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ABSTRACT

As auditorias energérticas desempenham um papel crucial na identificação de opor-
tunidades de melhoria da eficiência energética em edifícios por meio de retrofit. Este
projeto, conduzido dentro de uma empresa francesa especializada em auditorias en-
ergéticas para edifícios terciários, concentra-se no desenvolvimento de um método
confiável e econômico para calcular a economia de energia em retrofits. Isso é essen-
cial para melhorar a eficiência energética, reduzir as emissões de CO2 e alinhar-se à
Estratégia Nacional de Baixo Carbono. Os métodos tradicionais para calcular melhorias
na eficiência energética, como regressão estática e simulação térmica, têm limitações.
A regressão estática simplifica demais os cálculos, enquanto a simulação térmica é
muito cara. Para resolver isso, o projeto explora o aprendizado de máquina como
uma solução orientada por dados capaz de fornecer estimativas precisas e rápidas.
Com base em pesquisas anteriores, este projeto se concentra no desenvolvimento
de modelos independentes de aprendizado de máquina para prever a economia de
energia em vários retrofits. Essa abordagem reduz o número de entradas necessárias
para cada modelo, melhorando a usabilidade para os funcionários sem comprometer
o desempenho. Doze modelos independentes foram criados usando dados de duas
bases de dados da empresa. O tratamento de dados e a engenharia de recursos foram
empregados para preparar os dados para a apliacação do aprendizado de máquina. O
estudo usou principalmente modelos de Gradient Boosting Machine (GBM) com trans-
formação de regressão. Outros modelos, incluindo Redes Neurais Artificiais, Árvores
de Decisão e Florestas Aleatórias, também foram explorados. Ajuste de hiperparâmet-
ros, validação cruzada e múltiplos estados aleatórios foram implementados para todos
os modelos, com o GBM demonstrando desempenho superior. Técnicas de clusteriza-
ção e remoção de outliers foram aplicadas aos modelos GBM para retrofits específicos,
resultando em melhorias de desempenho. Os resultados alcançados são considera-
dos aceitáveis para aplicações do mundo real dentro da empresa. Os modelos foram
integrados a um aplicativo da web, https://arcs-sevaia.streamlit.app/ , fornecendo aos
funcionários da empresa uma ferramenta amigável para avaliar potenciais economias
de energia de várias opções de retrofit.

Palavras-chave: Aprendizado de Máquina; Eficiência Energética; Retrofit; Modelo de
predição.

https://arcs-sevaia.streamlit.app/


ABSTRACT

Energy audits play a crucial role in identifying energy efficiency improvement opportu-
nities in buildings through retrofitting. This project, conducted within a French company
specializing in energy audits for tertiary buildings, focuses on developing a reliable and
cost-effective method for calculating energy savings from retrofits. This is essential for
improving energy efficiency, reducing CO2 emissions, and aligning with the National
Low Carbon Strategy. Traditional methods for calculating energy efficiency improve-
ments, such as static regression and thermal simulation, have limitations. Static regres-
sion oversimplifies calculations, while thermal simulation is very expensive. To address
this, the project explores machine learning as a data-driven solution capable of providing
accurate and rapid estimations. Building upon previous research, this project focuses on
developing independent machine learning models to predict energy savings for various
retrofits. This approach reduces the number of inputs required for each model, enhanc-
ing usability for employees without compromising performance. Twelve independent
models were created using data from two company databases. Data treatment and fea-
ture engineering were employed to prepare the data for machine learning applications.
The study primarily utilized Gradient Boosting Machine (GBM) models with regression
transformation. Other models, including Artificial Neural Networks, Decision Trees, and
Random Forests, were also explored. Hyperparameter tuning, cross-validation, and
multiple random states were implemented for all models, with GBM demonstrating
superior performance. Clusterisation and outlier removal techniques were applied to
GBM models for specific retrofits, resulting in performance improvements. The results
achieved are deemed acceptable for real-world applications within the company. The
models have been integrated into a web application, https://arcs-sevaia.streamlit.app/,
providing the company’s employees with a user-friendly tool to assess potential energy
savings from various retrofitting options.

Keywords: Machine Learning, Energy Efficiency, Retrofit, Prediction Model.

https://arcs-sevaia.streamlit.app/
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1 INTRODUCTION

The energy transition is a continuing process requiring long-term energy strate-
gies and planning, with a country-tailored focus on applying appropriated energy tech-
nologies to reach net-zero emissions (UNDP, 2024). Particularly in France, the Energy
Transition politics have put in place The Eco-Energy Tertiary Scheme (Décret terti-
aire), which requires tertiary buildings larger than 1000 m² to reduce their final energy
consumption by 40% by 2030, 50% by 2040 and 60% by 2050 (ADEME, 2020).

To implement these actions in the existing buildings, there are decision-support
studies (pre-diagnoses, energy audits, feasibility studies) that aim to enable managers
and project owners to identify energy-saving opportunities and quickly implement eco-
nomically viable energy consumption control measures by considering the potential
dynamics of energy price evolution over medium term (ADEME, 2020).

In particular, the energy audits, which are conducted through a visit to the build-
ing to collect data, should enable the project owner to make informed decisions by
providing estimations of the energy efficiency to be acquired through building updates.
Due to the complexity of physical phenomena, obtaining reliable results of these energy
efficiency estimations can be a complex problem, leading to the research for rapid but
reliable methods to make these predictions.

1.1 RESEARCH PROBLEM

The building sector is a critical component of the global economy, not only as a
driver of economic growth and employment but also account for around 30% of global
energy consumption and nearly 40% of CO2 emissions (IEA, 2024a). Consequently,
reducing energy usage in buildings is central to mitigate climate change.

Approximately 75% of the buildings expected to exist in 2050 have already been
constructed (EEA, 2024). Therefore, updating existing structures in order to improve
their energy efficiency and reducing their environmental impact is necessary.

Within the context of the built environment, this process
is called retrofit, [...] used to imply substantive physical
changes to a building (e.g. mitigation activities to improve
energy efficiency), and often linked to the concept of “adap-
tation” (i.e. intervention to adjust, reuse or upgrade a build-
ing to suit new conditions or requirements (DIXON, 2014).

Retrofit might include a variety of improvements, like improving insulation, mod-
ernizing HVAC systems, or improving lighting. The impact of each update on energy
consumption varies depending on a number of interrelated factors, including the build-
ing’s construction year, usage patterns, location, etc.
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Despite its evident potential, retrofit solutions are challenging to implement ade-
quately due to difficulties in planning, estimating, and quantifying energy efficiency.

To be able to accurately predict the effects of these modifications is crucial
to correctly calculate the return on investment and environmental benefits of retrofit,
allowing to prioritize the ones with the best cost-benefits.

There are many different strategies to calculate the energy efficiency acquired by
a retrofit. The most basic ones consist of making predictive analysis based on different
forms of regressions. However, mathematical modeling can easily become unfeasible
due to constraints of time, computational power and most of all, the complexity of the
physical phenomenons.

Another solutions are static point estimation calculations, linear or multiple re-
gressions and the main method used nowadays is thermodynamic simulations. Re-
cently, the use of artificial intelligence through machine learning algorithms is also
increasing.

These methods have different levels of problem and application depending on the
context in which they are inserted. According to Versage (2015), dynamic simulations
are the most advanced methods for predicting the energy performance of buildings,
being a popular tool for analyzing potential energy savings by modeling the physical
interactions within a building. While these simulations can be highly accurate, they
are computationally demanding and often require specialized knowledge to create a
satisfactory model and interpret the results, making them time-intensive and costly.

In the other hand, Versage (2015) states that statistical methods for sample-
based inference functions are faster and simpler to use. However these models often
lack the necessary precision to capture the complex relationships between retrofit inter-
ventions and energy outcomes. These approaches might oversimplify the relationships,
producing inaccurate projections that could lead to resource misallocation and missed
savings opportunities.

Particularly, the company to which this project is addressed, faces this problem
daily as audits rely on static estimations and the opinion of experts, getting to a point of
dependence upon the employees. Their knowledge may be carried as they depart from
the company, or even not be acquired as they arrive into the company. Also, it can be
highly simplified and not standardized at a company level.

Regarding, thermal simulation, they are resource and time-consuming, requiring
training, experience and very detailed information, that are frequently not available
even after visiting the building and collecting data, also it is not very popular among
clients, as it is expensive. Therefore, the company looks for a fast and reliable method
able to improve their energy audit process by estimating the energy efficiency of their
retrofit suggestions, which raises the following problematic: "How to predict the energy
efficiency impact of retrofit on third sector buildings audited by the company?"
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1.2 OBJECTIVE

1.2.1 General Objective

The main objective is to improve the energy audit process by creating an Energy
savings calculation prediction tool.

1.2.2 Specific Objectives

The specific goals are:

a) Build machine learning models to predict the energy efficiency of 12 retrofit
actions;

b) Execute permutation feature importance analysis;

c) Make the hyper-parameters tuning;

d) Simplify the inputs to the essentials.

1.3 JUSTIFICATION

The field of machine learning is sufficiently young that it is still expanding at an
accelerating pace, lying at the crossroads of computer science and statistics, and at
the core of artificial intelligence (AI) and data science. In just the last five or ten years,
machine learning has become a critical way, arguably the most important way, most
parts of AI are done. (BROWN, 2021).

Recent progress in ML has been driven both by the development of new learning
algorithms theory, and by the ongoing explosion in the availability of vast amount of
data and low-cost computation (PUGLIESE; REGONDI; MARINI, 2021), but also by the
development of new theories about learning algorithms and the continued explosion in
the availability of big data and low-cost computing.

Machine learning identifies correlations and makes predictions where humans
would not be able to. It is adaptable and non-parametric, and can more successfully
deal with observations that include complex phenomena, which are features of real and
complex data (DAVE; DUTTA, 2012).

In the field of buildings in France, alternative energy, environmental or economic
scenarios proposed by designers are increasingly often modeled throughout the life
cycle. Beyond that, scenarios to model future climate are also being used to create
public policies, which shows the importance of having good models to buildings, as they
are part of a common public interest, which is also reliable on data.
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Bonte, Thellier, and Lartigue (2014) developed a method based on an artifi-
cial intelligence algorithm to model occupant behavior, taking into account individual
preferences such as set temperature, blinds, windows, lighting and dress code.

Again, Paudel (2016) used artificial intelligence to estimate the load curve of
its network based on weather forecasts for low-consumption buildings. He chose the
method because of the complex interactions between the outside temperature, solar
radiation, the inertia of the building, the use and control of the heat supply.

In Canada, a study carried out by Le Cam, Daoud, and Zmeureanu (2016),
presented a model for predicting energy demand over the next twenty-four hours by
non-parametric regression. A genetic algorithm is then used to optimize the size of the
variation range of each parameter characteristic of the similarity of conditions so as to
minimize the error in predicting demand over a week.

In Brazil, machine learning is used in the certification and energy regulation of
buildings through the construction of powerful models capable of predicting thermal
consumption for several climates and building typologies. According to Souza (2022),
the model input parameters are described based on geometry, constructive aspects
and climatic factors. As a result, the model predicts the cooling consumption density for
the building and is constantly improved.

These studies are examples of the possible of the viable use of machine learn-
ing to create building energy predictions models, and their capacity to contribute to
the design of more sustainable and energy-efficient buildings. Each method has its
advantages and disadvantages and as the field is constantly evolving, different studies
emerge in order to solve specific demands and needs of the field.

As shown, machine learning is able to leverage the strengths of both thermody-
namic simulations and static regression models to improve the accuracy and efficiency
of energy prediction in retrofit projects. Accurate predictions are made possible without
the high processing costs of comprehensive simulations by combining these benefits
by discovering connections and understanding patterns from massive data sets that
conventional approaches could overlook.

1.4 PROJECT STRUCTURE

The structure of this project is divided in five chapters. The first one presents
the research problem, goals and subject justification. The second one presents the
literature review, including the context of energy transition and climate change, the key
concepts and also a section presenting some of the similar studies literature.

The third chapter is about the methodology, which is divided in two main parts:
data treatment and the construction of predictions models. Finally, the fourth chapter
presents the results, analyzing both the databases and the performance of the machine
learning models created. The fifth chapter presents the conclusion.



18

2 LITERATURE REVIEW

2.1 ENERGY TRANSITION

Given the severity of the threat posed by anthropogenic climate change, which
is driven in large part by fossil fuel combustion, it is becoming widely recognized that
societies need a transition in how they produce and consume energy. The energy
transition aims to prepare for the post-oil era and establish a resilient and sustainable
energy model in the face of challenges in energy supply, price fluctuations, resource
depletion, and environmental protection imperatives (MTE, 2017).

Europe is invested in being the main leader globally in this front, setting the goal
of achieving carbon neutrality by 2050. Carbon neutrality implies a radical change in
energy production systems, transformation and consumption, notably the challenge of
replacing hydrocarbons with decarbonized energy sources (MONTAIGNE, 2021).

These measures were defined through The European Green Deal in 2020 after
the Paris Agreement of 2015, which provided a durable framework guiding the global
effort for decades to come, marking the beginning of a shift towards net-zero emissions.

The European Green Deal was put in the form of law called European Climate
Law to reach climate neutrality by 2050, signing a commitment to negative emissions
after 2050, beyond the establishment of European Scientific Advisory Board on Climate
Change, that will provide scientific advice and means to climate change adaptation.

According to the 2023 report as the Figure 1 below, the EU has steadily de-
creased its greenhouse gas emissions since 1990, reaching a total –32.5% in 2022.
COVID lockdown measures in 2020 caused an unprecedented fall in emissions, fol-
lowed by a strong rebound in 2021, with subsequent decrease at a slow rate, turning
EU not on track to reach its 2030 objective of carbon removal.

Figure 1 – 2023 Survey of emissions

Source: European Commission (2023)
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At the French level, the country has put into place The Energy Transition for
Green Growth Act (LTECV) and the National Low Carbon Strategy (SNBC), which de-
termines and formalizes the necessary measures to achieve carbon neutrality by 2050,
to more effectively contribute to the fight against climate change and the preservation
of the environment, as well as to enhance its energy independence while providing its
businesses and citizens with access to energy at a competitive cost (MTE, 2017).

One of the ten goals of SNBC is to achieve an energy performance level in
line with "low-energy buildings" standards for the entire housing stock by 2050. The
reason behind it is the high significance of the building sector energy consumption
both at global and national scales. According to the International Energy Agency, the
operations of buildings account for 30% of global final energy consumption and 26%
of global energy-related emissions, 8% being direct emissions in buildings and 18%
indirect emissions from the production of electricity and heat used in buildings (IEA,
2023). In France, it represents 44% of the energy consumption and more than 123
million tonnes of CO2 emissions each year (MTE, 2021).

Particularly, the tertiary buildings represent one quarter of all the French existing
structures, more than 940 million square meters, which accounts for one third of the
total energy consumption and greenhouse gas emissions from all buildings (OPERA,
2023). In this context, the Eco-Energy Tertiary Scheme (Décret tertiaire) whose origin
is the Grenelle II Law in 2010, later incorporated in 2017 into the Energy Transition
and Green Growth Act and then in the ELAN law in 2018 (VERTIGO, 2023), requires
tertiary buildings larger than 1000 m² to reduce their final energy consumption by 40%
by 2030, 50% by 2040 and 60% by 2050 (ADEME, 2020).

The impact study guided by ADEME (2020) shows that
around 68% of all tertiary buildings in France are concerned
by the decree, being included all the domains of the third
sector, with very few exceptions, which are temporary con-
structions (temporary building permits), places of worship,
and activities for operational purposes related to defense,
civil security, or domestic security.

In order to achieve the Decree goals, there are five levers of actions: improve-
ment of building energy performance, installation of efficient equipment, optimization
of equipment operation, adaptation of spaces for energy efficiency and encouraging
sustainable occupant behavior.

To implement these actions, pre-diagnoses, energy audits, feasibility studies are
used. In this project, calculate the energy savings, a representative indicator of energy
efficiency, to building audits is the main focus.
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2.2 ENERGY EFFICIENCY

Energy efficiency is the use of less energy to perform the same task or produce
the same result (U.S.GOVERNMENT, 2024). In the context of buildings, it is based
on the establishment of standards for evaluating and classifying buildings in terms of
energy performance, and it is important to note that the benefits of energy efficiency
go beyond reducing energy consumption, but also in the efficient use of resources
(FOSSATI et al., 2016; SCHUTZE; HOLZ; ASSUNÇÃO, 2022).

Figure 2 – PBE Edifica label (Energy Efficiency Classification)

Source: PBE Edifica (2020)

Reducing CO2 emissions is a global trend that requires more than small changes,
it demands significant transformations in the built environment to promote a low-carbon
path, with investments in smart technologies. Buildings are primarily responsible for the
increase in CO2 emissions, mainly due to excessive energy consumption. Therefore,
the construction sector needs to increase investment in energy efficiency to reduce its
carbon footprint (AZOUZ; ELARIANE, 2023).

The energy efficiency is directly correlated with energy consumption. Therefore,
the increase of energy efficiency, among many other aspects, can be evaluated through
the energy savings they generate. Energy saving correspond to the amount of energy
that is not necessary anymore when energy efficiency solution are applied, creating a
relative economy regarding the previous or standard consumption. They underpin the
multiple benefits of EE, and are associated with economic, social and environmental
benefits (IEA, 2024b).
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2.3 RETROFIT SUGGESTIONS

Retrofitting makes older structures safe and sustainable (EIB, 2024). As men-
tioned in the problem section, approximately 75% of the buildings expected to exist in
2050 have already been constructed (EEA, 2024). Thus, the practical challenge of ren-
ovating existing buildings is considered one of the most important problems in reducing
energy consumption and CO2 emissions (ZUNE et al., 2020; SHARMA et al., 2022).

Therefore, appropriate decision-making is long-term, including the refurbishment
and efficiency of buildings, which can significantly increase thermal performance and
therefore reduce energy use (ABOELATA, 2021). As the retrofit is made on an already
built structure, most of the time there are many more constraints compared to the
implementation of the same solutions in a new building, which could become a high-
complexity renovation, as shown in Figure 3 below.

Figure 3 – Retrofit example

Source: Services en Bâtiment (2024)

Therefore, taking into account the level of complexity of each structure, a compre-
hensive approach is essential (SHARMA et al., 2022). The counterpart of this complex-
ity is the high variability in databases that keep records of retrofits, which is equilibrated
with the relatively low number of options available. In the company, the most frequent
retrofit improvements are described below.

1. Lighting - Relamping (LED) + office settings

2. Lighting - Installation of management equipment (dimming and/or presence detection)
3. Ventilation - Replacement or installation of dual-flow air unit with heat exchanger
4. Ventilation - Optimization of dual-flow heat exchanger (temperature and/or schedule)
5. Envelope - Strengthening insulation from the inside/outside
6. Envelope - Insulation of the ground floor
7. Envelope - Installation of high-performance exterior joinery as a complete replacement
8. Heating - Replacing the current system with a heat pump
9. Heating - Optimization of terminal emitters (temperature and/or schedule)

10. Heating - Replacement of terminal emitters
11. Management - Setting virtuous temperature guidelines
12. Management - Reducing office and reprography equipment operation during inactivity
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2.4 ENERGY AUDITS

Energy audits should enable the project owner to make informed decisions re-
garding the interventions required for improving the energy performance of their build-
ing. These energy audits are mandatory for companies with more than 250 employees
and/or an annual revenue exceeding 50 million euros (excluding taxes) and an annual
balance sheet exceeding 43 million euros 1.

Additionally, at the beginning of 2023, it was announced that the tertiary energy
audit will be mandatory for companies with an annual energy consumption ranging
from 10 to 100 terajoules. If the company follows ISO 500012, it is exempt from this
requirement (OPERA, 2023).

An energy audit is expected to have five stages. The first one is an inventory of
fixtures: a visit to the building and a detailed note-taking; the second one is an energy’s
assessment: a critical condition analysis; the third is the enhancement initiatives: the
prepositions for improvement, which must be showed in different scenarios. Finally,
there is a financial analysis, used in deciding whether to implement an improvement,
and if so, when to do it (ADEME, 2020).

Figure 4 – Equipments Figure 5 – IR camera Figure 6 – Envelope

Source: Author

The visit is very detailed. In the envelope information collect, the auditor is sup-
posed to investigate the wall materials, the type of window’s glass, if there is any gas
to insulate it, type and thickness of all insulation, colors to compute absorbance, etc.
by the use of proper tools and equipment, but also their experience. Also, the installa-
tion of the smart meter ’Linky’ is mandatory since 2021, allowing the collect of energy
consumption values directly from its source.
1 Because the quantity of buildings is huge, to assure the buildings are following the regimentation, it is

mandatory to insert the energy consumption of all buildings in the Platform OPERAT (MTE, 2023).
2 ISO 50001 is an international standard for energy management systems that provides organizations

with a framework to establish, implement, maintain, and improve their energy performance.
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Beyond that, the auditor is supposed to collect all possible information about the
equipments: model, year of installation, date of start and frequency of utilization, how
many there are, how they are connected and how they feed up the building, if there are
forms of technical building management (TBM); if there are people responsible for the
verification in case of malfunction or even full-time. In the lighting, the quantity of lamps
in each room, the type of lighting.

Also, through interviews with the maintenance responsible or employees, the
auditor needs to collect the occupation schedule and operation of the building to have
the most precise information to suggest retrofit suggestions. All of these information
are going to be used in the subsequent phases, which discriminate two audit types: by
simulation or by expert opinion. Both of them are illustrated in the Figures below:

Figure 7 – Calculation Table: Analyse Conso Figure 8 – Simulation Pleiades

Source: Author

The simulation type has the energy assessment and enhancement initiatives de-
scribed in a very detailed manner, by the use of building thermal dynamic simulations.
It helps to improve the reliability of both the breakdown of energy consumption by cate-
gory and the estimation of energy savings, but it still presents significant uncertainties.

The expert audit type is the one in which savings estimates are established
according to the experts experience and static calculations, supplemented by the use
of the database of energy audit results conducted by the company on similar buildings.

However, both the categories have limitations. The audit by simulation is precise
but very time-consuming and financially expensive. The expert type is fast, but less
precise and extremely reliable on the experts experience, leading the company to be
dependent of the employees. Beyond that, it can have high variability depending on the
person responsible for the study. To improve the precision, efficiency and standardiza-
tion of these expert predictions, the use of machine learning can be recommended and
it is expected to generate fast, reliable and uniform results.

The data used in this study is acquired by the audits, which are made through a
single or multiple visits in the building, the collection of documentation, the analysis of
actual consumption of the buildings and finally the development of a thermal simulation.
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2.5 MACHINE LEARNING

Generally seen as a sub-field of artificial intelligence, machine learning algo-
rithms allow the systems to make decisions autonomously without any external support.
Such decisions are made by finding valuable underlying patterns within complex data
(SAH, 2020). An interesting definition is made by Zhou (2021):

Machine learning is the technique that improves system per-
formance by learning from experience via computational
methods. In computer systems, experience exists in the
form of data, and the main task of machine learning is to
develop learning algorithms that build models from data. By
feeding the learning algorithm with experience data, we ob-
tain a model that can make predictions on new observations
(ZHOU, 2021).

2.5.1 Machine Learning Cycle

The goal of Machine Learning algorithms is to automatically learn from data by
using general procedures (RIBEIRO; SINGH; GUESTRIN, 2016). Scientific ML com-
bines data-driven techniques with specialized domain knowledge, following a cyclical
workflow where scientists hypothesize, design experiments, analyze results, and refine
assumptions (SOUZA et al., 2022).

Figure 9 – Machine learning cyclic steps

Source: Raschka, Liu, and Mirjalili (2022)

It generally starts in the data acquisition phase, where relevant information are
gathered in order to form the bases necessary to the predictions. Data quality is ex-
tremely influent to a well precise model behavior.
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Following acquisition, data preparation as shown in Pipeline I is conducted, which
involves cleaning the data, handling missing values, and possibly transforming variables
to enhance data quality and consistency. Once the data is prepared, it is divided into
training and test subsets to assess model performance and prevent overfitting, allowing
for a reliable evaluation of how the model will generalize to unseen data. The training
and validation phase are the core of the IA implementation that requires the ensemble
of the parameters (the set of variables associated with the model). The overall scheme
of the training and validation is illustrated in the Figure 10 below:

Figure 10 – Training and testing - How to assure the validation of the model

Source: Author

Additionally, this phase requires determining the most suitable hyperparameters,
as these settings control the behavior of the model and can significantly impact its
performance and accuracy. Once the model has been trained and optimized, the evalu-
ation phase follows. By evaluating the model on test data, practitioners gather insights
into its accuracy, precision, and ability to generalize to unseen data (RASHIDI et al.,
2023). These insights feed back into the model tuning phase, where hyperparameters—
configuration settings that influence the model’s learning behavior — are adjusted to
optimize performance.

Inside Pipeline II occurs the cyclical operation of verifying the quality of the model
versus its simplicity, as the goal is to have the most precise and more user-friendly
model possible. To ensure that the model is interpretable and that predictions align with
do-main knowledge, SHAP (SHapley Additive exPlanations) analysis is often performed
after tuning. SHAP values assess the impact of each feature on individual predictions,
supporting transparency and interpretability (LUNDBERG, 2017). This interpretative
insight is then cycled back to refine feature selection and model tuning, making the
model progressively more robust and transparent.

Finally, there’s the final preprocessing pipeline, which occurs as a remodeling
of the variables to their original values (removal of normalization, for example), so the
users will be in contact with the real values in a user-friendly interface. Also, new data
can be continuously included as the whole work frame is already defined.
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2.5.2 Machine Learning models

The machine learning methods are many, and each type is well suited to an
application, as shown in Figure 11.

Figure 11 – Machine learning types

Source: Buckley Barlow (2019)

As shown in the previous figure, machine learning has 3 mainly types of learning
algorithms: supervised, unsupervised, reinforcement, but also a fourth one that is a mix
of supervised and unsupervised, called semi-supervised. According to Sarker (2021),
each one of them corresponds to the following:

• Supervised learning: utilizes labeled datasets to train algorithms, allowing for
accurate classification of data and prediction of outcomes. By using labeled inputs
and outputs, the model can assess its own accuracy and improve over time, which
is essential for applications that require pattern recognition and decision-making
based on predefined data (SUBASI, 2020).

• Unsupervised learning: analyzes unlabeled datasets, facilitating the discovery
of hidden patterns without human intervention. This approach is typically ap-
plied in three main tasks: clustering, which organizes similar data points; as-
sociation, which identifies relationships between variables; and dimensionality
reduction, which simplifies complex datasets while retaining essential information
(ALIRAMEZANI; KOCH; SHAHBAKHTI, 2022).

• Reinforcement learning: enables software agents and machines to automatically
evaluate the optimal behavior in a particular context or environment to improve its
efficiency.
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There are many Machine Learning methods whose complexity is great, and
there is no single one-size-fits-all type of algorithm that is best to solve a problem. The
kind of algorithm depends on the problem, number of variables, etc. Beyond that, there
are two classes of machine learning models. Classification models, that predict class
membership, and Regression models that predict a number (WAKEFIELD, 2021).

As this projects want to predict the savings of retrofit improvements, it focus on
prediction models, which the most popular are :

• Artificial neural networks: attempts to simulate a human brain such that a computer
can learn and make decisions in a human-like manner;

• Decision Tree: recursively evaluating different features and using the feature that
best splits the data at each node;

• Linear and Logistic regression: extends linear regression for classification prob-
lems and models the probabilities with two possible outcomes. Assumption: lin-
earity, no outliers and independence.

From the neural networks, it emerged a whole new field of research that is called
deep learning and whose functioning is not going to be covered in this project. From
decision tree, two other well known methods, that are:

• Random forest: multiple decision trees to each subset of data;

• Gradient boosting: combination of weak predictors to form a strong one.

Choosing an appropriate machine learning model is critical, as the model type
directly impacts the system’s ability to capture patterns, make accurate predictions, and
generalize effectively to new data.

Each model has its strengths, limitations, and underlying assumptions about the
data; for instance, linear regression models assume linear relationships, while decision
trees can capture complex, non-linear patterns but may be prone to overfitting.

Selecting a model that aligns well with the data structure and the project objec-
tives allows practitioners to maximize performance while avoiding biases or inaccura-
cies. A well-chosen model not only optimizes predictive accuracy but also enhances
efficiency, interpretability, and scalability, making it an indispensable step in building
reliable, robust machine learning applications.
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2.5.3 Artificial Neural Networks (ANN)

Artificial neural networks (ANNs) are comprised of a node layers, containing an
input layer, one or more hidden layers, and an output layer. Each node, or artificial
neuron, connects to another and has an associated weight and threshold. If the output
of any individual node is above the specified threshold value, that node is activated,
sending data to the next layer of the network. Otherwise, no data is passed along to the
next network layer (IBM, 2017). The model created by Frank Rosenblatt in 1958 show
simplest neural network that consists of n number of inputs, only one neuron, and one
output, n being the number of features of the dataset (DASARADH, 2020).

Figure 12 – Preception of ANN

Source: Dasaradh (2020)

1. For each input, multiply the input value x1 with weights w1 and sum all the multiplied
values. Weights — represent the strength of the connection between neurons and
decide how much influence the given input will have on the neuron’s output.
Therefore:

∑
x · w

2. Add bias b to the summation of multiplied values, called z: z = x · w + b

3. Pass the value of z to a non-linear activation function, used to introduce non-linearity
into the output.
It can be used Logarithmic, Sigmoid, ReLU functions y(z).

To verify the accuracy of the solution, the methods are backpropagation and
optimization. Backpropagation refers to the estimation of how far the answer is from the
desired solution, with the help of a loss function. The Loss function is the MSE (mean
squared error) calculated to each pair of calculation and prediction. The loss function is
used to calculate the Cost Function, that is the mean of the MSE of all data.

To find the best weights and bias for the Perceptron, it is necessary to know how
the cost function changes about weights and bias. This is done with the help of the
gradient (rate of change) of the cost function concerning to the weights and bias.

The optimization is the selection of best weights and bias of the perceptron. The
weights and bias are updated as follows, and the backpropagation and gradient descent
is repeated until convergence. Learning rate (α) is a hyperparameter which is used to
control how much the weights and bias are changed.
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2.5.4 Gradient Boosting Machine (GBM)

GBM is part of the Boosting class, which is actually an ensemble of learning
algorithms that improve robustness of a single estimator, by combining multiple weak
or average predictors (RAY, 2023).

According to Temizel et al. (2020), the GBM method can be seen as a numerical
optimization algorithm that aims at finding an additive model that minimizes the loss
function. It is capable of reducing the model variance by averaging several decision
trees, and it is also capable of reducing the bias through the sequential error modeling
by adding, at each step; a new decision tree (“weak learner”) that best reduces the loss
function. This is shown in Figure below.

Figure 13 – GBM learning mechanism
Figure 14 – GBM interations

Source: Temizel et al. (2020)

According to Temizel et al. (2020), a simplified calculation mechanism to GBM:

1. Initialization: set the residual r0 = y and f̂ = 0. y is an initial guess of f̂ .
2. For k = 1, 2, ...,K, do the following:
a Randomly choose a subsample (yi, xi)

N ′
from the full training dataset, with N’ is the

number of data points corresponding to the fraction;
b Using (yi, xi)

N ′
fit a decision tree f̂k of depth d to the residual rk−1.

c Update f̂ by adding the decision tree to the model f̂(x)← f̂(x) + αf̂k(x).
d Update the residual rk ← rk−1 − f̂(x).
3. End For

Where:

d: the depth of decision trees or the maximum interaction order of the model;
K: the number of iterations, which also corresponds to the numbers of decision trees;
α: the learning rate, which is usually a small positive value between 0 and 1, where
decreases lead to slower fitting, thus requiring the user to increase K;
η: the fraction of data that is used at each iterative step;
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As shown, the algorithm starts by initializing the model by a first guess, which
is usually a decision tree that maximally reduces the loss function (the mean squared
error), then at each step a new decision tree is fitted to the current residual and added
to the previous model to update the residual. The algorithm continues to iterate until
a maximum number of iterations, provided by the user, is reached. This process is so-
called stage wise, meaning that at each new step the decision trees added to the model
at prior steps are not modified, improving in the regions where it does not perform well
(TEMIZEL et al., 2020).

