
FEDERAL UNIVERSITY OF SANTA CATARINA
TECHNOLOGY CENTER

AUTOMATION AND SYSTEMS DEPARTMENT
UNDERGRADUATE COURSE IN CONTROL AND AUTOMATION ENGINEERING

Isabele Mangini Silva

Improving Database Management: A Comparative Analysis of Two
Human-Machine Interface Solutions

Lyon
2024

Isabele Mangini Silva

Improving Database Management: A Comparative Analysis of Two
Human-Machine Interface Solutions

Final report of the subject DAS5511 (Course Final
Project) as a Concluding Dissertation of the Under-
graduate Course in Control and Automation Engi-
neering of the Federal University of Santa Catarina.
Orientador: Prof. Leandro Buss Becker, Dr.

Lyon
2024

Isabele Mangini Silva

Improving Database Management: A Comparative Analysis of Two
Human-Machine Interface Solutions

This dissertation was evaluated in the context of the subject DAS5511 (Course Final
Project) and approved in its final form by the Undergraduate Course in Control and

Automation Engineering

Florianópolis, June 28, 2024.

Prof. Marcelo De Lellis, Dr.
Course Coordinator

Examining Board:

Prof. Leandro Buss Becker, Dr.
Advisor

UFSC/CTC/DAS

Arnaud Genieux, Eng.
Supervisor

Company Capgemini Engineering

Bruno Machado Pacheco, Ms.
Evaluator

Instituição UFSC/CTC/DAS

Prof. Hector Bessa Silveira, Dr.
Board President
UFSC/CTC/DAS

This work is dedicated to my parents for dedicating their
life supporting all my dreams.

ACKNOWLEDGEMENTS

I would like to thank my parents for always supporting my dreams and providing
me with an education that I will carry with me for life. I also want to express my gratitude
to the team of engineers at Capgemini Engineering, with whom I completed my PFC
during the last six months of my degree. Finally, I extend my deepest thanks to my
advisor, Leandro Buss Becker, for his invaluable guidance throughout the development
of this dissertation.

DISCLAIMER

Lyon, February 14th, 2024.

As representative of the Company Capgemini Engineering in which the present
work was carried out, I declare this document to be exempt from any confidential or
sensitive content regarding intellectual property, that may keep it from being published
by the Federal University of Santa Catarina (UFSC) to the general public, including
its online availability in the Institutional Repository of the University Library (BU). Fur-
thermore, I attest knowledge of the obligation by the author, as a student of UFSC, to
deposit this document in the said Institutional Repository, for being it a Final Program
Dissertation (“Trabalho de Conclusão de Curso”), in accordance with the Resolução
Normativa n° 126/2019/CUn.

Arnaud Genieux
Capgemini Engineering

ABSTRACT

The European market has become increasingly competitive in the creation and devel-
opment of cutting-edge technology in the area of database management, necessitat-
ing that companies rapidly renew and adapt their solutions. Capgemini Engineering,
France’s leading digital services company and a key player in Europe, must quickly
and effectively adapt its products to meet both client and internal needs. This end-of-
studies project, a collaboration between Capgemini and the author, aims to modernize
an outdated database for one of Capgemini’s major clients, in order to align with the
latest market solutions for database management. Additionally, the project includes the
development of two human-machine interfaces for database operations and version
control. This document presents a comparison of the development stack, security, and
ease-of-use to better understand the project and the team’s solution choices. Key chal-
lenges include handling sensitive client data and deploying a solution at a global scale,
requiring high levels of compliance. The proposed solution is currently hosted on the
company’s internal servers and is planned for future deployment.

Keywords: Cutting-edge technology. Database. Human-Machine Interfaces.

RESUMO

O mercado europeu atual tem se mostrado cada vez mais competitivo em criação
e desenvolvimento de tecnologia de ponta na área de gerenciamento de banco de
dados, fazendo com que empresas precisem renovar e adaptar suas soluções na
mesma velocidade. Capgemini Engineering é a principal empresa de serviços digitais
da França e uma das líderes europeias, o que a obriga a adaptar seus produtos
rapidamente às necessidades tecnológicas dos clientes. É nesse contexto que surge a
proposta deste projeto de fim de estudos: em colaboração com a autora deste projeto,
a empresa pretende reconstruir uma antiga base de dados de um de seus maiores
clientes para uma versão conforme às novas técnicas do mercado. Em paralelo, o
projeto também contará com o desenvolvimento de duas interfaces homem-máquina
para a realização de operações nessa base de dados e controle de versão. Uma
comparação em termos de tecnologia e facilidade de uso será demonstrada neste
documento para melhor compreensão do projeto e escolha da equipe em termos
de solução. Alguns dos principais desafios encontrados no caminho são questões
de tratamento de dados sensíveis do cliente e implantação de uma solução em uma
empresa de escala global. A solução proposta encontra-se hoje em servidores internos
da empresa para futura implantação.

Palavras-chave: Tecnologia de Ponta. Base de Dados. Interface Humano Máquina.

LIST OF FIGURES

Figure 1 – Realization of Cycle V. 16
Figure 2 – Environment of the Automatic Pilot. 18
Figure 3 – Metro Lines for the City of Lyon. 19
Figure 4 – Train Multiple Unity. 20
Figure 5 – Use Case Diagram for the CTF Tool Project. 26
Figure 6 – Sequence Diagram. 31
Figure 7 – Class Diagram for main Window. 33
Figure 8 – Class Diagram for Creating a New Test. 33
Figure 9 – Class Diagram for Deleting a Test. 34
Figure 10 – Class Diagram for Test View. 34
Figure 11 – Class Diagram for Test View. 35
Figure 12 – Schema docker compose. 38
Figure 13 – venv directory files. 42
Figure 14 – Client Server Architecture from the developped App. 44
Figure 15 – Redux architecture. 45
Figure 16 – REST API Architecture. 46
Figure 17 – QFrame Class Heritance. 49
Figure 18 – QWidget Class Heritance. 50
Figure 19 – VSCode Repertory View. 52
Figure 20 – Workflow creation sql file. 53
Figure 21 – UGE et UGTS table schema. 54
Figure 22 – Differences SQL and NoSQL. 55
Figure 23 – UI to choose between databases. 57
Figure 24 – UI search bar. 57
Figure 25 – UI Add New Test. 58
Figure 26 – UI Delete Test. 58
Figure 27 – UI main window HMI Local App. 59
Figure 28 – UI main window HMI Web Application. 59

LIST OF TABLES

Table 1 – Specification of the functional requirement "Modify Test". 27
Table 2 – Specification of the functional requirement "Select Table". 27
Table 3 – Specification of the functional requirement "Search Test". 28
Table 4 – Specification of the functional requirement "Access List of Tests". . . 28
Table 5 – Specification of the functional requirement "Add Test". 28
Table 6 – Specification of the functional requirement "Remove Test". 29
Table 7 – Specification of the functional requirement "Export Test". 30
Table 8 – Specification of the functional requirement "Create Version of Tests". 30
Table 9 – Technologies Overview . 43
Table 10 – API Endpoints Specification . 47
Table 11 – Technologies Overview . 48

CONTENTS

1 INTRODUCTION . 13
1.1 PROJECT OBJECTIVES . 13
1.2 PROPOSED SOLUTIONS OVERVIEW 14
1.3 PROJECT SCOPE USING V MODEL METHODOLOGY 15
1.4 OBJECTIVES . 16
1.5 DOCUMENT STRUCTURE AND ORGANIZATION 16
2 ENTERPRISE PRESENTATION . 18
2.1 GENERAL PRESENTATION . 18
2.2 MAGALLY TEAM . 18
2.2.1 Automatic Pilot . 19
2.2.1.1 Centralized Comand Post . 20
2.2.1.2 Automatic Pilot Embedded . 20
2.2.1.3 Automatic Pilot Ground . 20
3 SOFTWARE REQUIREMENTS SPECIFICATION 22
3.1 GENERAL DESCRIPTION . 22
3.1.1 Major Features . 22
3.1.2 User Characteristics . 23
3.1.3 Assumptions and Dependencies 23
3.2 SYSTEM CHARACTERISTICS AND REQUIREMENTS 24
3.2.1 Functional Requirements . 24
3.2.1.1 Use-Case Diagram . 24
3.2.2 Specification of Functional Requirements 25
3.2.2.1 Use-Case: Modify Test . 25
3.2.2.2 Use-Case: Select Table . 26
3.2.2.3 Use-Case: Search Test . 27
3.2.2.4 Use-Case: Access List of Tests . 27
3.2.2.5 Use-Case: Add Test . 28
3.2.2.6 Use-Case: Remove Test . 29
3.2.2.7 Use-Case: Export Version of Tests . 29
3.2.2.8 Use-Case: Create Version of Tests 29
3.2.3 Sequence Diagram . 30
3.2.4 Non-Functional Requirements . 32
3.3 CLASS DIAGRAMS . 33
4 PROJECT EXECUTION OVERVIEW 36
4.1 DEVELOPMENT ENVIRONMENT . 36
4.1.1 Web Application Solution . 36
4.1.1.1 IDE . 36

4.1.1.2 OS . 36
4.1.1.3 Container . 37
4.1.1.4 Docker . 37
4.1.1.5 Docker Compose . 37
4.1.1.6 Directory Structure . 40
4.1.2 Local Application Solution . 41
4.1.2.1 IDE . 41
4.1.2.2 OS . 41
4.1.2.3 Virtualization . 41
4.2 WEB APPLICATION DEVELOPMENT 42
4.2.1 Web Application Backend API . 42
4.2.1.1 Programming Languages and Frameworks 42
4.2.1.2 Client Server Interaction . 44
4.2.1.3 Redux . 45
4.2.1.4 REST API . 46
4.2.2 Local Application Development . 47
4.2.2.1 Programming Languages and Frameworks 47
4.2.2.2 Used PyQt Class Hierarchies . 49
4.2.2.3 Repertory Organization . 52
4.3 DATABASE IMPLEMENTATION . 52
4.3.1 Database Overview . 53
4.3.2 Relational Database Overview . 54
4.3.2.1 MySQL database . 55
4.4 GUI DESIGN . 57
5 ANALYSIS OF RESULTS . 60
5.1 CYBER THREATS ANALYSIS . 60
5.2 ADVANTAGES AND DISADVANTAGES OF EACH SOLUTION 60
5.3 OVERVIEW OF PREFERRED SOLUTION 62
6 CONCLUSION . 64

References . 65

13

1 INTRODUCTION

A Human Machine Interface (HMI) data management tool was developed as part
of a collaborative project with Capgemini Engineering (CAPGEMINI. . . , 2024) for their
client Keolys (KEOLYS. . . , 2024), the development of this HMI wich will be detailed in
this document. Keolys, a leading player in the transportation industry, serves as a public
service delegate, managing the Lyon public transport network on behalf of SYTRAL
Mobility (the organizing authority) (SYTRAL. . . , 2024). Keolys is responsible for the
operation of the Lyon public transport network (TCL) (TCL. . . , 2024) as well as the
maintenance of its equipment and infrastructure. Every day, their employees ensure the
reliability, safety, and comfort of the TCL network.

