only accelerates
global placement tasks but also ensures legal placement with minimized overlaps, mak-
ing it particularly suitable for designs with millions of cells. DREAMPlace has paved
the way for integrating advanced AI tools in EDA, setting a strong foundation for further
GPU-accelerated VLSI design methodologies .

3.2. AutoDMP
The work by [Agnesina et al. 2023] explores recent advances in VLSI macro placement
by leveraging the DREAMPlace [Lin et al. 2021] GPU-accelerated placer combined with
machine learning-driven optimization strategies, introducing a new macro placer called
AutoDMP. Prior works in macro placement have traditionally divided the problem into
floorplanning and placement of standard cells and macros separately, which can hinder
performance due to limited coordination between these elements. Classical floorplan-
ning methods include simulated annealing techniques and partitioning-based approaches,
while more recent methods have applied reinforcement learning to achieve competitive
placements. However, these approaches either suffer from scalability issues or require
significant computational resources.

AutoDMP advances the field by integrating Bayesian optimization with DREAM-
Place, allowing simultaneous placement of macros and standard cells in a mixed-size
environment. Unlike sequential flows, which may struggle to optimize placement quality
when faced with complex multi-objective goals such as timing, wirelength, and area,
the AutoDMP methodology achieves a Pareto-optimal balance across these compet-
ing factors. By utilizing a multi-objective Tree-Structured Parzen Estimator (MOTPE),
AutoDMP refines parameters to deliver high-quality placements with improved Power-
Performance-Area (PPA) metrics on benchmarks. Additionally, DREAMPlace is ex-
tended with features like macro halo adjustments and density constraints, which facilitate
effective placement legalization while reducing overlaps. This method has demonstrated
comparable or superior performance to industry-standard EDA tools, marking a signifi-
cant step toward scalable and efficient VLSI design automation.

3.3. IncreMacro
IncreMacro, developed by [Pu et al. 2024], builds upon DREAMPlace’s analytical place-
ment capabilities by introducing a targeted approach to incrementally refine macro place-
ment. Recognizing that placing macros centrally can lead to routing congestion and tim-
ing issues, IncreMacro employs a three-stage methodology: it diagnoses poorly placed



macros using a KD-tree, shifts them towards the periphery through gradient-based opti-
mization, and finalizes positions using constraint-graph-based linear programming. This
structured approach preserves the relative positioning of macros, thus maintaining wire-
length optimization from the original placement, while eliminating central blockages that
hinder routing. In evaluations on RISC-V benchmarks, IncreMacro shows significant
improvements in PPA metrics compared to DREAMPlace alone, with reductions in wire-
length and power consumption, making it a valuable refinement tool in GPU-accelerated
placement flows.

3.4. Google’s Reinforcement Learning

The work by [Mirhoseini et al. 2021] propose a novel approach to chip floorplanning us-
ing deep Reinforcement Learning (RL). This method reformulates the floorplanning prob-
lem as a Markov decision process, leveraging an edge-based graph neural network for
learning effective representations of chip netlists. Their approach optimizes key metrics
such as PPA while considering constraints like routing congestion and density. Notably,
the method produces manufacturable floorplans within six hours, claiming to surpass or
equal human expert designs across metrics. By enabling generalization and transfer learn-
ing, the proposed RL framework not only accelerates the chip design process but also has
the potential to transform other placement optimization tasks beyond chip design. The
methodology was applied in the design of Google’s TPU accelerators.

This work was heavily criticized for its lack of reproducibility, flawed method-
ologies, and exaggerated claims. A recent work by [Markov 2024] reviews and meta-
analyses the work by [Mirhoseini et al. 2021], highlighting several critical shortcomings:
the omission of necessary details for reproducing experiments, reliance on proprietary
data, and poorly documented baselines. Independent evaluations demonstrated that stan-
dard techniques like simulated annealing and commercial EDA tools outperformed the
proposed RL approach. The RL methodology was further questioned for its use of a
flawed proxy cost function, which correlated poorly with actual chip metrics, and for
overstating results without proper statistical analysis. Allegations of research miscon-
duct, including cherry-picking favorable results, were also reported, raising doubts about
the study’s integrity. Despite the claimed innovation, subsequent investigations revealed
that the methodology failed to surpass state-of-the-art approaches in both performance
and efficiency [Markov 2024].

3.5. HiDaP

In the work by [Vidal-Obiols et al. 2021], the authors present a novel approach to macro
placement in VLSI design, emphasizing the use of RTL dataflow information. This
method, named HiDaP, stands out from traditional approaches by integrating dataflow-
driven techniques with a hierarchical, multilevel optimization strategy. By leveraging
RTL structural details, such as hierarchy and pipeline register stages, HiDaP calculates
dataflow affinity between blocks based on factors like bitwidth and latency, which aids in
maintaining timing and minimizing wirelength. Unlike typical analytic and partitioning-
based placement methods, this approach emphasizes the interactions between macros and
their surrounding standard cells, optimizing not only for placement quality but also for
ease in meeting timing constraints with minimal manual adjustments. HiDaP uses a re-
cursive, top-down placement model, which provides a robust structure for managing large



designs with diverse macro requirements and varying block sizes. It is shown to achieve
results that closely rival or even exceed those of handcrafted placements in terms of tim-
ing and wirelength performance, positioning HiDaP as an efficient alternative in industrial
design flows.