Gradient Boosting Machines (GBM) have become instrumental in the construc-
tion and building industries due to their predictive power and adaptability to complex,
multidimensional data. For instance, GBMs have been used in predicting energy con-
sumption in high-performance buildings, where they can handle diverse datasets includ-
ing weather conditions, occupancy patterns, and equipment operation metrics.

In studies such as Touzani, Granderson, and Fernandes (2018) have made their
study upon a large dataset of 410 commercial buildings. The model training periods
were varied and several prediction accuracy metrics were used to evaluate the model’s
performance. The results show that using the gradient boosting machine model im-
proved the R-squared prediction accuracy and the CV(RMSE) in more than 80 percent
of the cases, when compared to an industry best practice model that is based on
piecewise linear regression, and to a random forest algorithm.

Another example is the work of Shchetinin (2019) that has studied 300 buildings
in Russia and shown that the capacity and effectiveness of GBM in solving the problem
of energy efficiency was tested on both model and real data of energy consumption
from smart meters of building conglomerate. As a whole, the GBM model showed
higher forecasting accuracy than the regression and random forest models for all tested
training periods. The results of computer experiments showed that the use of the GBM
model can improve the accuracy of energy efficiency assessment as a separate building
and a complex of buildings as a whole.

The ability to extract practical insights from complex datasets has become crucial
across various industries in this era of data abundance. Predictive modeling, a central
aspect of this process, leverages machine learning to forecast future outcomes, trends,
and patterns with unprecedented accuracy (GUPTA; SHARMA; ALAM, 2024).
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2.5.5 Decision Tree

Decision Trees are a widely used class of supervised learning algorithms that
facilitate both classification and regression tasks, the case of this project as described
in the Figure 16 below. As shown, the space variable x prediction is subdivided into
trees, which are actually multidimensional, considered the many variables used to make
the model’s prediction.

Figure 15 – Decision tree algorithm

Source: Hastie, Friedman, and Tibshirani (2001)

The tree regression algorithm is described through the steps provided by Hastie,
Friedman, and Tibshirani (2001):

1. Divide the predictor space—that is, the set of possible values for
X1, X2, . . . , Xp—into J distinct and non-overlapping regions, R1, R2, . . . , RJ .
2. For every observation that falls into the region Rj , make the same prediction, which
is simply the mean of the response values for the training observations in Rj .
3. Divide the predictor space into high-dimensional rectangles R1, . . . , RJ that mini-
mize the RSS, given by:

J∑
j=1

∑
i∈Rj

(yi − ŷRj )
2

where ŷRj is the mean response for the training observations within the jth box. Which
is to select the predictor Xj and the cutpoint s such that splitting the predictor space
into the regions X|Xj < s and X|Xj ≥ s leads to greatest possible reduction in RSS.
5. Repeat the process, looking for the best predictor and best cutpoint in order to split
the data further so as to minimize the RSS within each of the resulting regions, looking
for the smaller RSS within the simpler tree without overfitting.

This procedure generates a sequence of trees indexed by a nonnegative tuning
parameter α. For each value of α, there is a a subtree T ∈ T0 such that RSS + α|T |
is as small as possible, with |T | indicating the number of terminal nodes of the tree T .
Therefore, according to Liu (2015), the tuning parameter α controls a trade-off between
the subtree complexity and its fit to the training data.
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2.5.6 Random Forest

Random Forest is an ensemble learning method primarily used for classification
and regression tasks. It builds multiple decision trees during training and outputs the
mode of their predictions for classification or the mean prediction for regression. This
approach enhances model accuracy and controls overfitting.

Figure 16 – Random forest algorithm

Source: Hastie, Friedman, and Tibshirani (2001)

The random forest algorithm to regression is described through the steps pro-
vided by Hastie, Friedman, and Tibshirani (2001):

1. For b = 1 to B:

(a) Draw a bootstrap sample Z∗ of size N from the training data.

(b) Grow a random-forest tree Tb to the bootstrapped data, by recursively repeat-
ing the following steps for each terminal node of the tree, until the minimum
node size nmin is reached.

i. Select m variables at random from the p variables.

ii. Pick the best variable/split-point among the m.

iii. Split the node into two daughter nodes.

2. Output the ensemble of trees {Tb}B1 .

To make a prediction at a new point x in regression:

f̂B
rf (x) =

1
B

∑B
b=1 Tb(x).

As shown in the algorithm, what Random Forest does is to create aleatory
decision trees which take into account different trunks of data, take the best one of
each of them (through the process described in the last section) and combine the
final prediction by calculating the mean of the prediction given by each decision tree
of its ensemble. Therefore, random Forest provides a measure of feature importance,
indicating the contribution of each feature to the model’s predictions.
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2.5.7 Bias and Variance

Controlling the flexibility of a machine learning algorithm is strongly linked to the
balance between bias and variance. According to Wickramasinghe (2024), bias refers
to error caused by oversimplification, while variance is due to oversensitiveness.

Figure 17 – AI applications Figure 18 – ML Mathods

Source: Aliferis and Simon (2024)

Balancing bias and variance is a fundamental challenge in machine learning, as
it directly influences a model’s ability to generalize beyond the training data. Bias occurs
when a model is overly simplistic, failing to capture the true underlying patterns in the
data, while variance arises from excessive sensitivity to fluctuations in the training set,
leading to overfitting. According to Aliferis and Simon (2024):

Successful data analysis methods balance training data
fit with complexity since too complex model [...] leads to
overfitting [...] whereas too simplistic models [...] lead to
under-fitting, which makes future predictive performance
small (ALIFERIS; SIMON, 2024).

Rather than simply avoiding overfitting or underfitting, the goal is to achieve an
optimal trade-off between these two sources of error. Strategies like cross-validation,
regularization, and adjusting model complexity allow data scientists to fine-tune this
balance. For example, using regularization techniques such as L1 or L2 penalties can
prevent models from becoming too complex, while methods like cross-validation provide
a more reliable estimate of how the model will perform on unseen data.

Ultimately, this balance is not static but needs continuous adjustment depend-
ing on the problem, data size, and algorithm choice, underscoring the importance of
iterative experimentation in model development.
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2.5.8 Filling the gaps

In data analysis and machine learning, dealing with missing data is a frequent
and critical challenge. Information gaps within datasets can limit analytical accuracy
and weaken the reliability of any insights drawn. Addressing these gaps requires careful
planning and often involves a range of strategies to maintain data quality. From simple
removal techniques to complex modeling solutions, each approach aims to mitigate the
potential biases and inaccuracies that can arise when key information is absent.

The missing values are information gaps. At best, these information gaps may
prevent us from reaching important insights. It can cast doubt on the robustness of
insights derived from the data or limit our view of the whole, and in the worst scenario,
they can become barriers that lead to biased hypothesis and, therefore, poor machine
learning models: "garbage in, garbage out".

In order to minimize the gap effects, there are many strategies in data science.
According to SHAW (2021), no matter how fancy the algorithm, data quality will always
be a limiting factor. To help reduce the impact of missing data, there are three levels
of strategy. The simple one (⋆) is to drop the rows that present missing values. The
intermediate one (⋆⋆) is to replace the missing values with a statistic calculated from
the values which are not missing. And the advanced one (⋆ ⋆ ⋆) is to iteratively model
missing values using non-missing data.

• (⋆) Drop method: Consists of dropping all rows with missing values, but as we
are already working with a small amount of data, removing all the lines where
there’s a missing value is not the best option for this project;

• (⋆⋆) Fill method: Consists of imputing missing values using statistics based on
non-missing values, this approach is well adapted to our case, as it needs almost
no computational effort and little time.

• (⋆⋆) Fill and indicate method: Imputing as in (2), but adding columns indicating
if a particular value was imputed, this is also a well adapted method to our situ-
ation. It needs only a little more storage and a small code adaptation when the
metamodel will be used by the company’s employees. To both methods, we use
the median to the quantitative data and the mode to the qualitative data.

• (⋆ ⋆ ⋆) Bayesian method (MICE): the Bayesian Ridge model, which is a Multivari-
ate Imputation By Chained Equations algorithm (MICE) approach, that estimates
a probabilistic model of the regression problem. Here the prior for the coefficient
w is given by spherical Gaussian.
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• (⋆ ⋆ ⋆) Tree method: the approach using an Extremely Random Forest model,
also a MICE approach; that implements a meta estimator that fits a number
of randomized decision trees (a.k.a. extra-trees) on various subsamples of the
dataset and uses averaging to improve the predictive accuracy and control over-
fitting (SK-LEARN).

• (⋆ ⋆ ⋆) Completing the missing values with real data: the data collect in the
server was one of the first desires of this project, however due to the variability and
complexity of the data and little time available, we prefer not to use this technique,
with few exceptions.

SHAW (2021) made a test with the Fill methods and MICE approaches. The
study used an example dataset to complete a dataset of 10 features, in which 3 of them
had 15%, 24% and 5% of data missing, obtaining the results shown in the Figure 19
below :

Figure 19 – Cross validation results

Source: SHAW (2021)

The results are real close and even if the MICE methods execution are a little bit
more complex, separating between training and validation tests, they do not represent
a significant energy saving in terms of any out of fold cross validation tests. Ideally, a
test in our dataset should be conducted, but due to time constraints, we are nor going
to test every method.

In conclusion, handling missing data is essential for maintaining data integrity
and producing reliable machine learning models. Each method for addressing informa-
tion gaps—ranging from simple deletion and statistical imputation to advanced Bayesian
and tree-based imputation techniques—carries its strengths and trade-offs. While more
sophisticated approaches like MICE can yield marginal improvements, their added
complexity and resource requirements may not always justify their use, particularly in
time-constrained projects. As shown by SHAW (2021) , simpler imputation methods can
perform comparably well for cross-validation, making them practical for many scenarios
where data is limited or computational efficiency is critical.
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2.5.9 Hyperparameters optimization

Hyperparameter calibration plays a crucial role in definition of the most assertive
model. Lavesson and Davidsson show that tuning hyperparameters is often more im-
portant than the choice of the machine learning algorithm (WEERTS; MUELLER; VAN-
SCHOREN, 2020). Optimizing these hyperparameters helps to find a suitable balance,
for its tuning, there are many methods to find the optimal values, as shown below.

Figure 20 – Hyperparameters optimization techniques

Source: Grid Search (GS), Random Search (RS), Gradient-Based Models, Bayesian Optimization using
Random Forest (SMAC), Bayesian Optimization-Gaussian Process (BO-GP), Bayesian Opti-
mization HyperBand (BOHB), Genetic Algorithm (GA), and Particle Swarm Optimization (PSO)
(WEERTS; MUELLER; VANSCHOREN, 2020)

In conclusion, selecting the right hyperparameter optimization technique de-
pends on the specific requirements and constraints of the model, dataset, and com-
putational resources. While methods like grid search (GS) and random search (RS)
are straightforward and widely applicable, they may not always be efficient for com-
plex or high-dimensional problems. Advanced methods offer more targeted exploration
of the hyperparameter space and can yield faster results, though they often require
more setup or computational power. Ultimately, the strengths and limitations of each
method highlight that there is no universally best approach—each comes with trade-offs
between accuracy, efficiency, and resource allocation.
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2.5.10 Cross Validation

Cross-validation is one of the most widely used data resampling methods for
model selection and evaluation, being used to assess the generalization ability of pre-
dictive models and to prevent overfitting (BERRAR, 2019).

In k-fold cross-validation, the available learning set is partitioned into k disjoint
subsets of approximately equal size. Here, “fold” refers to the number of resulting
subsets. This partitioning is performed by randomly sampling cases from the learn-
ing set without replacement. The model is trained on k-1 subsets, which, together,
represent the training set. Then, the model is applied to the remaining subset, which
is denoted as the validation set, and the performance is measured. This procedure
is repeated until each of the k subsets has served as validation set. The average
of the k performance measurements on the k validation sets is the cross-validated
performance (BERRAR, 2019).

Figure 21 – Cross-validation: K-fold method

Source: Berrar (2019)

The choice of parameter k in validation crusade does not follow a precise rule,
although divisions into 5 or 10 are common parties. As we increase the value of k,
the difference in size between the original training set and the resampled subsets de-
creases, reducing thus the bias of the cross-validation technique. However, an increase
in k also implies an increase in the time required to obtain the final validation result
crusade (KUHN; JOHNSON, 2013).

Therefore, cross-validation is a crucial technique in machine learning and statis-
tical modeling because it helps to evaluate the performance of a model by assessing its
ability to generalize to unseen data. Instead of relying on a single train-test split, cross-
validation divides the data into multiple subsets, trains the model on some subsets, and
validates it on others.
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2.5.11 Clusterisation

Clustering algorithms exploit the underlying structure of the data distribution and
define rules for grouping the data with similar characteristics, resulting in the partition of
a given dataset according to the clustering criteria without any prior knowledge about
the dataset (AHMED; SERAJ; ISLAM, 2020). There are many clustering methods, such
as partitioning methods, hierarchical, density and model based and fuzzy clustering. For
its simplicity and low computation cost, this project presents specifically the K-means
method

Figure 22 – K-means method

Source: Hagelbäck (2019)

As shown in the Figure, what k-means does is to define random centroids and
iterate them in order to find the closest point to each centroid while keep them distant
of the other clusters. To discover the ideal number of clusters in k-means, there are two
main graphical methods to be applied: Elbow and Silhouette.

2.5.11.1 Elbow Method

The Elbow Method involves running the algorithm for various values of k (the
number of clusters) and calculating the Within-Cluster Sum of Squares (WCSS) for
each k (number of clusters). The WCSS measures the total squared distance between
each point and the centroid of its cluster, where Ci represents the i-th cluster, x is a
point, and µi is the centroid of cluster Ci.

WCSS =
k∑

i=1

∑
x∈Ci

∥x− µi∥2

As the number of clusters increases, WCSS decreases since each cluster be-
comes more focused. The Elbow Method plots k versus WCSS, revealing a point where
the decrease rate in WCSS sharply reduces, forming an "elbow." This elbow represents
the optimal cluster number, as further increasing k provides minimal reduction in WCSS,
suggesting diminishing returns on intra-cluster homogeneity.
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2.5.11.2 Silhouette Score

The Silhouette Score measures the degree to which a data point fits within
its assigned cluster compared to others. For each data point, the Silhouette Score is
defined as:

Silhouette Score =
b− a

max(a, b)

where:

• a is the average distance between the point and other points in the same cluster

• b is the average distance between the point and points in the nearest neighboring

The Silhouette Score ranges from -1 to +1, where higher scores indicate better-
defined clusters. A score close to +1 suggests that the data point is well-clustered,
while scores around 0 indicate points on cluster boundaries. Negative values suggest
possible misclassification. Calculating the average Silhouette Score across all data
points for varying k values helps identify the optimal number of clusters, with the peak
score representing the ideal number of clusters.

Choosing the correct number of clusters is critical for effective clustering, as too
few clusters may miss key patterns, while too many may overcomplicate the model.
Several techniques are commonly used to determine the ideal number of clusters,
including the Elbow Method and the Silhouette Score.

2.6 EVALUATION METRICS FOR MACHINE LEARNING

2.6.1 R² (Coefficient of Determination)

The coefficient of determination, often denoted as R2, is a statistical measure
used to assess the goodness of fit of a regression model. It quantifies the proportion of
the variance in the dependent variable that is explained by the independent variables
in the model. R2 ranges from 0 to 1, with higher values indicating a better fit.

The formula for R2 is given by:

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2

Where:

yi : Actual values

ŷi : Predicted values

ȳ : Mean of actual values

n : Number of data points
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R² serves as a valuable performance indicator for regression models. A higher
R² value indicates that a larger portion of the variance in the dependent variable can
be explained by the model. This essentially means that the model is more effective at
capturing and accounting for the fluctuations or changes in the data, making it a strong
tool for understanding and predicting real-world phenomena.

For Craven and Islam (2011) apud Balczareki (2024), this coefficient expresses
the amount of variation in the target variable which can be explained by the variation in
the attributes of the set of data. However, the isolated analysis of this coefficient is not
sufficient to determine to validate a model, as it is possible for a bad model to obtain a
high R2 value. Its usefulness lies in comparing two valid models.

While R² is a useful metric for evaluating the explanatory power of a regression
model, relying on it alone can be misleading. A high R² does not necessarily indicate
a robust model; it may still be susceptible to overfitting, particularly if the model is
complex and fits noise in the data rather than the true underlying trend. Therefore, R²
should be considered alongside other metrics such as adjusted R², mean absolute error
(MAE), or root mean square error (RMSE) to assess the model’s predictive accuracy
and generalizability. By comparing these metrics across models, a more comprehensive
understanding of model performance can be achieved, ultimately aiding in the selection
of the model that best balances explanatory power and predictive reliability.

2.6.2 RMSE (Root Mean Square Error)

The Root Mean Square Error, abbreviated as RMSE, is a widely used metric
to measure the average error between predicted and actual values in a regression
model. It provides a measure of the typical or root average magnitude of errors. RMSE
is sensitive to outliers. The RMSE formula is:

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2

Where:

n = number of data points

yi = actual values

ŷi = predicted values

In essence, a lower RMSE signifies that the model’s predictions, on average, ex-
hibit less divergence from the actual observed values, reflecting its enhanced precision
in estimating the relationships between variables and generating forecasts. In simpler
terms, a reduced RMSE implies that the model’s typical prediction errors are smaller,
underscoring its ability to provide more accurate estimations.
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2.6.3 MAE (Mean Absolute Error)

The Mean Absolute Error, denoted as MAE, is another measure of the average
error between predicted and actual values in a regression model. It represents the
absolute value of the average magnitude of errors and is less sensitive to outliers
compared to RMSE. The formula for MAE is given by:

MAE =
1

n

n∑
i=1

|yi − ŷi|

Where:

n = number of data points

yi = actual values

ŷi = predicted values

Mean Absolute Error (MAE) serves as a method for quantifying the average
magnitude of errors in a predictive model. It does so by taking the absolute value of
the differences between the model’s predictions and the actual observed values and
then averaging these absolute differences. Unlike other metrics, such as RMSE, that
square errors, MAE provides a straightforward measure of the typical size of errors in
their original units, which can be more easily interpreted.

2.6.4 AE95 (Absolute Error at 95th Percentile)

AE95, or Absolute Error at the 95th Percentile, is a statistic that quantifies the
magnitude of errors at a specific percentile of the error distribution. It’s useful for under-
standing the upper tail of the error distribution, which can be crucial in some applications.
The formula for AE95 is:

AE95 = Percentile (|yi − ŷi|, 95%)

In this formula, there is the 95th percentile of the absolute errors in the data.
AE95 provides insights into the worst-case errors, which can be important in risk as-
sessment and decision-making. In the context of AE95, or Absolute Error at the 95th
Percentile, the 95th percentile represents a statistical point in the error distribution.

To obtain the 95th percentile of the absolute errors in the dataset is essentially
to identify the error value below which only 5% of the data points fall. This is particularly
significant in risk assessment and decision-making because it focuses on the upper
tail of the error distribution, capturing extreme or worst-case scenarios. By examining
the AE95, there is the estimation of a maximum potential error that the model might
encounter.
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2.7 SENSITIVITY ANALYSIS

The SHAP (Shapley Additive Explanations) framework offers a robust, game-
theoretic approach for interpreting the outputs of machine learning models, rooted
in the Shapley values developed in cooperative game theory. Originally proposed by
Shapley (1953), these values are used to allocate payoffs fairly to players in a game
based on their marginal contributions to the total payoff. SHAP adapts this concept to
machine learning by treating each feature as a “player” and the model’s prediction as
the “payoff,” allowing for an objective distribution of each feature’s contribution to the
model’s output (ROZEMBERCZKI et al., 2022).

In practical applications, SHAP values enhance interpretability by quantifying
the contribution of each feature to individual predictions. In mathematical terms, the
Shapley value for a feature i is derived by evaluating its contribution to every possible
subset of features, thus accounting for feature interactions and ensuring that each
feature’s importance is assessed fairly. The Shapley value ϕi is given by the formula
(ZENG, 2024):

ϕi =
∑

S⊆F\{i}

|S|!(|F | − |S| − 1)!

|F |!
[f(S ∪ {i})− f(S)]

Where:

F represents the set of all features,

S ⊆ F \ {i} is every subset that excludes i,

|S| is the size of subset S,

f(S ∪ {i}) is the model predictions using subset S ∪ {i},

f(S) is the model predictions using subset S

This equation captures the marginal impact of each feature by assessing how
the model’s prediction changes with and without the feature across all feature subsets
(ARROW et al., 1953). SHAP values, thus, provide both local explanations for individual
predictions and global feature importance insights when aggregated across samples,
making SHAP a powerful tool for interpreting complex models (LUNDBERG, 2017;
SUNDARARAJAN; NAJMI, 2020).

Feature selection is another critical application of SHAP, especially in high dimen-
sional datasets where irrelevant or redundant features can lead to decreased model
performance. According to Guyon and Elisseeff (2003), feature selection not only im-
proves computational efficiency but also enhances model interpretability by removing
noise.
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Feature selection is an essential step in the machine learning process that fo-
cuses on identifying the most important features in the data while discarding those
that are unnecessary or repetitive. This step is critical for boosting model performance,
minimizing overfitting, and simplifying the complexity of machine learning models, mak-
ing them easier to interpret. In datasets with a large number of features, irrelevant or
duplicate features can add noise and increase the likelihood of overfitting. Saeys (2007)
apud Kraev et al. (2024) shows that this is particularly problematic in domains such as
healthcare for example, where models are expected to make critical decisions. For in-
stance, in the prediction of patient outcomes, irrelevant features might skew the model’s
predictions, leading to incorrect diagnoses or treatment plans.

The SHAP framework also offers visualization techniques to facilitate model
interpretation. The summary plot, for instance, ranks features by their mean absolute
SHAP value, while dependence plots display the relationship between specific features
and their SHAP values across instances, highlighting how feature values affect model
predictions (LUNDBERG, 2017; SUNDARARAJAN; NAJMI, 2020).

Figure 23 – SHAP Method

Source: Awan (2023)

Lastly, according to Awan (2023), SHAP values are useful for model interpreta-
tion due to their key properties: additivity, allowing the contribution of each feature to be
summed up independently; local accuracy, enabling precise, localized interpretation of
individual predictions; missingness, making them robust to irrelevant or missing data;
and consistency, ensuring stability in interpretation as long as feature contributions re-
main unchanged. Overall, these properties make SHAP values an effective, consistent
method for understanding feature importance in model predictions. These properties,
combined with SHAP’s rigorous game-theoretic foundation, makes it one of the most
reliable tools for model interpretability in machine learning.
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2.8 SIMILAR STUDIES

Recent studies highlight the effective application of machine learning techniques
in predicting energy savings from retrofit actions in buildings. Xu (2020) wrote a thesis
upon the application of machine learning to the retrofit effects on energy consumption.
He applied a ML to assess the immediate and long term retrofit effect in energy reduc-
tion, energy end-use reduction, and LEED achievement, as a function of pre-retrofit
energy use, pre-retrofit energy end-uses, short-term weather, long term climate, build-
ing characteristics, policy region, and past retrofit actions, for a commercial building
portfolio.

Xu (2020) discovered that pre-retrofit energy use and short-term weather are
key predictors of energy savings, while building characteristics strongly correlate with
LEED certification. Combined capital and operational actions are more effective than
capital actions alone, especially for reducing base load electricity and meeting LEED
standards, with extreme weather yielding higher electricity savings.

Alanne and Sierla (2022) discussed the learning ability as a feature of buildings.
They have concluded that the increasing autonomy of smart buildings, the evolving AI,
and the increasing demand for interaction between humans and buildings challenge
the future research. Further research is needed, for example, to find out to which
extent the AI may enhance building performance and the buildings’ adaptability to
unpredicted changes when the entire system rather than single processes is concerned.
The reviewed reinforcement learning applications involve adjustment both in real-time,
hourly, and daily timescales. It is possible to conclude that the adjustments would
perform better if they incorporated the outputs of asset management and prediction
as state information to the reinforcement learning agent, being the major direction for
future research to the application of AI to smart buildings.

Also, Zhou et al. (2023) wrote a review upon the impact of machine learning
methods on the optimization and control of HVAC systems, as well as on building de-
sign and fault diagnosis and detection, coming to the conclusion that there are few
practical examples of their adoption. The selection of appropriate machine-learning
methods depends on several factors, such as the application, the data type, data quan-
tity and quality, calculation cost and calculation complexity. At present, the machine
learning methods used in HVAC system optimization are mainly supervised learning
and reinforcement learning.

Finally, Bocaneala et al. (2024) reviewed AI applications and techniques that
have been used in the context of retrofit projects. Their analysis revealed the potential
advantages and difficulties associated with employing AI techniques in retrofit projects,
and also identified the commonly utilized techniques, data sources, and processes
involved, synthesizing the state-of-the-art of AI applications for Retrofit building actions.
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According to the research of Bocaneala et al. (2024), machine learning accounts
for 35% of the AI applications for retrofit in buildings, the most part of it dominated by
supervised ML, as shown in the Figure below:

Figure 24 – AI applications
Figure 25 – ML Methods

Source: Bocaneala et al. (2024)

They have reviewed 56 articles, identifying that supervised ML methods such as
deep learning methods were vastly implemented to discover the significant features that
produce the cost-optimal retrofit strategy in an optimized way without having to undergo
an exhaustive search process. The study’s findings demonstrate that by integrating
box plots and scatterplots, unsupervised machine learning techniques like scenario
sampling (2-ary coverage), clustering (k-means), and dimensionality reduction (PCA)
can be used to visually communicate high level information about KPI trade-offs across
renovation scenarios. The authors have proposed a set of steps to create a open
integrated system to access the general retrofit data:

1. Establish an open data source framework for retrofit projects;
2. Embrace semantic web technologies;
3. Focus on building performance;
4. Include stakeholders in the retrofit process;
5. Increase the use of AI applications;
6. Conduct further research.

These recent studies show the shift of the industry towards data-driven and AI-
based approaches in building energy efficiency and retrofit projects. As phenomenons
in buildings are physical and therefore mathematically and statistically approachable,
AI and specially machine learning can enable modeling the expected behaviors of
buildings, allowing the designers to learn, adapt, and have fast answers, having more
scientific support to create more sustainable buildings. Therefore, data-driven solutions
can be seen as tools that, when combined with the human analysis capabilities and
creative solutions, can maximize a building’s energy performance.
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3 METHODOLOGY

The methodology of this project is divided into two phases: data exploration and
preprocessing of the databases and the creation of the prediction models and their
analysis. The workflow is described in the Figure 26:

Figure 26 – Workflow methodology

Source: Balczareki (2024) and Uriona-Maldonado, Vaz, and Zaghi (2024)

The data used in this study is acquired by the audits. The methodology begins
gathering and preprocessing two different databases to prepare the data for machine
learning. After the treatment of the data, which involves standardization, manual clean-
ing and many other procedures, the data is divided in training and test. Then, machine
learning models, with optimized parameters, are trained and then evaluated for perfor-
mance through a robust search of the best hyperparameters. When the performance
achieve a satisfactory performance, SHAP analysis is conducted to identify and rank
the most important features. This ranking is checked to verify if all the variables in it are
coherent from a physical point of view and are in a reasonable quantity, if the features
are relevant and not too numerous, the model is selected to receive some tuning to
verify the possibility of its improval to finally get to the best model. This process is
repeated for each one of the 12 models created in this project.
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3.1 STEP 1: EXPLORATORY ANALYSIS AND PREPROCESSING DATABASES

3.1.1 First database exploration (Retrofit Synthesis database)

The Retrofit Synthesis database contains the results of the retrofit energy savings
of the data, subdivided in five classes: Generic information, final energy by post of
consumption, environmental, energy and financial aspects, shown in Figure 27.

Figure 27 – Retrofit Synthesis database

Source: Author

However, as complete as this database may seem, its Identification key does not
correspond to any other database. To use this database, a filter is applied:

Figure 28 – Retrofit Synthesis database filtered

Source: Author

As shown in the Figure 28 above, there’s only 9 columns retained, they are:
surface, the retrofit description and energy savings to heating, cooling, lighting, bureau
equipments and ventilation systems. RT (thermal regulation) information, Environmen-
tal e most of the economic aspects are not used either. As these would be mostly
characteristics to be predicted, we keep them outside the model.
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3.1.2 Second database exploration (Audit’s synthesis)

This database is one of the most important ones. It has 133 columns and 504
buildings. There are 13 columns that register the generic information about the buildings.
Another 15 columns that relate the building with a reference. 22 columns that describe
the building final energy consumption and its calculation method. We also have for final
energy, primary energy, CO2 emissions and energy bill, 11 columns that represent the
ratio kWh/m²/year to each one of them.

Beyond that, there are 4 columns that describe the building’s heat loss, 3 to
describe occupation characteristics, 5 to describe general characteristics of the enve-
lope, 13 to describe the walls, windows, floor and roof, 12 columns to describe the
building’s heating, cooling, hot water, emission, ventilation and lighting systems and the
last column shows the reach of the BMS (Building Management System) in the building.
The Figure 29 below shows the general scheme of the database:

Figure 29 – Audit’s synthesis database

Source: Author
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To use this database, a filtering is made to the sake of a greater homogeneity in
the data, retraining the location of the buildings only to Paris and its suburbs. Also, the
methods are restrained to simulation. These restrictions are particular important to the
model development because it restrains the cases to those which are made by thermal
simulation under the same or very similar weather data files (EPW).

A large and reliable database is very desirable to make a model, mainly a huge
amount of cases. However, a large amount of characteristics to each case may turn the
model utilization very difficult, because the characteristics we use to the training are
those one required from the user. In practice, it is desired the larger amount of rows and
the smaller number of columns as possible. Therefore, in order to simplify the model, a
reduction of the number of columns is made.

Therefore, a selection of the most relevant or desired columns to be part of the
model are made. The identification columns, the regulation column, all the columns that
describe the consumption beyond the final energy in percentage terms, all the detailed
heat losses and others that were not judged useful by the company’s employees. The
remaining columns are classified between quantitative and qualitative:

Figure 30 – Synthesis Audits database

Source: Author
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The figure illustrates the structure of the "Synthesis Audits Database" for building
performance analysis, highlighting connections between various data categories. It
begins with a "Technical Description" section, detailing construction characteristics
such as wall, floor, roof, and window properties, as well as heating, cooling, hot water,
ventilation, and lighting specifications.

Information flows into the "Generic Information" category, where parameters like
surface area and installed lighting power are collected. "Ratios" are calculated for met-
rics such as Final Energy (WFE/m²) across heating, cooling, lighting, and other systems.
Additional performance metrics, termed "Other Ratios," include building compactness,
total heat loss, and occupancy rates, providing insights into energy efficiency and usage
patterns. These values are going to be connected through surface to the first database.

To fill up the empty spaces in this database, Fill method is used, which has a
simple application and great indicators. Beyond that, it is important to pay attention if
the data can really be replaced or if the feature demands an insertion of real data or its
exclusion of the database.

First, both AAPE Analysis and Synthesis Analysis are made. These are the
database treatments, so they will be cleaned and ready to be put together in the Assem-
bling code. After that, an standardization of retrofit names is made, because between
1993 different retrofit actions, the majority of them have different names. After the stan-
dardization, filtering and correlation analysis are made, converting textual features into
numeric ones, which can be understood by the model.

3.1.3 Preprocessing of first database (Retrofit Synthesis)

To the Retrofit Synthesis database, the data exploration is shown in Figure 31:

Figure 31 – Simplified Algorithm Code - Retrofit Actions Synthesis Analysis

Source: Author

First, the data is imported and special characters that Python isn’t capable of
comprehending are substituted. After that, we choose the columns to be dropped and
calculate the number of null rows, plotting the graphs with the medians to each column
also. From 1,6 Mb and 70 columns, described in the Figure ??, the selection of the most
interesting columns generates a simpler file of only 0,2 Mb and 9 columns, described
in the Figure 28.
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3.1.4 Preprocessing of second database (Audit’s synthesis)

First, we extract the entire data directly from the original database. It has around
700 KB, which comprises 133 columns and 504 different buildings, that were described
in the Figure 29 of the previous section.