Despite their longstanding presence in the market, Capgemini Engineering’s
internal infrastructure for data collection, storage, and handling within the scope of this
project has become outdated compared to current market technology standards. For
example, the company has not yet implemented a database tool within the team in wich
this project was developed.

The existing database management involves manual handling of tables in an
MS-word document, which is both time-consuming and prone to errors.

Capgemini’s mission emphasizes taking full responsibility for technology owner-
ship, architecture design, innovative product development, and overall digital transfor-
mation. Their ultimate goal is to validate their clients’ products and technologies.

To achieve its objectives in this project, Capgemini Engineering has hired the
author of this document to implement the proposed solution, which is divided into
three main areas: frontend, backend, and database management. This comprehensive
approach aims to modernize the client technical capabilities, ensuring they remain at the
forefront of the transportation industry with efficient and up-to-date data management
practices.

1.1 PROJECT OBJECTIVES

The project arises from the necessity for a technologically advanced database
that better meets the needs of the team: a system that replace the current outdated
and cumbersome actual method that relies on an MS-word document for performing
CRUD (Create, Read, Update, Delete) operations and version tracking. This outdated
method makes the task inefficient and prone to human errors. The main objective is to
develop a user-friendly interface that facilitates easy and accessible CRUD operations
within the test database, while also tracking and recording changes to ensure process
traceability and transparency.

The intended users of this application are the Product Assurance (PA) team of
the Automatic Pilot (AP) MAGGALY (MAGALLY. . . , 2024) project, who frequently utilize

Chapter 1. Introduction 14

the CTF (’Cahier de Test Fonctionnel ’) database, which one consists of a list of tests
that insure safety validation in their main project. Validation engineers must update the
functional test database during these activities. By transitioning to a robust database
management system, the project aims to improve data handling, providing faster and
more reliable access. The intuitive interface will enable users to perform CRUD oper-
ations without extensive technical knowledge, with features for clear navigation and
easy data manipulation. Version control will log all changes, providing a comprehensive
history for accountability and auditing. Enhanced accessibility will allow team members
to access the database from various locations through a web-based or cloud-enabled
platform, supporting multiple users concurrently. Process efficiency will be increased by
streamlining workflows and automating routine tasks, reducing manual effort and error
potential.

This project aims not only to meet the immediate needs of the AP MAGGALY
for a more robust and safe database management, but also to future-proof the system
against growing data management demands, providing a solid foundation for ongoing
and future testing activities, thereby maintaining high standards of safety validation for
the MAGGALY project.

1.2 PROPOSED SOLUTIONS OVERVIEW

The proposed solution for this project includes two distinct implementations: one
for a local application and one for a web application. For the local application, PyQT
(PYQT. . . , 2024) will be used to create a user-friendly interface that communicates with
the backend API (API. . . , 2024). This choice is driven by PyQT’s capabilities in devel-
oping robust desktop applications with rich GUI (graphical user interface) features. The
backend for this local application will be developed using Python (PYTHON. . . , 2024),
which offers ease of use, extensive libraries for future development, and seamless
integration with both PyQT and the MySQL (MYSQL. . . , 2024) database.

In parallel, a web application will be developed using a modern stack comprising
React for the front-end, and Node.js (NODE. . . , 2024) with Express (EXPRESS. . . ,
2024) for the back-end. This web-based solution aims to provide users with remote
access through a browser, offering flexibility and accessibility from any location. The
MySQL database will serve both the local and web applications, ensuring consistency
and integrity of the data across different platforms. This dual approach ensures that
users have the flexibility to choose the application mode that best suits their needs,
whether they prefer a robust local application or a convenient web-based interface.

Chapter 1. Introduction 15

1.3 PROJECT SCOPE USING V MODEL METHODOLOGY

V-Model (V. . . , 2024) was the methodology used for developing this software,
also known as the Verification and Validation Model, is a software development method-
ology that emphasizes the importance of testing at each stage of the development
process. It is shaped like the letter “V” to illustrate the relationship between each phase
of development and its corresponding phase of testing.

Chapter 1. Introduction 16

Figure 1 – Realization of Cycle V.

Source: Made by the Author.

By mapping each development phase to a corresponding testing phase, the
model helps in identifying and fixing issues early in the development process, thereby
improving the overall quality and reliability of the system.

1.4 OBJECTIVES

The primary purpose of this project is to enhance the efficiency and effectiveness
of Team MAGALLY in managing the database of functional tests.

For this will be implemented two different HMI applications using two distinct sets
of technologies. The objectives are as follows:

• Design and implement a robust database management system using SQL to
enhance data storage and retrieval processes.

• Evaluate and prepare the developed solutions for seamless production deploy-
ment, ensuring scalability and reliability.

• Demonstrate the capability to export database content into Microsoft Word format,
ensuring accessibility and ease of use.

1.5 DOCUMENT STRUCTURE AND ORGANIZATION

This document is structured and organized as follows:

• Enterprise Presentation: An overview of the enterprise, Team MAGALLY, and
necessary concepts for understanding the project: Chapter 2.

Chapter 1. Introduction 17

• Software Requirements Specification: Functional and non-functional require-
ments of the project, along with a SysML (SYSML. . . , 2024) analysis of the use
cases: Chapter 3.

• Project Execution Overview: Overview of the execution process and develop-
ment stages for both solutions: Chapter 4.

• Analysis of Results: A review of both solutions, highlighting the positive and
negative points: Chapter 5.

• Conclusion: Summarizes the work done, and the objectives achieved: Chapter
6.

18

2 ENTERPRISE PRESENTATION

In this section, the company and details about the project will be presented,
clarifying key concepts about the client and the team.

2.1 GENERAL PRESENTATION

Capgemini Engineering is one of the world’s leading providers of engineering
and R&D (Research and Development) services. Capgemini Engineering combines its
extensive industry knowledge and cutting-edge digital and software technologies to sup-
port the convergence of digital worlds. Capgemini Engineering has 60,000 engineers
and scientists in more than 30 countries, operating in sectors such as aerospace, space,
defense, maritime, automotive, rail, infrastructure and transport, energy, utilities, and IT.
Capgemini Engineering Lyon primarily undertakes missions related to factory supervi-
sion. These missions involve production management, which includes the monitoring
and control of manufacturing systems and data flows at the production workshops of
various clients (MES) (MES. . . , 2024). The main objective of an MES is to ensure the
effective execution of manufacturing operations and to improve production efficiency.

2.2 MAGALLY TEAM

As previously mentioned, the project was developed for the MAGALLY team,
specifically for the product assurance team.

Figure 2 – Environment of the Automatic Pilot.

Source: Made by the Author.

Chapter 2. Enterprise Presentation 19

The product assurance team is responsible for the maintenance and security
requirements of the Lyon Metro Line D. In the Figure 3 it is possible to see in green
the line that represents the path of the line D and its stations. Figure 2 illustrates the
functioning of the Automatic Pilot of Line D, which is the ensemble of people, machines
and embedded systems working together to supervise the behavior of all the metro
lines.

Figure 3 – Metro Lines for the City of Lyon.

Source: Made by the Author.

2.2.1 Automatic Pilot

The AP is an essential system ensuring the operation and safety of trains in
single unit (US) or multiple unit (UM) (shown in Figure 4), strictly following the oper-
ating instructions transmitted by the Central Command Post. The AP was developed
according to several key principles: it enables fully automatic driving of trains without
the need for a driver, it manage also the train movement using the deformable moving
block principle to ensure a safety zone in front of the train. Safety functions are handled
by a coded monoprocessor, and communication between the ground and the train is

Chapter 2. Enterprise Presentation 20

entirely digital. The AP equipment includes a redundant on-board management unit
(UGE) for each on-board element, and on the ground, a redundant section and section
management unit (UGTS), except for the one used on the test track.

Figure 4 – Train Multiple Unity.

Source: Made by the Author.

2.2.1.1 Centralized Comand Post

The Central Command Post plays a crucial role in the integrated management
of railway operations and passenger services. It ensures the supervision and control of
train traffic, passenger reception, station equipment management, and energy network
management. It includes a control station dedicated to managing station access.

2.2.1.2 Automatic Pilot Embedded

The Embedded Management Unit (UGE) plays a crucial role in the automatic
train control system. Each UGE, mounted in a box under the M1 motor car (first sin-
gle unit train), ensures onboard safety functions and automatic driving. Each train unit
includes two redundant UGEs (UGE A and B), each connected to two digital transmis-
sion antennas and two reception antennas mounted on the bogie of the M1 motor car.
Additionally, each UGE is connected to safety tone wheels mounted on a bogie axle,
allowing the measurement of displacement and speed of the unit.

2.2.1.3 Automatic Pilot Ground

The Section and Track Management Unit (UGTS) is a ground-based equipment
located in the technical rooms of the stations. Each UGTS manages a defined line

Chapter 2. Enterprise Presentation 21

area called a material section, divided into automation sections corresponding to the
functional breakdown of ground functions. These UGTS ensure ground safety functions,
tracking of train units, alarm management, and functional supervision of trains, including
interrogation and movement management. Each material section is controlled by two
redundant UGTS (UGTS A and UGTS B) interfaced with the PCC to ensure operational
continuity. The UGTS are dimensioned considering the maximum transmission distance
of ground-to-train messages via the transmission carpet, limited to approximately 1000
meters, and are designed to manage up to two stations per material section.