3.6. Conclusion
The reviewed methodologies address critical aspects of macro placement, the most com-
putationally intensive part of floorplanning, with unique strengths and limitations, but
do not approach floorplanning as a whole. DREAMPlace establishes a foundation with
GPU-accelerated global placement, achieving substantial speedups without quality degra-
dation [Lin et al. 2021]. However, its focus on general analytical placement leaves room
for specialized improvements in macro handling and specific design constraints.

AutoDMP builds on DREAMPlace, introducing machine learning-driven multi-
objective optimization to tackle mixed-size placement challenges [Agnesina et al. 2023].
Its integration of Bayesian optimization delivers Pareto-optimal placements across PPA
metrics, though its reliance on extensive computational resources may limit accessibility
for iterative design flows.

IncreMacro refines macro placement incrementally, preserving relative positional
relationships and reducing central blockages that degrade routing [Pu et al. 2024]. By em-
ploying KD-tree-based diagnosis and gradient-based adjustments, it enhances routability
and timing while minimizing disruption to established layouts. However, its benefits are
constrained by reliance on initial placement quality from analytical tools.

The controversial work responsible for Google’s Reinforcement Learning tech-
nique proposed a novel use of RL for macro placement, achieving results comparable
to human experts on proprietary TPU designs [Mirhoseini et al. 2021]. However, sub-
sequent critiques [Markov 2024] revealed significant flaws in reproducibility, unverified
claims of superiority over standard methods, and reliance on a proxy cost function poorly
correlated with actual chip metrics.

HiDaP introduces a dataflow-driven, hierarchical approach, leveraging RTL in-
formation to optimize timing and wirelength while integrating macros and standard
cells [Vidal-Obiols et al. 2021]. Its structured top-down process balances scalability with
design-specific adaptability. Despite these advantages, its hierarchical dependency may
complicate integration with flat placement frameworks.

Table 1 lists and compares the main properties of the related work. In the first
column, the reference of the work is listed. In the following columns, it is indicated what
kind of strategy the work implements.

Table 1. Related work comparison.

Work Macro Placer Machine Learning Bayesian Network Linear Programming Markov Decision Dataflow Driven
[Lin et al. 2021] X
[Agnesina et al. 2023] X X X
[Pu et al. 2024] X X X
[Mirhoseini et al. 2021] X X X
[Vidal-Obiols et al. 2021] X X

In conclusion, while DREAMPlace and AutoDMP excel in computational effi-
ciency and mixed-size optimization, IncreMacro and HiDaP target placement refinement



and structural awareness, respectively. In this work, instead of focusing only on a part
of it, the general floorplanning flow will be approached, independent of the macro placer
used.

4. Methodology
To elaborate a new VLSI floorplanning flow a profound study of the standard flow and the
properties of each tool in the floorplan is required. This section describes the main char-
acteristics of the general structure and the used macro placers available in the OpenROAD
toolkit [The OpenROAD Project 2024a].

4.1. OpenROAD Structure
Utilizing Object Oriented Programming (OOP), the OpenROAD toolkit is built in a mod-
ular architecture, where every individual tool has its own separate module and namespace,
and connected together with a top module. This top module, aptly named ord, creates an
User Interface (UI) where its possible to individually call all the public commands created
by the individual tool modules. For the industrial use of the toolkit, instead of utilizing the
central ord module, every step of the RTL-GDSII flow is separately executed, initiating a
specific instance of the toolkit for every module to be used. The toolkit is mostly written
in the C++ language, utilizing a few Python scripts for linking support to the compiler.

The flow is implemented utilizing the GNU Make tool, where every circuit has its
own config.mk file defining environment variables, source HDL description and technol-
ogy node used. These files are imported in a central Makefile, where several different Tcl
scripts are executed utilizing the imported information. Every step in the flows described
by figures 4 and 3 is a different Tcl script. To connect this step by step execution approach,
there is an unifying database structure with a proprietary file, the OpenDB module with
its respective .odb files.

The OpenDB module is a comprehensive design database used to support tools for
physical chip design. It is structured to handle various aspects of chip design, including
layout, routing, and technology information. The module follows a design pattern that
separates the interface from the implementation, resulting in public and private classes
for each database object. The odb module uses a system of object tables and pages to
manage database objects efficiently. Each object has a unique identifier (OID) that is per-
sistent across save/restores, allowing for consistent referencing. The database supports
hierarchical design by allowing blocks to contain other blocks, instances, and modules.
This is managed through various hash tables and vectors that store references to these
objects. The database has support classes that allow event-driven programming by pro-
viding hooks that can be implemented to respond to changes in the database, such as the
creation or destruction of instances and nets. The database is designed to be saved and
restored with exact fidelity, ensuring that the layout and state of the design are preserved
across sessions.

Besides operating with the .odb files, OpenDB also manages the input and out-
put for the standard industry file formats Library Exchange Format(LEF) and Design
Exchange Format (DEF), used to describe the physical aspects of ICs during various de-
sign stages. LEF describes the physical characteristics and constraints of standard cells,
macros, and IP blocks in a technology library, while DEF represents the design of an
entire chip or a specific block in terms of placement, routing, and connectivity.