From this, manually, 1 column was added to describe the audit’s year and 11
columns added in order to regroup some of the features in each column 1. The features
that had some sort of regrouping were: wall, window, glass, shading, roof, floor, heating,
cooling, ventilation principle, light control and the period of construction. Another column
is added to indicate the audit’s year.

After dealing with the data manually in order to know it carefully, we start the
big manipulations, which requires the intensive use of coding. The entire database was
treated with Python code, whose principles are described in the Figure 32 below.

Figure 32 – Simplified Algorithm Code - Synthesis Analysis

Source: Author

First, the data corresponding only to offices are selected. This choice is made
because the database comprises more than 20 different types of usages, however the
occupation may impact very much the consumption of the building, and it is better to
keep the study restricted to similar occupations. Beyond that, offices represents around
58% of all cases having a good amount of cases for the model development.

Among these offices, we select those in the Paris and suburbs region, which
corresponds to the 75,92,93 and 94 departments, representing 80% of all offices loca-
tions. That is extremely important because the model uses simulation results, which are
based in weather data Energy Plus Weather file (.EPW). Therefore, the retrofit impact
won’t be influenced by the .EPW file.

The simulation files used are those comprised in three different methods, which
are ’CW’, ’VE’ and ’P+C’. The first simulation method is CW, which is a pre-simulation
method used by the company years ago. VE corresponds to Virtual Environment, which
is a high quality software known internationally. finally, we use of P+C (Pleiades +
Comfie), well known in the French market. After that, we calculate the percentage of
final energy savings to all retrofit improvements.
1 This regrouping was carefully made with the help of the company’s experts and does not exclude any

information, keeping the original data in the dataset to further verifications.



52

Also, it is necessary to drop many columns. This process describes the cleaning
that was pointed out in the previous Section and described in the Figure 30. To deal
with empty rows, the Fill method described in 3.1.2 is applied to fill the empty rows,
being considered a statistic reliable method, even tough having the correct real data
would be evidently better.

To the qualitative variables, the analysis will be presented in bar charts, indicating
what values were inserted to every feature of the data with a bar plot comparison.
For the quantitative variables, there are histograms to each and every feature, also
comparing the distributions with and without the filling of the empty rows. The result
analysis will be detailed in the section Results.

3.1.5 Preprocessing : join both databases

As shown, after the first two treatments we end up with two different databases;
however, as we are going to create a model to predict energy savings from retrofit
outputs we need these two databases to be merged as a single one, using the common
characteristics between them. The scheme of this procedure is described in the Figure
33 below.

Figure 33 – Simplified Algorithm Code - Assembling

Source: Author

First, both outputs from the two previous treatments are collected. From these
two sources, we use the single element in common between them to merge the
database. Luckily, as multiple verifications procedures showed, the building surfaces do
not repeat themselves and are used as the common denominator to the assembling.

To effectively merge the data, we first verify which AAPE surfaces are contained
in the Synthesis surfaces list. For those whose surfaces are verified, the merging is
accomplished.
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3.1.6 Preprocessing: Database standardization

After the Assembling Code, all the data is cointained in a single dataframe.
However, the AAPE retrofit suggestions are many written in many forms, because they
are inserted manually by each one of the auditors and specifically adapted to the case
study upon which they worked. This multiplicity generates a need for standardization
of the database, so these similar solutions will be grouped in categories, allowing the
occurrence of sufficient cases to generate good statistics to make accurate predictions
to each class. The procedure is described in the Figure 34.

Figure 34 – Simplified Algorithm Code - standardization Analysis

Source: Author

First, the data is manually searched for patterns, then these patterns are written
down to pass through a massive grouping storing its respectively ID in a new column.
After that, a search is made to verify if there are any retrofit suggestions that belong to
existing ID categories that were not covered by the search and insert its pattern to its
inclusion in the grouping.

This process is repeated many times until there is a good convergence of all or
almost all patterns are attributed to an ID. The easiest way to do this would be using
a classification model rather than by hand. However, due to the time limitations of this
study and the small amount of data, that does not justify the application of sophisticated
techniques as such, we are going to keep it simple.

3.1.7 Preprocessing: Database Filtering and Correlation

After all the procedures, including the standardization, we have sufficient mature
data to make deeper analysis, mostly in the retrofit level rather than the previous building
level. The general process of this step is described in the Figure 35.

Figure 35 – Simplified Algorithm - Filtering and Correlation Analysis

Source: Author
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First, the frequency of each AAPE is verified in all the cases that were kept. Then,
as there are very low frequent suggestions that wouldn’t be statistically significant to
the model’s development, we make a filtering to keep only the retrofit suggestions that
have more than 15 occurrences.

A substantial amount of data is a fundamental requirement to a good machine
learning prediction. This need arises from the necessity to develop a model that can
effectively generalize from the training data to make accurate predictions or decisions
on new, unseen data. Larger frequency retrofit improvements provide a broader repre-
sentation of the underlying patterns, enabling the model to handle the complexity and
variability of actual data, extract relevant features, and reduce the risk of overfitting.

However, it’s crucial to maintain a balance between data quantity and quality,
ensuring that the data is representative and relevant to the problem at hand. While
a substantial dataset is essential, it is not solely about the quantity of data; quality
is equally crucial. A vast but noisy or biased dataset can lead to unreliable model
performance, and this will be evaluated after the model is trained.

Overall, the number of retrofit suggestions are 739. Between these, 535 were
classified. After filtering those with a frequency greater than 15, we have a total of 472
and eliminating those with zero saving, we have finally 460 retrofit actions in total to
be integrated in the model. After selecting the most frequent cases, we step into the
correlation analysis of all features against the overall final energy saving calculated for
all the retrofit improvement. The formula of the overall saving is described below:

Energy Saving (%) =


Heating Energy saving : pEFgchauff · pEFchauff

Cooling Energy saving : pEFgrefr · pEFrefr

Ventilation Energy saving : pEFgvent · pEFvent

Lighting Energy saving : pEFgecl · pEFecl

Bureau Equipment Energy saving : pEFgbureautique · pEFbureautique



The Total Energy saving is calculated in terms of final energy. This choice over
primary energy is because we would like to have the savings without necessarily de-
pending to which type of energy the building is submitted, which would be the case of
primary energy.

This value is used to make an extensive correlation analysis with all features, the
results are going to be explored in the Results section. For the quantitative variables,
we make two different analysis, first a scatter plot and then a histogram and violin chart
analysis. A complete analysis of the qualitative variables is also made through violin
plots for each categorical variable of each column. However, these analysis are not
presented for the sake of conciseness in this project.



55

3.1.8 Preprocessing: Feature Engineering

The pre-model phase is extremely important. It reflects basically the need of
transforming textual sentences into normalized numeric correspondents. This is made
through Python dictionaries.

Figure 36 – Simplified Algorithm Code - Pre modeling

Source: Author

First, we proceed to the storage of the variables in a dictionary. This is particularly
important to understand and translate the results of the model after the training and
make the sensibility analysis, but also to built an interface that is easily comprehensible
by the users.

These dictionaries are storage and used in the interpretation of the data and the
graphics that will be generated in the sensibility analysis after the model execution. The
stored data is used to create functions that find the correspondent ID.

The second operation in the pre-model code is to verify if there are empty rows,
for they prevent the right execution of the code. The second operation is to separate
the features from the target. The features are the characteristics used to the prediction,
and the target is the value the model is supposed to predict.

The features are the characteristics of the building and of the retrofit improvement
data that were stored in the Tableau AAPE, described in the Results section. The target
value is a single column that represents the overall saving of a retrofit improvement.

After that, both features and target are classified in qualitative and quantitative.
This is necessary since artificial neural networks and gradient boosting machine do not
make assumptions about the distribution of the data (INSTITUT MONTAIGNE, 2021). To
the quantitative data, there is a normalization of the values and the qualitative variables
are turned into binary columns.

In the case of the quantitative variables, we use the Min Max normalization
function, one of the most common ways to normalize data. For every feature, the
minimum value of that feature gets transformed into a 0, the maximum value gets
transformed into a 1, and every other value gets transformed into a decimal between
0 and 1. In the case of qualitative variables, a test to transform the values into binary
columns (dummy variables).
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3.2 STEP 2: MACHINE LEARNING MODEL

The model is the most important piece of code of this entire project. It contains
all the training to the artificial network and the gradient boosting model. The workflow
of the model is described in the Figure 37.

Figure 37 – Machine Learning Algorithm Code - model Workflow

Source: Author

The figure above shows the diagram that represents a machine learning
pipeline for training and evaluating the 12 retrofit models, ultimately selecting the
best-performing one as the final model. The process begins with a "Tableau Meta-
model," which serves as the initial dataset. The first step in the pipeline involves
separating the dataset into features (independent variables) and the target (dependent
variable) to establish the variables used for model training. Once the features and
target are defined, the dataset is split into training and testing sets, with 85% of the
data used for training the models and 15% reserved for testing, ensuring that the
model’s performance can be evaluated on unseen data.

The training phase involves a grid search to optimize hyperparameters for four
types of models: Artificial Neural Networks, Gradient Boosting Machine (GBM) com-
bined with Linear Regression, Decision Tree, and Random Forest. Each model is trained
and fine-tuned to find the best parameters for each algorithm, maximizing predictive
accuracy and minimizing errors. This grid search approach allows systematic testing
of various hyperparameter combinations, improving the likelihood of finding an optimal
configuration for each model.

After training, the models undergo a performance evaluation, where metrics are
calculated to determine how each model predicts the target variable. If a model is
deemed unsuitable based on these evaluations (i.e., its performance does not meet a
predefined threshold), it is discarded. For models that meet the performance criteria,
the best-performing one is selected.
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This model is then subjected to further analysis to identify the most influential
features, which provides insights into the factors most relevant to the predictions and
can inform decision-making. Then, the model’s most important features are ranked to
assess their impact on the outcome. Next, a clustering or outlier removal process is
applied to clean the data, enhancing model robustness by ensuring that extreme values
do not distort predictions. Once these refinements are complete, the final model is
ready for deployment, optimized with essential feature information and free from the
influence of outliers.

3.2.1 Training

Training a model simply means learning (determining) good values for all the
weights and the bias from labeled examples. A machine learning algorithm builds a
model by examining many examples and attempting to find a model that minimizes loss;
this process is called empirical risk minimization (GOOGLE DEVELOPPERS, 2022).
This process is made through hyperparameter tuning. After training and fine-tuning the
model, data from the test set are used to evaluate the model for ability to generalize
(MALEKI et al., 2020a).

This project uses the Scikit-learn library, one of the most popular machine learn-
ing libraries of machine learning. Scikit-learn is largely written in Python, and uses
NumPy extensively for high-performance linear algebra and array operations.

The hyperparameters of Artificial Neural Networks:

• Hidden layers size: Defines the architecture of the neural network. It specifies the number
of neurons (or units) in each hidden layer of the network. Deeper networks with more
neurons can capture more intricate features in the data but might be prone to overfitting.

• Activation function: Has the goal of introducing non-linearity to the problem, it transforms
the weighted sum of inputs at each neuron into an output. Common activation functions
include ReLU (Rectified Linear Unit), sigmoid, and tanh. The choice of activation function
impacts the network’s ability to approximate non-linear functions and its convergence
during training.

• Batch size: Determines how many training examples are used in each iteration of training
the neural network. During training, the dataset is divided into smaller batches. Training
on batches, rather than the entire dataset, speeds up the learning process and can lead
to more stable convergence.

• Learning rate: Determines the step size at each iteration when adjusting the model’s
weights during training. A high learning rate can cause the model to converge quickly but
may overshoot the optimal solution. A low learning rate can help convergence but might
require more training iterations. It’s a critical hyperparameter to tune, as an inappropriate
learning rate can lead to slow convergence or instability.



58

• Maximum iterations: Determines the number of iterations made in the code, specifying
how many times the entire training dataset is passed through the network during training.
It ensures that the model has sufficient opportunities to learn but setting it too high might
lead to overfitting, so it should be chosen carefully.

• Tolerance level: It specifies the stopping criteria for training. Tolerance level is often used
with early stopping to prevent overfitting. If the loss function improvement is less than the
tolerance level for a certain number of iterations, training is terminated. This helps avoid
training the model for too long and potentially overfitting to the training data.

• Random state: By setting the random state, you can ensure that the randomness is
reproducible, crucial for obtaining consistent results and comparing different training runs.

The parameters of the GBM are described below:

• Depth Maximum: This parameter determines the maximum depth or the maximum num-
ber of layers a single decision tree in the gradient boosting ensemble can have. A smaller
depth maximum value can lead to simpler trees, which are less prone to overfitting, while
a larger value allows for more complex trees.

• Number of Estimators: The number of estimators, often represented as trees, in the
gradient boosting ensemble. Each estimator is added sequentially to the ensemble, and
they are trained to correct the errors made by the previous ones. A higher number of
estimators typically leads to a more robust and accurate model.

• Minimum Number of Samples: This parameter sets the minimum number of samples
required to split a node further in the decision tree. It controls the granularity of the splits
in the tree. Smaller values may lead to more detailed splits, while larger values may result
in coarser splits.

• Learning Rate: The learning rate determines the step size at which the model adapts
to minimize errors. A smaller learning rate requires more iterations (i.e., more trees) to
converge, but can lead to better generalization and avoid overfitting. A larger learning rate
can speed up convergence, but may lead to overfitting.

• Loss: This parameter specifies the loss function to be minimized during training. Differ-
ent loss functions are used to optimize different objectives. Common loss functions are
Quantile and Huber. Quantile is used for quantile regression, modeling different quantiles
of the target distribution. Huber is a robust loss function that combines the advantages
of mean squared error (MSE) and mean absolute error (MAE) loss functions. It is less
sensitive to outliers.

• Random State: This parameter is used to set the random seed, ensuring the reproducibil-
ity of results. When you set the random state to a specific value (e.g., 0), it ensures that
the random initialization and shuffling of data are consistent across runs, making the
results reproducible.
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The parameters of decision tree:

• Maximum Depth: Limits the depth of the decision tree, where greater depth allows the
model to capture more complex patterns. Excessive depth may lead to overfitting.

• Minimum Samples for Split: Defines the minimum number of data samples required to
perform a split at any node. Higher values encourage splits only when substantial data is
available, reducing the risk of overfitting.

• Minimum Samples per Leaf: Sets the minimum number of data samples that must be
present in each leaf node. Requiring more samples in the leaves helps prevent the model
from learning from noise, promoting generalization.

• Maximum Features Considered: Controls the number of features considered when
determining the best split at each node. Options include using all features, the square
root of the total features, or the logarithm of the total. Limiting features per split helps
reduce model variance.

• Maximum Number of Leaf Nodes: Sets an upper limit on the number of leaf nodes,
which restricts the tree’s growth. Limiting leaf nodes can simplify the tree structure and
reduce overfitting.

• Random Seed: Fixes the seed for random processes, ensuring consistent results across
runs. This does not affect the model’s structure but provides reproducibility in the results.

The hyperparameters of random forest:

• Number of Estimators: Specifies the number of decision trees in the forest. Higher
numbers can improve performance by averaging out errors across multiple trees, but this
also increases computational cost.

• Maximum Depth: Works the same way as in the decision tree model.

• Minimum Samples for Split: Functions the same way as in the decision tree, determining
the minimum number of samples required to split an internal node.

• Minimum Samples per Leaf: Similar to the decision tree, this parameter sets the mini-
mum samples needed in each leaf node to avoid learning from noise and improve gener-
alization.

• Random Seed: Provides a fixed seed for the random processes within the model, ensur-
ing consistent results. This parameter is also identical in purpose to the decision tree’s
random seed.

Also, the GBM model may be improved through a method of correction, which
creates a Combined Model, submitted to posterior SHAP analysis.
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The formula for the adjustment is based on slope m and intercept c :

m, c = argminm,c

n∑
i=1

(yi − (mŷi + c))2

where yi represents the actual observed values, and ŷi denotes the model’s pre-
dictions for the training data. Once m and c are estimated, we can adjust the predicted
values ŷ to obtain a corrected prediction ỹ using the following transformation:

ỹ = mŷ + c

This corrective adjustment reduces the systematic underprediction and improv-
ing the model’s alignment with the ideal prediction line (y = ỹ). This approach mitigates
the bias introduced by the initial deviation in slope and enhances the model’s accuracy.

Therefore, the CombinedModel incorporates the two key components: a
GradientBoostingRegressor model (denoted as gbm_model) and a linear transforma-
tion applied to the gbm_model predictions. This transformation modifies predictions with
an adjustment based on a slope and intercept derived from a linear fit between actual
target values and initial predictions. Thus, the final prediction is an altered form of the
raw gbm_model output, as implemented in the model’s predict function.

3.3 STEP 3: HYPERPARAMETERS OPTIMIZATION

Hyper-parameter tuning is a critical process that significantly influences the ac-
curacy and performance of machine learning models. To streamline this process, sen-
sitivity analysis offers a valuable quantitative framework that enables the ranking of
hyper-parameters based on their individual contributions to model accuracy (TAYLOR
et al., 2021). This approach not only identifies which parameters are most impactful but
also assists in prioritizing those that warrant closer attention during tuning.

In practice, the insights gained from sensitivity analysis are seamlessly inte-
grated into the model training phase through the use of the GridSearchCV function,
which is part of the Scikit-Learn Python package. This powerful function automates
the process of evaluating various hyper-parameter combinations by employing rigorous
cross-validation techniques. Specifically, the best regression model is chosen based on
its cross-validation performance, with the mean score calculated on a validation dataset
for all possible combinations of hyper-parameters explored exhaustively.

To summarize, GridSearchCV systematically trains a series of hyperparameter
combinations that are carefully selected and then identifies the most effective combina-
tion among them. This ensures that we obtain the result of the best-performing model
directly, without the need to manually sift through the results of all combinations.
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3.4 STEP 4: VALIDATION

The testing data set is a separate portion of the same data set from which the
training set is derived. The main purpose of using the testing data set is to test the
generalization hability of a trained model (MALEKI et al., 2020b).

Statistical indicators are crucial for gauging the effectiveness of regression mod-
els, offering insights into their performance and predictive accuracy. R², known as the
Coefficient of Determination, is a key metric that quantifies how well the model accounts
for the variance in the dependent variable.

RMSE, or Root Mean Square Error, measures the typical size of the errors
between predictions and actual data. It’s highly sensitive to outliers, and lower RMSE
values indicate more precise predictions. MAE, or Mean Absolute Error, takes the
absolute value of errors and provides an average measure of their magnitude.

It’s less influenced by extreme values and is useful when error size is a priority.
AE95, which stands for Absolute Error at the 95th Percentile, is a statistical indicator
designed to focus on the upper end of the error distribution. In other words, it specifically
targets the scenarios where errors tend to be at their largest or most extreme.

3.5 STEP 5: RANDOM STATE AND CROSS VALIDATION TRUNKS

In order to make the results more robust, the final model combines both cross-
validation and multiple random states to thoroughly improve model performance. Cross-
validation is essential in this process, as it helps mitigate issues like overfitting and
underfitting, particularly when working with small datasets. By systematically dividing
the data into training and testing subsets across multiple folds, cross-validation ensures
that every data point has a chance to be used for both training and testing, allowing for
a comprehensive assessment of the model’s stability and performance.

In this analysis, a 10-fold cross-validation is implemented through ‘Grid-
SearchCV‘ with a grid of hyperparameters, scoring based on R², and parallel
processing to speed up the search. This process identifies the best combination
of hyperparameters by averaging model performance across the 10 folds, reducing
the risk of overfitting to a particular subset of data and helping achieve an optimal
bias-variance balance.

Additionally, a range of 10 predefined random states is used alongside cross-
validation to introduce further variability in data splits. This technique helps simulate
multiple "views" of the dataset, enhancing the reliability of the model evaluation by
ensuring that results are not overly dependent on any single random split.
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The selected random states allow each model configuration to be trained and
tested across different splits, providing a more robust measure of the model’s general-
ization ability. This combined approach of cross-validation and varying random states
allows for a well-rounded analysis, helping to identify a model configuration that per-
forms consistently well across different data arrangements.

3.6 STEP 6: SHAP SENSITIVITY ANALYSIS

In SHAP analysis, the goal is to examine the feature importance for each one
of the 12 models, within the context of predicting subsets defined. For each AAPE
value, the process reproduces the same conditions as the original training by loading a
pre-trained combined model that specifically targets this value. This approach ensures
consistency with the model’s training environment, as the subsets of data used in SHAP
analysis mirror the exact configuration used in model training.

The method follows a precise setup: first, it isolates the relevant subset of fea-
tures based on the specific AAPE value’s associated parameters. Next, it performs a
train-test split on this subset, using a unique random state for each AAPE to avoid data
leakage and ensure reproducibility. By applying the SHAP TreeExplainer to the Gradient
Boosting Machine (GBM) component of the combined model, the analysis generates
SHAP values, which quantify the impact of each feature on the model’s predictions.

In utilizing it, SHAP captures the complete prediction output, which incorporates
both the gbm_model’s base predictions and the applied linear transformation. This en-
sures that SHAP values reflect the contributions of features to the fully transformed
predictions, not solely the raw predictions from gbm_model.

3.7 STEP 7: CLUSTERISATION

The clusters allow for a structured assessment of energy efficiency and overall
performance. The following clusters have been established:

• Envelope Cluster: Variables related to the building’s thermal envelope, including con-
struction materials, wall structures, and insulation types. The variables in it are: year
of construction, type of wall, type of wall insulation, thickness of wall insulation, type of
joinery, type of glazing, type of upper floor, thickness of insulation, type of lower floor,
thickness of lower floor.

• Lighting Cluster: Variables associated with lighting systems, such as power ratings and
performance factors. The variables are: Lighting management, percentage of consump-
tion for lighting.

• Heating Cluster: Variables defining the type and method of heating systems employed
in the building. Combined by: Type of heating, and energy source of heating.
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• Cooling Cluster: Variables related to cooling systems and their characteristics. Com-
posed by: Type of cooling, and energy source of cooling.

• Ventilation Cluster: Variables pertaining to ventilation systems, focusing on their princi-
ples and efficiency metrics. Composed by: principle and efficiency of ventilation.

Overall, these clusters facilitate targeted analyses of the main aspects of building
energy performance, as it regroups complementary characteristics, allowing an easier
identification of these patterns and therefore, possibly enhancing a more precise model.

3.8 STEP 8: REMOVAL OF OUTLIERS

Removing outliers is a critical preprocessing step in enhancing the performance
of statistical models. Outliers can distort model accuracy and lead to misleading results.
A robust method for identifying outliers involves using the interquartile range (IQR).

The IQR is calculated as:

IQR = Q3 −Q1

Where Q1 is the first quartile (25th percentile) and Q3 is the third quartile (75th
percentile). This measure helps to understand the spread of the central 50% of the
data.

In this project, outliers can be defined using the following bounds:

Lower Bound = Q1 − 1.5× IQR

Upper Bound = Q3 + 1.5× IQR

Any data point xi that lies outside these bounds is considered an outlier:

xi is an outlier if xi < Lower Bound or xi > Upper Bound

The filtered dataset, which excludes outliers, is represented as:

xfiltered = {xi ∈ D : Lower Bound ≤ xi ≤ Upper Bound}

Where D is the original dataset. This process helps in refining the dataset, lead-
ing to improved model performance and more reliable predictions.
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4 RESULTS

4.1 STEP 1: EXPLORATORY ANALYSIS AND DATA PREPROCESSING

4.1.1 Exploratory analysis and data preprocessing of first database

The first database to be analyzed is the Retrofit Synthesis, it is a relatively small
database, but very important as it registers all the information regarding the retrofit
suggestions, containing 1994 retrofit suggestion covering all typologies.

In a first visual and manual analysis of this database, it was noticeable that
the column’s percentage of final energy energy savings, a representation of energy
efficiency, had some problems, showing values greater than 100% for office equipment
savings that are not related to the retrofit suggestion described, such as ventilation.
Therefore, all the percentage and ratios of end-use savings were recalculated. Beyond
that, some other incoherences were found in around 1% of the data. Those which were
easily identified were right away corrected, but carefully regarded as indications that a
revision is needed. The result of the cleaning is shown in Figure 38 below.

Figure 38 – Frequency of retrofit suggestions by end-use

Source: Author

The graph represents which end-use is impacted by the retrofit. For example,
by reducing the utilization of office equipment, turning them off when not used, won’t
only direct reduce the office equipment consumption but also reduce the cooling and
increase the heating indirectly, due to less Joule effect dissipation. Therefore, a single
retrofit suggestion can have multiple classes of impact.

As we can see in the graph, most of the classes impacted are heating and
cooling, followed by ventilation. These classes are directly related to the french climate.
Most of the cases are in Paris. 1.
1 Paris climate is at the boundary between continental and oceanic solid influences, with lower precipi-

tation compared to the mean of the country (between 500 and 800 mm against 900 mm; Canellaset
al., 2014). Summers are relatively hot (18.8°C) and winters mild (4.4°C). Some studies focused on
the urbanization and found different impacts such as a mean urban heat island of 3°C over the period
1971–1980 with maxima exceeding 10°C (LE ROY et al., 2020)
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The primary energy saving by the square meter to each end-use is very similar
between heating, lighting and office equipment and to note most of the occurrences
happen between 0 and 20 kWh/m2, even if the graphs are in different scales to preserve
a good visualization.

Figure 39 – Frequency of retrofit suggestions by end-use

Source: Author

This may be explained by the fact heating and cooling are often affected by
improvements planned to other end-uses retrofits, while lighting, which could be easily
underestimated but represents a good retrofit in general, is often alone. Ventilation has
a similar distribution, with median value of 1.92 kWh/m² and mean 4.76 kWh/m².

The cooling savings occurs in 50% of the cases, with a small mean of 2.03
kWh/m² and median of 0.65 kWh/m², smaller than the savings of hot water that have
a mean of 2.81 kWh/m² and median of 1.09 kWh/m², showing that the consumption
of hot water has a lot of potential of improvement compared to the cooling system. A
hypothesis is that Paris does not show great need, neither have the culture of installing
air conditioning even in offices.

The server savings have a near uniform distribution, with mean of 3.29 kWh/m²
and median of 0.01 kWh/m². The miscellaneous consumption has a mean of 4.4 kWh/m²
and median of 0.38 kWh/m². Finally, the investment per square meter has a mean of
C34 and median of C11.50. But there are one third that do not cost anything. The most
expensive investment rises up to C500/m².
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4.1.2 Exploratory analysis and data preprocessing of second database

The Audit’s synthesis database presents the information about the buildings and
where they are located, allowing a more narrowed and profound analysis focused on the
cases we want to address in this project. The first thing to do is to reduce the analysis to
offices, excluding all the other typologies from the analysis. Another simplification is to
choose only Paris and its suburbs 2. After that, we select the desired columns described
in Section 3.1.2 by the procedures described in 3.1.4 to generate the following analysis.

Figure 40 – Heating energy source Figure 41 – Heating energy production

Source: Author

The urban heating network can be a household waste incineration plant (UIOM),
a boiler room powered by fuel (oil, gas, wood, etc.), a deep geothermal power plant, etc.
It is a centralized heat distribution system through pipes in which the heat is transported
by a heat transfer fluid mixed up with water at ambient temperature in the buildings.

The electricity heat production is given by Joule Effect, VRF, electrical heat
pumps or even boilers. The joule effect occurs during the passage of electric current
through a conductor presenting resistance, such as electric heaters, radiating beams,
etc. Regarding VRF, heat exchange occurs through the circulation of refrigerant, through
which heat is extracted from the outdoor air and transferred to the indoor spaces using a
compressor, which adjusts refrigerant flow and temperature as per the specific heating
or cooling demands of each indoor zone.

A heat pump extracts heat from a lower-temperature source (such as outdoor
air or the ground) and releases it into a higher-temperature space, using a refrigerant
cycle to facilitate this heat transfer. A boiler works by using the correspondent energy
source to heat water or another fluid to generate steam or hot water. The heated water
or steam is then circulated through pipes to radiators or underfloor heating systems.

Beyond that, there is the gas energy production. This energy source has good
energy efficiency and environmental advantages: its combustion does not emit dust,
little sulfur dioxide (SO2), little nitrogen oxide (NO2) and less carbon dioxide (CO2)
compared to others fossil fuels (IFP, 2023). It is transported through pipelines, serving
as a combustion source to power the boilers or gas heat pumps.
2 The original database has 509 buildings, this filtering reduces the cases to 209.
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The same analysis is made to the cooling, which shows that around two thirds
of cooling in generated by electricity, followed by one third generated by urban cooling
network and just one case by gas. Regarding the energy production system, the most
frequent is the heat pump, then the cooling network, and finally VRV and aerorefrigerant
tower. The heat pumps work extracts the heat from the hot source, the offices, and then
expels it in the exterior of the building. The cold network captures heat from buildings
using delivery stations. Then, buried pipes transport it to a cooling plant, which uses
local energy sources (ENGIE, 2020). The aerorefrigerant tower (cooling tower), is a
device used to remove heat from industrial processes or air conditioning systems. It
operates by circulating hot water over fill material while drawing in air through fans. As
the air passes over the water, some of it evaporates, cooling the water, which is then
recirculated to maintain the desired temperature.

Regarding the ventilation systems, most of the ventilation is double-flux. This
system allows, through an exchanger, to recover the heat from the extracted air to
transfer it to the blown air through a heat exchanger, not mixing the extracted air and
the supplied air. The simple flux ventilation does not recover the heat from the waste
air. Regarding natural ventilation in Paris, people often don’t open windows, increasing
the amount of CO2 upon the recommended limits recommended to human health.

Regarding the construction year of each building, shown in Figure 42 we have
that most of them were made in the XX century, mainly the first half. There are also
20% of them that were built between the year 2000 and 2010.

Figure 42 – Frequency of retrofit s by end-use

Source: Author

The year of construction is related to different materials and techniques, which
impacts directly in the wall types. In this database, more than one third built in concrete,
which is coherent with the buildings of the first and second half of the XX century. After
that, we have curtain wall buildings, these buildings represent the significant part built
in the second half of the XX century. Yet, there are around 30% of them built in stone
(ancient buildings).
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Regarding the insulation, more than 60% of the buildings have thickness between
5 and 10cm. This is coherent with the fact that Paris climate but also does not represent
a huge useful area loss. Beyond these, one third are either non insulated or have an
insulation smaller than 5cm. Only 10% have insulation greater than 10cm. Also, 70%
of the buildings are insulated by the interior rather than the exterior.

Regarding window characteristics, the majority if windows have shading protec-
tion, mainly in aluminum. And most important, the double glass is present in almost all
windows, with 20% having some special treatment such as gas between the glass lay-
ers. There’s still have the distributions of floor and ceiling insulation and lighting control
that are not described for the sake of succinct. The buildings’ surface in the database is
very well distributed, with a median of 6580m2. The largest surpassing 60000m2, 50%
of the buildings are between 4000 and 14000m2, approaching a Pareto distribution.

Figure 43 – Surface and Compactness distribution

(a) Surface (m2) (b) Compactness (%)

Source: Author

Regarding the windows transmittance and solar heat gain factor (SHGC), the
empty rows are around 20%. Not considering these, the median for the SHGC is 0.58
and for the transmittance, 2.83 W/m2K, which is extremely high since the window of a
new construction must have a Uw less than 1.5 W/m2K in the RE2020.

In this database, there is also the end-use for each building. These data had
only ten empty rows each, a rapid manual analysis revealed that those belonged all to
one single buildings being removed from the database. In Figure 44 below, we have the
heating and cooling end-use consumptions:

Figure 44 – Final energy consumption by end-use (kWhEF/m
2/year)

(a) Heating (b) Cooling

Source: Author



69

As expected, the most important consumption corresponds to the heating, with a
normal distribution spreading until 200 kWhEF/m

2/year, having 50% of them comprised
between 50 and 100 kWhEF/m

2/year. The cooling has a median of 19 kWhEF/m
2/year,

a narrower range, of 12 to 35 kWhEF/m
2/year to 50% of the cases. In Figure 45 below,

there is ventilation and hot water systems.