22

3 SOFTWARE REQUIREMENTS SPECIFICATION

Software requirements specification (SRS) describes the project’s functionality,
features, design, limitations, and goals. The SRS outlines how the application should
operate and how it should be built. The client may use it to define the project expecta-
tions and deliverables, the company used it to assess the amount of work, define the
technology stack, and estimate the project cost in the beginning of the internship.

3.1 GENERAL DESCRIPTION

The primary purpose of this project is to enhance the efficiency and effective-
ness of Team MAGALLY in managing the database of functional tests. This database
comprises two principal tables, CTF (catalog of functional tests) UGE and CTF UGTS
further explained in this document, which are integral to the company’s daily operations
and activities. The existing database management involves manual handling of tables
in an MS-word document, which is both time-consuming and prone to errors.

The overarching goal of this project is to develop a robust application that
can seamlessly handle CRUD operations, thereby automating and streamlining the
database management process. Additionally, the project aims to introduce version con-
trol mechanisms to the database, allowing for the separation and tracking of different
database versions. This will facilitate more comprehensive data analysis and historical
tracking of changes over time.

By transitioning from a manual word table to an automated application, the
project intends to significantly improve data accuracy, reduce manual workload, and
enhance the overall productivity of Team MAGALLY. This document will further elaborate
on the functionalities, features, design, and requirements of the proposed application,
ensuring it meets the specific needs and expectations of the company.

3.1.1 Major Features

The major features of this project have been discussed above. In this section,
the main capabilities of both the local and web interfaces will be introduced:

The database management system stores the following information in a MySQL
database:

1. CTF for UGE: A relational database with information on UGE tests;

2. CTF for UGTS: A relational database with information on UGTS tests.

Some other main requirements of the database management system, indepen-
dent of being local or being Web Application, are such as:

Chapter 3. Software Requirements Specification 23

1. User-Friendly Interface

• Intuitive Design: The interface is designed for ease of use, ensuring a smooth
user experience.

2. CRUD Operations

• Create: Enables adding new records to the database.

• Read : Allows viewing and retrieving data efficiently.

• Update: Supports modifying existing records.

• Delete: Provides options for secure removal of records.

3. Version Control

• Track Changes: Detailed tracking of modifications over time.

• Rollback : Ability to revert to previous versions.

• Audit Trails: Comprehensive logs of changes.

4. Data Management

• Search and Filter : Advanced capabilities to quickly find specific data.

• Data Validation: Ensures data meets predefined criteria.

• Data Import/Export : Facilitates easy data import and export.

3.1.2 User Characteristics

The primary users of this project are the employees of Capgemini Engineering
within the MAGALLY Team. This group comprises engineers and engineering interns
who will utilize the system in their daily operations. Their technical background and
expertise in engineering processes will enable them to effectively leverage the function-
alities of the developed application to enhance their workflow and productivity.

3.1.3 Assumptions and Dependencies

The dependencies of this software include the operating system of the company
laptop used to run the executable file for the local application, which is Windows 11
(WINDOWS. . . , 2021) Professional. For the web application, the dependencies include
an internal cloud for database support and deployment, and hosting the website on an
internal server with IP address restrictions for security and access management.

For the local application, the database deployment should also be in an em-
bedded database to allow access by multiple users. The executable file (.exe) will be
located on a specific shared server.

Chapter 3. Software Requirements Specification 24

3.2 SYSTEM CHARACTERISTICS AND REQUIREMENTS

For the next sections, the characteristics of the requirements for the software
usage and development, as previously defined by the MAGALLY Team Members, will
be explored. For the functional requirements, the system will be described according to
its behavior under specific conditions, along with user flow definitions and interaction
scenarios. Non-functional requirements, on the other hand, are not related to the sys-
tem’s functionality but rather define how the system should perform. They are crucial
for ensuring the system’s usability, reliability, and efficiency, often influencing the overall
user experience.

3.2.1 Functional Requirements

The functional requirements outline the specific behaviors and functions that the
system must exhibit under various conditions. These requirements are essential for
ensuring that the system performs the tasks it is intended to do (PRESSMAN, 2014).

The main functional requirements of this application are:

1. The user is able to select the desired table (either UGE or UGTS) from the
database through a window after launching the application.

2. It is possible to search for a specific test using keywords from the test name
column through a search feature.

3. The user can access a list of all tests in the database displayed in a table format.

4. Within the test view, users can modify the fields of the selected test.

5. A new test can be added by clicking a designated "Add Test" button.

6. Any test can be removed from the database using a "Delete" button, identified by
the test name.

7. Tests can be exported, allowing the database to be transferred into an Excel
sheet or MS-Word document.

8. The user can create different versions of the database, categorizing tests ac-
cording to their respectives versions.

3.2.1.1 Use-Case Diagram

As shown in Figure 5, the use case diagram illustrates the various operational
capabilities of the CTF Tool Project. Use cases provide detailed information about the
system, including the users, the relationships between the system and the users, and
the required behavior of the system. In the diagram, actors represent the roles of users

Chapter 3. Software Requirements Specification 25

who interact with the modeled system. Accordingly to (COCKBURN, 2000) use cases
are crucial for:

• Bridge Communication Gaps: Use cases serve as a common language be-
tween business stakeholders and technical teams.

• Drive Development and Testing: They guide the development of features and
creation of test cases, ensuring alignment with user needs.

• Aid Requirements Clarity: Use cases help identify functional requirements by
capturing real-world scenarios in structured narratives.

3.2.2 Specification of Functional Requirements

In this chapter, each functional requirement will be defined in detail. The input
refers to the data chosen by the user and applied through the interface. For each
case, we have different inputs. The operation describes how the function in the code
behaves and interacts with the database. The output is the result displayed to the user
in the interface after the backend operation is completed. The priority order for each
requirement is defined as follows:

• 1 = High

• 2 = Medium

• 3 = Low

3.2.2.1 Use-Case: Modify Test

Initial description step by step:

1. The user connects to the IHM.

2. The user has to choose the table he wants to display.

3. The user has the access to all the tests in the database.

4. The user can search for a specific test using words present in its properties.

5. The user modifies one or more properties of the test in a screen designed for this
purpose.

6. The test is saved in the database.

7. The modified test is displayed in the first screen.

Chapter 3. Software Requirements Specification 26

Figure 5 – Use Case Diagram for the CTF Tool Project.

Source: Made by the Author.

3.2.2.2 Use-Case: Select Table

Initial description step by step:

1. The user connects to the IHM

2. The first screen allows the user to choose between both tests UGE or UGTS.

3. After choosing, the user has access to all the tests.

Chapter 3. Software Requirements Specification 27

Table 1 – Specification of the functional requirement "Modify Test".

Use-Case Modify Test

Priority 1
Purpose to apply modifications in a desired test, changing one or more of

its properties.
Input New value of one or more properties.
Operations The backend function is called, and a SQL request is made in the

DB, the database is changed using after an UPDATE is committed
in the DB.

Output Test is updated in the database and shown in the IHM for users
review.

Source: Author.

Table 2 – Specification of the functional requirement "Select Table".

Use-Case Select Table

Priority 1
Purpose Allow the user to choose one of the two tables.
Input Table of choice.
Operations The backend function is called, and a SQL request is made in the

DB, the database is changed using after an CREATE TABLE IF
NOT EXISTS.

Output The table is created if already didn’t exist.

Source: Author.

3.2.2.3 Use-Case: Search Test

Initial description step by step:

1. The user connects to the IHM.

2. The user has to choose the table he wants to display.

3. The user has the access to all the tests in the database.

4. The user look for a specific test using words present in its properties.

5. The test searched is displayed in the IHM screen.

3.2.2.4 Use-Case: Access List of Tests

Initial description step by step:

1. The user connects to the IHM.

2. The user has to choose the desired table to display.

3. The user has the access to all the tests in the database.

Chapter 3. Software Requirements Specification 28

Table 3 – Specification of the functional requirement "Search Test".

Use-Case Search Test

Priority 1
Purpose Searching for a specific test in the DB using a filter of words.
Input Word present in one or more properties of the test.
Operations The backend function is called, and a SQL request is made in

the DB, the test is searched using a SELECT and WHERE state-
ments.

Output Test is found in the table and presented to the user in the IHM.

Source: Author.

Table 4 – Specification of the functional requirement "Access List of Tests".

Use-Case Access List of Tests

Priority 1
Purpose Allow the user to have a complete view of all the tests present in

the DB.
Input Previous DB option.
Operations The backend function is called, and a SQL request is made in the

DB, the tests are shown using an SELECT * FROM.
Output Tests are shown in the IHM allowing the user to scroll from the

first to the last.

Source: Author.

3.2.2.5 Use-Case: Add Test

Initial description step by step:

1. The user connects to the IHM.

2. The user has to choose the table he wants to display.

3. Using the ’Add +’ button, the user can insert a new test in the table.

Table 5 – Specification of the functional requirement "Add Test".

Use-Case Add Test

Priority 1
Purpose To do the insertion of a new test in the table.
Input New value for all the properties of the test.
Operations The backend function is called, and a SQL request is made in the

DB, the test is added using INSERT the request is committed and
the test is added.

Output Test is added in the database and shown in the IHM.

Source: Author.

Chapter 3. Software Requirements Specification 29

3.2.2.6 Use-Case: Remove Test

Initial description step by step:

1. The user connects to the IHM.

2. The user has to choose the table he wants to display.

3. Using the ’Delete’ button, the user can delete a test if it exists in the table.

Table 6 – Specification of the functional requirement "Remove Test".

Use-Case Remove Test

Priority 1
Purpose Delete a test present in the table.
Input value ’Test’ one of the unique properties of the tests.
Operations The backend function is called, and a SQL request is made in the

DB, the test is deleted using a DELETE and WHERE requests in
the table.

Output Test is deleted from the database and removed from the IHM.

Source: Author.

3.2.2.7 Use-Case: Export Version of Tests

The use-case Export Version of Tests is supposed to work as the last step for
the user to be able to analyze and understand all the modifications applied to the table.
This use-case also matches the requirements of the client, which works only with Excel
sheets (MICROSOFT. . . , 2024) or Microsoft Word documents.