4.2. Macro Placers

TritonMP, as implemented in the MacroPlacer class with the mpl namespece, is the first
implemented macro placer in OpenROAD, being replaced by the newer Hierarchical RTL-
MP. It is designed to place macros or blocks in a circuit layout while considering vari-
ous constraints such as halos, channels, and snapping to cell rows. TritonMP offers two
main placement strategies: corner min wl and corner max wl. These strategies determine
whether the tool should minimize or maximize the wire lengths of connections between
macros, with the maximization strategy forcing the macros to the corners of the layout.
In the standard flow utilizing TritonMP (flow1 TMP), the maximization strategy is the
default. The tool uses a ParquetFP [Markov and Adya 2003] based annealing engine to
optimize the placement of macros, aiming to minimize or maximize wire lengths based
on the chosen strategy. The code in algorithm 1 shows the internal flow of the maximum
wirelenth strategy.

The function begins by checking if the MacroPlacer is properly initialized in line
1. If not, it returns immediately. Line 4 calculates the initial weighted wire length of the
macros and logs this information. A Layout object is created to represent the area where
macros will be placed in line 5. A Partition object is initialized with all macros, represent-
ing the entire layout area in line 6 to 7. In lines 8 and 9 MacroPartMap is created to map
macros to their respective partitions, and this map is filled using the makeMacroPartMap
function. If the placement is connection-driven, the netlist table is filled with connection
weights using the fillNetlistTable function as seen in line 10 and 11. The layout is divided
into partitions using cut lines, and each partition is annealed using the ParquetFP engine
to explore different macro placements. The function iterates over all possible partition
sets, annealing each one and updating macro locations based on the best solution found,
as seen in lines 17 to 33. After annealing, the function evaluates the solutions based on the
weighted wire length and selects the best one. If a better solution is found, it updates the
macro locations in the database. The function updates the database with the final macro
placements. Both strategies follow this same flow, only changing the values in line 14
and 28, either choosing the smallest value possible or like seen in the code choosing the
largest value possible.

The fillNetlistTable function in the Partition class executed in line 12 is responsi-
ble for populating a table (net tbl ) that represents the connectivity and weights between
macros and core edges within a partition. This table is used to guide the macro placement
process by providing information about the relative importance of different connections.
This function utilizes a data structure called Core Edges. Instead of considering the po-
sition of the block terminals (BTerm), OpenDB structure for I/O pins, TritonMP only
considers in which of the edges of the circuit the I/O is located. The function begins by
calculating the total number of macro and core edge connections (macro edge count) and
resizing the net tbl to accommodate all possible connections. The function then fills the
net tbl with weights for all pairs of macros and core edges.

The Hierarchical RTL-MP is created by the HierRTLMP class. It operates within
the mpl2 namespace and is part of a framework that supports multi-level clustering and
timing-driven macro placement. The class is structured to handle various stages of macro
placement, from initialization to final placement and orientation improvement, each ad-
dressing different aspects of macro placement:



Algorithm 1: MaxWL
1 if not initialized then
2 return
3 end
4 initial wl← calculateInitialWeightedWireLength()
5 layout← createLayout(lx, ly, ux, uy)
6 partition← createPartition(ALL, lx, ly, ux - lx, uy - ly)
7 partition.macros← macros
8 macroPartMap← createMacroPartMap()
9 makeMacroPartMap(partition, macroPartMap)

10 if connection driven then
11 partition.fillNetlistTable(macroPartMap)
12 end
13 partitionSets← getPartitions(layout, partition)
14 bestWwl← −∞
15 bestSetIdx← 0
16 foundBest← False
17 foreach partitionSet in partitionSets do
18 if partitionSet.size() = 1 then
19 continue
20 end
21 foreach curPart in partitionSet do
22 success← curPart.anneal()
23 if not success then
24 break
25 end
26 end
27 curWwl← calculateWeightedWireLength()
28 if curWwl > bestWwl then
29 bestWwl← curWwl
30 bestSetIdx← indexOf(partitionSet)
31 foundBest← True
32 end
33 end
34 if foundBest then
35 updateMacroLocations(bestSet)
36 end



• Multilevel Autoclustering: Converts the logical hierarchy into a physical hierar-
chy, setting the stage for subsequent placement steps.

• Coarse Shaping: Determines rough shapes for clusters, focusing on macro sizes
and ignoring standard-cell clusters.

• Fine Shaping: Refines cluster shapes based on parent cluster outlines and loca-
tions.

• Hierarchical Macro Placement: Places clusters and macros in a top-down ap-
proach, considering both cluster and macro levels.

• Boundary Pushing: Adjusts macro clusters to design boundaries, ensuring no
overlap with IO blockages or other macros.

• Orientation Improvement: Optimizes macro orientation to improve wirelength re-
duction.

This organization can be seen by the code described in algorithm 2.