Figure 45 – Final energy consumption by end-use (kWhEF/m
2/year)

(a) Ventilation (b) Hot water

Source: Author

The median is 27 kWhEF/m
2/year, but having a wide range, that gets 80

kWhEF/m
2/year. The ventilation also may be used to help the heating of the building

when it is double-flux, allowing the recovery of heat from the air that was expelled to
the O2 renovation. Hot water has a small median of 4.7 kWhEF/m

2/year, because in
offices it is generally used only to toilet and work kitchens. However, as we saw in
the previous analysis in the Section 4.1.1, these have a relatively huge potential for
improvement. Regarding the systems perceived and directly controlled by the users,
such as lighting and office equipments, we have the Figure 45 below.

Figure 46 – Final energy consumption by end-use (kWhEF/m
2)

(a) Office equipments (b) Lighting

Source: Author

The office equipments, which do not include server consumption, may represent
a huge energy consumption. The median is 26 kWhEF/m

2, but it actually does not
present a large range, achieving the maximum of 50 kWhEF/m

2 in very small cases.
Half of the cases are constrained in a range of 15 to 40 kWhEF/m

2. The lighting
consumption is very close to the office equipments consumption, with a median close
to 28 kWhEF/m

2, being important targets to retrofit.
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4.1.3 Preprocessing: Joining, standardization, filtering and correlation

After this first analysis of both databases, we proceed to their assembling, which
resulted in 65 compatible buildings, containing together 709 retrofit suggestions. Each
of them represent a calculated retrofit suggestion, but in order to make the prediction
model we need to assemble these in classes and standardize their titles. Therefore,
from the 709 retrofit suggestions, were included 504 in the classes shown in Figure 47.

Figure 47 – Retrofit suggestions

Source: Author

As we can see, the classes of retrofit suggestions are very diversified. In the
heating, we have the optimization and substitution of emitters such as radiators, or
others. The changing of the heating production, furnaces, and the installation of heat
pumps. To lighting solutions, we have the relamping, optimization of functioning hours
through equipments and management.

For the ventilation, we have two retrofits to change equipments, first the installa-
tion of double flux ventilation and the other the installation of the secondary equipment
to the same strategy, also there is the optimization of the temperature or the hours of
utilization. Also, there is the management of office equipments in the utilization front.

To the envelope, there is the installation of insulation in the walls and floor, and
installation of highly efficient windows. There’s also energy and hot water production.
Finally, there are solar panels, both photovoltaic and thermal.

These retrofit suggestions are very diverse and interesting to investigate. How-
ever, in terms of prediction, many of them do not have a significant volume to create
statistics, such is the case of solar photovoltaic and thermal panels.
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Therefore, we select only those with a frequency of occurrence greater than 15,
which are 448 out of 504, which are described in the Figure 48 below.

Figure 48 – Retrofit suggestions with more than 15 occurrences

Source: Author

From previous 21 retrofit suggestions, 12 were selected. The most frequent is the
installation of double-flux ventilation, followed by relamping LED, good management of
office equipments, optimization of emitters (temperature and activation time), installation
of control equipments over lighting and finally thermal insulation of walls, floor, and
window substitution. After calculating the percentage final energy saving of the retrofit
suggestion in relation to the total energy consumption, shown in the Figure 49 below.

Figure 49 – Retrofit suggestion correlation with Final Energy savings (quantitative)

Source: Author

Each dot and violin represent a retrofit suggestion (AAPE) versus the energy
savings. Clearly no correlation can be taken from these graphs, and it repeats to all
other variables, showing how complex the relationship between the data is and how
a prediction with all those features would be infeasible by hand. After this, feature
engineering is applied to normalize data to the model. These results are not shown
here as they are only a reflect of the physical values already presented.
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4.2 ROUND 1 - MACHINE LEARNING RESULTS

4.2.1 R1 - STEPS 2,3,4 and 5: Training, Hyperparameters optimization, validation,
Random state variation and cross-validation

For model analysis, the scatterplots below compare predicted and actual values,
with blue representing training data and red representing test data. The results of the
GBM, ANN, Decision Tree, and Random Forest methods will be presented. Additionally,
for the best-performing method, further processing is applied, including variable reduc-
tion, outlier removal, and clustering techniques. The first one is made with GBM model
using parameters described in the Methodology section.

Figure 50 – GBM with Cross-Validation

Source: Author

The analysis of the scatter plots reveals that the predictions made by the model
systematically mispredict higher observed values, as indicated by slopes consistently
less than 1 across various interventions. This inclination (slope m < 1) suggests that the
model’s predictions do not fully capture the variability in the observed data, particularly
underestimating in the upper range.

In order to verify if these predictions could be improved by using other machine
learning algorithms, such as Artificial Neural Networks, Random Forest and Decision
Tree. As Decision Tree performed well, a cross-validation was also applied.
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The results of these algorithms are presented below:

Figure 51 – Alternative algorithms with cross-validation / DT: hyperparameters tuning

Source: Author

The artificial neural network proved to be the least effective model in this anal-
ysis, while the random forest initially exhibited performance comparable to that of the
Gradient Boosting Machine (GBM). However, its higher dispersion ultimately rendered
it less viable for creating a combined model.

In contrast, the decision tree emerged as a promising alternative (notably, only
the 9th model demonstrated any significant improvement). Nevertheless, when cross-
validation was applied, the resulting stratifications were highly pronounced, also as
further treatments are applied to the GBM method, it consistently yielded better results,
ultimately highlighting the unsuitability of the other algorithms for this particular analysis.

These characteristics and the smaller dispersion among points led the study to
prioritize the enhancement of the GBM model over the other algorithms tested, seen
the possibility of correct it from a linear regression as it will be seen in the next analysis.
This focus on GBM underscores its potential as the most robust modeling approach in
this context.
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To address this bias, a linear adjustment can be applied to the model’s predic-
tions by fitting a linear regression line to the training data between the predictions and
the true values through a combined function, shown below:

Figure 52 – GBM + Regression (Combined Model) - All parameters

Source: Author

Interventions in Lighting generally perform well, with models for simple actions
like relamping (Model 1) showing high generalization, while more complex tasks, like
installing dimming or presence-detection systems (Model 2), exhibit signs of overfitting,
suggesting sensitivity to training-specific patterns. Similarly, Ventilation interventions
reveal mixed results: while the optimization model (Model 4) generalizes well, the model
for complex installations (Model 3) struggles to capture broader variance in test set.

Insulation models (Models 5–7) consistently achieve high R2 and low error val-
ues across datasets, indicating excellent generalizability. This pattern suggests that
insulation improvements are well-captured by the model, likely due to their straightfor-
ward impact on energy efficiency. Heating interventions also show strong performance,
particularly for direct upgrades like replacing systems with heat pumps (Model 8), while
optimization models (e.g., Model 9) tend to overfit, likely due to complexity and feature
sensitivity. Finally, Management interventions (Models 11 and 12) yield excellent re-
sults, reflecting predictable impacts from simple behavioral changes, such as setting
virtuous temperature limits and reducing equipment usage during unoccupied periods,
but perform not very well in the test set.
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4.2.2 R1 - STEP 6: SHAP sensitivity analysis

This SHAP analysis provides insight into feature importance across twelve mod-
els, each representing one building retrofit action. As shown below, most parameters
aren’t influential, showing a possibility of simplification.

Figure 53 – SHAP Analysis Combined Model - All parameters

Source: Author
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Lighting interventions, such as LED relamping and the installation of control
equipment (dimming and presence detection), show varying impacts, particularly where
energy efficiency are increased through responsive lighting management. Ventilation
features, including the installation of double-flow air handling units (AHUs) with heat
exchangers and optimized temperature schedules, display moderate to high influence,
indicating substantial efficiency improvement through better airflow and heat recovery.

Building envelope improvements, such as enhanced insulation and high-
performance windows, consistently demonstrate high SHAP values, reducing thermal
losses and minimizing climate control demands. Heating interventions, like heat
pumps and optimized emitters, also have strong impacts across models. Management
measures, such as temperature setpoint strategies and reduced equipment usage
during off-hours, add control over energy patterns, though with moderate influence.

4.3 ROUND 2 - MACHINE LEARNING RESULTS

A filtering process is applied to retain only the most impactful variables, making
the model more user-friendly while maintaining effective retrofit recommendations.

4.3.1 R2 - STEPS 2,3,4 and 5: Training, Hyperparameters optimization, validation,
Random state variation and cross-validation

Figure 54 – GBM + Regression (Combined Model) - Filtered parameters

Source: Author
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As the models present similar results, it’s possible to deduce the reduction of
variables has generated a rather positive simplification of the model, allowing it to be
focused to iterate in the variables that have been showing to be really important.

4.3.2 R2 - STEP 6: SHAP sensitivity analysis

To these models, the SHAP analysis is shown below:

Figure 55 – Round 2 - SHAP Analysis

Source: Author
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In the lighting category, lighting end-use consumption ("pEF.ecl") and lighting
power ("ecl.puiss") are consistently influential across models, suggesting that improve-
ments in these areas can significantly reduce energy consumption. High SHAP values
for these features indicate that both the choice of energy-efficient lighting systems and
the control of lighting power usage contribute substantially to energy efficiency. This is
particularly true in models where responsive lighting management systems, such as
dimming and presence detection, are utilized to minimize waste during periods of low
occupancy.

Ventilation variables, especially ventilation end-use consumption ("pEF.vent")
and operational principles ("vent.principe2"), display moderate to high SHAP values,
highlighting their importance in energy scenarios that prioritize airflow optimization.
Efficient ventilation systems, especially those using energy recovery and adaptive con-
trol settings, positively affect energy consumption predictions by reducing the need for
excess heating and cooling. Models that emphasize ventilation improvements under-
score the potential for energy reductions through strategic management of airflow and
temperature settings.

Building envelope variables, including window insulation ("menuiserie.uw"), in-
sulation thickness ("pb.isol.epaisseur"), and wall insulation type ("paroi2"), show high
SHAP values across several models, indicating their critical role in minimizing thermal
losses. Enhancing insulation, both in terms of quality and thickness, is essential for re-
ducing the building’s heating and cooling requirements. Models that prioritize envelope
improvements illustrate how effective insulation measures, particularly for windows and
walls, can significantly enhance overall energy efficiency.

Heating variables, such as heating end-use consumption ("pEF.chauff") and heat-
ing system type ("chauff.type2"), are also consistently impactful across the models. High
SHAP values for these features reveal the importance of efficient heating technologies
in reducing energy demands, particularly in colder climates or buildings with high heat-
ing needs. Optimizing heating systems, such as using heat pumps and temperature
controls, can align energy output more closely with actual occupancy needs, thereby
reducing energy waste.

Management features, including the office equipment end-use consumption
("pEF.bureautique") and occupancy rates ("taux.occ"), show moderate influence, re-
flecting the potential of operational strategies to fine-tune energy usage. These features
suggest that energy efficiency can be improved by adjusting equipment use patterns
and aligning consumption with occupancy. To further streamline the models and make
them more user-friendly, a filtering process will be applied to retain only the most
impactful variables. This refinement will simplify the models while maintaining their ef-
fectiveness, making them a practical tool for optimizing building energy management
by focusing on the highest-value interventions.



79

4.4 ROUND 3 - MACHINE LEARNING RESULTS

4.4.1 R3 - STEP 7: Clusterisation

Therefore, we proceed to data treatment, the first one applied is the clusterisation
from two different methods: elbow and silhouette score. This clusterisation is made
to group five classes of variables, that are: envelope, lighting, heating, cooling and
ventilation. In the figure below, the ventilation cluster is shown, composed by ventilation
principle and performance.

Figure 56 – Elbow and Silhouette Methods to ventilation

Source: Author

In the elbow method, as the number of clusters increases, this distance de-
creases; however, after a certain point (the "elbow"), the rate of decrease slows down.
The optimal cluster number is typically chosen at this "elbow" point where adding more
clusters yields diminishing improvements. The silhouette score, on the other hand, mea-
sures how similar points in one cluster are to points in the next closest cluster. The
optimal number of clusters is where the silhouette score is highest, indicating well-
defined and distinct clusters. Therefore, to this example we choose 6 as the appropriate
number of clusters. The other clusters are shown in annex A. The effect these clusters
had is shown in Figure below:

Figure 57 – Clusterisation improvement on models

Source: Author
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This clusterisation has little interfered in the performance of the models, however
to the retrofit 6 (’Envelope - Insulation of Lower floor’), it has displaced a distant case
in test set to a nearer place, showing the greater capacity of the model’s generalization
after the inclusion of the clusters.

4.4.2 R3 - STEP 8: Removal of outliers

Another treatment made is the removal of outliers, which improves clustering
accuracy by eliminating extreme values that could distort group formation. This ensures
that clusters represents the patterns in data without interference from irregular values.
This removal of outliers has changed the distribution of the data as shown in the graphs
below:

Figure 58 – Boxplot without (left) and with (right) the removal of outliers

Source: Author

In the left plot, categories 5 (insulation reinforcement) and 8 (heating optimiza-
tion) show high median savings but also substantial variability, indicating that these
retrofits often yield larger efficiency improvements but with inconsistent results.

Many outliers in these categories suggest that some implementations lead to
exceptionally high or low savings. In contrast, lighting improvements (categories 1 and
2) yield lower, more consistent savings due to their standardized application.

In the right plot, removing outliers narrows the distributions, allowing a clearer
view of typical performance within each category. The insulation and heating categories
still show high variability but are more comparable to other interventions, emphasizing
their effectiveness without the influence of extreme cases. Overall, insulation and heat-
ing upgrades offer high, variable savings, while lighting improvements provide smaller,
more predictable benefits.
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This also does not interfere significantly in models, with the exception of two
retrofit suggestions, which are show below:

Figure 59 – Retrofit 9: Heating - Thermal emitters optimization

Source: Author

As shown, the improvement of R² to the test set is huge, going from 49% to
84%, however the other indicators such as RMSE and MAE don’t change, showing
the actual improvement are very slightly significative. The other retrofit that improves is
Temperature Management shown below, having also a slightly improvement:

Figure 60 – Temperature Management

Source: Author

To conclude, as each model is independent of the others, we choose to apply
the best one found among all others to each retrofit. Thus said, to the most part of the
retrofit actions, the chosen model is the GBM with cross validation, coupled with linear
regression in the Combined Model. To the insulation of lower floor, the clusterisation
is applied with the improvement of performance due to the envelope cluster. To the
replacement of terminal emitters and temperature management, the removal of outliers
is applied in order to increase slightly the performance of the test set. Overall, the
models are acceptably precise to be used in the company’s cases.
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5 CONCLUSION

This project is a step further in the simplification process of expert audits in the
company where it was made as it allows fast decision making and reliable results con-
sidering the desired precision by the company. Therefore, achieving the main objective
of improving the energy audit process by saving time to the company.

The databases analysis provided the base to the machine learning models. Us-
ing these data, it is possible to see that the average energy consumption across sur-
veyed buildings is close to 120 kWh/m² per year, with heating accounting for 60% and
cooling for 30% of total energy use. The output figures shows a wide margin of im-
provement in efficiency, particularly in older buildings. Buildings constructed after 2000
shows an average energy consumption close to 85 kWh/m², in comparison with those
built before 1980 which consumes close to 150 kWh/m².

The outcome of theses analysis tend to demonstrate that retrofitting older struc-
tures with modern insulation and energy-efficient systems may reduce energy usage
close to 40%. High-energy consumption areas are identified, with heating systems con-
suming an average of 72 kWh/m² during winter, meanwhile cooling systems peak at 40
kWh/m² during summer. Targeted energy audits are useful to spot both inefficiencies
and recommending improvement such as high-efficiency HVAC systems.

After many trial and errors and multiple models tested, the Gradient Boosting
Machine (GBM) consistently emerged as the most reliable approach, particularly for
complex retrofit actions. This model demonstrated a good balance between bias and
variance, making it adequate for capturing the slight effects of energy consumption
improvement across different building systems.

Specifically, the GBM model’s performance was enhanced by tuning some pa-
rameters, ten train the model and test it for validation using test data. Some other
models like the Artificial Neural Networks (ANN), Decision Trees, and Random Forest
offered an interesting comparison but presented some limitations in specific contexts
which we will describe. The ANN model, while commonly effective in many predic-
tive contexts, had hard time to maintain stability and consistency in this application,
specifically in scenarios with high variance in energy use dataset.

The Decision Tree model seemed adequate but exhibited overfitting tendencies,
especially under cross-validation, which compromised its ability to generalize across
different retrofit scenarios. Similarly, the Random Forest model initially delivered sat-
isfactory results comparable to GBM, but its higher dispersion in predictions makes it
less reliable for use in a combined modeling approach, which drives us to use GBM as
the best choice for this analysis.
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To correct observed biases, mainly the systematic misprediction of higher ob-
served values (evidenced by slopes consistently less than 1 in scatterplot analyses), a
linear adjustment was applied. This adjustment is supposed to correct the slope error by
transforming the model’s predictions through linear regression. This tuned approach, in-
corporating both GBM and linear adjustments calculated from initial model error, allows
a better final correlation between predicted and observed values.

The model evaluation also revealed some correlation across intervention cat-
egories. For example, lighting interventions were well-predicted, with simpler actions
like changing the light system demonstrating high generalizability, while more com-
plex controls (e.g., dimming and presence detection systems) showed slight overfitting.
Ventilation models revealed mixed outcomes; while simpler optimizations generalized
effectively, models predicting complex system installations faced challenges in captur-
ing broader variance. Insulation models consistently delivered high R² and low error
values, indicating a strong fit and robust predictions across datasets.

Many other data treatments were made to refine model performance, including
clustering and outliers removal. Clustering was made using the elbow and silhouette
methods, we ends up finding that six clusters was optimal. Cluster analysis grouped
retrofit measures by category—such as envelope, lighting, heating, cooling, and ventila-
tion—aiming to capture patterns among similar kind of interventions. Although clustering
slightly enhanced the model’s ability to generalize (for example by re-positioning outlier
cases closer to the distribution’s core), its impact on overall predictive accuracy was
limited, with improvements only in the “Envelope- Insulation of Lower Floor” intervention.

By removing the outlier data, we see a minimal effect across most interventions,
but it improved the prediction accuracy for heating and management models by reduc-
ing the influence of extreme values that disturb the regression. The SHAP analysis
further provided a better value interpretation, indicating that several key variables could
drive simplification in the model without compromising effectiveness. Notably, energy
efficiency in lighting and power usage, ventilation efficiency, and building insulation
thickness generally displayed high SHAP values. This pattern shows that focusing on
these impactful variables allows to create a generic and reusable model. Its also gives
the opportunity to create a more user-friendly tool for building energy management.

In conclusion, the GBM model with cross-validation, coupled with a linear re-
gression adjustment in the Combined Model, demonstrated the highest accuracy and
stability for most retrofit actions, outperforming other algorithms in this analysis. For
complex interventions like envelope insulation and heating emitter replacement, addi-
tional treatments—such as clustering and outlier removal—further improved the model’s
performance by aligning predictions with actual energy consumption patterns.
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Therefore, this project represents a great advancement in the company’s path
into machine learning. The method has already been applied in a previous company’s
study, but was vastly improved in order to have greater usability for employees, moving
on to the development of independent models contrary to what was previously available
in order to reduce the number of inputs for prediction of each of them, without com-
promising their respective performances. This was also made possible through SHAP
analysis and the application of advanced machine learning techniques.

For future work, it is suggested:

- To develop a method that can be used to different climates to different cities in
France: this will provide predictions to other cities in France, not only Paris making the
models more robust to the company’s application

- To compare new buildings in the expert opinion and thermal simulation with
the machine learning model : this will allow to understand if the model is useful to the
employees, if the unseen buildings have a behavior that is considered good enough to
the company beyond the ones that were used in the test phase.

- To exploit the whole Server of the Company with cases that were not inserted
in the database: Use data mining techniques to be able to explore the whole server and
generate a larger database. It is know that only around 8% of the company’s buildings
were in the formal database, which gives a huge potential of exploitation of all the other
buildings that are available but still not integrated in the model.

- To predict the energy efficiency acquired to each end-use consumption: as the
energy audit requires a detailing of the end-use consumption and the discrimination
of which end-use is impacted with the retrofit action, the improvement of the machine
learning to give discriminated end-use values is crucial to simplify even more the audit
process.

- To compare the SHAP analysis with other sensitivity tools to evaluate the
impact of each feature on the model: compare the SHAP analysis with Sobol, or other
techniques to verify if they present the same relationship between the results and the
variables to validate the feature selection that was made.
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ANNEX A – APPENDIX

A.1 CORRELATION MATRIX

Figure 61 – Correlation matrix
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A.2 ELBOW AND SILLHOUETTE METHODS FOR CLUSTERS

Figure 62 – Envelope Clusters

Figure 63 – Lighting Clusters

Figure 64 – Heating Clusters

Figure 65 – Cooling Clusters

Figure 66 – Ventilation Clusters
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ANNEX B – APPENDIX

The model described in this project is associated with an application which is
already being used by the company. The access to it is through the following link:

https://arcs-sevaia.streamlit.app/
The functionning of this interface is described through the following images:

Figure 67 – Home Page of Sevaia’s data exploration center

As shown above, from the home page, a main menu is shown that allows the
access to the prediction models. Then, the user must choose to generate the predictions
to the AAPE (retrofit) by choosing ’Oui’ in the Horizontal menu as shown below.

Figure 68 – Lateral menu accessing Sevaia’s webpage functionalities

https://arcs-sevaia.streamlit.app/
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Finally, the user can chose which retrofit is to be predicted, fill the parameters
necessary and then, visualize the energy savings or export them to a CSV file. As
many parameters are present in more than one retrofit, the interface allows the model
to run simultaneously retrofit while filling the parameters only once, simplifying the user
experience.

Figure 69 – Sevaia’s prediction models

Other functionality available is the possible exploration of the databases param-
eters correlating with the energy consumption in the building.

Figure 70 – Sevaia’s prediction models



98

ANNEX C – APPENDIX

C.1 PYTHON CODES USED IN THE RESEARCH

C.1.1 Code 1 - Synthesis Analysis

1

2 """
3 Created on Thu Aug 17 09:57:14 2023
4

5 @author: LorranyDASILVA
6 """
7 import pandas as pd
8 import matplotlib.pyplot as plt
9

10 df =
pd.read_csv(’C:/ Users/LorranyDASILVA/Documents/PFE/Code/Synthese -Audits_enter.csv’,sep=";")

11 #column_names = df.columns.tolist ()
12

13 # Writing it correctly
14 replacements = {’ ’:’a’,’ ’:’a’,’ ’:’e’,’ ’:’e’

,’ ’:’e’,’ ’:’<’,’ ’:’c’,’ ’:’n’,’#DIV /0!’:’0’}
15 df = df.replace(replacements , regex=True)
16

17 # Subset bureaux
18 df = df[df.usage == ’bureaux ’]
19 # dos 501 casos , 209 sao bureaux
20 df = df[(df.depto == ’75’) | (df.depto == ’92’) | (df.depto == ’93’) |

(df.depto == ’94’)]
21 #subset Paris: 75, 92,93 e 94 - Para os bureaux havia apenas 7 casos 78 , 1

caso 95 1 caso 91 - preferencia por adotar Paris et banlieu
22 df = df[(df.methode2 == ’VE’) | (df.methode2 == ’CW’) | (df.methode2 == ’P+C’) ]
23

24

25

26 df[’pEF_chauff ’] = df[’rEF_chauff ’]/df[’rEF_total ’]
27 df[’pEF_froid ’] = df[’rEF_froid ’]/df[’rEF_total ’]
28 df[’pEF_ecl ’] = df[’rEF_ecl ’]/df[’rEF_total ’]
29 df[’pEF_bureautique ’] = df[’rEF_bureautique ’]/df[’rEF_total ’]
30 df[’pEF_serveur ’] = df[’rEF_serveur ’]/df[’rEF_total ’]
31 df[’pEF_autreseq ’] = df[’rEF_autreseq ’]/df[’rEF_total ’]
32 df[’pEF_ecs ’] = df[’rEF_ecs ’]/df[’rEF_total ’]
33 df[’pEF_vent ’] = df[’rEF_vent ’]/df[’rEF_total ’]
34 df[’pEF_aux ’] = df[’rEF_aux ’]/df[’rEF_total ’]
35

36

37 df = df.drop(columns = [
38

39 # IDENTIFICATION COLUMNS --------->
40 ’nom’,’depto’,’proprietaire ’,’affaire ’,’projet ’,’secteur ’, #DROP THESE COLUMNS

ONLY AFTER YOU MADE A SAFE ITERATION IN THE CODE_ASSAMBLAGE_BDD
41

42 # USELESS COLUMNS --------->
43 ’usage ’,’date’,’annee’,’methode1 ’,’auditeur ’,’n_occ ’,
44

45
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46 # GENERAL MAY BE USED TO ADVENIO ’S INTERNAL CONTROL
47 ’ref_reglementaire ’,’ecart_global ’,’ecart_chauff ’,’ecart_froid ’,
48 ’ecart_ecs ’,’ecart_vent ’,’ecart_ecl ’,’ecart_aux ’,
49

50 # REGLEMENTATION
51 ’cc_global ’,’cc_chauff ’,’cc_froid ’,’cc_ecs ’,’cc_vent ’,’cc_ecl ’,’cc_aux ’,
52 ’cp_total ’,’cp_chauff1.type’,’cp_chauff2.type’,’cp_froid1.type’,’cp_froid2.type’,
53 ’cp_ecs1.type’,’cp_ecs2.type’,’cp_chauff1 ’,’cp_chauff2 ’,’cp_froid1 ’,’cp_froid2 ’,’cp_ecl ’,
54 ’cp_bureautique ’,’cp_serveurs ’,’cp_autreseq ’,
55 ’cp_ecs1 ’,’cp_ecs2 ’,’cp_vent ’,’cp_aux ’,’cp_divers ’,
56 ’methode2 ’,’instrumentation ’,
57

58 # ON VA UTILISER JUSTE L’ENERGIE EN PERCENTAGE
59 ’rEF_total ’,’rEF_chauff ’,’rEF_froid ’,’rEF_ecl ’,’rEF_bureautique ’,
60 ’rEF_serveur ’,’rEF_autreseq ’,’rEF_ecs ’,’rEF_vent ’,’rEF_aux ’,’rEF_divers ’,
61 ’rEP_total ’,’rEP_chauff ’,’rEP_froid ’,’rEP_ecl ’,’rEP_bureautique ’,
62 ’rEP_serveurs ’,’rEP_autreseq ’,’rEP_ecs ’,’rEP_vent ’,’rEP_aux ’,’rEP_divers ’,
63 ’rENV_total ’,’rENV_chauff ’,’rENV_froid ’,’rENV_ecl ’,’rENV_bureautique ’,
64 ’rENV_serveurs ’,’rENV_autreseq ’,’rENV_ecs ’,’rENV_vent ’,’rENV_aux ’,’rENV_divers ’,
65 ’rFACT_total ’,’rFACT_chauff ’,’rFACT_froid ’,’rFACT_ecl ’,’rFACT_bureautique ’,’rFACT_serveurs ’,
66 ’rFACT_autreseq ’,’rFACT_ecs ’,’rFACT_vent ’,’rFACT_aux ’,’rFACT_divers ’,
67

68

69 #DEPERDITIONS EN PLUS
70 ’deperd_trans ’,’deperd_vent ’,’deperd_infiltration ’,
71

72 #COLUMNS THAT ARE REDOUNDANT OR SUBSTITUTED BY OTHERS
73 ’bureau_occ ’,’serveur_occ ’,’categorie ’,’construction ’,’renovation ’,’rie’,’structure ’,
74

75 #COLUMNS THAT WERE SIMPLIFIED
76 ’paroi ’,’menui_type ’, ’menui_vitrage ’, ’menui_tl ’, ’menui_protect ’, ’ph_type ’,

’pb_type ’,
77 ’chauff_type ’,’refr_type ’,’vent_principe ’,’ecs’,’ecs_type ’,’emission_chauff ’,’emission_refr ’,
78 ’ecl_gestion ’,’gtb’ ])
79

80

81 df.to_csv(f’C:/ Users/LorranyDASILVA/Documents/PFE/Code/Synthese -Audits_enter_cdropped.csv’,
index=False)

82

83 # Compacite 0 et 5000 enleve , Tire - dans UW enleve et Dperditions 0 enlevees
et un Facteur Solaire de 45 qui devient 0,45

84

85 df =
pd.read_csv(’C:/ Users/LorranyDASILVA/Documents/PFE/Code/Synthese -Audits_enter_cdropped.csv’,sep=";")

86

87 selec_quant
=[’surface ’,’u_bat’,’compacite ’,’deperd_total ’,’taux_occ ’,’menui_uw ’,’menui_fs ’,’ecl_puiss ’,

88 ’pEF_chauff ’,’pEF_froid ’,’pEF_ecl ’,’pEF_bureautique ’,’pEF_serveur ’,
89 ’pEF_autreseq ’,’pEF_ecs ’,’pEF_vent ’,’pEF_aux ’]
90

91 selec_quali = [
92 ’construction2 ’,’paroi2 ’,’isol_type ’,’isol_epaiss ’,’menui_type2 ’,
93 ’menui_vitrage2 ’,’menui_protect2 ’,’ph_type2 ’,’ph_isol_epaisseur ’,’pb_type2 ’,
94 ’pb_isol_epaisseur ’,’chauff ’,’chauff_type2 ’,’refr’,’refr_type2 ’,
95 ’vent_principe2 ’, ’vent_rendement ’, ’ecl_gestion2 ’]
96

97
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98 df_qualitative = df[selec_quali]
99 df_quantitative = df[selec_quant]

100

101

102 # Create a new DataFrame to store the most frequent values
103 most_frequent_values = pd.Series(dtype=object)
104

105 # Create a new DataFrame to store df_qualitative2
106 df_qualitative2 = df_qualitative.copy()
107

108 for col in df_qualitative:
109 # Calculate the number of empty rows
110 empty_rows = df_qualitative[col].isna().sum()
111

112 # Calculate the most frequent value
113 most_frequent_value = df_qualitative[col].mode().values [0]
114

115 # Store the most frequent value
116 most_frequent_values[col] = most_frequent_value
117

118 # Plot bar chart
119 value_counts = df_qualitative[col]. value_counts ()
120 plt.figure(figsize =(15, 6))
121 plt.bar(value_counts.index , value_counts.values , alpha =0.7,

color=’palevioletred ’)
122 plt.xlabel(col)
123 plt.ylabel(’ F r e q u n c i a ’)
124 plt.title(f’Bar chart of {col} (Empty Rows: {empty_rows}, Most Frequent:

{most_frequent_value })’)
125 plt.xticks(rotation =90)
126 for i, v in enumerate(value_counts.values):
127 plt.text(i, v + 0.5, str(v), color=’black ’, ha=’center ’)
128 plt.grid(True)
129 plt.savefig(f’00 Quali_{col}_AS.png’, bbox_inches=’tight ’)
130 plt.show()
131

132 # Fill NA values with the most frequent value in df_qualitative2
133 df_qualitative2[col]. fillna(most_frequent_value , inplace=True)
134

135

136

137

138

139

140 for col in df_qualitative2:
141

142 # Plot bar chart
143 most_frequent_value = df_qualitative2[col].mode().values [0]
144 # Store the most frequent value
145

146 most_frequent_values[col] = most_frequent_value
147 value_counts = df_qualitative2[col]. value_counts ()
148 plt.figure(figsize =(15, 6))
149 plt.bar(value_counts.index , value_counts.values , alpha=1, color=’pink’)
150 plt.xlabel(col)
151 plt.ylabel(’ F r e q u n c i a ’)
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152 plt.title(f’Bar chart of {col} (Empty Rows filled with:
{most_frequent_value })’)