Initial description step by step:

1. The user connects to the IHM.

2. The user has to choose the table he wants to display.

3. Using the Export button in the main screen, the user is able to export all the tests
to an Excel file.

3.2.2.8 Use-Case: Create Version of Tests

The use-case Create a version of tests is extremely useful to the user, the CTF
BD changes with the evolution of the metro D specifications, which means new tests
are added, and previous tests are changed to fit the new requirements of the metro D
line and new versions are created to better follow these modifications.

Chapter 3. Software Requirements Specification 30

Table 7 – Specification of the functional requirement "Export Test".

Use-Case Export Test

Priority 2
Purpose Export modified and non modified tests, so the user can analyze

each change in a format matching the client’s requirements.
Input Button click.
Operations The front-end logic deals with the export of the tests by a specific

function for it.
Output A file is created with all the tests and downloaded in the user

laptop.

Source: Author.

Table 8 – Specification of the functional requirement "Create Version of Tests".

Use-Case Create Version of Tests

Priority 2
Purpose Create a new version of the DB and use it to analyze all the

modifications applied in the tests from one version to the other.
Input All the DB operations and modifications.
Operations Front-end and Backend functions will be applied to create different

versions of the table and store them all in a new table.
Output Version is created and shown in the IHM.

Source: Author.

3.2.3 Sequence Diagram

Sequence diagrams plays a pivotal role in the development of the project, as it
offered a clear visualization of the interactions between different system components.
The sequence diagram helped to map out the functional requirements step-by-step. By
illustrating the flow of messages between the user, backend services, and database,
the sequence diagram ensured that each functional requirement is accurately captured
and implemented. This does not only aids in identifying potential issues early in the
design phase but also provides a blueprint for following further in the development,
ensuring consistency and coherence throughout the project (FOWLER, 2004).

The figure 6 shows the Sequence Diagram for this project. The entities are
the user, the Backend, and the Database. For ease of comprehension, the user can
make calls to the Backend to accomplish the desired use cases, and the Database
provides the necessary data for each user request. Each operation in the Database is
accomplished by SQL (SQL. . . , 2024) requests on the Backend side and then shown
in an interface for the user.

Chapter 3. Software Requirements Specification 31

Figure 6 – Sequence Diagram.

Source: Made by the Author.

Chapter 3. Software Requirements Specification 32

3.2.4 Non-Functional Requirements

The Non-functional requirements (NFRs) define the quality attributes of the sys-
tem. While they do not describe specific behaviors, they set critical benchmarks for
how the system should perform . NFRs specify criteria such as performance, scalability,
reliability, and usability that affect the system’s operation it also help ensure that the
system adheres to standards and minimizes operational risks (CHUNG et al., 2012).

1. Compatibility: The software must be fully compatible with Windows 11, ensuring
that all functionalities operate correctly on this OS. It should take advantage of the
features and enhancements provided by Windows 11 to deliver an optimal user
experience.

2. Capacity: The database structure should be robust and scalable, capable of sup-
porting all currently existing tests as well as accommodating future additions. This
includes ensuring efficient data storage, retrieval, and management to handle
potentially large volumes of data without performance degradation.

3. Reliability and Availability: The database should be deployed on a reliable server
or Virtual Machine (VM) to ensure high availability. It must be accessible 24/7,
minimizing downtime and ensuring that users can access the system at any time
of the day. Redundant systems and regular backups should be in place to enhance
reliability and data integrity.

4. Maintainability and Manageability: The system should be designed with main-
tainability in mind, allowing future interns or employees to easily manage and
improve it. This includes providing comprehensive documentation, modular code
design, and clear guidelines for updates and maintenance tasks. The system
should support straightforward troubleshooting and debugging processes.

5. Scalability: The user interface IHM should be designed to handle concurrent ac-
cess by multiple users seamlessly. This involves ensuring that the system can
scale horizontally or vertically to accommodate increasing numbers of users with-
out compromising performance or user experience. Load balancing techniques
may be employed to distribute traffic effectively.

6. Security: The interface should be accessible exclusively to Capgemini members,
with stringent access controls to ensure that only authorized personnel within the
Capgemini internal local network can use it. This includes implementing robust
authentication and authorization mechanisms for the Wepp App IHM.

Chapter 3. Software Requirements Specification 33

3.3 CLASS DIAGRAMS

Figure 7 shows the class diagram for the main window of the application which
allows the user to choose between displaying the database UGTS WindowUGTS or UGE
WindowUGE.

Figure 7 – Class Diagram for main Window.

Source: Made by the Author.

Figure 8 shows the class for creating a new test in the database. It also illustrates
how the attributes relate to the information needed for correctly adding a new test. The
method add_test() uses the information provided by the user to add the test by sending
an SQL request to the database with the test attributes.

Figure 8 – Class Diagram for Creating a New Test.

Source: Made by the Author.

Figure 9 demonstrates the class for deleting a test from the database, the user
needs to provide only the test name and the method delete_test() ensures that the

Chapter 3. Software Requirements Specification 34

test is removed from the database.

Figure 9 – Class Diagram for Deleting a Test.

Source: Made by the Author.

Figure 10 shows the TestCard Class, which creates the Table View with all the
tests and its attributes in a table format. The method edit_test_click(main_window)

allow the user to edit the test in the grid, and the method save_update(self) saves
each alteration in the table to the database.

Figure 10 – Class Diagram for Test View.

Source: Made by the Author.

The Figure 11 shows the class SearchTest responsible for finding a test by its
test name in the database.

Chapter 3. Software Requirements Specification 35

Figure 11 – Class Diagram for Test View.

Source: Made by the Author.

36

4 PROJECT EXECUTION OVERVIEW

In this chapter,the steps and execution of the project will be exposed, as well as
the technologies implemented for each solution. Both proposed solutions adhere to the
same functional and non-functional requirements outlined earlier. The differences lie in
the frameworks and programming languages used to implement each one.

To differentiate between the solutions, we will use the terms “Local Application”
for the application developed in Python, and “Web Application” for the web application
developed in Node.js. The Local Application operates as an executable file on a com-
puter, built with PyQt, and does not require an internet connection for launching the
system. In contrast, the Web Application, developed with React for the frontend and
Node.js for the backend, requires an internet connection to perform database opera-
tions, enabling remote access through a web browser.

4.1 DEVELOPMENT ENVIRONMENT

The development environment encompasses the tools, software, and configura-
tions used to create and test the project. In the scope of this project, the development
environment includes: integrated development environment (IDE), programming lan-
guages, frameworks and libraries, database, version control and operating system
(OS).

4.1.1 Web Application Solution

4.1.1.1 IDE

For this project, it was used the IDE Visual Studio Code (VISUAL. . . , 2024):
Visual Studio Code is a versatile and powerful IDE that supports a wide range of
programming languages and extensions. It offers a user-friendly interface, integrated
terminal, and robust debugging capabilities. The extensive plugin ecosystem allows for
enhanced functionality, such as linting, code formatting, and version control integration
with GitLab (GITLAB. . . , 2024), used in this project for versioning of the code.

4.1.1.2 OS

Linux (LINUX. . . , 2024) and Ubuntu (UBUNTU. . . , 2024) were the preferred op-
erating system and distribution for web application development due to stability, security,
and performance. It is widely used in server environments, making it easier to develop,
test, and deploy applications in a consistent environment. Additionally, Linux supports
a vast array of development tools and frameworks, which are essential for efficient web
development (NEGUS, 2014).

Chapter 4. Project Execution Overview 37

4.1.1.3 Container

Containers were used alongside other tools in this project duo to its many ad-
vantages. One of them being the ability to streamline development and deployment pro-
cesses (SARISHMA, 2021). Containers, particularly through technologies like Docker,
have become an essential part of modern software development, offering benefits such
as portability, efficiency, and scalability. A container encapsulates an application along
with all its dependencies, including libraries, configurations, and runtime environments.

4.1.1.4 Docker

Docker has been extensively studied for its impact on software development and
deployment due to its ability to containerize applications.

Docker (DOCKER. . . , 2024) is a platform that enables developers to automate
the deployment of applications inside lightweight, portable containers. These containers
encapsulate an application and its dependencies, allowing it to run consistently across
any environment, whether on a developer’s machine, a test server, or in production.
Containers are isolated from each other and from the host system, providing a secure
and efficient environment for running applications (MERKEL, 2014).

Docker containers (CONTAINERS. . . , 2024) are created from Docker images,
which are read-only templates that include the instructions for creating a container.
These images can include the application code, runtime, libraries, and other dependen-
cies necessary for the application to run.

4.1.1.5 Docker Compose

Docker Compose is a powerful tool that simplifies the management of multi-
container applications. By defining application services, networks, and volumes in
a single configuration file. For instance, Docker Compose is particularly effective in
microservices-based architectures, where each service (e.g., frontend, backend, and
database) runs in its own container .

The use of Docker Compose (DOCKER. . . , 2024) for this project offered two
main advantages:

• Efficiency: Unlike traditional virtual machines, Docker containers share the host
operating system’s kernel, which reduces overhead and improves performance;

• Isolation: Containers run in isolated environments, providing security and pre-
venting conflicts between applications.

The figure show the schema for the use of docker compose in this application.

Chapter 4. Project Execution Overview 38

Figure 12 – Schema docker compose.

Source: Made by the Author.

The Docker Compose file defines a multi-container Docker application with three
services: mysqldb, magally-api, and magally-ui. It uses version 3.8 of the Docker
Compose specification.

• mysqldb service:

– Uses the MySQL 5.7 Docker image.

– Restart policy: The container will restart unless stopped.

– Environment variables:

* Reads from the .env file.

* Sets the MySQL root password and database name.

– Ports:

* Maps the host port defined by $MYSQLDB_LOCAL_PORT to the container
port defined by $MYSQLDB_DOCKER_PORT.

– Volumes:

* Uses a named volume db to persist MySQL data.

– Networks:

* Connects to the backend network.

• magally-api service:

Chapter 4. Project Execution Overview 39

– Depends on:

* Starts after the mysqldb service.

– Build:

* Builds the API application from the ./magally-api directory.

– Restart policy: The container will restart unless stopped.

– Environment variables:

* Reads from the .env file.

* Configures the database connection and client origin.

– Ports:

* Maps the host port defined by $NODE_LOCAL_PORT to the container port
defined by $NODE_DOCKER_PORT.

– Networks:

* Connects to both the backend and frontend networks.

• magally-ui service:

– Depends on:

* Starts after the magally-api service.