Algorithm 2: Run Hier
1 runMultilevelAutoclustering()
2 if skip macro placement then
3 return
4 end
5 if not tree.has std cells then
6 resetSAParameters()
7 end
8 runCoarseShaping()
9 runHierarchicalMacroPlacement()

10 pusher← createPusher(tree.root, block, boundary to io blockage)
11 pusher.pushMacrosToCoreBoundaries()
12 updateMacrosOnDb()
13 generateTemporaryStdCellsPlacement(tree.root)
14 correctAllMacrosOrientation()
15 commitMacroPlacementToDb()
16 writeMacroPlacement(macro placement file)
17 clear()

In line 1 the multilevel autocluster is called. Line 2 verifies if the hand made
macro placement flag is active, returning if it is. If there are already cells in the macro
placer data structure, it is cleared as seen in lines 5 and 6. In line 8 the Coarse shaping
is called. The function runHierarchicalMacroPlacement in line 9 is responsible for both
the macro placement and the fine shaping. To realize the boundary pushing, it is created a
pusher object, that receives the circuit area and the blockages, and a method of this object
is called, as seen in line 10 and 11. In line 12, the positioned macros are placed in the odb
structure. For the orientation improvement, fake cell placements are made in line 13, and
utilized to change the macro orientations in line 14. The oriented macros are updated on
the data structure. In line 16 a file writer is called, used to generate and odb file with the
macro placement. Lastly, all the constraints and internal structures are cleaned in line 17.

There are two instances of interactions between the circuit I/Os during the exe-
cution of the Hierarchical RTL-MP. The first one happens during the runMultilevelAu-



toclustering function, where the new hierarchy is created. In this function, the I/O are
considered not by their position, but their connectivity with circuit pins and nets, gener-
ating the new hierarchical blocks. The second interaction within the runCoarseShaping
function, where the placed I/Os are used to created area blockages for the macro placer.
This blockage is used during the runHierarchicalMacroPlacement and the pushMacros-
ToCoreBoundaries functions.

The conclusion from this macro placer analysis is that both TritonMP and Hier-
archical RTL-MP do not fully consider the position of the circuit I/Os. TritonMP has a
stronger connection with the I/O locations, as it considers in what position of the circuit
they are for the weight calculation. This justifies the first step of pin placement in the stan-
dard flow (flow1 TMP and flow1 hier) being random, as the following macro placement
step will not consider the exact I/O positions. This disconnection from the pin placement
and macro placement will be addressed in the following section, with the introduction of
new flows.

5. Proposed Flows
After analyzing OpenROAD’s macro placers properties described in the previous sec-
tion, it was noticed that the macro placement has a certain independence from the pin
assignment, more prevalent in the newer Hierarchical RTL-MP due to not only this macro
placer consider the I/Os placement just as blockage areas, but also the lack of the ini-
tial mixed-size placement before the macro placement step present in the TritonMP flow.
The mixed-size placement made by the RePlAce tool considers the randomly assigned
I/Os, causing the following macro placement to indirectly consider the I/Os trough the
positioned standard cells. Although the older macro TritonMP considers more of the I/O
positions with the core edges, there is still a degree of independence from the exact I/O
placement. With this in mind, two initial flows were devised, one for each macro placer.

The first flow to be examined is called flow2 TMP. The first three steps of
flow2 TMP are the same as flow1 TMP. However, an extra call of the Pin Placer is
added just after the macro placement so as to perform a non random pin assignment
using hungarian matching. After this new step, flow2 TMP follows the same remaining
steps of flow1 TMP, continuing with the global placement using RePlAce, but now con-
sidering the I/O pins in its execution, as seen in Fig. 5, where the new step is colored
green. Flow2 TMP is represented by the red flow line in the start, before converging with
flow2 hier.

The proposed flow, flow2 hier, follows the same changes as the ones made on
flow2 TMP, i.e., an extra non random pin assignment step is added after the macro place-
ment, and hence the following global placement step is altered so as to consider the I/O
pins positions during its execution, as it can be seen in Fig. 5, with the new step is indi-
cated by the green color and flow2 hier being represented by the black flow line before
converging with flow2 TMP.

To explore the optimal timing of pin assignment within the floorplanning and
placement sequence a third set of flows was created. By adding a pin assignment step
after detailed placement made with the RePlAce tool, this third flow tests whether align-
ing I/O pin locations closer to the final stages of placement can improve routing efficiency
and performance. These flows aim to determine if late-stage pin assignment offers better



Figure 5. Proposed Floorplanning Flows flow2 TMP and flow2 hier.

adaptability to the final layout conditions, or if early-stage pin assignment provides more
foundational guidance for placement and routing optimization.

The first of these new flows is flow3 TMP and the second is flow3 hier, as seen in
Fig. 6. The flowchart is expanded to include the detailed placement, the step following
the global placement shown in all previous flowcharts, as well as the new late-stage pin
assignment step, colored in blue.

As all of the previously proposed flows add steps in different parts of the floor-
plan, they do not conflict with each other, allowing for the creation of a final set of flows,
flow4 TMP and flow4 hier, combining together the changes of flow2 TMP and flow2 hier
with flow3 TMP and flow3 hier. With these new flows lies in the potential for progres-
sively refined pin alignment throughout the placement stages. By incorporating an initial
pin assignment after macro placement, the flow provides an early anchor allowing global
placement to adjust component positioning relative to these key access points.