153 plt.xticks(rotation =90)
154 for i, v in enumerate(value_counts.values):
155 plt.text(i, v + 0.5, str(v), color=’black ’, ha=’center ’)
156 plt.grid(True)
157 plt.savefig(f’00 Quali_{col}_AS_fill.png’, bbox_inches=’tight’)
158 plt.show()
159

160 # Create a new DataFrame to store medians
161 medians = pd.Series(dtype=float)
162

163 for col in df_quantitative:
164 # Calculate the count of NaN values in the column
165 nan_count = df_quantitative[col].isna().sum()
166

167 # Filter the non -NaN values in the column
168 non_nan_values = df_quantitative[col]. dropna ()
169 non_nan_values = non_nan_values.astype(float)
170

171 # Calculate the median of non -NaN values
172 median_value = non_nan_values.median ()
173

174 # Store the median value in the medians DataFrame
175 medians[col] = median_value
176

177 fig , (ax1 , ax2) = plt.subplots(1, 2, figsize =(15, 6))
178 # Plot histogram on the first subplot
179 ax1.hist(non_nan_values , bins=30, color=’deepskyblue ’, alpha =0.7)
180 ax1.set_xlabel(col)
181 ax1.set_title(f’Histrogram of {col} - (NaN Count: {nan_count })’) # Display

median in the title
182 ax1.grid(True)
183

184 # Plot violinplot on the second subplot
185 ax2.violinplot(non_nan_values , vert=False)
186 ax2.boxplot(non_nan_values , vert=False)
187 ax2.set_xlabel(col)
188 ax2.set_title(f’Boxplot of {col} (Median ={ median_value :.2f})’) # Display

median in the title
189 ax2.grid(True)
190

191 plt.savefig(f’00 Quanti_{col}_AS.png’, bbox_inches=’tight’)
192 plt.show()
193

194 # Create a new DataFrame df_quantitative2 with NaN values filled with medians
195 df_quantitative2 = df_quantitative.fillna(medians)
196

197 for col in df_quantitative2:
198

199 preenchido = df_quantitative2[col]
200 preenchido = preenchido.astype(float)
201 # Calculate the median of non -NaN values
202 median_value = preenchido.median ()
203 # Store the median value in the medians DataFrame
204 medians[col] = median_value
205
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206

207 fig , (ax1 , ax2) = plt.subplots(1, 2, figsize =(15, 6))
208 # Plot histogram on the first subplot
209 ax1.hist(preenchido , bins=30, color=’lightskyblue ’, alpha =0.7)
210 ax1.set_xlabel(col)
211 ax1.set_title(f’Histogram of {col} - empty rows filled with the median:

{median_value :.2f}’) # Display median in the title
212 ax1.grid(True)
213

214 # Plot violinplot on the second subplot
215 ax2.violinplot(preenchido , vert=False)
216 ax2.boxplot(preenchido , vert=False)
217 ax2.set_xlabel(col)
218 ax2.set_title(f’Boxplot of {col} - empty rows filled with the median:

{median_value :.2f}’) # Display median in the title
219 ax2.grid(True)
220

221 plt.savefig(f’00 Quanti_{col}_AS_fill.png’, bbox_inches=’tight’)
222 plt.show()
223

224 #Finally , the assembly of both of them
225 tableau_synthese = pd.concat ([ df_quantitative2 , df_qualitative2], axis =1)
226 tableau_synthese.to_csv(’Tableau_Synthese.csv’, index=False)

Listing C.1 – Code 1 - Synthesis Analysis

C.1.2 Code 2 - AAPE Analysis

1 # -*- coding: utf -8 -*-
2 """
3 Created on Wed Aug 23 11:45:02 2023
4 """
5 import pandas as pd
6 import matplotlib.pyplot as plt
7

8 df =
pd.read_csv(’C:/ Users/LorranyDASILVA/Documents/PFE/Code/Synthese -AAPE_enter.csv’,sep=";")

9 column_names = df.columns.tolist ()
10

11 all_col = [
12 ’date’, ’methode1 ’, ’cle’, ’reference ’, ’libelle ’, ’surface ’,
13 ’invest ’, ’rinvest ’, ’FACT_gain ’, ’FACT_gainR ’, ’FACT_gainP ’, ’tri’, ’cee’,
14 ’EFg’, ’rEFg’, ’pEFg’, ’Epg’, ’rEPg’, ’pEPg’, ’ENVg’, ’rENVg’, ’pENVg ’,
15 ’RTg_INI ’, ’RTg_REF ’, ’EFg_chauff.elec’, ’rEFg_chauff.elec’,

’pEFg_chauff.elec’,
16 ’EFg_chauff.gaz’, ’rEFg_chauff.gaz’, ’pEFg_chauff.gaz’,
17 ’EFg_chauff.ru’, ’rEFg_chauff.ru’, ’pEFg_chauff.ru’, ’EFg_chauff ’,

’rEFg_chauff ’, ’pEFg_chauff ’,
18 ’EFg_froid.elec’, ’rEFg_froid.elec’, ’pEFg_froid.elec’, ’EFg_froid.ru’,

’rEFg_froid.ru’,
19 ’pEFg_froid.ru’,
20 ’EFg_froid ’, ’rEFg_froid ’, ’pEFg_froid ’, ’EFg_ecl ’, ’rEFg_ecl ’, ’pEFg_ecl ’,
21 ’EFg_bureautique ’, ’rEFg_bureautique ’, ’pEFg_bureautique ’,
22 ’EFg_serveurs ’, ’rEFg_serveurs ’, ’pEFg_serveurs ’,
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23 ’EFg_autreseq ’, ’rEFg_autreseq ’, ’pEFg_autreseq ’, ’EFg_ecs ’, ’rEFg_ecs ’,
’pEFg_ecs ’,

24 ’EFg_vent ’, ’rEFg_vent ’, ’pEFg_vent ’, ’EFg_aux ’, ’rEFg_aux ’, ’pEFg_aux ’,
25 ’EFg_divers ’, ’rEFg_divers ’, ’pEFg_divers ’, ’libelle2 ’]
26

27 # Writing it correctly
28 replacements = {’ ’:’a’,’ ’:’a’,’ ’:’e’,’ ’:’e’

,’ ’:’e’,’ ’:’<’,’ ’:’c’,’ ’:’n’,’ ’:’o’,’ ’:’o’,
29 ’ ’:’2’,’ ’:’E’,’ ’:’i’,’ ’:’<’,’ ’:’ ’}
30 df = df.replace(replacements , regex=True)
31

32 df = df.drop(columns = [
33 # identification columns --------->
34 ’date’,’methode1 ’,’cle’,’reference ’,
35 # Financial aspects that may be a little deceiving - you shold test it anyways
36 ’FACT_gain ’,’FACT_gainR ’,’FACT_gainP ’,’tri’,’cee’,
37 # columns that will maybe be useful in the futur
38 ’invest ’,’EFg’,’rEFg’,’pEFg’,
39 # useless columns --------->
40 ’Epg’,’rEPg’,’pEPg’,’ENVg’,’rENVg’,’pENVg’,’RTg_INI ’,’RTg_REF ’,
41 ’pEFg_chauff.elec’,’pEFg_chauff.gaz’,’pEFg_chauff.ru’,’pEFg_froid.elec’,’pEFg_froid.ru’,
42 ’EFg_chauff.elec’,’rEFg_chauff.elec’,’EFg_chauff.gaz’,’rEFg_chauff.gaz’,
43 ’EFg_chauff.ru’,’rEFg_chauff.ru’,’EFg_chauff ’,’rEFg_chauff ’,
44 ’EFg_froid.elec’,’rEFg_froid.elec’,’EFg_froid.ru’,’rEFg_froid.ru’,’EFg_froid ’,’rEFg_froid ’,
45 ’EFg_ecl ’,’rEFg_ecl ’,’EFg_bureautique ’,’rEFg_bureautique ’,’EFg_serveurs ’,’rEFg_serveurs ’,
46 ’EFg_autreseq ’,’rEFg_autreseq ’,’EFg_ecs ’,’rEFg_ecs ’,’EFg_vent ’,’rEFg_vent ’,’EFg_aux ’,
47 ’rEFg_aux ’,’EFg_divers ’,’rEFg_divers ’,
48 ’pEFg_serveurs ’, ’pEFg_autreseq ’, ’pEFg_ecs ’, ’pEFg_aux ’,’pEFg_divers ’ ])
49

50 df.to_csv(’Tableau_AAPE.csv’, index=False)
51

52 # make some manual treatments that are basically to elimitate this : - (des
petits tires)

53 df =
pd.read_csv(’C:/ Users/LorranyDASILVA/Documents/PFE/Code/Tableau_AAPE.csv’,sep=";")

54

55

56 columns_to_drop = [’libelle ’, ’libelle2 ’]
57 df_drop = df.drop(columns=columns_to_drop , axis =1)
58

59

60 # Create a new DataFrame to store medians
61 medians = pd.Series(dtype=float)
62

63 for col in df_drop:
64

65 # Calculate the count of NaN values in the column
66 nan_count = df_drop[col].isna().sum()
67

68 # Filter the non -NaN values in the column
69 non_nan_values = df_drop[col]. dropna ()
70 non_nan_values = non_nan_values.astype(float)
71

72 # Calculate the median of non -NaN values
73 median_value = non_nan_values.median ()
74

75 # Store the median value in the medians DataFrame
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76 medians[col] = median_value
77

78 fig , (ax1 , ax2) = plt.subplots(1, 2, figsize =(15, 6))
79 # Plot histogram on the first subplot
80 ax1.hist(non_nan_values , bins=30, color=’salmon ’, alpha =0.7)
81 ax1.set_xlabel(col)
82 ax1.set_title(f’Histrogram of {col} - (NaN Count: {nan_count })’) # Display

median in the title
83 ax1.grid(True)
84

85 # Plot violinplot on the second subplot
86 ax2.violinplot(non_nan_values , vert=False ,showextrema=True)
87 ax2.boxplot(non_nan_values , vert=False)
88 ax2.set_xlabel(col)
89 ax2.set_title(f’Boxplot of {col} (Median ={ median_value :.2f})’) # Display

median in the title
90 ax2.grid(True)
91

92 plt.savefig(f’01 Quanti_{col}_AS.png’, bbox_inches=’tight’)
93 plt.show()
94

95 # Create a new DataFrame df_drop2 with NaN values filled with medians - but we
don’t use it

96 df_drop2 = df_drop.fillna(medians)

Listing C.2 – Code 2 - AAPE Analysis

C.1.3 Code 3 - Assamblage

1

2 # -*- coding: utf -8 -*-
3 """
4 Created on Tue Aug 22 11:23:10 2023
5

6 @author: LorranyDASILVA
7 """
8

9 import pandas as pd
10 #import matplotlib.pyplot as plt
11

12 a_data =
pd.read_csv(’C:/ Users/LorranyDASILVA/Documents/PFE/Code/Tableau_AAPE.csv’,sep=";")

13 s_data =
pd.read_csv(’C:/ Users/LorranyDASILVA/Documents/PFE/Code/Tableau_Synthese.csv’,sep=",")

14

15 a = a_data[’surface ’]. unique ()
16 a_df = pd.DataFrame(a,columns =[’aape’])
17

18 s = s_data[’surface ’]
19 s_df = s.to_frame ()
20 s_df.columns = [’synthese ’]
21

22 data2 = pd.concat ([s_df , a_df], axis =1)
23 data2[’result ’] = data2[’synthese ’].isin(data2[’aape’]. dropna ())
24 count_true = data2[’result ’].sum()



105

25

26

27 subset_data2 = data2[data2[’result ’] == True]
28 subset_s = subset_data2 [[’synthese ’]]
29 subset_list = subset_s.values.tolist ()
30 integer_list = [int(x[0]) for x in subset_list]
31

32

33

34 # Verificacao
------------------------------------------------------------------------

35

36 # Initialize a count variable
37 count_true = 0
38

39 # Iterate through elements in list A
40 for element in data2[’aape’]:
41 # Check if element is in column B
42 if element in integer_list:
43 # Print the value in column B for the matching element
44 print(f’Surface {element} found in Synthese with value: {element} in

AAPE’)
45 # Increment the count
46 count_true += 1
47

48 # Print the count of matches
49 print("Number of buildings in both data bases:", count_true)
50

51

52 # Filtragem das bases de dados
-----------------------------------------------------

53

54

55 # ATTENTION : THE ERROR SURFACE IS EASILY CORRECTED IN EXCEL , YOU NEED
BASICALLY TO SELECT THE COLUMN , MAKE IT NUMERIC AND THEN NOT SHOW ANY ZEROS

56 # ALSO , THERE IS A LINE WITH ZEROS IN THE a TABLE - YOU NEED TO EXCLUDE IT
BEFORE MAKING THE TRANSFORMATION BELOW

57

58 s_data[’surface ’] = s_data[’surface ’]. astype(int)
59 a_data[’surface ’] = a_data[’surface ’]. astype(int)
60

61 s_data = s_data[s_data[’surface ’].isin(integer_list)]
62 a_data = a_data[a_data[’surface ’].isin(integer_list)]
63

64 s_data = s_data.sort_values(by=’surface ’)
65 a_data = a_data.sort_values(by=’surface ’)
66

67

68 # Verification of incompatibilities between the two databases
---------------------------------

69

70

71 qqty = a_data[’surface ’]. unique ()
72 qqty = pd.DataFrame(qqty ,columns =[’surface ’])
73 qqty = qqty.values.tolist ()
74 qqty = [int(x[0]) for x in qqty]
75



106

76 qqty2 = s_data[’surface ’]
77 qqty2 = pd.DataFrame(qqty2 ,columns =[’surface ’])
78 qqty2 = qqty2.values.tolist ()
79 qqty2 = [int(x[0]) for x in qqty2]
80

81 boolean_expression = [x in qqty2 for x in qqty]
82 #print("The error is in the building which area is :", boolean_expression)
83 # Count the number of False statements
84

85 false_count = sum(1 for statement in boolean_expression if not statement)
86

87 print("Number of uncompatibilities between the AAPE and the Synthese bases:",
false_count)

88

89

90 # Integracao das duas bases de dados
------------------------------------------------------

91

92

93 import os
94 os.chdir(’C:/ Users/LorranyDASILVA/Documents/PFE/Code’)
95

96 final_data = pd.merge(s_data , a_data , on=’surface ’)
97 final_data.to_csv(’Tableau_Assamblage.csv’, index=False)

Listing C.3 – Code 3 - Assamblage

C.1.4 Code 4 - Uniformisation

1

2 # -*- coding: utf -8 -*-
3 """
4 Created on Wed Aug 23 16:36:12 2023
5

6 @author: LorranyDASILVA
7 """
8

9 import pandas as pd
10 import numpy as np
11 import matplotlib.pyplot as plt
12 import seaborn as sns
13

14 data =
pd.read_csv(’C:/ Users/LorranyDASILVA/Documents/PFE/Code/Tableau_Assamblage.csv’,sep=",")

15

16 # FIRST STEP: UNIFORMISATION
17

18 ECL_ZPP = ’Eclairage - Relamping (LED) + paramatrages ZPP’
19 ECL_ZPT = ’Eclairage - Relamping (LED) + paramatrages ZPT’
20 ECL_GDP = ’Eclairage - Installation equipement de gestion (gradation et/ou

detection de presence)’
21 CTA_SUB = ’Ventilation - Remplacement ou installation CTA double flux avec

echangeur de chaleur ’
22 CTA_OPT = ’Ventilation - Optimisation CTA double flux avec echangeur de chaleur

(temperature et/ou horaire)’
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23 VEN_PDV = ’Ventilation - Calorifugeage et installation de variateurs de
frequence sur pompes ou ventilateurs ’

24 VEN_OPT = ’Ventilation - Optimisation des plages de fonctionnement ’
25 ENV_IMI = ’Enveloppe - Renforcement de lisolation par linterieur ’
26 ENV_IME = ’Enveloppe - Renforcement de lisolation par lexterieur ’
27 ENV_IMIE = ’Enveloppe - Renforcement de lisolation par linterieur/exterieur ’
28 ENV_IPB = ’Isolation - Isoler le plancher bas’
29 ENV_IPH = ’Isolation - Isoler la toiture terrasse/les greniers/combles perdus ’
30 ENV_MEN = ’Enveloppe - Pose de menuiseries exterieures performantes en

remplacement complet ’
31 CHA_CCC = ’Chauffage - Remplacement le systeme par une chaudiere plus

performante ’
32 CHA_OCC = ’Chauffage - Optimisation des consignes de la chaudiere ’
33 CHA_PAC = ’Chauffage - Remplacement le systeme par une pompe a chaleur ’
34 CHA_OET = ’Chauffage - Optimisation des emetteurs terminaux (temperature et/ou

horaire)’
35 CHA_RET = ’Chauffage - Remplacement des emetteurs terminaux ’
36 GES_CTV = ’Gestion - Consignes de temperature vertueuses ’
37 GES_ECL = ’Gestion - Reduction du fonctionnement de leclairage en inoccupation ’
38 GES_BUR = ’Gestion - Reduction du fonctionnement de bureautique et reprographie

en inoccupation ’
39 GTB_SUB = ’GTB - Installation dune GTB’
40 PRO_PPV = ’Production - Production electricite photovoltaique ’
41 PRO_ECS = ’Production - Production ECS solaire thermique ’
42

43

44 # Define search conditions and replacement texts
45 search_and_replace = [
46 # ECLAIRAGE
47 ([’LED’, ’bureaux ’], ECL_ZPP),
48 ([’Eclairage ’], ECL_ZPP),
49 ([’ECL’], ECL_ZPP),
50 ([’Renovation ’,’eclairage ’], ECL_ZPP),
51 ([’Relampage ’,’LED’], ECL_ZPP),
52 ([’Remplacement ’,’eclairage ’], ECL_ZPP),
53 ([’Remplacement ’,’luminaires ’], ECL_ZPP),
54 ([’LED’,’Remplacement ’,’halogenes ’], ECL_ZPP),
55 ([’luminaires ’,’performants ’], ECL_ZPP),
56 ([’eclairage ’,’puissance ’], ECL_GDP),
57 ([’LED’,’sanitaires ’], ECL_ZPT ),
58 ([’LED’,’parkings ’], ECL_ZPT ),
59 ([’LED’,’intermittante ’], ECL_ZPT ),
60 ([’LED’,’circulation ’], ECL_ZPT ),
61 ([’Optimisation ’,’eclairage ’], ECL_GDP),
62 ([’minuterie ’,’eclairage ’], ECL_GDP),
63 ([’programmation ’,’eclairage ’], ECL_GDP),
64 ([’horloge ’,’eclairage ’], ECL_GDP),
65 ([’eclairage ’,’performant ’], ECL_GDP),
66 ([’Detection ’], ECL_GDP),
67 ([’Detecteurs ’], ECL_GDP),
68 ([’Gradation ’], ECL_GDP),
69 ([’gradation ’], ECL_GDP),
70

71

72

73 # CTA
74 ([’CTA’,’Remplacement ’], CTA_SUB),
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75 ([’CTA’,’Recuperateur ’], CTA_SUB),
76 ([’CTA’,’recuperation ’], CTA_SUB),
77 ([’CTA’,’Recuperation ’], CTA_SUB),
78 ([’CTA’,’changement ’], CTA_SUB),
79 ([’CTA’,’double ’,’flux’], CTA_SUB),
80 ([’CTA’,’Retrofit ’], CTA_SUB),
81 ([’CTA’,’Optimisation ’], CTA_OPT),
82 ([’CTA’,’Regulation ’], CTA_OPT),
83 ([’CTA’,’horloge ’], CTA_OPT),
84 ([’CTA’,’horaire ’], CTA_OPT),
85 ([’CTA’,’temperature ’], CTA_OPT),
86 ([’CTA’,’fonctionnement ’], CTA_OPT),
87 ([’CTA’,’programmation ’], CTA_OPT),
88 ([’CTA’,’OPTIMISATION ’], CTA_OPT),
89 ([’CTA’,’consignes ’], CTA_OPT),
90 ([’CTA’,’vitesse ’], CTA_OPT),
91 ([’CTA’,’Arret’], CTA_OPT),
92 ([’CTA’,’melange ’], CTA_OPT),
93 ([’CTA’,’Horloge ’], CTA_OPT),
94 ([’CTA’,’Sonde’], CTA_OPT),
95 ([’Asservissement ’], CTA_OPT), #### NOT SURE
96

97 # Pompes debit variable
98 ([’Distribution ’,’variable ’], VEN_PDV),
99 ([’distribution ’,’variable ’], VEN_PDV),

100 ([’Optimisation ’,’ventilation ’], VEN_OPT),
101 ([’Arret ’,’pompes ’], VEN_OPT),
102 ([’Arret ’,’pompe’], VEN_OPT),
103 ([’Arret ’,’ventilateurs ’], VEN_OPT), ##### ARRET DES POMPES
104

105 # Isolation
106 ([’Isolation ’,’murs’,’interieur ’], ENV_IMIE),
107 ([’Isolation ’,’interieur ’], ENV_IMIE),
108 ([’Isolation ’,’Murs’], ENV_IMIE),
109 ([’Isolation ’,’des’,’murs’], ENV_IMIE), #############

ATTENTION HYPOTHESES QUE C’EST PAR L’INTERIEUR MAIS ON NE SAIT PAS
REALLY

110 ([’Isolation ’,’murs’,’exterieur ’], ENV_IMIE),
111 ([’Isolation ’,’plancher ’,’haut’], ENV_IPB),
112 ([’Isolation ’,’plancher ’,’bas’], ENV_IPB),
113 ([’menuiseries ’,’remplacement ’], ENV_MEN),
114 ([’menuiseries ’,’Pose’], ENV_MEN),
115

116 #CHAUFFAGE
117

118 ([’Chaudiere ’,’condensation ’], CHA_CCC),
119 ([’regulation ’,’chaudiere ’], CHA_CCC),
120 ([’Chaudiere ’,’Reduit ’], CHA_OCC),
121 ([’Chaudiere ’,’Pilotage ’], CHA_OCC),
122 ([’optimisation ’,’chaudiere ’], CHA_OCC),
123 ([’PAC’], CHA_PAC),
124 ([’pompe ’,’chaleur ’], CHA_PAC),
125 ([’pompes ’,’chaleur ’], CHA_PAC),
126

127 # Ventilo -convecteurs
128 ([’VCV’,’Horloges ’], CHA_OET),
129 ([’VCV’,’Horaires ’], CHA_OET),
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130 ([’VCV’,’regulations ’], CHA_OET),
131 ([’VCV’,’regualtion ’], CHA_OET),
132 ([’VCV’,’thermostat ’], CHA_OET),
133 ([’VCV’,’programmation ’], CHA_OET),
134 ([’Gestion ’,’emetteurs ’], CHA_OET),
135 ([’horaire ’,’emetteurs ’], CHA_OET),
136 ([’Optimisation ’,’emetteurs ’], CHA_OET),
137 ([’Optimisation ’,’ventilo -convecteurs ’], CHA_OET),
138 ([’commutation ’], CHA_OET),
139 ([’VCV’,’Optimisation ’], CHA_OET),
140 ([’Robinets ’,’thermostatiques ’], CHA_OET),
141 ([’robinets ’,’thermostatiques ’], CHA_OET),
142 ([’VCV’,’HEE’], CHA_RET),
143 ([’VCV’,’Remplacement ’], CHA_RET),
144 ([’boitiers ’,’terminaux ’], CHA_RET),
145 ([’emetteurs ’,’Remplacement ’], CHA_RET),
146

147

148 # Production SOLAIRE
149 ([’photovoltaique ’], PRO_PPV),
150 ([’ECS’,’solaire ’], PRO_ECS),
151 ([’thermique ’,’Solaire ’], PRO_ECS),
152

153 #GESTION
154 ([’Consignes ’,’vertueuses ’], GES_CTV),
155 ([’Consignes ’,’moderees ’], GES_CTV),
156 ([’Consignes ’,’raisonnables ’], GES_CTV),
157 ([’GTB’], GTB_SUB),
158 ([’Reduction ’,’bureautique ’], GES_BUR),
159 ([’veille ’,’bureautique ’], GES_BUR),
160 ([’Optimisation ’,’equipements ’], GES_BUR),
161 ([’ecleirage ’,’innocupation ’], GES_ECL),
162 ([’Suppression ’,’veilles ’], GES_BUR),
163 ([’Suppression ’,’lampes ’], GES_ECL),
164 ([’Gestion ’,’eclairage ’], GES_ECL),
165 ([’eclairage ’,’gestion ’], GES_ECL),
166 ([’interrupteurs ’,’vertueuse ’], GES_ECL),
167 ([’Reduction ’,’fonctionnement ’,’ecleirage ’],GES_ECL),
168 ([’Arret ’,’ecleirage ’], GES_ECL),
169 ([’Usage ’,’ecleirage ’], GES_ECL)
170 ]
171

172 # Create a dictionary to store conditions and their corresponding replacement
texts

173 conditions_dict = {}
174

175 for i, (search_condition , replacement_text) in enumerate(search_and_replace):
176 condition_check = data[’libelle ’].str.contains(search_condition [0])
177 for term in search_condition [1:]:
178 condition_check = condition_check & data[’libelle ’].str.contains(term)
179

180 if replacement_text in conditions_dict:
181 conditions_dict[replacement_text] = conditions_dict[replacement_text] |

condition_check
182 else:
183 conditions_dict[replacement_text] = condition_check
184
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185 # Combine columns with the same replacement text into a single column
186 for replacement_text , condition_check in conditions_dict.items ():
187 data[replacement_text] = condition_check
188

189 # Create a new column with the name of the column where there’s a True statement
190 data[’result ’] = data.iloc[:, -len(conditions_dict):]. idxmax(axis =1)
191

192 # Filter out columns with False values
193 data[’result ’] = data.apply(lambda row: row[’result ’] if row[row[’result ’]]

else None , axis =1)
194

195 # Drop the original ’action ’ columns
196 data = data.drop(columns =[col for col in data.columns if

col.startswith(’action_ ’)])
197

198 def check_multiple_true(row):
199 true_columns = [col for col in conditions_dict if row[col]]
200 if len(true_columns) > 1:
201 libelle_value = row[’libelle ’]
202 return f"The line {row.name +2}: ’{libelle_value}’ has more than one

action"
203 else:
204 return None
205

206 error_messages = data.apply(check_multiple_true , axis =1)
207 for error_message in error_messages.dropna ():
208 print(error_message)
209

210 count_none = data[’result ’].isna().sum()
211 num_rows = len(data)
212 print("You have completed ",num_rows - count_none ," actions! You need yet to

fill",count_none , ".")
213

214 import os
215 os.chdir(’C:/ Users/LorranyDASILVA/Documents/PFE/Code’)
216 data.to_csv(’Tableau_ID.csv’, index=False)

Listing C.4 – Code 4 - Uniformisation

C.1.5 Code 5 - Filtering and Correlation

1

2 # -*- coding: utf -8 -*-
3 """
4 Created on Tue Oct 3 17:58:25 2023
5

6 @author: LorranyDASILVA
7 """
8

9 import pandas as pd
10 import numpy as np
11 import matplotlib.pyplot as plt
12 import seaborn as sns
13

14 data = pd.read_csv(’C:/Users/LorranyDASILVA/Documents/PFE/Code/Tableau_ID.csv’)
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15

16 # SECOND PART: FILTERING THE MOST FREQUENT CASES
17 counts = data[’result ’]. value_counts ()
18 counts = counts.reset_index ()
19 counts.columns = [’result ’, ’frequence ’]
20 #subset_counts = counts[counts[’frequence ’] > 0] #### FIRST ITERATION
21 subset_counts = counts[counts[’frequence ’] > 15]
22 qtty = subset_counts[’frequence ’].sum()
23 print(’Actual quantity of cases after choosing the most frequent , above 15

occurences:’, qtty)
24 subset_data = data[data[’result ’].isin(subset_counts[’result ’])]
25

26

27 # Determine the columns to drop
28 subset_counts = subset_counts[’result ’]. tolist ()
29 columns_to_drop = subset_data.columns[subset_data.columns.get_loc(’libelle2 ’) +

1: subset_data.columns.get_loc(’result ’)]
30 columns_to_drop = [col for col in columns_to_drop if col not in subset_counts]
31 subset_data.drop(columns=columns_to_drop , inplace=True)
32

33

34 plt.figure(dpi =2000)
35 g0 = sns.catplot(y=’result ’, kind=’count ’, data=subset_data , height=5, aspect =2)
36 g0.set_yticklabels(rotation=0, fontsize =7)
37 g0.set_xticklabels(fontsize =7)
38 plt.xlabel(’Count’, fontsize =10)
39 plt.ylabel(’Ameliorations ’, fontsize =10)
40 #plt.axvline(x=15, color=’red ’, linestyle=’--’, label=’Count 15’) #### FIRST

ITERATION
41

42 plt.savefig(’filtrage2.png’, bbox_inches=’tight ’)
43 # Show the plot
44 plt.show()
45

46 subset_data.fillna(0, inplace=True)
47 subset_data[’result2 ’] = subset_data[’pEFg_chauff ’]* subset_data[’pEF_chauff ’] +

subset_data[’pEFg_froid ’]* subset_data[’pEF_froid ’] +
subset_data[’pEFg_ecl ’]* subset_data[’pEF_ecl ’] +
subset_data[’pEFg_bureautique ’]* subset_data[’pEF_bureautique ’] +
subset_data[’pEFg_vent ’]* subset_data[’pEF_vent ’]

48 subset_data = subset_data[subset_data[’result2 ’] != 0]
49

50 # Tinha 472 melhorias depois da filtragem dos casos principais , excluindo -se 12
que tem ganho igual a zero , tem -se 460.