– Build:

* Builds the UI application from the ./magally-ui directory.

* Uses $CLIENT_API_BASE_URL as a build argument for the API base URL.

– Ports:

* Maps the host port defined by $REACT_LOCAL_PORT to the container port
defined by $REACT_DOCKER_PORT.

– Networks:

* Connects to the frontend network.

• Volumes:

– db: A named volume for persisting MySQL data.

• Networks:

– backend: For communication between mysqldb and magally-api.

– frontend: For communication between magally-api and magally-ui.

Chapter 4. Project Execution Overview 40

4.1.1.6 Directory Structure

This is the root directory of the project, which contains two main subdirectories
magally-api and magally-ui and the docker-compose.yml file: separating the backend
(magally-api) and frontend (magally-ui) allows for modular development. Each compo-
nent can be developed, tested, and deployed independently.It enables scaling each
part of the application independently based on its load. For instance, the backend can
be scaled up without affecting the frontend. Each component has its own Dockerfile,
allowing it to be containerized and deployed consistently across different environments.
This isolation helps in managing dependencies and configurations specific to each
component.

magally-APP

magally-api

app/

.env.sample

Dockerfile

package.json

server.js

text1.2

public/

src/

Dockerfile

package.json

.env

docker-compose.yml

• magally-api/

– This directory contains the backend (API) part of the application built using
Node.js.

* app/: This includes the application-specific code, such as controllers,
models, routes, etc.

* Dockerfile: Defines the Docker image for the backend. It includes in-
structions for building the Node.js application, such as copying the code,
installing dependencies, and setting up the execution command.

Chapter 4. Project Execution Overview 41

* server.js: The entry point of the Node.js application, where the server
is set up and started.

• magally-ui/

– This directory contains the frontend part of the application built using React.

* public/: Contains static files that are served by the web server, such as
the index.html file.

* src/: Contains the source code for the React application, including com-
ponents, utilities, and styles.

* Dockerfile: Defines the Docker image for the frontend. It includes in-
structions for building the React application and serving it using a web
server like Nginx.

4.1.2 Local Application Solution

4.1.2.1 IDE

For the local application development, Visual Studio Code remains an ideal
choice due to its flexibility and support for multiple languages and frameworks. Its
powerful extensions for Python development, such as IntelliSense and Pylint in the
tests phase, enhance coding efficiency and maintain high code quality (TEAM, 2023).

4.1.2.2 OS

Windows is chosen for the local application development to ensure compatibility
with a wide range of hardware and software configurations used to the employees of the
company. It provides support to various development tools and frameworks necessary
for building robust local applications that use Python.

4.1.2.3 Virtualization

Python venv (PIPENV. . . , 2024) is a built-in module that creates isolated Python
environments, allowing the management of dependencies for the project separately.
This isolation ensured that the local application’s dependencies do not conflict with
other projects, leading to more stable and predictable development and deployment
processes. With Python venv it is possible to maintain a clean and organized develop-
ment environment for Python applications.

In summary, these files and directories are designed to ensure that the virtual
environment can operate independently of the system Python installation, allowing for
different projects to have different dependencies and versions without conflict.

Chapter 4. Project Execution Overview 42

Figure 13 – venv directory files.

Source: Made by the Author.

4.2 WEB APPLICATION DEVELOPMENT

This section highlights the Web Application and delves into its development
process.

4.2.1 Web Application Backend API

The backend of a web application refers to the server-side components that
power the application’s functionality and manage data processing, storage, and com-
munication. It forms the backbone of the application, handling tasks such as database
interactions, user authentication, business logic execution, and integration with external
services or APIs. It also ensures the secure, efficient, and scalable operation of web
applications by managing data flow and enabling dynamic interactions. It is integral
to delivering personalized content, maintaining data integrity, and supporting real-time
communication features (FOWLER, 2002).

The explanation of the Web App will be separeted into REST API (REST. . . ,
2024) explanation and the frameworks used for implementing all the functional require-
ments.

4.2.1.1 Programming Languages and Frameworks

As shown in Table 9, the development environment includes various sets of
frameworks that serve different purposes. Node.js provides a runtime environment,
while React.js (REACT. . . , 2024) and Redux (REDUX. . . , 2024) are used for building
and managing the user interface. Express is utilized for backend development, and
Axios (AXIOS. . . , 2024) simplifies HTTP (HTTP. . . , 2024) requests.

Chapter 4. Project Execution Overview 43

Table 9 – Technologies Overview

Technologie Usage Description

Node.js Runtime Environ-
ment

Node.js is a runtime environment that allows
JavaScript (JAVASCRIPT. . . , 2024) to be executed on
the server-side. It is built on Chrome’s V8 JavaScript
engine and is used to create scalable network appli-
cations.

React.js Library React.js is a JavaScript library for building user in-
terfaces, particularly single-page applications where
data can change over time without requiring a page
reload. It is maintained by Facebook and a community
of individual developers and companies.

Express Framework Express is a minimal and flexible Node.js web applica-
tion framework that provides a robust set of features
for web and mobile applications. It is used for building
the backend of web applications and APIs.

Axios Library Axios is a promise-based HTTP client for the browser
and Node.js. It makes it easier to send asynchronous
HTTP requests to REST endpoints and perform
CRUD operations.

Redux Library Redux is a predictable state container for JavaScript
applications. It helps manage the state of an applica-
tion in a predictable way, making it easier to debug
and test.

Sequelize ORM Sequelize (SEQUELIZE. . . , 2024) is a promise-based
Node.js Object-Relational Mapper (ORM) for Post-
greSQL, MySQL, MariaDB, SQLite, and Microsoft
SQL Server. It features solid transaction support, re-
lations, eager and lazy loading, read replication and
more.
Source: Author.

Chapter 4. Project Execution Overview 44

4.2.1.2 Client Server Interaction

The application was built with the following architecture:

Figure 14 – Client Server Architecture from the developped App.

Source: Made by the Author.

• Node.js Express:

– Exports REST APIs for handling various HTTP requests such as GET, POST,
PUT, and DELETE.

– Interacts with the MySQL database using Sequelize ORM, which provides
a promise-based interface for database operations, ensuring smooth and
efficient data handling.

• React Client:

– Sends HTTP requests to the Node.js Express backend and retrieves HTTP
responses using Axios, a promise-based HTTP client that simplifies the
process of performing asynchronous HTTP requests.

– Consumes data retrieved from the backend within the React components,
ensuring dynamic and responsive user interfaces.

– Utilizes React Router for navigation, enabling seamless transitions between
different pages and components within the application.

This architecture ensures a clear separation of concerns, with Node.js handling
the server-side logic and database interactions, while React manages the client-side
user interface and interactions.

Chapter 4. Project Execution Overview 45

4.2.1.3 Redux

The figure 18 shows the architecture of the componet Redux used in this project
and it’s relation with the API endpoints and Front-End pages:

Figure 15 – Redux architecture.

Source: Made by the Author.

• The App component is a container with React Router. It has a navigation bar that
links to various route paths.

• There are three main components that interact with Redux Thunk Middleware to
call the REST API via the TestService which uses axios for HTTP requests and
responses.

– TestsList: This component retrieves and displays a list of tests.

– Test: This component includes a form for editing a test’s details based on its
:id.

– AddTest: This component includes a form for submitting a new test.

• Redux Store: Stores (REDUX. . . , 2024) the application’s state.

• Redux Thunk Middleware: Allows for writing action creators that return a function
instead of an action, enabling asynchronous operations.

– When a component dispatches an action, Redux Thunk Middleware inter-
cepts the dispatch to perform asynchronous operations before the action
reaches the Redux Store.

Chapter 4. Project Execution Overview 46

• TestService: Uses axios to make HTTP requests to the REST API and handle
the responses.

– axios: A promise-based HTTP client for the browser and Node.js used for
making asynchronous HTTP requests to the REST API.

4.2.1.4 REST API

A REST API (Representational State Transfer Application Programming Inter-
face) as shown in the figure 18 is a set of rules and conventions for building and
interacting with web services. It uses standard HTTP methods and follows the prin-
ciples of REST architecture to facilitate communication between clients and servers.

Figure 16 – REST API Architecture.

Source: Made by the Author.

The core principles of REST, outlining its key characteristics and the mechanisms
it employs to facilitate efficient and scalable web services are:

• Stateless: Each request from a client to a server must contain all the information
needed to understand and process the request. The server does not store any
client context between requests.

• Client-Server Architecture: The client and server are independent of each other.
The client only knows the URI of the requested resource and acts independently
from the server.

• Uniform Interface: REST APIs use a uniform interface, typically achieved through
standard HTTP methods such as:

– GET: Retrieve data from the server.

Chapter 4. Project Execution Overview 47

– POST: Submit data to be processed to the server.

– PUT: Update existing data on the server.

– DELETE: Remove data from the server.

• Resources and URIs: Resources are identified by URIs. For example, /api/books
represents a collection of books, and /api/books/1 represents a specific book
with an ID of 1.

The table 10 show all the Endpoints used for this project and the actions done
by the client as a request to the server:

Table 10 – API Endpoints Specification

Methods Urls Actions

GET api/tests get all Tests

GET api/tests/:id get Tests by id

POST api/tests add new Test

PUT api/tests/:id update Test by id

DELETE api/tests/:id remove Test by id

DELETE api/tests remove all Tests

GET api/tests?test={kw} find all Tests which test title
contains ’kw’

Source: Author.

4.2.2 Local Application Development

4.2.2.1 Programming Languages and Frameworks

For the development of the Locall App, the following tools and frameworks were
chosen, as shown in Table 11. Overall, Python, PyQt, MySQL, and QtDesign (QT. . . ,
2024) complement each other to create a robust, cross-platform application with so-
phisticated GUI and database functionality. Python served as the glue that integrated
PyQt, MySQL, and QtDesign into a cohesive Local Application.

Chapter 4. Project Execution Overview 48

Table 11 – Technologies Overview

Technology Usage Description

Python Programming
Language

Python is a high-level programming language
known for its simplicity and readability. It is widely
used for web development, data analysis, artifi-
cial intelligence, and more.

Python PyQt GUI Toolkit Python PyQt is a set of Python bindings for the
Qt application framework developed by River-
bank Computing. It allows Python programmers
to utilize the powerful Qt libraries to create cross-
platform applications with a native look and feel.