Following this with a second pin assignment after detailed placement allows
for further optimization, ensuring pin locations align with the nearly finalized layout,
thereby reducing routing complexity and enhancing overall design efficiency. This dual-
assignment approach aims to capitalize on the benefits of early guidance from pin loca-
tions while still providing flexibility to fine-tune these assignments as the layout crystal-
lizes, which could result in a more optimized, adaptable floorplan. These new flows can
be seen with Fig. 7, where the new steps are painted green and blue.

The summary of the flows can be seen in Table 2, where the first column indi-
cates the flow, and the subcolums of the second column indicate where is the extra Pin
Assignment in the determined flow.



Figure 6. Proposed Floorplanning Flows flow3 TMP and flow3 hier.

Table 2. Summary of flow characteristics.

Extra Pin Placement Flow1 Flow2 Flow3 Flow4
After Macro Placement X X
After Detailed Placement X X

5.1. Experimental Results

The experimental evaluation of the proposed flows used eight different designs available
from OpenROAD listed in Table 3. In this table, column 1 gives the names of the circuits,
whereas columns 2, 3 and 4 bring the number of cells, the number of macros and the
number of I/Os, respectively. The circuits use the FreeDPK45-based open-source Nan-
Gate45 enablement. Each circuit was synthesized for each of the eight flows (flow1 TMP,
flow2 TMP, flow3 TMP, flow4 TMP, flow1 hier, flow2 hier, flow3 hier, flow4 hier) and
successively underwent the remaining steps i.e., detailed placement, global routing and
detailed routing. Thus, a total of 64 syntheses were carried out; All executions used
an Ubuntu 22.04.4LTS workstation with an Hexacore Intel® Core® i7 8750H CPU and
16GB RAM at 3200MHz. The OpenROAD Flow Scripts version used in the experiments
was the commit labeled 9f67f4a [The OpenROAD Project 2024b], and the OpenROAD
toolkit version was the commit labeled 57be191. Total Wirelength, Number of Vias and
Synthesis Runtime information was gathered from the OpenROAD reports.

The difference between the results obtained by comparing both macro placers in
flow1 TMP and flow1 hier was not investigated in this work, for it is known that the new



Figure 7. Proposed Floorplanning Flows flow4 TMP and flow4 hier.

Hierarchical RTL-MP macro placer is still under development and its focused on state-
of-the-art circuits with hundreds of macros and a starting hierarchy defined to be further
altered and improved, something not present in the test circuits used in this work.

Table 4 shows the obtained results for the TritonMP flows circuit analysis. Column
1 gives the name of the circuits, Columns 2 to 5 bring the total wirelength results, in the
internal OpenROAD generic unit of measurement, Columns 6 to 9 show the results of
numbers of vias, and Columns 10 to 13 display the time, in seconds, taken to run the
complete physical synthesis up to finishing the detailed routing. All results are given
as percentages of those of flow1. Negative percentages correspond to improvements,
whereas positive percentages indicate worsens.

Regarding total wirelength, flow2 TMP and flow4 TMP achieve reductions of
1.25% and 1.21%, respectively, while flow3 TMP remains nearly neutral with a mi-
nor 0.02% increase. These reductions highlight the benefits of the individual and com-
bined techniques in optimizing interconnect length. For via count, both flow2 TMP and
flow4 TMP also show modest improvements, with reductions of 0.37% and 0.26%, re-
spectively, whereas flow3 TMP has a minor impact, only reducing by -0.02%. This sug-
gests that flow2 TMP’s approach is slightly more effective in improving layout metrics.

The synthesis runtime analysis offers a contrasting perspective. Flow2 TMP in-



Table 3. Main Statistics of the Test Circuits.

Circuit # cells # macros # I/Os
ariane136 175K 136 495
ariane133 167K 133 495
swerv wrapper 96K 28 1416
black parrot 302K 24 1198
bp multi 137K 26 1453
bp be 50K 11 3029
bp fe 33K 10 2511
tinyRocket 25K 2 269

Table 4. Circuit analysis results for TritonMP flows: flow2, flow3 and flow4 results
expressed as flow1 percentages.

Circuit
Total Wirelength Number of Vias Synthesis Runtime

flow1 TMP flow2 TMP flow3 TMP flow4 TMP flow1 TMP flow2 TMP flow3 TMP flow4 TMP flow1 TMP flow2 TMP flow3 TMP flow4 TMP
ariane136 7073k 0.22% 0.00% 0.21% 1337k -0.09% 0.02% -0.06% 5530 71.90% 1.73% 10.51%
ariane133 Failed - - - Failed - - - Failed - - -
swerv wrapper 4304k 2.70% -0.01% 2.71% 931k 0.93% -0.02% 0.95% 4397 8.99% 0.08% 7.16%
black parrot 7266k -2.28% -0.02% -2.29% 1304k 0.14% -0.08% 0.10% 2769 18.71% 0.76% 18.33%
bp multi 4125k -1.67% 0.00% -1.68% 757k -0.19% 0.04% -0.13% 1597 16.67% 0.00% 17.24%
bp be 2673k -6.17% 0.09% -6.00% 431k -1.40% -0.01% -1.28% 1152 21.50% 0.14% 15.83%
bp fe 2010k -8.42% 0.10% -8.35% 294k -3.11% -0.13% -2.65% 636 21.18% -0.87% 21.95%
tinyRocket 646k 6.88% -0.05% 6.94% 190k 1.16% 0.03% 1.26% 872 -11.06% 1.26% -14.44%