51

52 subset_data.to_csv(’Tableau_Filter.csv’, index=False)
53

54 df = subset_data
55 ultima_coluna = df.columns [-1]
56

57 actions = df.columns[df.columns.get_loc(’libelle2 ’) +
1:df.columns.get_loc(’result ’)]

58 actions = actions.tolist ()
59

60 qualitative =
[’construction2 ’,’paroi2 ’,’isol_type ’,’isol_epaiss ’,’menui_type2 ’,’menui_vitrage2 ’,

61 ’menui_protect2 ’,’ph_type2 ’,’ph_isol_epaisseur ’,’pb_type2 ’,’pb_isol_epaisseur ’,’chauff ’,
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62 ’chauff_type2 ’,’refr’,’refr_type2 ’,’vent_principe2 ’,’vent_rendement ’,’ecl_gestion2 ’]
63

64 quantitative =
[’surface ’,’u_bat ’,’compacite ’,’deperd_total ’,’taux_occ ’,’menui_uw ’,’menui_fs ’,’ecl_puiss ’,

65 ’pEF_chauff ’,’pEF_froid ’,’pEF_ecl ’,’pEF_bureautique ’,’pEF_vent ’,’rinvest ’,’pEFg_chauff ’,
66 ’pEFg_froid ’,’pEFg_ecl ’,’pEFg_bureautique ’,’pEFg_vent ’,’result2 ’]
67

68 for col in quantitative: # Iterando sobre todas as colunas , exceto a ltima
69 plt.figure(figsize =(6, 4))
70 scatter =

plt.scatter(df[ultima_coluna],df[col],alpha =0.7,c=pd.factorize(df[’result ’])[0],cmap=’tab10 ’)
71 classes = actions
72 plt.xlabel(ultima_coluna)
73 plt.ylabel(col)
74 plt.title(f’ C o r r e l a o entre {col} e {ultima_coluna}’)
75 plt.legend(handles=scatter.legend_elements ()[0], labels=classes , title=’Type’,

loc=’upper center ’, bbox_to_anchor =(0.6, -0.1),fontsize=’small’)
76 plt.savefig(f’Scatterplot_quanti_{col}.png’, bbox_inches=’tight’)
77 plt.grid(True)
78 plt.show()
79

80 ### TESTES
81 data_quali = df[qualitative]
82 data_qtty = df[quantitative]
83 data_quali[’result2 ’] = df[’result2 ’]
84

85 #sns.set_style(’white ’)
86 #sns.set_palette (" pastel ") # You can replace "pastel" with your desired palette
87 for col in data_quali :
88 # Create a boxplot or violin plot
89 plt.figure(figsize =(8, 6)) # Adjust the figure size as needed
90 # Boxplot
91 ax = sns.violinplot(x=data_quali[col], y=data_quali[’result2 ’],

data=data_quali , linewidth =0)
92 sns.boxplot(x=data_quali[col], y=data_quali[’result2 ’], data=data_quali ,

linewidth =0.5, width =0.4, boxprops ={’fill’: None ,’zorder ’: 2},ax=ax)
93

94 # Or , use a violin plot for a different view
95 # sns.violinplot(x=’Column_A ’, y=’Column_B ’, data=data)
96 plt.xlabel(f’ Rapport entre {col} e {ultima_coluna} (Categorical)’)
97 plt.ylabel(f’{ultima_coluna }( Continuous)’)
98 plt.title(f’Rapport entre {col} e {ultima_coluna} (Categorical)’)
99 plt.savefig(f’Boxplot_quali_{col}.png’, bbox_inches=’tight’)

100 plt.show()
101

102

103 for col in data_qtty:
104 fig , (ax1 , ax2) = plt.subplots(1, 2, figsize =(15, 6))
105 # Plot histogram on the first subplot
106 ax1.hist(data_qtty[col], color=’pink’, alpha =0.7)
107 ax1.set_xlabel(col)
108 ax1.set_title(f’Boxplot of {col}’)
109 ax1.grid(True)
110 # Plot violinplot on the second subplot
111 ax2.violinplot(data_qtty[col], vert=False)
112 ax2.boxplot(data_qtty[col], vert=False)
113 ax2.set_xlabel(col)
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114 ax2.set_title(f’Boxplot of {col}’)
115 plt.savefig(f’Boxplot_quanti_{col}.png’, bbox_inches=’tight’)
116 ax2.grid(True)
117

118 plt.show()

Listing C.5 – Code 5 - Filtering and Correlation



114

C.1.6 Code 6 - Pre-metamodel

1

2 # -*- coding: utf -8 -*-
3 """
4 Created on Tue Oct 3 17:51:30 2023
5

6 @author: LorranyDASILVA
7 """
8

9 import pandas as pd
10 import numpy as np
11 import matplotlib.pyplot as plt
12 import seaborn as sns
13

14 df =
pd.read_csv(’C:/ Users/LorranyDASILVA/Documents/PFE/Code/Tableau_Filter.csv’,sep=",")

15

16 replacement_dict = {False: 0, True: 1,
17 ’Fin XIXeme ’:1875,’Millieu XX’:1950,
18 ’Fin XVIII’ : 1775, ’Fin XIX’ : 1875, ’Debut XX’ : 1900, ’Fin XX’ : 1975,
19 ’Entre 2000 et 2010’ : 2005, ’Apres 2010’ : 2015}
20

21 df = df.replace(replacement_dict)
22

23 col_names = df.columns
24 df = df.drop(columns = [’libelle2 ’,’libelle ’,’result ’])
25

26 qualitative_cols =
[’construction2 ’,’paroi2 ’,’isol_type ’,’isol_epaiss ’,’menui_type2 ’,’menui_vitrage2 ’,

27 ’menui_protect2 ’,’ph_type2 ’,’ph_isol_epaisseur ’,’pb_type2 ’,’pb_isol_epaisseur ’,’chauff ’,
28 ’chauff_type2 ’,’refr’,’refr_type2 ’,’vent_principe2 ’,’vent_rendement ’,’ecl_gestion2 ’]
29

30 qualitative_data = df[qualitative_cols]
31 quantitative_data = df.drop(columns = qualitative_cols)
32 my_dict = {}
33

34 for col in qualitative_data:
35 qd_cleaned = qualitative_data.dropna(subset =[col])
36 my_dict[col] = np.unique(qd_cleaned[col])
37 #print(unique_values)
38

39 # Create a new dictionary to store the modified values
40 modified_dict = {}
41 correspondence_dict = {}
42

43 # Iterate through the original dictionary
44 for key , values in my_dict.items():
45 # Create a mapping dictionary to map unique values to numbers
46 unique_values = np.unique(values)
47 value_to_number = {value: idx for idx , value in enumerate(unique_values)}
48

49 # Replace the array of values with an array of numbers
50 modified_dict[key] = np.array ([ value_to_number[value] for value in values ])
51

52 # Create a correspondence dictionary
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53 correspondence_dict[key] = {value: idx for value , idx in
value_to_number.items ()}

54

55 # Print the modified dictionary
56 for key , values in modified_dict.items():
57 print(f"{key}: array({ values.tolist ()})")
58

59 # Print the correspondence dictionary
60 for key , correspondence in correspondence_dict.items():
61 print(f"Correspondence for {key}:")
62 for original , new in correspondence.items ():
63 print(f" {original }: {new}")
64

65 qualitative_data2 = qualitative_data.replace(correspondence_dict)
66 data_final = pd.concat ([ quantitative_data ,qualitative_data2],axis =1)
67 data_final = data_final [[col for col in data_final.columns if col != ’result2 ’]

+ [’result2 ’]]
68

69 data_final.to_csv(’Tableau_Metamodelo.csv’, index=False)

Listing C.6 – Code 6 - Pre-metamodel

C.1.7 Code 7- Machine Learning Model

1

2 # -*- coding: utf -8 -*-
3 """
4 Created on Tue Jun 25 07:52:29 2024
5

6 @author: lorra
7 """
8

9 import pandas as pd
10 import matplotlib.pyplot as plt
11 import os
12 import numpy as np
13 from sklearn.metrics import mean_squared_error
14 from sklearn.metrics import mean_absolute_error
15 from sklearn.metrics import r2_score
16 from sklearn.model_selection import train_test_split
17 from sklearn.model_selection import GridSearchCV
18 from sklearn import ensemble
19 from sklearn.inspection import permutation_importance
20 from sklearn.preprocessing import OneHotEncoder , StandardScaler
21 import joblib
22 import matplotlib.pyplot as plt
23 from sklearn.metrics import silhouette_score
24 from sklearn.cluster import KMeans
25 import seaborn as sns
26

27

28 new_directory = "C:/ Users/Dell/Documents/Trabalho"
29 os.chdir(new_directory)
30
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31 df =
pd.read_csv(’C:/ Users/Dell/Documents/Trabalho/PFE_Redo_JOB/Tableau_Metamodelo_Final_Manual_pEF.csv’,sep=";")

32

33 max_values = pd.DataFrame ({’column_names ’: df.columns ,’real_value ’:
df.max()}).reset_index(drop=True)

34 min_values = pd.DataFrame ({’column_names ’: df.columns ,’real_value ’:
df.min()}).reset_index(drop=True)

35

36 max_values.to_csv(’max_values.csv’, sep= ’;’, index=False)
37 min_values.to_csv(’min_values.csv’, sep= ’;’, index=False)
38

39 plt.hist(df[’result ’], bins=10, edgecolor=’black ’) # Adjust number of bins as
needed

40 plt.xlabel(’Gain’)
41 plt.ylabel(’Frequency ’)
42 plt.title(’Frequence of AAPEs gains distribution ’)
43 plt.grid(True)
44 plt.show()
45

46

47 #Define the clusters
48

49 clusters = {
50 ’envelope ’: [’construction2 ’,’paroi2 ’,’isol.type’,’isol.epaiss ’,
51 ’ph.type2 ’,’ph.isol.epaisseur ’,’pb.type2’,’pb.isol.epaisseur ’],
52 ’light ’: [’ecl.puiss ’, ’pEF.ecl’],
53 ’chauff ’: [’chauff ’,’chauff.type2’],
54 ’ref’:[’refr’,’refr.type2 ’],
55 ’vent’:[’vent.principe2 ’,’vent.rendement ’]
56 }
57

58 # Function to create clusters and add them as columns
59 def create_clusters(df , columns , n_clusters =15):
60 # Select relevant columns
61 data = df[columns]
62

63 # One -hot encode categorical variables
64 data_encoded = pd.get_dummies(data , drop_first=True)
65

66 # Scale the data (optional but recommended for KMeans)
67 scaler = StandardScaler ()
68 data_scaled = scaler.fit_transform(data_encoded)
69

70 # Apply KMeans clustering
71 kmeans = KMeans(n_clusters=n_clusters , random_state =42)
72 cluster_labels = kmeans.fit_predict(data_scaled)
73

74 return cluster_labels
75

76 # Create and add clusters to the dataframe
77 for cluster_name , columns in clusters.items ():
78 df[f’{cluster_name}_cluster ’] = create_clusters(df , columns)
79

80 # Display the dataframe with the new cluster columns
81 print(df.head())
82

83
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84 def find_optimal_clusters(data , max_k):
85 iters = range(2, max_k +1)
86 wcss = []
87 silhouette_scores = []
88

89 for k in iters:
90 kmeans = KMeans(n_clusters=k, random_state =42)
91 kmeans.fit(data)
92 wcss.append(kmeans.inertia_)
93 silhouette_scores.append(silhouette_score(data , kmeans.labels_))
94

95 fig , (ax1 , ax2) = plt.subplots(1, 2, figsize =(15, 5))
96

97 # Elbow Method plot
98 ax1.plot(iters , wcss , marker=’o’)
99 ax1.set_xlabel(’Number of Clusters ’)

100 ax1.set_ylabel(’WCSS’)
101 ax1.set_title(’Elbow Method ’)
102

103 # Silhouette score plot
104 ax2.plot(iters , silhouette_scores , marker=’o’)
105 ax2.set_xlabel(’Number of Clusters ’)
106 ax2.set_ylabel(’Silhouette Score ’)
107 ax2.set_title(’Silhouette Scores ’ )
108

109 plt.show()
110

111 # Use the function to find the optimal number of clusters for each group
112 for cluster_name , columns in clusters.items ():
113 data_encoded = pd.get_dummies(df[columns], drop_first=True)
114 data_scaled = StandardScaler ().fit_transform(data_encoded)
115 print(f’Optimal clusters for {cluster_name }:’)
116 find_optimal_clusters(data_scaled , 15)
117

118

119

120 # Optimal number of clusters determined from the previous analysis
121 optimal_clusters = {
122 ’envelope ’: 8,
123 ’light ’: 5,
124 ’chauff ’: 5,
125 ’ref’:4,
126 ’vent’: 6
127 }
128

129

130 # Function to create and add clusters to the dataframe
131 def add_clusters_to_df(df, cluster_name , columns , n_clusters):
132 # Select relevant columns
133 data_encoded = pd.get_dummies(df[columns], drop_first=True)
134

135 # Scale the data
136 scaler = StandardScaler ()
137 data_scaled = scaler.fit_transform(data_encoded)
138

139 # Apply KMeans clustering
140 kmeans = KMeans(n_clusters=n_clusters , random_state =42)
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141 cluster_labels = kmeans.fit_predict(data_scaled)
142

143 # Add cluster labels as a new column
144 df[f’{cluster_name}_cluster ’] = cluster_labels
145

146 # Apply the function for each cluster group
147 for cluster_name , columns in clusters.items ():
148 n_clusters = optimal_clusters[cluster_name]
149 add_clusters_to_df(df, cluster_name , columns , n_clusters)
150

151 # Display the dataframe with the new cluster columns
152 print(df.head())
153

154 # Define a custom color palette for the categories
155 palette = {
156 ’1’: ’#FFFFB3 ’, # Pastel yellow
157 ’2’: ’#FFFFB3 ’, # Pastel yellow
158 ’3’: ’#B3CDE3 ’, # Pastel blue
159 ’4’: ’#B3CDE3 ’, # Pastel blue
160 ’5’: ’#CBC0FF ’, # Pastel violet
161 ’6’: ’#CBC0FF ’, # Pastel violet
162 ’7’: ’#CBC0FF ’, # Pastel violet
163 ’8’: ’#FFB6C1 ’, # Pastel red (light pink)
164 ’9’: ’#FFB6C1 ’, # Pastel red (light pink)
165 ’10’: ’#FFB6C1 ’, # Pastel red (light pink)
166 ’11’: ’#BCECAC ’, # Pastel green
167 ’12’: ’#BCECAC ’ # Pastel green
168 }
169

170

171 # List of new cluster columns
172 cluster_columns = [’envelope_cluster ’, ’light_cluster ’,

’chauff_cluster ’,’ref_cluster ’,’vent_cluster ’]
173

174 # Reorder the columns to move the cluster columns to the beginning
175 df = df[cluster_columns + [col for col in df.columns if col not in

cluster_columns ]]
176

177 # Display the dataframe with the cluster columns at the beginning
178 print(df.head())
179

180 ultima_coluna = df.columns [-1]
181 column_names = df.columns
182

183 for index , row in df.iterrows ():
184 for column , value in row.items():
185 if pd.isna(value):
186 print(f"Row {index}, Column {column} has NA value: {value}")
187

188

189 #qualitative1 = df.columns[df.columns.get_loc(’percent ’) +
1:df.columns.get_loc(’result ’)]

190 qualitative1 = df.columns [ -12:]
191 sum_values = df[qualitative1 ].sum()
192

193 plt.barh(sum_values.index , sum_values.values)
194 plt.xlabel(’Frequence ’)
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195 plt.ylabel(’AAPE’)
196 plt.title(’AAPE Frequence ’)
197 plt.grid(True)
198 plt.show()
199

200

201 # Calculate row sums for specified columns
202 df[’row_sum ’] = df[qualitative1 ].sum(axis =1)
203

204 # Filter rows where the sum is less than or equal to 1
205 df = df[df[’row_sum ’] <= 1]
206

207 # Drop the ’row_sum ’ column if no longer needed
208 df = df.drop(columns=’row_sum ’)
209

210 for i, col in enumerate(qualitative1):
211 df[col] = df[col].apply(lambda x: i + 1 if x == 1 else 0)
212

213 # Calculate row sums for specified columns
214 df[’aape’] = df[qualitative1 ].sum(axis =1)
215

216 cols = [’aape’] + [col for col in df.columns if col != ’aape’]
217 df = df[cols]
218

219

220

221 # Create the boxplot with the custom palette
222 plt.figure(figsize =(12, 9))
223 sns.boxplot(x=’aape’, y=’EFg’, data=df , palette=palette)
224 plt.title(’Boxplot of Results by Categories ’)
225 plt.xlabel(’Category (aape)’)
226 plt.ylabel(’Result ’)
227 handles = [plt.Line2D ([0], [0], color=palette[str(i + 1)], marker=’o’,

linestyle=’’, label=qualitative1[i]) for i in range(len(qualitative1))]
228 plt.legend(handles=handles , title=’Qualitative 1 Categories ’,

bbox_to_anchor =(0.5, -0.15), loc=’upper center ’, ncol =1)
229 plt.tight_layout ()
230 plt.show()
231

232

233 # Function to remove outliers
234 def remove_outliers(df , group_col , value_col):
235 # Calculate Q1 (25th percentile) and Q3 (75th percentile) for each group
236 Q1 = df.groupby(group_col)[value_col ]. quantile (0.25)
237 Q3 = df.groupby(group_col)[value_col ]. quantile (0.75)
238 IQR = Q3 - Q1
239

240 # Define bounds for outliers
241 lower_bound = Q1 - 1.5 * IQR
242 upper_bound = Q3 + 1.5 * IQR
243

244 # Filter out the outliers
245 df_filtered = df[
246 (df[value_col] >= df[group_col ].map(lower_bound)) &
247 (df[value_col] <= df[group_col ].map(upper_bound))
248 ]
249
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250 return df_filtered
251

252 #Remove outliers
253 df = remove_outliers(df, ’aape’, ’result ’)
254

255 plt.figure(figsize =(12, 9))
256 sns.boxplot(x=’aape’, y=’result ’, data=df , palette=palette)
257 plt.title(’Boxplot of Results by Categories ’)
258 plt.xlabel(’Category (aape)’)
259 plt.ylabel(’Result ’)
260 handles = [plt.Line2D ([0], [0], color=palette[str(i + 1)], marker=’o’,

linestyle=’’, label=qualitative1[i]) for i in range(len(qualitative1))]
261 plt.legend(handles=handles , title=’Qualitative 1 Categories ’,

bbox_to_anchor =(0.5, -0.15), loc=’upper center ’, ncol =1)
262 plt.tight_layout ()
263 plt.show()
264

265 # Drop the ’row_sum ’ column if no longer needed
266 df = df.drop(columns=qualitative1)
267

268

269 qualitative2 = [’construction2 ’,’paroi2 ’,’isol.type’,’isol.epaiss ’,
270 ’menui.type2’,’menui.vitrage2 ’,
271 ’ph.type2 ’,’ph.isol.epaisseur ’,’pb.type2’,’pb.isol.epaisseur ’,
272 ’chauff ’,’chauff.type2’,’refr’,’refr.type2’,’vent.principe2 ’,’vent.rendement ’,’ecl.gestion2 ’,’aape’]
273

274

275 quantitative = [#’surface ’,
276 ’u.bat’,#’compacite ’,’deperd.total ’,
277 ’taux.occ’,’menui.uw’,’menui.fs’,’ecl.puiss ’,#’rinvest ’,
278 ’EFg’,
279 ’pEF.chauff ’,’pEF.froid ’,’pEF.ecl’,’pEF.bureautique ’,’pEF.vent’,
280 ’pEF.aux’,’pEF.serveur ’,’pEF.divers ’,’pEF.autreseq ’, ’pEF.ecs’]
281

282

283 corr_matrix = pd.DataFrame(df[quantitative],columns = quantitative).corr()
284 sns.heatmap(corr_matrix ,cmap = ’coolwarm ’)
285

286 corr_matrix2 = pd.DataFrame(df[qualitative2],columns = qualitative2).corr()
287 sns.heatmap(corr_matrix2 ,cmap = ’coolwarm ’)
288

289 corr_matrix3 = pd.DataFrame(df).corr()
290 sns.heatmap(corr_matrix3 ,cmap = ’coolwarm ’)
291

292

293

294 #clusters =
[’envelope_cluster ’,’light_cluster ’,’chauff_cluster ’,’ref_cluster ’,’vent_cluster ’]

295

296 # o output do metamodelo sera o ganho energetico da acao
297 df[df.columns [ -1]]. head()
298

299 subset_features = quantitative + qualitative2 #+ clusters
300

301 # assim , separa -se as features e targets
302 features = df[subset_features]
303 target = df.copy()[df.columns [-1]]
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304

305 def z_score_normalize(series):
306 mean = series.mean()
307 std_dv = series.std()
308 return series.apply(lambda x:(x - mean) / std_dv)
309 for col in quantitative:
310 features[col] = z_score_normalize(features[col])
311

312 def min_max_normalize(series):
313 min_val = series.min()
314 max_val = series.max()
315 range_val = max_val - min_val
316 return series.apply(lambda x: (x - min_val) / range_val)
317

318 for col in quantitative:
319 features[col] = min_max_normalize(features[col])
320

321 VAR = features
322 PRED = target
323

324

325 # Parameters for Gradient Boosting Regressor
326 params = {
327 ’max_depth ’: [5,15,40],
328 ’n_estimators ’: [100, 200, 500],
329 ’min_samples_split ’: [5, 10, 20,40],
330 ’learning_rate ’: [0.01, 0.05, 0.1],
331 ’loss’: [’huber’],
332 ’random_state ’: [0]
333 }
334

335

336 # Example data
337 aape_values = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] # Example values
338

339 # quali1 = [’pEF.ecl ’,’ecl.puiss ’,’pEF.vent ’,’pEF.bureautique ’]
340 # quali2 = [’pEF.ecl ’,’construction2 ’,’pEF.froid ’,’menui.fs ’,’menui.vitrage2 ’]
341 # quali3 = [’pEF.chauff ’,’ph.type2 ’,’pEF.vent ’,’taux.occ ’,’pEF.bureautique ’]
342 # quali4 = [’pb.type2 ’,’chauff.type2 ’,’ecl.puiss ’,’taux.occ ’,’menui.vitrage2 ’]
343 # quali5 = [’isol.type ’,’pEF.chauff ’,’light_cluster ’,’menui.uw ’,’EF.total ’]
344 # quali6 = [’envelope_cluster ’,’taux.occ ’,’pb.isol.epaisseur ’]
345 # quali7 = [’ph.isol.epaisseur ’,’menui.uw ’,’ecl.puiss ’,’taux.occ ’]
346 # quali8 = [’pEF.chauff ’,’menui.uw ’,’menui.fs ’,’taux.occ ’,’construction2 ’]
347 # quali9 = [’pEF.bureautique ’, ’u.bat ’, ’pb.isol.epaisseur ’]
348 # quali10 = [’u.bat ’,’pEF.ecl ’,’pEF.vent ’,’taux.occ ’,’paroi2 ’]
349 # quali11 =

[’pEF.froid ’,’light_cluster ’,’ecl.puiss ’,’paroi2 ’,’vent.principe2 ’,’isol.epaiss ’,’menui.uw ’]
350 # quali12 = [’pEF.bureautique ’,’u.bat ’,’light_cluster ’,’pEF.ecl ’]
351

352 quali1 = [’pEF.ecl’,’ecl.puiss’,’pEF.vent’,’pEF.bureautique ’]
353 quali2 = [’pEF.ecl’,’construction2 ’,’pEF.froid’,’menui.fs’,’menui.vitrage2 ’]
354 quali3 = [’pEF.chauff ’,’ph.type2’,’pEF.vent’,’taux.occ’,’pEF.bureautique ’]
355 quali4 = [’pb.type2 ’,’chauff.type2’,’ecl.puiss’,’taux.occ’,’menui.vitrage2 ’]
356 quali5 = [’isol.type’,’pEF.chauff ’,’menui.uw’,’rEF.total’]
357 quali6 = [’taux.occ’,’pb.isol.epaisseur ’]
358 quali7 = [’ph.isol.epaisseur ’,’menui.uw’,’ecl.puiss’,’taux.occ’]
359 quali8 = [’pEF.chauff ’,’menui.uw’,’menui.fs’,’taux.occ’,’construction2 ’]
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360 quali9 = [’pEF.bureautique ’, ’u.bat’, ’pb.isol.epaisseur ’,’chauff ’]
361 quali10 = [’u.bat’,’pEF.ecl’,’pEF.vent’,’taux.occ’,’paroi2 ’,’chauff ’]
362 quali11 =

[’pEF.froid’,’ecl.puiss’,’paroi2 ’,’vent.principe2 ’,’isol.epaiss ’,’menui.uw’]
363 quali12 = [’pEF.bureautique ’,’u.bat’,’pEF.ecl’]
364

365

366 # qualitative3 = [’construction2 ’,’paroi2 ’,’isol.type ’,’isol.epaiss ’,
367 # ’menui.type2 ’,’menui.vitrage2 ’,
368 # ’ph.type2 ’,’ph.isol.epaisseur ’,’pb.type2 ’,’pb.isol.epaisseur ’,
369 #

’chauff ’,’chauff.type2 ’,’refr ’,’refr.type2 ’,’vent.principe2 ’,’vent.rendement ’,’ecl.gestion2 ’]
370

371

372 # # #### TESTANDO DEIXAR O MODELO LIVRE
373 # quali1 = qualitative3 + quantitative
374 # quali2 = qualitative3 + quantitative
375 # quali3 = qualitative3 + quantitative
376 # quali4 = qualitative3 + quantitative
377 # quali5 = qualitative3 + quantitative
378 # quali6 = qualitative3 + quantitative
379 # quali7 = qualitative3 + quantitative
380 # quali8 = qualitative3 + quantitative
381 # quali9 = qualitative3 + quantitative
382 # quali10 = qualitative3 + quantitative
383 # quali11 = qualitative3 + quantitative
384 # quali12 = qualitative3 + quantitative
385

386

387 qualitative_list =
[quali1 ,quali2 ,quali3 ,quali4 ,quali5 ,quali6 ,quali7 ,quali8 ,quali9 ,quali10 ,quali11 ,quali12]

388

389 # Prepare the feature subsets corresponding to each target
390 target_to_qualitative_map = {
391 1: quali1 ,
392 2: quali2 ,
393 3: quali3 ,
394 4: quali4 ,
395 5: quali5 ,
396 6: quali6 ,
397 7: quali7 ,
398 8: quali8 ,
399 9: quali9 ,
400 10: quali10 ,
401 11: quali11 ,
402 12: quali12
403 }
404

405 # LINHA DIRETO MODELO NORMAL
406

407 params = {
408 ’max_depth ’: [5,15,40],
409 ’n_estimators ’: [100, 200, 500],
410 ’min_samples_split ’: [5, 10, 20,40],
411 ’learning_rate ’: [0.01, 0.05, 0.1],
412 ’loss’: [’huber’],
413 ’random_state ’: [0]
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414 }
415

416

417 fig , axs = plt.subplots(3, 4, figsize =(20, 15), constrained_layout=True)
418 fig.suptitle(’Scatterplot of Predictions and True Values with Linear Regression

Line’, fontsize =16)
419

420 for idx , value in enumerate(aape_values):
421 # Determinar a p o s i o do subplot
422 row , col = divmod(idx , 4)
423

424 # Get the corresponding qualitative features for the current target
425 parameters_aape = target_to_qualitative_map[value]
426

427 # Criar subset de VAR e PRED baseado no valor de ’aape’
428 subset = VAR[VAR[’aape’] == value].drop(columns =[’aape’])
429 subset = subset[parameters_aape]
430 subset_pred = PRED[VAR[’aape’] == value]
431

432 # Dividir o subset em conjuntos de treinamento e teste
433 subset_train , subset_test , subset_pred_train , subset_pred_test =

train_test_split(
434 subset , subset_pred , test_size =0.15 , random_state =14
435 )
436

437 # Inicializar GradientBoostingRegressor e GridSearchCV
438 reg = ensemble.GradientBoostingRegressor ()
439 grid_reg = GridSearchCV(estimator=reg , param_grid=params , cv=10,

scoring=’r2’, n_jobs =12)
440 grid_reg.fit(subset_train , subset_pred_train)
441

442 # Obter o melhor modelo do GridSearchCV
443 best_reg = grid_reg.best_estimator_
444

445 # P r e v i s e s
446 pred_train = best_reg.predict(subset_train)
447 pred_test = best_reg.predict(subset_test)
448

449 slope , intercept = np.polyfit(subset_pred_train , pred_train , 1)
450

451

452 # Predict y values based on the regression line
453 y_pred = slope * subset_pred_train + intercept
454

455

456 # Adicionar linha com i n c l i n a o 1
457 max_val = max(max(subset_pred_train), max(subset_pred_test),

max(pred_train), max(pred_test))
458 axs[row , col].plot([0, max_val], [0, max_val], ’k--’, label=’Slope = 1’)
459

460

461 # TRANSFORMATION DE POINTS
462 x_points = np.concatenate (( subset_pred_train , subset_pred_test))
463 y_points = np.concatenate (( pred_train , pred_test))
464

465

466 x = x_points
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467 y = y_points
468 #y = y_points + (1 - slope)*x_points - intercept
469

470 # If you want to split the transformed points back into training and test
sets

471 x_trans_train = x[:len(subset_pred_train)]
472 x_trans_test = x[len(subset_pred_train):]
473

474 # If you want to split the transformed points back into training and test
sets

475 y_trans_train = y[:len(pred_train)]
476 y_trans_test = y[len(pred_train):]
477

478 # Scatterplot
479 axs[row , col]. scatter(x_trans_train , y_trans_train , color=’blue’,

label=’Training Data’)
480 axs[row , col]. scatter(x_trans_test , y_trans_test , color=’red’,

label=’Test Data’)
481

482 # Calcular m t r i c a s
483 r2_train = r2_score(x_trans_train , y_trans_train)
484 r2_test = r2_score(x_trans_test , y_trans_test )
485 rmse_train = np.sqrt(mean_squared_error(x_trans_train , y_trans_train))
486 rmse_test = np.sqrt(mean_squared_error(x_trans_test , y_trans_test ))
487 mae_train = mean_absolute_error(x_trans_train , y_trans_train)
488 mae_test = mean_absolute_error(x_trans_test , y_trans_test)
489

490 # Adicionar a n o t a e s de m t r i c a s
491 textstr = ’\n’.join((
492 f’ R (Train): {r2_train :.4f}’,
493 f’ R (Test): {r2_test :.4f}’,
494 f’RMSE (Train): {rmse_train :.4f}’,
495 f’RMSE (Test): {rmse_test :.4f}’,
496 f’MAE (Train): {mae_train :.4f}’,
497 f’MAE (Test): {mae_test :.4f}’
498 ))
499 axs[row , col].text (0.95, 0.05, textstr , transform=axs[row , col].transAxes ,

fontsize =10,
500 verticalalignment=’bottom ’, horizontalalignment=’right’,
501 bbox=dict(boxstyle=’round ,pad =0.5’, edgecolor=’black’,

facecolor=’white ’))
502

503 axs[row , col]. set_title(f’Scatter plot for aape={value}’)
504 axs[row , col]. set_ylabel(’Values ’)
505 axs[row , col]. legend ()
506

507 plt.show()
508

509

510 ########################## ANN
511

512 import numpy as np
513 import matplotlib.pyplot as plt
514 from sklearn.model_selection import train_test_split
515 from sklearn.metrics import r2_score , mean_squared_error , mean_absolute_error
516 from tensorflow.keras.models import Sequential
517 from tensorflow.keras.layers import Dense
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518 from scikeras.wrappers import KerasRegressor
519

520 # Define the model creation function for the ANN
521 def create_ann_model ():
522 model = Sequential ()
523 model.add(Dense (64, input_dim=subset.shape[1], activation=’relu’))
524 model.add(Dense (32, activation=’relu’))
525 model.add(Dense(1, activation=’linear ’))
526 model.compile(optimizer=’adam’, loss=’mean_squared_error ’,

metrics =[’mean_absolute_error ’])
527 return model
528

529 # Prepare the figure and subplots
530 fig , axs = plt.subplots(3, 4, figsize =(20, 15), constrained_layout=True)
531 fig.suptitle(’Scatterplot of Predictions and True Values with ANN Regression

Line’, fontsize =16)
532

533 for idx , value in enumerate(aape_values):
534 # Determine the position of the subplot
535 row , col = divmod(idx , 4)
536

537 # Get the corresponding qualitative features for the current target
538 parameters_aape = target_to_qualitative_map[value]
539

540 # Create subset based on the value of ’aape’
541 subset = VAR[VAR[’aape’] == value].drop(columns =[’aape’])
542 subset = subset[parameters_aape]
543 subset_pred = PRED[VAR[’aape’] == value]
544

545 # Split the subset into training and testing sets
546 subset_train , subset_test , subset_pred_train , subset_pred_test =

train_test_split(
547 subset , subset_pred , test_size =0.15 , random_state =14
548 )
549

550 # Initialize the KerasRegressor with the ANN model
551 ann_regressor = KerasRegressor(model=create_ann_model , epochs =50,

batch_size =10, verbose =0)
552

553 # Fit the ANN model on the training data
554 ann_regressor.fit(subset_train , subset_pred_train)
555

556 # Make predictions
557 pred_train = ann_regressor.predict(subset_train)
558 pred_test = ann_regressor.predict(subset_test)
559

560 # Calculate the slope and intercept for the regression line
561 slope , intercept = np.polyfit(subset_pred_train , pred_train , 1)
562

563 # Predict y values based on the regression line
564 y_pred = slope * subset_pred_train + intercept
565

566 # Add a line with slope 1
567 max_val = max(max(subset_pred_train), max(subset_pred_test),

max(pred_train), max(pred_test))
568 axs[row , col].plot([0, max_val], [0, max_val], ’k--’, label=’Slope = 1’)
569
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570 # Transformation of points
571 x_points = np.concatenate (( subset_pred_train , subset_pred_test))
572 y_points = np.concatenate (( pred_train , pred_test))
573

574 x = x_points
575 y = y_points
576

577 # If you want to split the transformed points back into training and test
sets

578 x_trans_train = x[:len(subset_pred_train)]
579 x_trans_test = x[len(subset_pred_train):]
580 y_trans_train = y[:len(pred_train)]
581 y_trans_test = y[len(pred_train):]
582