MySQL Database MySQL is an open-source relational database
management system (RDBMS) known for its reli-
ability, scalability, and ease of use. It is commonly
used for web applications, data warehousing, and
e-commerce.

QtDesign UI Design Tool QtDesign, also known as Qt Designer, is a graphi-
cal user interface design tool included with Qt that
enables developers to design UIs using a drag-
and-drop interface. It generates XML files that
can be integrated into PyQt applications, making
UI design more efficient and intuitive.
Source: Author.

Chapter 4. Project Execution Overview 49

4.2.2.2 Used PyQt Class Hierarchies

For this project the following class heritancy can be observed during the imple-
mentation:

Figure 17 – QFrame Class Heritance.

Source: Made by the Author.

• QWidget (Widget):

- Represents a rectangular region on the screen.

- Can include buttons, text boxes, labels, etc.

- Can be standalone windows or embedded within other widgets.

• QDialog (Dialog):

- Subclass of QWidget that provides a dialog window.

- Used for prompting the user for input or displaying information.

- Can be modal (blocking) or modeless (non-blocking).

• QFrame (Frame):

- Subclass of QWidget that provides a container for other widgets.

- Used for grouping related widgets together or providing visual separation.

- Can have different shapes, styles, and border types.

Chapter 4. Project Execution Overview 50

• QObject:

- Base class for all Qt objects.

- Provides support for signals and slots for inter-object communication.

- Provides features such as object name, parent-child relationships, and dy-
namic properties.

Figure 18 – QWidget Class Heritance.

Source: Made by the Author.

For this project one of its main features is the table displayed for the user in one
of it’s QFrame, a detailed explanation is done to differentiate the usage of QTableView
and QTableWidget:

• QTableView:

- Part of the model/view framework, displays data from a model.

- Does not store data itself; requests data from a model conforming to QAb-
stractItemModel.

- Allows for flexible and dynamic data handling with custom models and dele-
gates.

- Ideal for applications with dynamic data, such as database-driven apps.

• QTableWidget:

- Convenience class that uses an item-based data model.

- Manages its own data using QTableWidgetItem objects.

- Provides a simpler and more user-friendly API for table management.

- Suitable for simpler applications with static or easily managed data, like
spreadsheets or settings tables.

Chapter 4. Project Execution Overview 51

Example in a code:
In this code, the class TestCardUGTS(QFrame) uses QFrame as a container for

organizing the layout and QTableWidget to display and manage test data from the
database. it also has other functions for sending the actual data if changed to backend
and set the table as a changeable area for the user.

1 class TestCardUGTS(QFrame):
2

3 def __init__(self , test_id , scenario , test , cat , agr , orig , n_ugts ,
objet_du_test , main_window):

4 super().__init__ ()
5

6 self.main_window = main_window
7

8 self.test_id , self.scenario , self.test , self.cat , self.agr , self.orig ,
self.n_ugts , self.objet_du_test = test_id , scenario , test , cat , agr ,
orig , n_ugts , objet_du_test

9

10 self.setStyleSheet(’background:white; border -radius :4px; color:black;’)
11 layout = QHBoxLayout(self)
12 self.table = QTableWidget ()
13

14 self.table.setStyleSheet(’QTableView ::item {border -right: 1px solid #
d6d9dc ;}’)

15

16 self.add_table_row(scenario , test , cat , agr , orig , n_ugts , objet_du_test
)

17

18 layout.addWidget(self.table)
19 self.setLayout(layout)
20 def add_table_row(self , scenario , test , cat , agr , orig , n_ugts ,

objet_du_test):
21

22 def on_text_changed(self , row , column):
23 ...
24

25 def update_data(self , row , column , new_value):
26 ...
27 self.send_to_backend ()
28

29 def send_to_backend(self):
30 ...
31)

Chapter 4. Project Execution Overview 52

4.2.2.3 Repertory Organization

In the figure 19 show the main files used in the development of the Local Appli-
cation, among them __pycache__: contains compiled bytecode of Python files, which
helps in speeding up program execution. database_magally.db: A database file, in
SQLite, used for storing application data. database.db: Another database file, in MySQL
database. main.py: The main entry point of the application.

Figure 19 – VSCode Repertory View.

Source: Made by the Author.

4.3 DATABASE IMPLEMENTATION

For creating the database for this project first was necessary a .sql file, an .sql file
is a plain-text file that contains Structured Query Language (SQL) commands. These
commands are used to perform operations on a database, such as creating tables,
inserting data, querying information, updating records, or managing database schemas.
They are highly portable and can be executed in various database systems including
the one used for this project. The one used was translating the database structure,
queries, and relationships from the Word document into SQL syntax. It includes CREATE,
INSERT, UPDATE, and DELETE statements.

For the implementation of the .sql file with all the SQL requests already presents
in the Microsoft .word file some steps were necessary as shown in figure 21.

The database was initially in the format of a table within a Word document, with
each row representing a test, from it the following steps are taken::

1. Filter the original Word document so that it only contained the table, ensuring
each row corresponded to a single test.

Chapter 4. Project Execution Overview 53

Figure 20 – Workflow creation sql file.

Source: Made by the Author.

2. Review the document to ensure the quality and accuracy of the table and its
contents.

3. transfer all the tests to an Excel sheet.

4. After verifying the consistency of each test in the Excel sheet, was used an online
tool to convert the comma-separated values (CSV) file into SQL queries, where
each row generated an SQL insert statement to add the test into the database.

4.3.1 Database Overview

The two tables in Figure 21 were used in this project:

• Scenario: The name of the associated scenario.

• Test: The name of the test.

• Orig: The origin of the scenario.

• Agr: The aggressive test indicator.

• Cat: The category of the scenario.

• N° UGTS: The number of the UGTS concerned by the test.

• Objet du test: A brief description of the test.

Chapter 4. Project Execution Overview 54

Figure 21 – UGE et UGTS table schema.

Source: Made by the Author.

4.3.2 Relational Database Overview

SQL (Structured Query Language) and NoSQL (Not Only SQL) are two paradigms
for managing and querying data in database systems. Their primary distinction lies
in the structure and approach they take toward data organization and retrieval. SQL
databases are relational database management systems (RDBMS) that use structured
schemas to organize data into tables with rows and columns. SQL databases ensure
Atomicity, Consistency, Isolation, and Durability, making them reliable for transactions.
NoSQL databases are non-relational systems designed to handle unstructured or semi-
structured data, offering flexible schemas. The terms "relational" and "non-relational"
correspond to SQL and NoSQL databases, respectively.

While SQL databases emphasize structured relationships and query reliability,
NoSQL systems focus on flexibility and scalability. They are complementary rather than
exclusive, with many modern applications using a hybrid approach depending on the
specific use case (ELMASRI; NAVATHE, 2016).

For this project was made the decision to use a relational database in detriment
to a non-relational. The figure 22 illustrates the main differences between SQL and
NoSQL databases, explaining why SQL was chosen as the most suitable option for this
project over a NoSQL database. The primary reason is that SQL provides a simpler
and more straightforward way to store the existing data.

Chapter 4. Project Execution Overview 55

Figure 22 – Differences SQL and NoSQL.

Source: Made by the Author.

Some main reasons that played an important role in the choice of SQL database:

• Well-structured queries: SQL databases use structured query language, making
it ideal for complex data processing tasks.

• Ease of use: SQL is easy to learn and use for future implementation of the
project.

• Flexible schema: SQL databases have a highly flexible schema that can manage
various data types.

• Compatible with popular programming languages: SQL is compatible with
Python, which is convenient in this project.

4.3.2.1 MySQL database

MySQL is an open-source relational database management system (RDBMS)
that uses Structured Query Language (SQL) for database operations. Developed in the
mid-1990s, it has become one of the most widely used databases due to its reliability,
speed, and ease of use as demonstrated and implemented in (LETKOWSKI, 2015).

The database management system selected for this project, MySQL, is a free
and open-source software solution known for its adherence to a client-server architec-
ture. The client-server architecture is a distributed system framework that divides tasks
and workloads between service providers, known as servers, and service requester,
called clients. This design is a cornerstone of modern computing, enabling scalable
and efficient communication between users and centralized resources. This choice en-
ables efficient communication and robust database operations (TANENBAUM; STEEN,
2011).

Chapter 4. Project Execution Overview 56

To connect to the MySQL database, the mysql.connector module was used,
an official MySQL driver developed and maintained by Oracle, which allows Python
applications to connect to and manage MySQL databases. This connector supports all
MySQL features and can execute SQL queries, retrieve results, and manage transac-
tions between Python and the database. The following code demonstrates how it was
established the connection with the local MySQL server:

1

2 import mysql.connector
3

4 def connect_database ():
5

6 mydb = mysql.connector.connect(
7

8 host = "localhost",
9 user = "root",

10 password = "password",
11 database - = "test_1_magally"
12)
13

14 mycursor = mydb.cursor ()
15 return mycursor , mydb

1. Importing the mysql.connector module:

• The line import mysql.connector imports the MySQL Connector Python mod-
ule, which allows Python to communicate with a MySQL database.

2. Defining the function connect_database():

• connect_database() is a function defined to establish a connection to a MySQL
database and return a cursor object and the database connection object.

3. Establishing a database connection:

• Inside the function, mysql.connector.connect() is used to connect to the MySQL
database with the following parameters:

– host="localhost" specifies that the MySQL server is located on the local
machine.

– user="root" specifies the username used to authenticate.

– password="password" specifies the password for the user.

– database="test_1_magally" specifies the name of the database to connect
to.

Chapter 4. Project Execution Overview 57

• The resulting database connection object is stored in mydb.

4. Creating a cursor object:

• mydb.cursor() creates a cursor object (mycursor) that allows Python code to
execute SQL queries on the connected database.

5. Returning the cursor and database connection objects:

• Finally, the function returns mycursor and mydb as a tuple (return mycursor,

mydb). This allows the calling code to use mycursor to execute SQL commands
on the database and mydb to manage the database connection.

4.4 GUI DESIGN

For this section, some main features of the design will be shown for better
comprehension of the application developed during this project.

The figure 23 demonstrates how the user can choose between both interfaces:

Figure 23 – UI to choose between databases.

Source: Made by the Author.

The figure 24 shows the search bar created and a search button:

Figure 24 – UI search bar.