Average - -1.25% 0.02% -1.21% - -0.37% -0.02% -0.26% - 21.13% 0.44% 10.94%
Median - -1.67% 0.00% -1.68% - -0.09% -0.01% -0.06% - 18.72% 0.14% 15.83%

curs a significant average increase of 21.13% in runtime, indicating a trade-off for its
wirelength and via reductions. Flow4 TMP, which combines the methods of flow2 TMP
and flow3 TMP, achieves a more balanced runtime overhead of 10.94%. In contrast,
flow3 TMP demonstrates the lowest runtime increase at only 0.44%, showcasing its effi-
ciency but with less pronounced improvements in physical metrics.

Outliers like the tinyRocket circuit, where flow2 TMP significantly increases wire-
length (6.88%), but drastically reduces the runtime (-11.06%), emphasize the variability
in flow performance depending on circuit characteristics. Conversely, circuits like bp be
and bp fe highlight substantial wirelength reductions (-6.17% and -8.42%, respectively),
validating the effectiveness of flow2 TMP.

Overall, while flow4 TMP offers the best balance between optimization and run-
time, these results underscore the importance of evaluating trade-offs for specific circuit
designs.

Table 5 shows the obtained results for the TritonMP flows circuit analysis. As in
the previous table, Column 1 gives the name of the circuits, Columns 2 to 5 bring the total
wirelength results, in generic units, Columns 6 to 9 show the results of numbers of vias,
and Columns 10 to 13 display the synthesis time, with all results given as percentages of
those of flow1.

The results of the hierarchical RTL-MP flows reveal notable differences compared
to the initial flow1 hier, with all flows demonstrating distinct advantages depending on the
evaluated metrics. For total wirelength, flow2 hier and flow4 hier achieve average reduc-
tions of 1.44% and 1.38%, respectively, underscoring their effectiveness in minimizing
routing costs, while flow3 hier exhibits a slight increase of 0.30%. These reductions in-
dicate that flow2 hier and flow4 hier, which focus on optimizing pin assignment in con-



Table 5. Circuit analysis results results for Hierarchical RTL-MP flows: flow2,
flow3 and flow4 results expressed as flow1 percentages.

Circuit
Total Wirelength Number of Vias Synthesis Runtime

flow1 hier flow2 hier flow3 hier flow4 hier flow1 hier flow2 hier flow3 hier flow4 hier flow1 hier flow2 hier flow3 hier flow4 hier
ariane136 8232k -1.21% -0.01% -1.19% 1549k -0.10% 0.05% -0.07% 6714 8.83% 1.77% 9.80%
ariane133 7725k -1.03% -0.01% -1.03% 1473k -0.43% 0.02% -0.44% 7401 -7.64% 3.39% -7.00%
swerv wrapper 4353k -1.24% -0.21% -1.30% 996k -0.09% -0.20% -0.14% 5372 9.27% -3.58% 16.50%
black parrot 9010 2.02% 0.01% 1.98% 2185k 0.08% 0.04% 0.04% 4484 23.37% 0.48% 23.52%
bp multi 4820k -0.23% 0.02% -0.20% 1094k -0.08% 0.01% -0.10% 2329 21.52% 1.49% 21.84%
bp be 3085k -0.60% -1.72% -0.15% 548k -3.02% -5.77% -2.95% 2000 16.24% -11.57% 26.14%
bp fe 2332k -9.34% -0.37% -9.23% 353k -7.66% -0.34% -7.69% 1170 -23.05% -0.49% -25.38%
tinyRocket 691k 0.11% -0.07% 0.10% 193k 0.07% 0.07% -0.05% 746 9.96% 3.69% 10.60%

Average - -1.44% -0.30% -1.38% - -1.40% -0.77% -1.43% - 7.31% -0.60% 9.50%
Median - -0.81% -0.05% -0.62% - -0.09% 0.01% -0.12% - 9.62% 0.99% 13.55%

junction with hierarchical placement strategies, are well-suited for improving interconnect
efficiency.

In terms of via count, flow4 hier achieves the largest average reduction of 1.43%,
followed closely by flow2 hier at 1.40%, while flow3 hier again has a smaller impact with
a reduction of only 0.77%. This consistency across wirelength and via count suggests that
flow4 hier effectively combines the strengths of the other two flows while maintaining
minimal design complexity, particularly benefiting circuits such as bp fe, which shows a
remarkable via count reduction of 7.69%.

The synthesis runtime metric presents a different story, with flow2 hier incurring
an average increase of 7.31%, flow4 hier at 9.50%, and flow3 hier demonstrating a rare
reduction of 0.60%. Notably, the outlier bp fe achieves significant runtime improvements
across all hierarchical flows, with reductions as high as 25.38% for flow4 hier, emphasiz-
ing the role of specific circuit characteristics in runtime performance. In contrast, circuits
like black parrot experience runtime increases of over 23%, which could be attributed to
the complexity of balancing macro placement and pin optimization.