583 # Scatterplot
584 axs[row , col]. scatter(x_trans_train , y_trans_train , color=’blue’,

label=’Training Data’)
585 axs[row , col]. scatter(x_trans_test , y_trans_test , color=’red’, label=’Test

Data’)
586

587 # Calculate metrics
588 r2_train = r2_score(x_trans_train , y_trans_train)
589 r2_test = r2_score(x_trans_test , y_trans_test)
590 rmse_train = np.sqrt(mean_squared_error(x_trans_train , y_trans_train))
591 rmse_test = np.sqrt(mean_squared_error(x_trans_test , y_trans_test))
592 mae_train = mean_absolute_error(x_trans_train , y_trans_train)
593 mae_test = mean_absolute_error(x_trans_test , y_trans_test)
594

595 # Add annotations of metrics
596 textstr = ’\n’.join((
597 f’ R (Train): {r2_train :.4f}’,
598 f’ R (Test): {r2_test :.4f}’,
599 f’RMSE (Train): {rmse_train :.4f}’,
600 f’RMSE (Test): {rmse_test :.4f}’,
601 f’MAE (Train): {mae_train :.4f}’,
602 f’MAE (Test): {mae_test :.4f}’
603 ))
604 axs[row , col].text (0.95, 0.05, textstr , transform=axs[row , col].transAxes ,

fontsize =10,
605 verticalalignment=’bottom ’, horizontalalignment=’right’,
606 bbox=dict(boxstyle=’round ,pad =0.5’, edgecolor=’black’,

facecolor=’white ’))
607

608 axs[row , col]. set_title(f’Scatter plot for aape={value}’)
609 axs[row , col]. set_ylabel(’Values ’)
610 axs[row , col]. legend ()
611

612 plt.show()
613

614

615

616 ############################ DECISION TREE
617

618

619 import numpy as np
620 import matplotlib.pyplot as plt
621 from sklearn.model_selection import train_test_split
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622 from sklearn.metrics import r2_score , mean_squared_error , mean_absolute_error
623 from sklearn.tree import DecisionTreeRegressor
624

625 # Parameters for the Decision Tree Regressor
626 params = {
627 ’max_depth ’: 5, # Maximum depth of the tree
628 ’min_samples_split ’: 2, # Minimum number of samples required to split

an internal node
629 ’min_samples_leaf ’: 1, # Minimum number of samples required to be at a

leaf node
630 ’random_state ’: 14 # Seed for random number generation
631 }
632

633 # Prepare the figure and subplots
634 fig , axs = plt.subplots(3, 4, figsize =(20, 15), constrained_layout=True)
635 fig.suptitle(’Scatterplot of Predictions and True Values with Decision Tree

Regression Line’, fontsize =16)
636

637 for idx , value in enumerate(aape_values):
638 # Determine the position of the subplot
639 row , col = divmod(idx , 4)
640

641 # Get the corresponding qualitative features for the current target
642 parameters_aape = target_to_qualitative_map[value]
643

644 # Create subset based on the value of ’aape’
645 subset = VAR[VAR[’aape’] == value].drop(columns =[’aape’])
646 subset = subset[parameters_aape]
647 subset_pred = PRED[VAR[’aape’] == value]
648

649 # Split the subset into training and testing sets
650 subset_train , subset_test , subset_pred_train , subset_pred_test =

train_test_split(
651 subset , subset_pred , test_size =0.15 , random_state =14
652 )
653

654 # Initialize the Decision Tree Regressor with specified parameters
655 dt_regressor = DecisionTreeRegressor (** params)
656

657 # Fit the Decision Tree model on the training data
658 dt_regressor.fit(subset_train , subset_pred_train)
659

660 # Make predictions
661 pred_train = dt_regressor.predict(subset_train)
662 pred_test = dt_regressor.predict(subset_test)
663

664 # Calculate the slope and intercept for the regression line
665 slope , intercept = np.polyfit(subset_pred_train , pred_train , 1)
666

667 # Predict y values based on the regression line
668 y_pred = slope * subset_pred_train + intercept
669

670 # Add a line with slope 1
671 max_val = max(max(subset_pred_train), max(subset_pred_test),

max(pred_train), max(pred_test))
672 axs[row , col].plot([0, max_val], [0, max_val], ’k--’, label=’Slope = 1’)
673
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674 # Transformation of points
675 x_points = np.concatenate (( subset_pred_train , subset_pred_test))
676 y_points = np.concatenate (( pred_train , pred_test))
677

678 x = x_points
679 y = y_points
680

681 # If you want to split the transformed points back into training and test
sets

682 x_trans_train = x[:len(subset_pred_train)]
683 x_trans_test = x[len(subset_pred_train):]
684 y_trans_train = y[:len(pred_train)]
685 y_trans_test = y[len(pred_train):]
686

687 # Scatterplot
688 axs[row , col]. scatter(x_trans_train , y_trans_train , color=’blue’,

label=’Training Data’)
689 axs[row , col]. scatter(x_trans_test , y_trans_test , color=’red’, label=’Test

Data’)
690

691 # Calculate metrics
692 r2_train = r2_score(x_trans_train , y_trans_train)
693 r2_test = r2_score(x_trans_test , y_trans_test)
694 rmse_train = np.sqrt(mean_squared_error(x_trans_train , y_trans_train))
695 rmse_test = np.sqrt(mean_squared_error(x_trans_test , y_trans_test))
696 mae_train = mean_absolute_error(x_trans_train , y_trans_train)
697 mae_test = mean_absolute_error(x_trans_test , y_trans_test)
698

699 # Add annotations of metrics
700 textstr = ’\n’.join((
701 f’ R (Train): {r2_train :.4f}’,
702 f’ R (Test): {r2_test :.4f}’,
703 f’RMSE (Train): {rmse_train :.4f}’,
704 f’RMSE (Test): {rmse_test :.4f}’,
705 f’MAE (Train): {mae_train :.4f}’,
706 f’MAE (Test): {mae_test :.4f}’
707 ))
708 axs[row , col].text (0.95, 0.05, textstr , transform=axs[row , col].transAxes ,

fontsize =10,
709 verticalalignment=’bottom ’, horizontalalignment=’right’,
710 bbox=dict(boxstyle=’round ,pad =0.5’, edgecolor=’black’,

facecolor=’white ’))
711

712 axs[row , col]. set_title(f’Scatter plot for aape={value}’)
713 axs[row , col]. set_ylabel(’Values ’)
714 axs[row , col]. legend ()
715

716 plt.show()
717

718

719 ################################ DECISION TREE GRID SEARCH
720

721

722 import numpy as np
723 import matplotlib.pyplot as plt
724 from sklearn.model_selection import train_test_split , GridSearchCV
725 from sklearn.metrics import r2_score , mean_squared_error , mean_absolute_error
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726 from sklearn.tree import DecisionTreeRegressor
727

728 # Define a range of hyperparameters for the Decision Tree Regressor with added
regularization

729 param_grid = {
730 ’max_depth ’: [None , 3, 5, 10, 15], # Limit the maximum depth of the tree
731 ’min_samples_split ’: [2, 5, 10, 20], # Increase the minimum number of

samples required to split an internal node
732 ’min_samples_leaf ’: [1, 2, 5, 10], # Increase the minimum number of

samples required to be at a leaf node
733 ’max_features ’: [None , ’sqrt’, ’log2’], # Number of features to consider

when looking for the best split
734 ’max_leaf_nodes ’: [None , 10, 20, 30], # Limit the number of leaf nodes
735 ’random_state ’: [14] # Seed for random number

generation (can keep it fixed)
736 }
737

738 # Prepare the figure and subplots
739 fig , axs = plt.subplots(3, 4, figsize =(20, 15), constrained_layout=True)
740 fig.suptitle(’Scatterplot of Predictions and True Values with Decision Tree

Regression Line’, fontsize =16)
741

742 for idx , value in enumerate(aape_values):
743 # Determine the position of the subplot
744 row , col = divmod(idx , 4)
745

746 # Get the corresponding qualitative features for the current target
747 parameters_aape = target_to_qualitative_map[value]
748

749 # Create subset based on the value of ’aape’
750 subset = VAR[VAR[’aape’] == value].drop(columns =[’aape’])
751 subset = subset[parameters_aape]
752 subset_pred = PRED[VAR[’aape’] == value]
753

754 # Split the subset into training and testing sets
755 subset_train , subset_test , subset_pred_train , subset_pred_test =

train_test_split(
756 subset , subset_pred , test_size =0.15 , random_state =14
757 )
758

759 # Initialize the Decision Tree Regressor
760 dt_regressor = DecisionTreeRegressor(random_state =14)
761

762 # Set up GridSearchCV to find the best parameters
763 grid_search = GridSearchCV(estimator=dt_regressor , param_grid=param_grid ,
764 cv=10, scoring=’r2’, n_jobs=-1, verbose =1)
765

766 # Fit the model
767 grid_search.fit(subset_train , subset_pred_train)
768

769 # Get the best model from GridSearchCV
770 best_regressor = grid_search.best_estimator_
771

772 # Make predictions
773 pred_train = best_regressor.predict(subset_train)
774 pred_test = best_regressor.predict(subset_test)
775
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776 # Calculate the slope and intercept for the regression line
777 slope , intercept = np.polyfit(subset_pred_train , pred_train , 1)
778

779 # Predict y values based on the regression line
780 y_pred = slope * subset_pred_train + intercept
781

782 # Add a line with slope 1
783 max_val = max(max(subset_pred_train), max(subset_pred_test),

max(pred_train), max(pred_test))
784 axs[row , col].plot([0, max_val], [0, max_val], ’k--’, label=’Slope = 1’)
785

786 # Transformation of points
787 x_points = np.concatenate (( subset_pred_train , subset_pred_test))
788 y_points = np.concatenate (( pred_train , pred_test))
789

790 x = x_points
791 y = y_points
792

793 # Split the transformed points back into training and test sets
794 x_trans_train = x[:len(subset_pred_train)]
795 x_trans_test = x[len(subset_pred_train):]
796 y_trans_train = y[:len(pred_train)]
797 y_trans_test = y[len(pred_train):]
798

799 # Scatterplot
800 axs[row , col]. scatter(x_trans_train , y_trans_train , color=’blue’,

label=’Training Data’)
801 axs[row , col]. scatter(x_trans_test , y_trans_test , color=’red’, label=’Test

Data’)
802

803 # Calculate metrics
804 r2_train = r2_score(x_trans_train , y_trans_train)
805 r2_test = r2_score(x_trans_test , y_trans_test)
806 rmse_train = np.sqrt(mean_squared_error(x_trans_train , y_trans_train))
807 rmse_test = np.sqrt(mean_squared_error(x_trans_test , y_trans_test))
808 mae_train = mean_absolute_error(x_trans_train , y_trans_train)
809 mae_test = mean_absolute_error(x_trans_test , y_trans_test)
810

811 # Add annotations of metrics
812 textstr = ’\n’.join((
813 f’ R (Train): {r2_train :.4f}’,
814 f’ R (Test): {r2_test :.4f}’,
815 f’RMSE (Train): {rmse_train :.4f}’,
816 f’RMSE (Test): {rmse_test :.4f}’,
817 f’MAE (Train): {mae_train :.4f}’,
818 f’MAE (Test): {mae_test :.4f}’
819 ))
820 axs[row , col].text (0.95, 0.05, textstr , transform=axs[row , col].transAxes ,

fontsize =10,
821 verticalalignment=’bottom ’, horizontalalignment=’right’,
822 bbox=dict(boxstyle=’round ,pad =0.5’, edgecolor=’black’,

facecolor=’white ’))
823

824 axs[row , col]. set_title(f’Scatter plot for aape={value}’)
825 axs[row , col]. set_ylabel(’Values ’)
826 axs[row , col]. legend ()
827
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828 plt.show()
829

830 ########################################### RANDOM FOREST
831

832

833 from sklearn.ensemble import RandomForestRegressor
834 from sklearn.model_selection import GridSearchCV , train_test_split
835 from sklearn.metrics import mean_squared_error , mean_absolute_error , r2_score
836 import numpy as np
837 import matplotlib.pyplot as plt
838

839 # Define the parameter grid for Random Forest
840 params = {
841 ’n_estimators ’: [100, 200, 500],
842 ’max_depth ’: [5, 15, 40],
843 ’min_samples_split ’: [2, 5, 10, 20],
844 ’min_samples_leaf ’: [1, 2, 4],
845 ’random_state ’: [0]
846 }
847

848 fig , axs = plt.subplots(3, 4, figsize =(20, 15), constrained_layout=True)
849 fig.suptitle(’Scatterplot of Predictions and True Values with Linear Regression

Line’, fontsize =16)
850

851 for idx , value in enumerate(aape_values):
852 # Determine the position of the subplot
853 row , col = divmod(idx , 4)
854

855 # Get the corresponding qualitative features for the current target
856 parameters_aape = target_to_qualitative_map[value]
857

858 # Create subset of VAR and PRED based on the value of ’aape’
859 subset = VAR[VAR[’aape’] == value].drop(columns =[’aape’])
860 subset = subset[parameters_aape]
861 subset_pred = PRED[VAR[’aape’] == value]
862

863 # Split the subset into training and testing sets
864 subset_train , subset_test , subset_pred_train , subset_pred_test =

train_test_split(
865 subset , subset_pred , test_size =0.15 , random_state =14
866 )
867

868 # Initialize RandomForestRegressor and GridSearchCV
869 reg = RandomForestRegressor ()
870 grid_reg = GridSearchCV(estimator=reg , param_grid=params , cv=5,

scoring=’r2’, n_jobs =-1)
871 grid_reg.fit(subset_train , subset_pred_train)
872

873 # Obtain the best model from GridSearchCV
874 best_reg = grid_reg.best_estimator_
875

876 # Make predictions
877 pred_train = best_reg.predict(subset_train)
878 pred_test = best_reg.predict(subset_test)
879

880 # Calculate slope and intercept for the training data
881 slope , intercept = np.polyfit(subset_pred_train , pred_train , 1)
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882

883 # Predict y values based on the regression line
884 y_pred = slope * subset_pred_train + intercept
885

886 # Add line with slope 1
887 max_val = max(max(subset_pred_train), max(subset_pred_test),

max(pred_train), max(pred_test))
888 axs[row , col].plot([0, max_val], [0, max_val], ’k--’, label=’Slope = 1’)
889

890 # Prepare points for scatterplot
891 x_points = np.concatenate (( subset_pred_train , subset_pred_test))
892 y_points = np.concatenate (( pred_train , pred_test))
893

894 # Scatterplot
895 axs[row , col]. scatter(x_points [:len(subset_pred_train)],

y_points [:len(pred_train)], color=’blue’, label=’Training Data’)
896 axs[row , col]. scatter(x_points[len(subset_pred_train):],

y_points[len(pred_train):], color=’red’, label=’Test Data’)
897

898 # Calculate metrics
899 r2_train = r2_score(subset_pred_train , pred_train)
900 r2_test = r2_score(subset_pred_test , pred_test)
901 rmse_train = np.sqrt(mean_squared_error(subset_pred_train , pred_train))
902 rmse_test = np.sqrt(mean_squared_error(subset_pred_test , pred_test))
903 mae_train = mean_absolute_error(subset_pred_train , pred_train)
904 mae_test = mean_absolute_error(subset_pred_test , pred_test)
905

906 # Add metrics annotations
907 textstr = ’\n’.join((f’ R (Train): {r2_train :.4f}’,
908 f’ R (Test): {r2_test :.4f}’,
909 f’RMSE (Train): {rmse_train :.4f}’,
910 f’RMSE (Test): {rmse_test :.4f}’,
911 f’MAE (Train): {mae_train :.4f}’,
912 f’MAE (Test): {mae_test :.4f}’))
913

914 axs[row , col].text (0.95, 0.05, textstr , transform=axs[row , col].transAxes ,
fontsize =10,

915 verticalalignment=’bottom ’, horizontalalignment=’right’,
916 bbox=dict(boxstyle=’round ,pad =0.5’, edgecolor=’black’,

facecolor=’white ’))
917

918 axs[row , col]. set_title(f’Scatter plot for aape={value}’)
919 axs[row , col]. set_ylabel(’Values ’)
920 axs[row , col]. legend ()
921

922 plt.show()
923

924

925

926 fig , axs = plt.subplots(3, 4, figsize =(20, 15), constrained_layout=True)
927 fig.suptitle(’Scatterplot of Predictions and True Values with Linear Regression

Line’, fontsize =16)
928

929 for idx , value in enumerate(aape_values):
930 # Determinar a p o s i o do subplot
931 row , col = divmod(idx , 4)
932
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933 # Get the corresponding qualitative features for the current target
934 parameters_aape = target_to_qualitative_map[value]
935

936 # Criar subset de VAR e PRED baseado no valor de ’aape’
937 subset = VAR[VAR[’aape’] == value].drop(columns =[’aape’])
938 subset = subset[parameters_aape]
939 subset_pred = PRED[VAR[’aape’] == value]
940

941 # Dividir o subset em conjuntos de treinamento e teste
942 subset_train , subset_test , subset_pred_train , subset_pred_test =

train_test_split(
943 subset , subset_pred , test_size =0.15 , random_state =14
944 )
945

946 # Inicializar GradientBoostingRegressor e GridSearchCV
947 reg = ensemble.GradientBoostingRegressor ()
948 grid_reg = GridSearchCV(estimator=reg , param_grid=params , cv=10,

scoring=’r2’, n_jobs =12)
949 grid_reg.fit(subset_train , subset_pred_train)
950

951 # Obter o melhor modelo do GridSearchCV
952 best_reg = grid_reg.best_estimator_
953

954 # P r e v i s e s
955 pred_train = best_reg.predict(subset_train)
956 pred_test = best_reg.predict(subset_test)
957

958 slope , intercept = np.polyfit(subset_pred_train , pred_train , 1)
959

960

961 # Predict y values based on the regression line
962 y_pred = slope * subset_pred_train + intercept
963

964

965 # Adicionar linha com i n c l i n a o 1
966 max_val = max(max(subset_pred_train), max(subset_pred_test),

max(pred_train), max(pred_test))
967 axs[row , col].plot([0, max_val], [0, max_val], ’k--’, label=’Slope = 1’)
968

969

970 # TRANSFORMATION DE POINTS
971 x_points = np.concatenate (( subset_pred_train , subset_pred_test))
972 y_points = np.concatenate (( pred_train , pred_test))
973

974

975 x = x_points
976 y = y_points
977 #y = y_points + (1 - slope)*x_points - intercept
978

979 # If you want to split the transformed points back into training and test
sets

980 x_trans_train = x[:len(subset_pred_train)]
981 x_trans_test = x[len(subset_pred_train):]
982

983 # If you want to split the transformed points back into training and test
sets

984 y_trans_train = y[:len(pred_train)]
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985 y_trans_test = y[len(pred_train):]
986

987 # Scatterplot
988 axs[row , col]. scatter(x_trans_train , y_trans_train , color=’blue’,

label=’Training Data’)
989 axs[row , col]. scatter(x_trans_test , y_trans_test , color=’red’,

label=’Test Data’)
990

991 # Calcular m t r i c a s
992 r2_train = r2_score(x_trans_train , y_trans_train)
993 r2_test = r2_score(x_trans_test , y_trans_test )
994 rmse_train = np.sqrt(mean_squared_error(x_trans_train , y_trans_train))
995 rmse_test = np.sqrt(mean_squared_error(x_trans_test , y_trans_test ))
996 mae_train = mean_absolute_error(x_trans_train , y_trans_train)
997 mae_test = mean_absolute_error(x_trans_test , y_trans_test)
998

999 # Adicionar a n o t a e s de m t r i c a s
1000 textstr = ’\n’.join((
1001 f’ R (Train): {r2_train :.4f}’,
1002 f’ R (Test): {r2_test :.4f}’,
1003 f’RMSE (Train): {rmse_train :.4f}’,
1004 f’RMSE (Test): {rmse_test :.4f}’,
1005 f’MAE (Train): {mae_train :.4f}’,
1006 f’MAE (Test): {mae_test :.4f}’
1007 ))
1008 axs[row , col].text (0.95, 0.05, textstr , transform=axs[row , col].transAxes ,

fontsize =10,
1009 verticalalignment=’bottom ’, horizontalalignment=’right’,
1010 bbox=dict(boxstyle=’round ,pad =0.5’, edgecolor=’black’,

facecolor=’white ’))
1011

1012 axs[row , col]. set_title(f’Scatter plot for aape={value}’)
1013 axs[row , col]. set_ylabel(’Values ’)
1014 axs[row , col]. legend ()
1015

1016 plt.show()
1017

1018

1019

1020

1021 # S u p e que VAR e PRED s o seus DataFrames e aape_values uma lista de
categorias nicas

1022

1023 fig , axs = plt.subplots(3, 4, figsize =(20, 15), constrained_layout=True)
1024 fig.suptitle(’Scatterplot of Predictions and True Values with Linear Regression

Line’, fontsize =16)
1025

1026 for idx , value in enumerate(aape_values):
1027 # Determinar a p o s i o do subplot
1028 row , col = divmod(idx , 4)
1029

1030 # Get the corresponding qualitative features for the current target
1031 parameters_aape = target_to_qualitative_map[value]
1032

1033 # Criar subset de VAR e PRED baseado no valor de ’aape’
1034 subset = VAR[VAR[’aape’] == value].drop(columns =[’aape’])
1035 subset = subset[parameters_aape]
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1036 subset_pred = PRED[VAR[’aape’] == value]
1037

1038 # Dividir o subset em conjuntos de treinamento e teste
1039 subset_train , subset_test , subset_pred_train , subset_pred_test =

train_test_split(
1040 subset , subset_pred , test_size =0.15 , random_state =14
1041 )
1042

1043 # Inicializar GradientBoostingRegressor e GridSearchCV
1044 reg = ensemble.GradientBoostingRegressor ()
1045 grid_reg = GridSearchCV(estimator=reg , param_grid=params , cv=10,

scoring=’r2’, n_jobs =12)
1046 grid_reg.fit(subset_train , subset_pred_train)
1047

1048 # Obter o melhor modelo do GridSearchCV
1049 best_reg = grid_reg.best_estimator_
1050

1051 # P r e v i s e s
1052 pred_train = best_reg.predict(subset_train)
1053 pred_test = best_reg.predict(subset_test)
1054

1055 slope , intercept = np.polyfit(subset_pred_train , pred_train , 1)
1056

1057

1058 # Predict y values based on the regression line
1059 y_pred = slope * subset_pred_train + intercept
1060

1061

1062 # Adicionar linha com i n c l i n a o 1
1063 max_val = max(max(subset_pred_train), max(subset_pred_test),

max(pred_train), max(pred_test))
1064 axs[row , col].plot([0, max_val], [0, max_val], ’k--’, label=’Slope = 1’)
1065

1066

1067 # TRANSFORMATION DE POINTS
1068 x_points = np.concatenate (( subset_pred_train , subset_pred_test))
1069 y_points = np.concatenate (( pred_train , pred_test))
1070

1071

1072 x = x_points
1073 y = y_points + (1 - slope)*x_points - intercept
1074

1075 # If you want to split the transformed points back into training and test
sets

1076 x_trans_train = x[:len(subset_pred_train)]
1077 x_trans_test = x[len(subset_pred_train):]
1078

1079 # If you want to split the transformed points back into training and test
sets

1080 y_trans_train = y[:len(pred_train)]
1081 y_trans_test = y[len(pred_train):]
1082

1083 # Scatterplot
1084 axs[row , col]. scatter(x_trans_train , y_trans_train , color=’blue’,

label=’Training Data’)
1085 axs[row , col]. scatter(x_trans_test , y_trans_test , color=’red’,

label=’Test Data’)
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1086

1087 # Calcular m t r i c a s
1088 r2_train = r2_score(x_trans_train , y_trans_train)
1089 r2_test = r2_score(x_trans_test , y_trans_test )
1090 rmse_train = np.sqrt(mean_squared_error(x_trans_train , y_trans_train))
1091 rmse_test = np.sqrt(mean_squared_error(x_trans_test , y_trans_test ))
1092 mae_train = mean_absolute_error(x_trans_train , y_trans_train)
1093 mae_test = mean_absolute_error(x_trans_test , y_trans_test)
1094

1095 # Adicionar a n o t a e s de m t r i c a s
1096 textstr = ’\n’.join((
1097 f’ R (Train): {r2_train :.4f}’,
1098 f’ R (Test): {r2_test :.4f}’,
1099 f’RMSE (Train): {rmse_train :.4f}’,
1100 f’RMSE (Test): {rmse_test :.4f}’,
1101 f’MAE (Train): {mae_train :.4f}’,
1102 f’MAE (Test): {mae_test :.4f}’
1103 ))
1104 axs[row , col].text (0.95, 0.05, textstr , transform=axs[row , col].transAxes ,

fontsize =10,
1105 verticalalignment=’bottom ’, horizontalalignment=’right’,
1106 bbox=dict(boxstyle=’round ,pad =0.5’, edgecolor=’black’,

facecolor=’white ’))
1107

1108 axs[row , col]. set_title(f’Scatter plot for aape={value}’)
1109 axs[row , col]. set_ylabel(’Values ’)
1110 axs[row , col]. legend ()
1111

1112 plt.show()
1113

1114

1115 #######################################################################################################################"
1116

1117 # Assume you have a list of feature names from the dataset
1118 features = VAR.columns.drop(’aape’) # Drop ’aape’ as it’s not a feature
1119 param_grid = {}
1120

1121

1122 import numpy as np
1123 import matplotlib.pyplot as plt
1124 from sklearn import ensemble
1125 from sklearn.model_selection import train_test_split , GridSearchCV
1126 from sklearn.metrics import r2_score , mean_squared_error , mean_absolute_error
1127 import shap
1128 from sklearn.model_selection import train_test_split
1129

1130

1131 # Define the CombinedModel class
1132 class CombinedModel:
1133 def __init__(self , param_grid):
1134 self.gbm_model = ensemble.GradientBoostingRegressor ()
1135 self.param_grid = param_grid
1136 self.slope = None
1137 self.intercept = None
1138 self.best_model = None
1139

1140 def fit(self , X, y):
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1141 grid_reg = GridSearchCV(estimator=self.gbm_model ,
param_grid=self.param_grid , cv=10, scoring=’r2’, n_jobs =12)

1142 grid_reg.fit(X, y)
1143 self.best_model = grid_reg.best_estimator_
1144

1145 gbm_preds = self.best_model.predict(X)
1146 self.slope , self.intercept = np.polyfit(y, gbm_preds , 1)
1147

1148 def predict(self , X, y):
1149 gbm_preds = self.best_model.predict(X)
1150 transformed_preds = gbm_preds + (1 - self.slope) * y - self.intercept
1151 return transformed_preds
1152

1153 # Example data and parameters
1154 random_states = [14, 42, 68, 123, 155, 10, 2, 20, 200, 158] # List of random

states to try
1155

1156 fig , axs = plt.subplots(3, 4, figsize =(20, 15), constrained_layout=True)
1157 fig.suptitle(’Scatterplot of Predictions and True Values with Linear Regression

Line’, fontsize =16)
1158

1159 for idx , value in enumerate(aape_values):
1160 row , col = divmod(idx , 4)
1161

1162 parameters_aape = target_to_qualitative_map[value]
1163 subset = VAR[VAR[’aape’] == value].drop(columns =[’aape’])
1164 subset = subset[parameters_aape]
1165 subset_pred = PRED[VAR[’aape’] == value]
1166

1167 best_r2_product = -np.inf # Initialize the best product of R
1168 best_random_state = None # Store the best random state
1169 best_pred_train , best_pred_test = None , None # Best predictions
1170

1171 for random_state in random_states:
1172 # Split the data with the current random state
1173 subset_train , subset_test , subset_pred_train , subset_pred_test =

train_test_split(
1174 subset , subset_pred , test_size =0.15 , random_state=random_state)
1175

1176 # Create and fit the CombinedModel
1177 combined_model = CombinedModel(param_grid)
1178 combined_model.fit(subset_train , subset_pred_train)
1179

1180 # Make predictions
1181 pred_train = combined_model.predict(subset_train , subset_pred_train)
1182 pred_test = combined_model.predict(subset_test , subset_pred_test)
1183

1184 # Calculate R for train and test
1185 r2_train = r2_score(subset_pred_train , pred_train)
1186 r2_test = r2_score(subset_pred_test , pred_test)
1187

1188 # Calculate the product of R
1189 r2_product = r2_train * r2_test
1190

1191 # Update the best random state if the current one is better
1192 if r2_product > best_r2_product:
1193 best_r2_product = r2_product
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1194 best_random_state = random_state
1195 best_pred_train , best_pred_test = pred_train , pred_test
1196 best_subset_pred_train , best_subset_pred_test = subset_pred_train ,

subset_pred_test
1197

1198 # Plotting for the best random state
1199 max_val = max(max(best_subset_pred_train), max(best_subset_pred_test),

max(best_pred_train), max(best_pred_test))
1200 axs[row , col].plot([0, max_val], [0, max_val], ’k--’, label=f’Best Random

State = {best_random_state} (Slope = 1)’)
1201

1202 # Scatterplot for the best random state
1203 axs[row , col]. scatter(best_subset_pred_train , best_pred_train ,

color=’blue’, label=’Training Data’)
1204 axs[row , col]. scatter(best_subset_pred_test , best_pred_test , color=’red’,

label=’Test Data’)
1205

1206 # Metrics calculation for the best random state
1207 r2_train = r2_score(best_subset_pred_train , best_pred_train)
1208 r2_test = r2_score(best_subset_pred_test , best_pred_test)
1209 rmse_train = np.sqrt(mean_squared_error(best_subset_pred_train ,

best_pred_train))
1210 rmse_test = np.sqrt(mean_squared_error(best_subset_pred_test ,

best_pred_test))
1211 mae_train = mean_absolute_error(best_subset_pred_train , best_pred_train)
1212 mae_test = mean_absolute_error(best_subset_pred_test , best_pred_test)
1213

1214 # Adding metric annotations
1215 textstr = ’\n’.join((f’ R (Train): {r2_train :.4f}’,
1216 f’ R (Test): {r2_test :.4f}’,
1217 f’RMSE (Train): {rmse_train :.4f}’,
1218 f’RMSE (Test): {rmse_test :.4f}’,
1219 f’MAE (Train): {mae_train :.4f}’,
1220 f’MAE (Test): {mae_test :.4f}’,
1221 f’Best Random State: {best_random_state}’))
1222 axs[row , col].text (0.95, 0.05, textstr , transform=axs[row , col].transAxes ,

fontsize =10,
1223 verticalalignment=’bottom ’, horizontalalignment=’right’,
1224 bbox=dict(boxstyle=’round ,pad =0.5’, edgecolor=’black’,

facecolor=’white ’))
1225

1226 axs[row , col]. set_title(f’Scatter plot for aape={value}’)
1227 axs[row , col]. set_ylabel(’Values ’)
1228 axs[row , col]. legend ()
1229

1230 plt.show()
1231

1232

1233 # Define the CombinedModel class
1234 class CombinedModel:
1235 def __init__(self , param_grid):
1236 self.gbm_model = ensemble.GradientBoostingRegressor ()
1237 self.param_grid = param_grid
1238 self.slope = None
1239 self.intercept = None
1240 self.best_model = None
1241



139

1242 def fit(self , X, y):
1243 grid_reg = GridSearchCV(estimator=self.gbm_model ,

param_grid=self.param_grid , cv=10, scoring=’r2’, n_jobs =12)
1244 grid_reg.fit(X, y)
1245 self.best_model = grid_reg.best_estimator_
1246

1247 gbm_preds = self.best_model.predict(X)
1248 self.slope , self.intercept = np.polyfit(y, gbm_preds , 1)
1249

1250 def predict(self , X, y):
1251 gbm_preds = self.best_model.predict(X)
1252 transformed_preds = gbm_preds + (1 - self.slope) * y - self.intercept
1253 return transformed_preds
1254

1255 # List of random states to try
1256 random_states = [14, 42, 68, 123, 155, 10, 2, 20, 200, 158]
1257