Source: Made by the Author.

For adding new tests, Figure 25 shows the additional Window created for this
purpose.

For deleting tests, the window demonstrated in Figure 26 was created:

Chapter 4. Project Execution Overview 58

Figure 25 – UI Add New Test.

Source: Made by the Author.

Figure 26 – UI Delete Test.

Source: Made by the Author.

Chapter 4. Project Execution Overview 59

And finally, the main window used for viewing all the tests related to the choose
database can be seen in Figure 27:

Figure 27 – UI main window HMI Local App.

Source: Made by the Author.

The Web has a main window as shown in Figure 28, it is also possible to see
the export button in the side of the search bar:

Figure 28 – UI main window HMI Web Application.

Source: Made by the Author.

60

5 ANALYSIS OF RESULTS

This chapter summarizes the outcomes of the project and discusses the final
solution adopted by the team. It evaluates the benefits and drawbacks of each solution
considered during the project.

5.1 CYBER THREATS ANALYSIS

Web Application Solution:

Web applications are inherently exposed to a wider range of cyber threats due to their
online accessibility. Key vulnerabilities and attack more prone to happen in the case of
deployment of this project include:

• Injection Attacks: Web applications are particularly vulnerable to SQL injection,
command injection, and similar attacks where malicious code is injected into user
input fields. Poor validation and sanitization of user inputs exacerbate this risk
(ALGHAWAZI; ALGHAZZAWI; ALARIFI, 2022).

• Cross-Site Scripting (XSS): Attackers can exploit vulnerabilities to inject mali-
cious scripts into web pages viewed by users, compromising user data or session
tokens.

• Denial of Service (DoS) and Distributed Denial of Service (DDoS): Overload-
ing a web application server with traffic can render the service unavailable to
legitimate users (ALI; CHONG; MANICKAM, 2023).

To address these issues, further enhancements should be made to the developed solu-
tion, ideally with the expertise of a cybersecurity engineer. As outlined in (STUTTARD;
PINTO, 2011), effective mitigation strategies include adopting secure coding practices
such as input validation and parameterized queries, implementing strong authentica-
tion and authorization mechanisms like OAuth or multifactor authentication, and utilizing
Web Application Firewalls (WAFs) to detect and block malicious traffic.
By ensuring the rigorous application of these strategies, the web application can achieve
a high standard of security, protecting users and safeguarding sensitive client data.

5.2 ADVANTAGES AND DISADVANTAGES OF EACH SOLUTION

Web Application Solution:

Advantages:

Chapter 5. Analysis of Results 61

• User Interface: Utilizing React, a modern JavaScript library, enables the creation
of dynamic and responsive user interfaces. The vast ecosystem of libraries and
tools available for React makes it easier to enhance user experience and interface
performance. React’s component-based architecture promotes reusability, ensur-
ing cleaner and more maintainable codebases. Its robust ecosystem of tools and
libraries, such as Redux for state management and React Router for navigation,
simplifies the implementation of advanced functionality.

• Scalability: Web applications can be easily scaled to accommodate more users
or increased data loads. This is particularly beneficial if the project grows in
requirements, and expects a large users base.

• Ease of Deployment: The Web application can be seamlessly deployed using
containerization technologies like Docker presented in chapter 5. This simplifies
the deployment process, allowing for consistent environments across different
stages of development and production.

Disadvantages:

• Security Concerns: The web applications requires robust security measures to
protect it against threats such as data breaches, unauthorized access, and cyber
attacks. Proper authentication, encryption, and other security protocols must be
implemented and maintained.

• Higher Deployment Costs: Deploying the web application involved additional
expenses, such as hosting fees, domain registration, and maintaining all the server
infrastructure.

• Maintenance Complexity: Managing the web application after deployment can
be complex, necessitating a dedicated team to handle updates, bug fixes, and
potential issues that would probably arise in the live environment.

Chapter 5. Analysis of Results 62

Local Application Solution:

Advantages:

• No Web Deployment Costs: The Local application does not incur in costs asso-
ciated with web deployment, such as server hosting.

• Maintenance: Local applications, often simpler in nature, can be easier for de-
velopers to understand and maintain. This can lead to faster development cycles
and easier troubleshooting.

• Data Security: Sensitive client information is not transmitted over the internet,
reducing the risk of data breaches. All data remains within the user’s local system,
providing an added layer of security.

• No Authentication Required:The Local application do not require user authen-
tication or management of user accounts, simplifying the development process
and reducing potential security vulnerabilities.

Disadvantages:

• Limited Libraries for User Experience: PyQt, the framework used for the local
application, has fewer libraries and tools available for enhancing user experience
compared to web frameworks like React. This resulted in a less polished interface.

• Complexity in Implementing Features: Implementing certain features, such
as exporting data to an Excel file, was much more complex in the local applica-
tion. Web applications often have more straightforward solutions and third-party
libraries available for such tasks. Local applications may require additional steps
to set up dependencies or manage file system interactions manually, especially
if the deployment environment varies across systems. In web applications, tasks
like exporting data often have established patterns and community-supported
libraries or services, which can make implementation simpler.

5.3 OVERVIEW OF PREFERRED SOLUTION

The team opted for the Local Application solution primarily due to cybersecurity
concerns and cost considerations. Handling sensitive client data was a critical factor in
this decision. Even with robust authentication mechanisms, exposing such data on a
web platform posed significant security risks. By deploying the application locally, we
ensured that all sensitive information remained within the client’s environment, thereby
mitigating potential cyber threats.

Additionally, the Local Application solution proved to be more cost-effective.
Avoiding web deployment eliminated the need for server hosting, domain registration,

Chapter 5. Analysis of Results 63

and other associated expenses. This approach not only reduced costs but also simpli-
fied the deployment process, making it quicker and easier to implement the solution
within the client’s existing infrastructure.

Overall, the combination of enhanced data security and lower deployment costs
made the Local Application solution the most suitable choice for the project.

64

6 CONCLUSION

Most of the functional requirements for this project, as outlined in Chapter 3.2.1.1,
were successfully implemented in both the Web Application and the Local Application
solutions.

The team expressed high satisfaction with the demonstration of both solutions,
particularly as they adhere to prevailing market trends in database management. MySQL,
being a widely adopted open-source database management system, is recognized for
its scalability, reliability, and extensive community support, making it a preferred choice
across industries (MOHAN et al., 2013). The user interfaces were also deemed well-
structured and appropriate for the project’s scope, offering a user-friendly experience
in both implementations as exposed in chapter 4.4.

The decision to not deploying the Web Application on a hosting server was driven
by the preference to keep the application local. This choice was primarily influenced by
cybersecurity concerns, ensuring sensitive client data remains protected.

The database will remain internal to the company, stored on one of its on-premise
cloud solutions. This approach aligns with the need to safeguard data from potential
cyber threats associated with web hosting.

Overall, the Local Application solution was meticulously documented and stored
for future development and potential deployment as the team’s needs evolve. During
the testing phase, the project demonstrated its usefulness to the MAGALLY team,
significantly reducing errors and the time required to complete the tasks performed by
the user presented in chapter 3.2.1.1.

The successful implementation of this project underscores the importance of
prioritizing cybersecurity and cost-efficiency, leading to a robust and reliable Local
Application solution.

65

REFERENCES

ALGHAWAZI, Maha; ALGHAZZAWI, Daniyal; ALARIFI, Suaad. Detection of SQL
Injection Attack Using Machine Learning Techniques: A Systematic Literature Review.
Journal of Cybersecurity and Privacy, v. 2, n. 4, p. 764–777, 2022. ISSN 2624-800X.
DOI: 10.3390/jcp2040039. Available from:
https://www.mdpi.com/2624-800X/2/4/39.

ALI, Tariq Emad; CHONG, Yung-Wey; MANICKAM, Selvakumar. Machine Learning
Techniques to Detect a DDoS Attack in SDN: A Systematic Review. Applied
Sciences, MDPI, v. 13, n. 5, p. 3183, 2023. DOI: 10.3390/app13053183.

API - What is an API? [S.l.: s.n.]. Available from:
https://www.mulesoft.com/resources/api/what-is-an-api/. 2024.

AXIOS - Promise based HTTP client for the browser and node.js. [S.l.: s.n.]. Available
from: https://axios-http.com/docs/intro/. 2024.

CAPGEMINI ENGINEERING - Get the future you want : le future que vous voulez.
[S.l.: s.n.]. Available from:
https://www.capgemini.com/fr-fr/notre-groupe/nous-connaitre//. 2024.

CHUNG, Lawrence; NIXON, Brian A.; YU, Eric; MYLOPOULOS, John.
Non-Functional Requirements in Software Engineering. [S.l.]: Springer, 2012.

COCKBURN, Alistair. Writing Effective Use Cases. [S.l.]: Addison-Wesley
Professional, 2000.

CONTAINERS - Containers are an abstraction at the app layer that packages code
and dependencies together. [S.l.: s.n.]. Available from:
https://www.docker.com/resources/what-container//. 2024.

DOCKER - Docker helps developers bring their ideas to life by conquering the
complexity of app development. [S.l.: s.n.]. Available from: https://www.docker.com//.
2024.

DOCKER COMPOSE - Docker Compose is a tool for defining and running
multi-container applications. It is the key to unlocking a streamlined and efficient

https://doi.org/10.3390/jcp2040039
https://www.mdpi.com/2624-800X/2/4/39
https://doi.org/10.3390/app13053183
https://www.mulesoft.com/resources/api/what-is-an-api/
https://axios-http.com/docs/intro/
https://www.capgemini.com/fr-fr/notre-groupe/nous-connaitre//
https://www.docker.com/resources/what-container//
https://www.docker.com//

References 66

development and deployment experience. [S.l.: s.n.]. Available from:
https://docs.docker.com/compose//. 2024.

ELMASRI, Ramez; NAVATHE, Shamkant. Fundamentals of Database Systems. 7th.
[S.l.]: Pearson, 2016. ISBN 9780133970777.

EXPRESS - Express is a minimal and flexible Node.js web application framework that
provides a robust set of features for web and mobile applications. [S.l.: s.n.]. Available
from: https://expressjs.com//. 2024.

FOWLER, Martin. Patterns of Enterprise Application Architecture. Boston, MA:
Addison-Wesley, 2002. ISBN 978-0321127426.