Overall, the hierarchical flows validate the benefits of combining macro placement
strategies with advanced pin assignment techniques. Flow4 hier consistently emerges
as the most balanced option, achieving substantial physical optimizations at a moderate
runtime cost.

Table 6 shows the obtained results for the TritonMP flows timing analysis. Col-
umn 1 gives the name of the circuits, Columns 2 to 5 bring the worst slack, Columns
6 to 9 show the results of Total Negative Slack (TNS), and Columns 10 to 13 displays
the number of Design Rule Violation (DRV) errors during the synthesis process. All
results are given as percentages of those of flow1. Negative percentages correspond to
improvements, whereas positive percentages indicate worsens. The circuit ariane 136 is
not shown in this table, as it had no negative slack and no DRV.

Table 6. Timing analysis results for TritonMP flows: flow2, flow3 and flow4 results
expressed as flow1 percentages.

Circuit
Worst Slack Total Negative Slack DRV

flow1 TMP flow2 TMP flow3 TMP flow4 TMP flow1 TMP flow2 TMP flow3 TMP flow4 TMP flow1 TMP flow2 TMP flow3 TMP flow4 TMP
ariane133 Failed - - - Failed - - - Failed - - -
swerv wrapper -0.287 21.53% -3.00% 28.77% -91.497 116.53% 5.76% 115.76% 955 9.95% -3.56% 10.37%
black parrot -2.988 -10.81% 0.11% -10.77% -2.988 -10.81% 0.11% -10.77% 1 0% 0% 0%
bp multi -3.796 -4.95% -0.08% -5.20% -3.796 -4.95% -0.08% -5.20% 1 0% 0% 0%
bp be -0.078 112.89% 43.03% 181.85% -6.521 108.58% 48.38% 191.72% 102 5.88% 4.90% 6.86%
bp fe -0.014 -74.51% 108.39% 171.63% -0.027 -86.57% 112.95% 468.70% 2 -50.00% 50.00% 300.00%
tinyRocket -0.354 -15.30% -0.08% -14.08% -156.529 -6.84% -1.29% -5.82% 616 -4.71% 0.16% -5.03%

Average - 4.81% 24.74% 58.70% - 19.32% 27.64% 125.73% - -6.48% 8.58% 52.03%
Median - -7.88% 0.02% 11.79% - -5.89% 2.94% 55.28% - 0.00% 0.08% 3.43%



For the worst slack metric, flow2 TMP demonstrates a modest average worsening
of 4.81%, whereas flow3 TMP and flow4 TMP show substantial degradations of 24.74%
and 58.70%, respectively. The significant worst slack deterioration in flow4 TMP sug-
gests that its combined optimizations for wirelength and via count may come at the
cost of reduced timing margins. The main cause for this elevated value is the cir-
cuit bp be, where the worse slack increased by 112.89%, 43.08% and 181.85% with
flow2 TMP, flow3 TMP and flow4 TMP respectively, but considering the initial worst
slack in flow1 TMP for this circuit is low, the increase in time is not as expressive as the
4.95% reduction in bp multi and 10.81% reduction in black parrot, both with flow2 TMP.

TNS results reveal a more negative. Flow2 TMP achieves a 19.32% average
worsening, and flow3 TMP a slightly higher average worsening of 27.64%. However,
flow4 TMP exhibits a 125.73% increase, indicating timing degradation. Considering the
original values for TNS, swerv wrapper shows the worst performance, increasing in all
flows, while tinyRocket shows a considerable reduction of 6.84% from the largest TNS.
The DRV analysis highlights that flow2 TMP and flow3 TMP offer reductions of 6.48%
and 8.58%, respectively, whereas flow4 TMP has a significant DRV increase of 52.03%.

Outlier circuits, such as bp fe, reveal interesting behaviors. While flow2 TMP
achieves significant improvements in worst slack and TNS (-74.51% and -86.57%, re-
spectively), flow4 TMP suffers from major degradations (171.63% and 468.70%, respec-
tively).

Table 7 shows the obtained results for the TritonMP flows timing analysis. As in
the previous table, Column 1 gives the name of the circuits, Columns 2 to 5 bring the
worst slack, Columns 6 to 9 show the results of TNS, and Columns 10 to 13 displays the
number of DRV errors during the synthesis process, with all results given as percentages
of those of flow1. Like in the previous table, circuit ariane 136 is not shown in the table
due to having no negative slack nor DRV.

Table 7. Timing analysis results for Hierarchical RTL-MP flows: flow2, flow3 and
flow4 results expressed as flow1 percentages.

Circuit
Worst Slack Total Negative Slack DRV

flow1 hier flow2 hier flow3 hier flow4 hier flow1 hier flow2 hier flow3 hier flow4 hier flow1 hier flow2 hier flow3 hier flow4 hier
ariane133 -0.093 -23.47% 14.06% 14.22% -38.343 -48.99% 33.32% 41.01% 952 -23.53% 17.54% 26.68%
swerv wrapper -0.648 14.05% 3.98% 20.38% -601.177 3.97% -4.32% 22.36% 1423 15.25% -2.74% -0.63%
black parrot -0.647 -16.95% 0.51% -16.86% -0.647 -16.95% 0.51% -16.86% 1 0% 0% 0%
bp multi -1.928 2.94% 0.22% 1.37% -1.928 2.94% 0.22% 1.37% 1 0% 0% 0%
bp be -0.871 -61.06% -53.25% -52.31% -89.903 -61.12% -56.93% 53.25% 144 -11.81% -22.92% -18.06%
bp fe -0.314 -92.47% -14.34% -89.37% -12.498 -99.07% -6.26% -99.12% 177 -94.29% 0.56% -95.48%
tinyRocket -0.273 -8.20% -4.16% -6.44% -112.223 -3.62% -2.16% -2.11% 658 -6.08% -0.15% -5.93%