FOWLER, Martin. UML Distilled: A Brief Guide to the Standard Object Modeling
Language. [S.l.]: Addison-Wesley Professional, 2004.

GITLAB - From planning to production, GitLab brings teams together to shorten cycle
times, reduce costs, strengthen security, and increase developer productivity. [S.l.: s.n.].
Available from: https://gitlab.com//. 2024.

HTTP - HTTP is an application layer protocol designed to transfer information between
networked devices and runs on top of other layers of the network protocol stack. [S.l.:
s.n.]. Available from:
https://www.cloudflare.com/learning/ddos/glossary/hypertext-transfer-

protocol-http/. 2024.

JAVASCRIPT - JavaScript (JS) is a lightweight interpreted (or just-in-time compiled)
programming language with first-class functions. [S.l.: s.n.]. Available from:
https://www.javascript.com//. 2024.

KEOLYS - Leaders Mondiaux de la Mobilité Partagée. [S.l.: s.n.]. Available from:
https://www.keolis.com//. 2024.

LETKOWSKI, Jerzy. Doing database design with MySQL. Journal of Technology
Research, Volume 6, Jan. 2015.

LINUX - Just like Windows, iOS, and Mac OS, Linux is an operating system. In fact,
one of the most popular platforms on the planet, Android, is powered by the Linux

https://docs.docker.com/compose//
https://expressjs.com//
https://gitlab.com//
https://www.cloudflare.com/learning/ddos/glossary/hypertext-transfer-protocol-http/
https://www.cloudflare.com/learning/ddos/glossary/hypertext-transfer-protocol-http/
https://www.javascript.com//
https://www.keolis.com//

References 67

operating system. [S.l.: s.n.]. Available from:
https://www.linux.com/what-is-linux//. 2024.

MAGALLY - Métro Automatique à Grand Gabarit de l’Agglomération LYonnaise. [S.l.:
s.n.]. Available from: https://www.techno-science.net/definition/15570.html/.
2024.

MERKEL, Sean. Docker: Up Running: Shipping Reliable Containers in
Production. [S.l.]: O’Reilly Media, 2014. ISBN: 978-1491917572.

MES - Manufacturing Execution System. [S.l.: s.n.]. Available from:
https://www.sap.com/france/products/scm/execution-mes/what-is-mes.html/.
2024.

MICROSOFT EXCEL - Analysez, comprenez et visualisez vos données en toute
simplicité. [S.l.: s.n.]. Available from:
https://www.microsoft.com/fr-fr/microsoft-365/excel/. 2024.

MOHAN, Chandan et al. Open source databases: An opportunity for effective
database management in the cloud era. International Journal of Computer
Applications, Foundation of Computer Science, v. 80, n. 14, 2013.

MYSQL - The world’s most popular open source database. [S.l.: s.n.]. Available from:
https://www.mysql.com//. 2024.

NEGUS, Christopher. Linux Bible: Everything You Need to Know About the Linux
Operating System. 9th. [S.l.]: Wiley, 2014. ISBN: 978-1118999875.

NODE - Node.js® is a free, open-source, cross-platform JavaScript runtime
environment that lets developers create servers, web apps, command line tools and
scripts. [S.l.: s.n.]. Available from: https://nodejs.org/en/. 2024.

PIPENV - Python Development Workflow for Humans. [S.l.: s.n.]. Available from:
https://pypi.org/project/pipenv//. 2024.

PRESSMAN, Roger S. Software Engineering: A Practitioner’s Approach. 8th. [S.l.]:
McGraw-Hill Education, 2014. P. 123–125. Discusses the importance of functional
requirements in project development. ISBN 978-0078022128.

https://www.linux.com/what-is-linux//
https://www.techno-science.net/definition/15570.html/
https://www.sap.com/france/products/scm/execution-mes/what-is-mes.html/
https://www.microsoft.com/fr-fr/microsoft-365/excel/
https://www.mysql.com//
https://nodejs.org/en/
https://pypi.org/project/pipenv//

References 68

PYQT - PyQt is one of the most popular Python bindings for the Qt cross-platform C++
framework. [S.l.: s.n.]. Available from:
https://www.riverbankcomputing.com/static/Docs/PyQt5//. 2024.

PYTHON - Python is a programming language that lets you work quickly and integrate
systems more effectively7. [S.l.: s.n.]. Available from: https://www.python.org//.
2024.

QT DESIGN STUDIO - Revolutionize your development process by bridging the gap
between designers and developers to turn your design visions into production-ready
UIs. [S.l.: s.n.]. Available from: https://www.qt.io/product/ui-design-tools/.
2024.

REACT - A JavaScript library for building user interfaces. [S.l.: s.n.]. Available from:
https://reactjs.org/. 2024.

REDUX - A JS library for predictable and maintainable global state management. [S.l.:
s.n.]. Available from: https://redux.js.org//. 2024.

REDUX STORE - The Redux store brings together the state, actions, and reducers
that make up your app. [S.l.: s.n.]. Available from:
https://redux.js.org/tutorials/fundamentals/part-4-store/. 2024.

REST API - What is a REST API? [S.l.: s.n.]. Available from:
https://www.redhat.com/en/topics/api/what-is-a-rest-api/. 2024.

SARISHMA, Abhishek. A Systematic Review of the Impact of Containerization on
Software Development and Deployment Practice. Journal of Applied Computer
Science and Intelligent Technologies, 2021. DOI: 10.17492.

SEQUELIZE - Featuring solid transaction support, relations, eager and lazy loading,
read replication and more. [S.l.: s.n.]. Available from: https://sequelize.org//. 2024.

SQL - Structured Query Language. [S.l.: s.n.]. Available from: https://sql.sh//.
2024.

STUTTARD, Dafydd; PINTO, Marcus. The Web Application Hacker’s Handbook:
Finding and Exploiting Security Flaws. 2nd. [S.l.]: Wiley, 2011. ISBN
978-1118026472.

https://www.riverbankcomputing.com/static/Docs/PyQt5//
https://www.python.org//
https://www.qt.io/product/ui-design-tools/
https://reactjs.org/
https://redux.js.org//
https://redux.js.org/tutorials/fundamentals/part-4-store/
https://www.redhat.com/en/topics/api/what-is-a-rest-api/
https://doi.org/10.17492
https://sequelize.org//
https://sql.sh//

References 69

SYSML - Systems Modeling Language. [S.l.: s.n.]. Available from:
https://sysml.org//. 2024.

SYTRAL - Le Sytral Mobilités est un établissement public qui a en charge
l’organisation et l’exploitation des transports en commun urbains de l’agglomération
lyonnaise. [S.l.: s.n.]. Available from: https://www.sytral.fr///. 2024.

TANENBAUM, Andrew S.; STEEN, Maarten Van. Distributed Systems: Principles
and Paradigms. [S.l.]: Pearson Education, 2011. ISBN 978-0132143010.

TCL - Transports en commun à Lyon. [S.l.: s.n.]. Available from:
https://www.tcl.fr//. 2024.

TEAM, Tabnine. Is Visual Studio Code really the best code editor? [S.l.: s.n.], 2023.
Available at https://www.tabnine.com/blog/visual-studio-code/. Available from:
https://www.tabnine.com/blog/visual-studio-code/.

UBUNTU - Ubuntu is the modern, open source operating system on Linux for the
enterprise server, desktop, cloud, and IoT. [S.l.: s.n.]. Available from:
https://ubuntu.com//. 2024.

V Model - The V-model is a graphical representation of a systems development
lifecycle. [S.l.: s.n.]. Available from:
https://www.geeksforgeeks.org/software-engineering-sdlc-v-model//. 2024.

VISUAL Studio Code - Visual Studio Code is a code editor redefined and optimized for
building and debugging modern web and cloud applications. [S.l.: s.n.]. Available from:
https://code.visualstudio.com//. 2024.

WINDOWS 11 - Windows 11 is the latest major release of Microsoft’s Windows NT
operating system, released on October 5, 2021. [S.l.: s.n.]. Available from:
https://learn.microsoft.com/en-us/windows/whats-new/windows-11-overview/.
2021.

https://sysml.org//
https://www.sytral.fr///
https://www.tcl.fr//
https://www.tabnine.com/blog/visual-studio-code/
https://www.tabnine.com/blog/visual-studio-code/
https://ubuntu.com//
https://www.geeksforgeeks.org/software-engineering-sdlc-v-model//
https://code.visualstudio.com//
https://learn.microsoft.com/en-us/windows/whats-new/windows-11-overview/

	Title page
	Approval
	Dedication
	Acknowledgements
	Abstract
	Resumo
	List of Figures
	List of Tables
	List of abbreviations and acronyms
	List of symbols
	Contents
	Introduction
	Project Objectives
	Proposed Solutions Overview
	Project Scope Using V Model Methodology
	Objectives
	Document Structure and Organization

	Enterprise Presentation
	General Presentation
	MAGALLY Team
	Automatic Pilot
	Centralized Comand Post
	Automatic Pilot Embedded
	Automatic Pilot Ground

	Software Requirements Specification
	General Description
	Major Features
	User Characteristics
	Assumptions and Dependencies

	System Characteristics and Requirements
	Functional Requirements
	Use-Case Diagram

	Specification of Functional Requirements
	Use-Case: Modify Test
	Use-Case: Select Table
	Use-Case: Search Test
	Use-Case: Access List of Tests
	Use-Case: Add Test
	Use-Case: Remove Test
	Use-Case: Export Version of Tests
	Use-Case: Create Version of Tests

	Sequence Diagram
	Non-Functional Requirements

	Class Diagrams

	Project Execution Overview
	Development Environment
	Web Application Solution
	IDE
	OS
	Container
	Docker
	Docker Compose
	Directory Structure

	Local Application Solution
	IDE
	OS
	Virtualization

	Web Application Development
	Web Application Backend API
	Programming Languages and Frameworks
	Client Server Interaction
	Redux
	REST API

	Local Application Development
	Programming Languages and Frameworks
	Used PyQt Class Hierarchies
	Repertory Organization

	Database Implementation
	Database Overview
	Relational Database Overview
	MySQL database

	GUI Design

	Analysis of Results
	Cyber Threats Analysis
	Advantages and Disadvantages of Each Solution
	Overview of Preferred Solution

	Conclusion
	References