Average - -26.45% -7.57% -18.43% - -31.83% -5.09% -15.23% - -17.30% -1.10% -13.34%
Median - -16.95% 0.22% -6.44% - -16.95% -2.16% -2.11% - -6.08% 0.00% -0.63%

For worst slack, flow2 hier achieves the most notable improvement, with an av-
erage reduction of 26.45%, followed by flow4 hier at 18.43%. Flow3 hier shows the
smallest average reduction of 7.57%. While most of the circuits show improvements, the
circuit with the largest worst slack with Hierarchical RTL-MP, bp multi, shows a 2.94%
increase of its worst slack with flow2 TMP, having the worst performance in this circuit
compared to the other flows.

TNS results are more significative with Hierarchical RTL-MP. Flow2 hier
achieves the most significant improvement, with a reduction of 31.83%, followed by
flow4 hier (-15.23%). Flow3 hier offers a smaller reduction of 5.09%, which still in-



dicates an improvement over the baseline flow1 hier. For swerv wrapper, the circuit with
the largest TNS, flow3 hier is the only to offer a reduction, reducing by 4.32%, while
flow2 hier increases the value by 3.97% and flow4 hier increases by 22.36%.

The DRV analysis reveals consistent reductions across all hierarchical flows, with
flow2 hier achieving the largest reduction (-17.30%), followed by flow4 hier (-13.34%).
Flow3 hier shows the smallest improvement (-1.10%), but its the only flow to reduce the
number of DRV in the circuit with the most of them, swerv wrapper. Overall, flow2 hier
demonstrates to be better performing in most circuits, followed by flow4 hier, but few
specific circuits benefit more in the timing aspect utilizing flow3 hier, like bp multi and
swerv wrapper.

6. Conclusion
In this work, it was investigated alternative floorplanning flows for VLSI physical design
using the OpenROAD toolkit, focusing on optimizing macro placement and improving
pin assignment through an additional non-random placement step. By comparing the
proposed flows (flow2 TMP, flow3 TMP, and flow4 TMP) and their hierarchical versions
(flow2 hier, flow3 hier, and flow4 hier) to their respective original versions (flow1 TMP
and flow1 hier) across various test circuits, we demonstrated the potential benefits of these
enhanced methods. In the TritonMP-based flows, flow2 TMP and flow4 TMP reduced
total wirelength by 1.25% and 1.21%, respectively, while maintaining small reductions
in via counts. However, flow3 TMP provided minimal improvements, emphasizing the
importance of flow design in achieving consistent gains. Similarly, in the hierarchical
flows, flow2 hier and flow4 hier achieved average wirelength reductions of 1.44% and
1.38%, respectively, and also exhibited via reductions, particularly benefiting circuits like
bp fe, which saw a 7.69% decrease in via count.

The hierarchical flows demonstrated slightly lower runtime overheads compared
to their TritonMP counterparts, with flow2 hier incurring an average runtime increase of
7.31%, whereas flow2 TMP increased runtime by 21.13%. Notably, flow3 hier showed
minimal runtime increase of 0.60%, albeit with less significant physical optimizations.
Outliers, such as the tinyRocket and bp fe circuits, highlighted the variability in flow per-
formance depending on circuit characteristics, with runtime reductions of up to 25.38%
observed for flow4 hier on bp fe.

These results underscore the trade-off between improved layout quality and in-
creased computational effort. These findings validate the effectiveness of incorporating
non-random pin assignment and hierarchical placement strategies in enhancing the floor-
planning process. They also highlight the adaptability of open-source EDA tools like
OpenROAD for advancing VLSI design methodologies while addressing specific design
challenges.

6.1. Future Work

Future research could focus on developing an advanced macro placer that integrates pin
assignment directly into its optimization steps, enabling simultaneous optimization of
macro placement and interconnect routing. By embedding pin assignment within the
macro placement process, such a tool could better address the interdependencies between
these tasks, potentially leading to more significant reductions in wirelength and via count



without the need for a separate pin assignment step. This integrated approach could also
streamline the overall design flow, achieving higher-quality layouts.
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ANNEX A – DECLARAÇÃO PADRÃO PARA EMPRESA OU LABORATÓRIO

DECLARAÇÃO DE CONCORDÂNCIA COM AS CONDIÇÕES PARA O
DESENVOLVIMENTO DO TCC NA INSTITUIÇÃO

Declaro estar ciente das premissas para a realização de Trabalhos de Conclusão de
Curso (TCC) de Ciência da Computação e Sistema de Informações da UFSC, particular-
mente da necessidade de que se o TCC envolver o desenvolvimento de um software ou
produto específico (ex: um protocolo, um método computacional, etc.) o código fonte e/ou
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