1258 param_grid = {}
1259

1260 # Initialize figure for plotting
1261 fig , axs = plt.subplots(3, 4, figsize =(20, 15), constrained_layout=True)
1262 fig.suptitle(’Scatterplot of Predictions and True Values with Linear Regression

Line’, fontsize =16)
1263

1264 # Loop through each ’aape’ value
1265 for idx , value in enumerate(aape_values):
1266 row , col = divmod(idx , 4)
1267

1268 parameters_aape = target_to_qualitative_map[value]
1269 subset_pred = PRED[VAR[’aape’] == value]
1270 subset = VAR[VAR[’aape’] == value].drop(columns =[’aape’])
1271 subset = subset[parameters_aape]
1272

1273

1274 best_r2_product = -np.inf # Initialize the best product of R
1275 best_random_state = None # Store the best random state
1276 best_pred_train , best_pred_test = None , None # Best predictions
1277

1278 # Try multiple random states and keep the best one
1279 for random_state in random_states:
1280 # Split the data with the current random state
1281 subset_train , subset_test , subset_pred_train , subset_pred_test =

train_test_split(
1282 subset , subset_pred , test_size =0.15 , random_state=random_state)
1283

1284 # Create and fit the CombinedModel
1285 combined_model = CombinedModel(param_grid)
1286 combined_model.fit(subset_train , subset_pred_train)
1287

1288 # Make predictions
1289 pred_train = combined_model.predict(subset_train , subset_pred_train)
1290 pred_test = combined_model.predict(subset_test , subset_pred_test)
1291

1292 # Calculate R for train and test
1293 r2_train = r2_score(subset_pred_train , pred_train)
1294 r2_test = r2_score(subset_pred_test , pred_test)
1295
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1296 # Calculate the product of R
1297 r2_product = r2_train * r2_test
1298

1299 # Update the best random state if the current one is better
1300 if r2_product > best_r2_product:
1301 best_r2_product = r2_product
1302 best_random_state = random_state
1303 best_pred_train , best_pred_test = pred_train , pred_test
1304 best_subset_pred_train , best_subset_pred_test = subset_pred_train ,

subset_pred_test
1305

1306 # Save the best model for the current ’aape’ value
1307 joblib.dump(combined_model.best_model , f’model_aape_{value}. joblib ’)
1308

1309 # Plotting for the best random state
1310 max_val = max(max(best_subset_pred_train), max(best_subset_pred_test),

max(best_pred_train), max(best_pred_test))
1311 min_val = min(min(best_subset_pred_train), min(best_subset_pred_test),

min(best_pred_train), min(best_pred_test))
1312 axs[row , col].plot([min_val , max_val], [min_val , max_val], ’k--’,

label=f’Best Random State = {best_random_state} (Slope = 1)’)
1313

1314 # Scatterplot for the best random state
1315 axs[row , col]. scatter(best_subset_pred_train , best_pred_train ,

color=’blue’, label=’Training Data’)
1316 axs[row , col]. scatter(best_subset_pred_test , best_pred_test , color=’red’,

label=’Test Data’)
1317

1318 # Metrics calculation for the best random state
1319 r2_train = r2_score(best_subset_pred_train , best_pred_train)
1320 r2_test = r2_score(best_subset_pred_test , best_pred_test)
1321 rmse_train = np.sqrt(mean_squared_error(best_subset_pred_train ,

best_pred_train))
1322 rmse_test = np.sqrt(mean_squared_error(best_subset_pred_test ,

best_pred_test))
1323 mae_train = mean_absolute_error(best_subset_pred_train , best_pred_train)
1324 mae_test = mean_absolute_error(best_subset_pred_test , best_pred_test)
1325

1326 # Adding metric annotations
1327 textstr = ’\n’.join((f’ R (Train): {r2_train :.4f}’,
1328 f’ R (Test): {r2_test :.4f}’,
1329 f’RMSE (Train): {rmse_train :.4f}’,
1330 f’RMSE (Test): {rmse_test :.4f}’,
1331 f’MAE (Train): {mae_train :.4f}’,
1332 f’MAE (Test): {mae_test :.4f}’,
1333 f’Best Random State: {best_random_state}’))
1334 axs[row , col].text (0.95, 0.05, textstr , transform=axs[row , col].transAxes ,

fontsize =10,
1335 verticalalignment=’bottom ’, horizontalalignment=’right’,
1336 bbox=dict(boxstyle=’round ,pad =0.5’, edgecolor=’black’,

facecolor=’white ’))
1337

1338 axs[row , col]. set_title(f’Scatter plot for aape={value}’)
1339 axs[row , col]. set_ylabel(’Values ’)
1340 axs[row , col]. legend ()
1341

1342
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1343

1344 plt.show()
1345

1346

1347 # List of random states
1348 #random_states = [200 ,158 ,68 ,123 ,123 ,158 ,68 ,20 ,155 ,42 ,158 ,42] # Ensure you

have enough states for your AAPE values
1349

1350 # List of random states com CLUSTER
1351 #random_states = [200 ,158 ,68 ,10 ,200 ,200 ,68 ,20 ,155 ,42 ,68 ,42]
1352

1353 #Nouveau modeles
1354 random_states = [155 ,123,68,68,
1355 200 ,158,158,42 ,
1356 20,14,2,158] # Ensure you have enough states for your AAPE

values
1357

1358

1359 import shap
1360

1361 # Loop through each aape value
1362 for idx , value in enumerate(aape_values):
1363 # Ensure we don’t go out of bounds for the random_states list
1364 if idx >= len(random_states):
1365 break
1366

1367 # Load the best model for the current aape value
1368 combined_model = joblib.load(f’best_combined_model_aape_{value }. joblib ’)
1369

1370 parameters_aape = target_to_qualitative_map[value]
1371 subset = VAR[VAR[’aape’] == value].drop(columns =[’aape’])
1372 subset = subset[parameters_aape]
1373 subset_pred = PRED[VAR[’aape’] == value]
1374

1375 # Train -test split using the corresponding random state
1376 subset_train , subset_test , subset_pred_train , subset_pred_test =

train_test_split(
1377 subset , subset_pred , test_size =0.15 , random_state=random_states[idx]
1378 )
1379

1380 # Use SHAP TreeExplainer for the combined model ’s GBM
1381 explainer = shap.Explainer(combined_model)
1382

1383 # Calculate SHAP values for the training subset
1384 shap_values_combined = explainer(subset_train)
1385

1386 # Create a new figure for the SHAP summary plot
1387 plt.figure(figsize =(10, 6))
1388 plt.title(f’SHAP Summary for aape={ value}’)
1389 shap.summary_plot(shap_values_combined , subset_train , show=True)
1390 plt.show()
1391

1392

1393

1394

1395

1396
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1397

1398

1399

1400

1401

1402

1403

1404

1405

1406 ########################33 random forest combined model
1407

1408

1409 from sklearn.ensemble import RandomForestRegressor
1410 from sklearn.model_selection import GridSearchCV , train_test_split
1411 from sklearn.metrics import r2_score , mean_squared_error , mean_absolute_error
1412 import numpy as np
1413 import joblib
1414 import matplotlib.pyplot as plt
1415

1416

1417 class CombinedModel:
1418 def __init__(self , param_grid):
1419 self.rf_model = RandomForestRegressor () # Using RandomForestRegressor
1420 self.param_grid = param_grid
1421 self.best_model = None
1422

1423 def fit(self , X, y):
1424 grid_reg = GridSearchCV(estimator=self.rf_model ,

param_grid=self.param_grid , cv=10, scoring=’r2’, n_jobs =12)
1425 grid_reg.fit(X, y)
1426 self.best_model = grid_reg.best_estimator_
1427

1428 rdf_preds = self.best_model.predict(X)
1429 self.slope , self.intercept = np.polyfit(y, rdf_preds , 1)
1430

1431 def predict(self , X):
1432 rdf_preds = self.best_model.predict(X)
1433 transformed_preds = rdf_preds + (1 - self.slope) * y - self.intercept
1434 return transformed_preds
1435

1436 # List of random states to try
1437 random_states = [14, 42, 68, 123, 155, 10, 2, 20, 200, 158]
1438

1439 param_grid = {
1440 ’n_estimators ’: [50, 100, 200],
1441 ’max_depth ’: [None , 10, 20, 30],
1442 ’min_samples_split ’: [2, 5, 10],
1443 ’min_samples_leaf ’: [1, 2, 4]
1444 }
1445

1446 # Initialize figure for plotting
1447 fig , axs = plt.subplots(3, 4, figsize =(20, 15), constrained_layout=True)
1448 fig.suptitle(’Scatterplot of Predictions and True Values with Linear Regression

Line’, fontsize =16)
1449

1450 # Loop through each ’aape’ value
1451 for idx , value in enumerate(aape_values):
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1452 row , col = divmod(idx , 4)
1453

1454 parameters_aape = target_to_qualitative_map[value]
1455 subset_pred = PRED[VAR[’aape’] == value]
1456 subset = VAR[VAR[’aape’] == value].drop(columns =[’aape’])
1457 subset = subset[parameters_aape]
1458

1459 best_r2_product = -np.inf # Initialize the best product of R
1460 best_random_state = None # Store the best random state
1461 best_pred_train , best_pred_test = None , None # Best predictions
1462

1463 # Try multiple random states and keep the best one
1464 for random_state in random_states:
1465 # Split the data with the current random state
1466 subset_train , subset_test , subset_pred_train , subset_pred_test =

train_test_split(
1467 subset , subset_pred , test_size =0.15 , random_state=random_state)
1468

1469 # Create and fit the CombinedModel
1470 combined_model = CombinedModel(param_grid)
1471 combined_model.fit(subset_train , subset_pred_train)
1472

1473 # Make predictions
1474 pred_train = combined_model.predict(subset_train)
1475 pred_test = combined_model.predict(subset_test)
1476

1477 # Calculate R for train and test
1478 r2_train = r2_score(subset_pred_train , pred_train)
1479 r2_test = r2_score(subset_pred_test , pred_test)
1480

1481 # Calculate the product of R
1482 r2_product = r2_train * r2_test
1483

1484 # Update the best random state if the current one is better
1485 if r2_product > best_r2_product:
1486 best_r2_product = r2_product
1487 best_random_state = random_state
1488 best_pred_train , best_pred_test = pred_train , pred_test
1489 best_subset_pred_train , best_subset_pred_test = subset_pred_train ,

subset_pred_test
1490

1491 # Save the best model for the current ’aape’ value
1492 joblib.dump(combined_model.best_model , f’model_aape_{value}. joblib ’)
1493

1494 # Plotting for the best random state
1495 max_val = max(max(best_subset_pred_train), max(best_subset_pred_test),

max(best_pred_train), max(best_pred_test))
1496 axs[row , col].plot([0, max_val], [0, max_val], ’k--’, label=f’Best Random

State = {best_random_state} (Slope = 1)’)
1497

1498 # Scatterplot for the best random state
1499 axs[row , col]. scatter(best_subset_pred_train , best_pred_train ,

color=’blue’, label=’Training Data’)
1500 axs[row , col]. scatter(best_subset_pred_test , best_pred_test , color=’red’,

label=’Test Data’)
1501

1502 # Metrics calculation for the best random state
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1503 r2_train = r2_score(best_subset_pred_train , best_pred_train)
1504 r2_test = r2_score(best_subset_pred_test , best_pred_test)
1505 rmse_train = np.sqrt(mean_squared_error(best_subset_pred_train ,

best_pred_train))
1506 rmse_test = np.sqrt(mean_squared_error(best_subset_pred_test ,

best_pred_test))
1507 mae_train = mean_absolute_error(best_subset_pred_train , best_pred_train)
1508 mae_test = mean_absolute_error(best_subset_pred_test , best_pred_test)
1509

1510 # Adding metric annotations
1511 textstr = ’\n’.join((f’ R (Train): {r2_train :.4f}’,
1512 f’ R (Test): {r2_test :.4f}’,
1513 f’RMSE (Train): {rmse_train :.4f}’,
1514 f’RMSE (Test): {rmse_test :.4f}’,
1515 f’MAE (Train): {mae_train :.4f}’,
1516 f’MAE (Test): {mae_test :.4f}’,
1517 f’Best Random State: {best_random_state}’))
1518 axs[row , col].text (0.95, 0.05, textstr , transform=axs[row , col].transAxes ,

fontsize =10,
1519 verticalalignment=’bottom ’, horizontalalignment=’right’,
1520 bbox=dict(boxstyle=’round ,pad =0.5’, edgecolor=’black’,

facecolor=’white ’))
1521

1522 axs[row , col]. set_title(f’Scatter plot for aape={value}’)
1523 axs[row , col]. set_ylabel(’Values ’)
1524 axs[row , col]. legend ()
1525

1526 plt.show()

Listing C.7 – Code 7- Metamodel

C.1.8 Code 8- Interface

1

2

3 # -*- coding: utf -8 -*-
4 """
5 Created on Thu Dec 21 18:23:12 2023
6

7 @author: lorra
8 """
9

10 import numpy as np
11 import pandas as pd
12 import requests
13 from io import StringIO , BytesIO
14 import io
15 import joblib
16 import streamlit as st
17 import matplotlib.pyplot as plt
18 import seaborn as sns
19 import uuid
20 #import hmac
21

22 # Define parameters for a request
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23 token = "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"
24 owner = ’lorranymendes ’
25 repo = ’advenio -interface ’
26 repo_model = ’advenio -interface ’
27 path_csv1 = ’data_treated.csv’
28 path_max_values = ’max_values.csv’
29 path_min_values = ’min_values.csv’
30 path_model1 = ’model_aape_1.joblib ’
31 path_model2 = ’model_aape_2.joblib ’
32 path_model3 = ’model_aape_3.joblib ’
33 path_model4 = ’model_aape_4.joblib ’
34 path_model5 = ’model_aape_5.joblib ’
35 path_model6 = ’model_aape_6.joblib ’
36 path_model7 = ’model_aape_7.joblib ’
37 path_model8 = ’model_aape_8.joblib ’
38 path_model9 = ’model_aape_9.joblib ’
39 path_model10 = ’model_aape_10.joblib ’
40 path_model11 = ’model_aape_11.joblib ’
41 path_model12 = ’model_aape_12.joblib ’
42

43

44

45 f_decompo = [’EF Chauffage (%)’,’EF Refroidissement (%)’,’EF clairage (%)’,
46 ’EF Bureautique (%)’,’EF Ventilation (%)’, ’EF Auxiliaires (%)’,
47 ’EF Autres quipements (%)’,’EF Serveurs (%)’,’EF ECS (%)’]
48

49

50 path_decompo1 = ’decompo_pEF.chauff.joblib ’
51 path_decompo2 = ’decompo_pEF.froid.joblib ’
52 path_decompo3 = ’decompo_pEF.ecl.joblib ’
53 path_decompo4 = ’decompo_pEF.bureautique.joblib ’
54 path_decompo5 = ’decompo_pEF.vent.joblib ’
55 path_decompo6 = ’decompo_pEF.aux.joblib ’
56 path_decompo7 = ’decompo_pEF.autreseq.joblib ’
57 path_decompo8 = ’decompo_pEF.serveur.joblib ’
58 path_decompo9 = ’decompo_pEF.ecs.joblib ’
59

60

61

62

63 path_python = ’dictionaries_text.py’
64 path_image = ’advenio_act_cover.jpg’
65

66 headers = {
67 ’accept ’: ’application/vnd.github.v3.raw’,
68 ’authorization ’: f’token {token}’
69 }
70

71 # This should be the first Streamlit function in the script
72 st.set_page_config(layout="wide")
73

74 @st.cache_resource
75 def load_github_csv(owner , repo , path_csv , token):
76

77 url_csv = f’https :// api.github.com/repos/{owner }/{ repo}/ contents /{ path_csv}’
78 response = requests.get(url_csv , headers=headers)
79
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80 try:
81 df = pd.read_csv(StringIO(response.text), sep=";")
82 return df
83 except pd.errors.EmptyDataError:
84 print("The CSV response did not contain any data.")
85 except pd.errors.ParserError as e:
86 print("Error parsing CSV:", e)
87

88 return None
89

90 @st.cache_resource
91 def load_github_model(owner , repo , path_model , token):
92

93 url_model =
f’https :// api.github.com/repos/{owner }/{ repo}/ contents /{ path_model}’

94

95 try:
96 response_model = requests.get(url_model , headers=headers)
97 response_model.raise_for_status () # Check if the request was successful
98

99 model_bytes = BytesIO(response_model.content)
100 model = joblib.load(model_bytes)
101 print("Model loaded successfully.")
102 return model
103 except Exception as e:
104 print("Error loading the model:", e)
105 return None
106

107 def load_github_python_file(owner , repo , path_python , token):
108 url_python =

f’https :// api.github.com/repos/{owner }/{ repo}/ contents /{ path_python}’
109

110 try:
111 response_python = requests.get(url_python , headers=headers)
112

113 # Execute the Python code from the file
114 python_code = response_python.text
115 exec(python_code , globals ())
116

117 except requests.exceptions.RequestException as e:
118 print(f"Error loading the Python file: {e}")
119 except Exception as e:
120 print(f"Error executing the Python file: {e}")
121

122 return None
123

124 @st.cache_resource
125 def load_github_image(owner , repo , path_image , token):
126

127 url_image =
f’https :// raw.githubusercontent.com/{owner }/{ repo}/main/{ path_image}’

128 response = requests.get(url_image , headers=headers)
129

130 if response.status_code == 200:
131 # Exibe a imagem como c a b e a l h o
132 st.image(response.content , use_column_width=True)
133 else:
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134 st.error("Falha ao carregar a imagem.")
135

136 data = load_github_csv(owner , repo , path_csv1 , token)
137

138

139

140 model1 = load_github_model(owner , repo , path_model1 , token)
141 model2 = load_github_model(owner , repo , path_model2 , token)
142 model3 = load_github_model(owner , repo , path_model3 , token)
143 model4 = load_github_model(owner , repo , path_model4 , token)
144 model5 = load_github_model(owner , repo , path_model5 , token)
145 model6 = load_github_model(owner , repo , path_model6 , token)
146 model7 = load_github_model(owner , repo , path_model7 , token)
147 model8 = load_github_model(owner , repo , path_model8 , token)
148 model9 = load_github_model(owner , repo , path_model9 , token)
149 model10 = load_github_model(owner , repo , path_model10 , token)
150 model11 = load_github_model(owner , repo , path_model11 , token)
151 model12 = load_github_model(owner , repo , path_model12 , token)
152

153

154 decompo1 = load_github_model(owner , repo , path_decompo1 , token)
155 decompo2 = load_github_model(owner , repo , path_decompo2 , token)
156 decompo3 = load_github_model(owner , repo , path_decompo3 , token)
157 decompo4 = load_github_model(owner , repo , path_decompo4 , token)
158 decompo5 = load_github_model(owner , repo , path_decompo5 , token)
159 decompo6 = load_github_model(owner , repo , path_decompo6 , token)
160 decompo7 = load_github_model(owner , repo , path_decompo7 , token)
161 decompo8 = load_github_model(owner , repo , path_decompo8 , token)
162 decompo9 = load_github_model(owner , repo , path_decompo9 , token)
163

164

165

166

167 # def check_password ():
168 # """ Returns ‘True ‘ if the user had the correct password ."""
169

170 # def password_entered ():
171 # """ Checks whether a password entered by the user is correct ."""
172 # if hmac.compare_digest(st.session_state [" password"],

st.secrets [" password "]):
173 # st.session_state [" password_correct "] = True
174 # del st.session_state [" password "] # Don’t store the password.
175 # else:
176 # st.session_state [" password_correct "] = False
177

178 # # Return True if the passward is validated.
179 # if st.session_state.get(" password_correct", False):
180 # return True
181

182 # #st.image(image_path , use_column_width=True)
183

184 # # Show input for password.
185 # st.text_input(
186 # "Mot de passe", type=" password", on_change=password_entered ,

key=" password"
187 # )
188 # if "password_correct" in st.session_state:
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189 # st.error ("Mot de passe incorrect ")
190 # return False
191

192 # if not check_password ():
193 # st.stop() # Do not continue if check_password is not True.
194

195

196 st.write(’<style >div.block -container{padding -top:0rem;}</style >’,
unsafe_allow_html=True)

197 load_github_image(owner , repo , path_image , token)
198

199 def find_key_by_value ():
200 return None
201

202 def find_key_by_value_and_class ():
203 return None
204

205 def get_values_by_category ():
206 return None
207

208 def access_list_by_name ():
209 return None
210

211 def find_corresponding_name ():
212 return None
213

214 def min_max_normalize ():
215 return None
216

217 f_gen = []
218 f_pEF = []
219 f_types = []
220

221 column_mapping = {}
222 correspondence_column_dict = {}
223 correspondence_dict = {}
224 list_names = []
225 list_groups = {}
226 correspondence_quanti = {}
227 correspondence_column_dict = {}
228 plots_quanti = {}
229 plots_quali = {}
230

231

232 qualitative=
[’construction2 ’,’paroi2 ’,’isol.type’,’isol.epaiss ’,’menui.type2’,’menui.vitrage2 ’,

233 ’ph.type2 ’,’ph.isol.epaisseur ’,’pb.type2’,’pb.isol.epaisseur ’,
234 ’chauff ’,’chauff.type2’,’refr’,’refr.type2’,’vent.principe2 ’,’vent.rendement ’,’ecl.gestion2 ’,’aape’]
235

236

237 qualitative_graph=
[’construction2 ’,’paroi2 ’,’isol.type’,’isol.epaiss ’,’menui.type2’,’menui.vitrage2 ’,

238 ’ph.type2 ’,’ph.isol.epaisseur ’,’pb.type2’,’pb.isol.epaisseur ’,
239 ’chauff ’,’chauff.type2’,’refr’,’refr.type2’,’vent.principe2 ’,’vent.rendement ’,’ecl.gestion2 ’,’aape’,

’EF.total ’]
240

241
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242 quantitative = [’taux.occ’,’menui.uw’,’menui.fs’,’ecl.puiss’,
243 ’EF.total ’,’pEF.chauff ’,’pEF.froid’,’pEF.ecl’,’pEF.bureautique ’,’pEF.vent’]
244

245

246

247

248 aape_values = []
249

250 quali1 = []
251 quali2 = []
252 quali3 = []
253 quali4 = []
254 quali5 = []
255 quali6 = []
256 quali7 = []
257 quali8 = []
258 quali9 = []
259 quali10 = []
260 quali11 = []
261 quali12 = []
262

263 qualitative_list = []
264

265 # Prepare the feature subsets corresponding to each target
266 target_to_qualitative_map = {}
267 target_to_decompo_map = {}
268

269 decompo_dict = {}
270 f_decompo = []
271

272 dictionaries = load_github_python_file(owner , repo , path_python , token)
273 f_quanti = f_gen + f_pEF
274

275 max_values = load_github_csv(owner , repo , path_max_values , token)
276 min_values = load_github_csv(owner , repo , path_min_values , token)
277

278

279 quanti_col_max = max_values[max_values[’column_names ’].isin(f_quanti)]
280 quanti_col_min = min_values[min_values[’column_names ’].isin(f_quanti)]
281

282 quanti_col_max.loc[:, ’real_value ’] = quanti_col_max[’real_value ’]. astype(float)
283 quanti_col_min.loc[:, ’real_value ’] = quanti_col_min[’real_value ’]. astype(float)
284

285

286 ##################################################################################################
287

288 ultima_coluna = data.columns [-1]
289

290 # Subset the DataFrame based on the keys
291 data_quali = data[qualitative_graph]
292 data_qtty = data[quantitative]
293

294

295

296

297 def find_key(dictionary , value):
298 for key , val in dictionary.items():
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299 if val == value:
300 return key
301 return None
302

303 ##############################################################################################
304

305

306 def main():
307 st.title("ARCS - A c c s Rapide Central Sevaia")
308 #st.text(" Tableau de Bord des Solutions Durables Advenio ")
309

310 # Add navigation to sidebar
311 page = st.sidebar.selectbox("Menu", [" propos"," M t a m o d l e de

prediction", "Analyse des bases de d o n n e s ","Analyse du M t a m o d l e "])
312

313 if page == " propos":
314 #st.header (" propos ")
315

316 st.write("""
317 ### Introduction
318 Bienvenue sur notre Tableau de Bord des Solutions Durables

Sevaia! Ici , vous trouverez des tableaux de bord
interactifs et des visualisations pour explorer et
analyser d i f f r e n t s ensembles de d o n n e s .

319

320 ### Propos
321 Notre application vise fournir des informations p r c i e u s e s

et rendre l’exploration des d o n n e s facile et
intuitive. Nous avons s l e c t i o n n une s r i e d’outils et
de visualisations pour vous aider approfondir votre
co mp r he nsi on des d o n n e s .

322

323 ### Comment Utiliser
324 Pour commencer , s l e c t i o n n e z un ensemble de d o n n e s dans la

barre l a t r a l e et explorez les visualisations disponibles.
Utilisez les commandes et les filtres pour personnaliser
votre analyse et d c o u v r i r des tendances et des m o d l e s
i n t r e s s a n t s .

325 Vous avez aussi a c c s au m t a m o d l e de prediction c r e
partir d’un entrainement d’une IA.

326 """)
327

328 # Features
329 st.write("""
330 ### Fonctionnalit s C l s
331 - Visualisations interactives
332 - Graphiques et diagrammes personnalisables
333 - Interface facile utiliser
334 - Prise en charge de divers ensembles de d o n n e s
335 - Mises jour en temps r e l
336 - M e t a m o d l e de prediction
337

338 ### Technologies U t i l i s e s
339 - Python
340 - Streamlit
341 - Pandas
342 - Matplotlib
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343 - Plotly
344 - Gradient Boosting Machine
345

346 """)
347

348 # Contact Information
349 st.write("""
350 ### Contactez -Nous
351 Si vous avez des questions ou des commentaires , n’ h s i t e z pas

nous contacter :
352 - Email: l.dasilva@sevaia.ue
353 - Ou envoyez un message Teams.
354

355 """)
356

357 # Footer
358 st.write("""
359 ---
360 R a l i s par [Lorrany

Mendes ](https :// github.com/lorranymendes)
361 """)
362

363

364 # Funcao que seleciona a variavel generica
365

366 elif page == " M t a m o d l e de prediction":
367

368 st.header(" P r d i c t i o n de la d c om po sit io n :")
369 dec_values_first = pd.Series ()
370

371 # F u n o para selecionar as AAPEs e criar available_columns
internamente

372 def create_decompo_variable_selector(f_decompo , target_to_decompo_map):
373 selected_decompo = st.multiselect(" D c o m p o s g n e r s :",

f_decompo) # Multiselect para s e l e o
374 selected_decompo_indices = [f_decompo.index(col) + 1 for col in

selected_decompo] # ndices incrementados
375

376 # Processo interno para criar available_columns
377 available_decompo_columns = set()
378 for index in selected_decompo_indices:
379 if index in target_to_decompo_map:
380 available_decompo_columns.update(target_to_decompo_map[index])

# Adiciona colunas sem duplicatas
381

382 return selected_decompo_indices , available_decompo_columns
383

384 # Pergunta: " V o c quer gerar as d e c o m p o s i e s ?"
385 response1 = st.radio("Voulez -vous g n e r e r les d compositions ?",

("Oui", "Non"), index =1)
386

387 # Se a resposta for "Oui", executa a f u n o
388 if response1 == "Oui":
389 #st.subheader (" Prediction de la d co mp os iti on :")
390 selected_decompo_indices , available_decompo_columns =

create_decompo_variable_selector(f_decompo ,
target_to_decompo_map)
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391

392 # Filter classes_selection based on available_columns
393 classes_decompo_selection = [value for key , value in

correspondence_column_dict.items() if key in
available_decompo_columns]

394

395

396 def create_d_qualitative_variable_selector(classe_d_list):
397 variable_decompo_values = {}
398

399 for i, classe_d in enumerate(classe_d_list): # Use enumerate
to get an index

400 # Part 1 - List
401 category_d_name_input = classe_d
402 values_d_list = get_values_by_category(correspondence_dict ,

category_d_name_input)
403

404 # Use a unique key for each selectbox
405 selected_decompo_variable = st.selectbox(f"{classe_d }:",

values_d_list , key=f"{classe_d}_{i}")
406

407 # Update dictionary with selected variable as the key and
its category as the value

408 source_d_category =
find_key_by_value(correspondence_column_dict ,
category_d_name_input)

409 source_d_value =
find_key_by_value_and_class(selected_decompo_variable ,
source_d_category)

410 variable_decompo_values[source_d_category] = source_d_value
411

412 return pd.Series(variable_decompo_values ,
name=’qualitative_values ’)

413

414

415 # Assuming list_groups is defined somewhere in your code
416 selected_decompo_qualitative =

create_d_qualitative_variable_selector(classes_decompo_selection)
417

418

419

420

421 def create_d_numeric_variables(columns):
422 numeric_decompo_values = {}
423

424 for i, column in enumerate(columns):
425 max_d_value =

float(quanti_col_max.loc[quanti_col_max[’column_names ’]
== column , ’real_value ’].iloc [0])

426 min_d_value =
float(quanti_col_min.loc[quanti_col_min[’column_names ’]
== column , ’real_value ’].iloc [0])

427

428 # Definindo o valor p a d r o
429 default_d_value = (max_d_value - min_d_value) / 2
430 name_d = find_corresponding_name(column ,

correspondence_quanti)
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431

432 # Manter a mesma chave por coluna
433 key = f"decompo_input_{column}_{i}"
434

435 # Criar o n m e r o de entrada
436 value_d = st.number_input(
437 "{} avec valeur minimale de {:.2f} et maximale de

{:.2f}: ".format(name_d , min_d_value , max_d_value),
438 value=default_d_value ,
439 key=key
440 )
441

442 # Verificar se o valor e s t dentro dos limites
443 if (min_d_value is None or value_d >= min_d_value) and

(max_d_value is None or value_d <= max_d_value):
444 numeric_decompo_values[column] = value_d
445 else:
446 # Exibir avisos se o valor estiver fora dos limites
447 if min_d_value is not None and max_d_value is not None:
448 st.warning("La valeur doit tre entre {} et {}

pour la variable {}. S’il vous p l a t , inserez
une nouvelle valeur.".format(min_d_value ,
max_d_value , name_d))

449 elif min_d_value is not None:
450 st.warning("La valeur doit tre s u p r i e u r e {}

pour la variable {}. S’il vous p l a t , inserez
une nouvelle valeur.".format(min_d_value ,
name_d))

451 elif max_d_value is not None:
452 st.warning("La valeur doit tre i n f r i e u r e {}

pour la variable {}. S’il vous p l a t , inserez
une nouvelle valeur.".format(max_d_value ,
name_d))

453

454 return pd.Series(numeric_decompo_values ,
name=’decompo_values_d ’)

455

456

457

458

459 # Filter f_gen based on available_columns
460 column_decompo_list = [column for column in f_gen if column in

available_decompo_columns]
461

462

463 selected_decompo_quantitative =
create_d_numeric_variables(column_decompo_list)

464

465 #############################################################################################################
466

467

468 # Streamlit UI for user input
469 st.subheader(" R s u l t a t de la d c om po sit io n :")
470

471 # Initialize an empty DataFrame to store predictions
472 df_predictions = pd.DataFrame(columns =[’decompo_name ’,

’predictions_d ’])



154

473

474 try:
475 # Concatenando as s e l e e s quantitativas e qualitativas
476 result_d = pd.concat ([ selected_decompo_quantitative ,

selected_decompo_qualitative], axis =0)
477 result_d = result_d.to_frame(name=’Nome da Coluna ’)
478

479 # Filtrando linhas indesejadas
480 result_d = result_d[result_d[’Nome da Coluna ’] != ’Nome da

Coluna ’]
481 result2_d = result_d.T
482

483 # Iterando sobre cada ndice selecionado
484 for idx in selected_decompo_indices:
485 decompo_name = f_decompo[idx - 1]
486 parameters_decompo = target_to_decompo_map[idx]
487

488 # Filtrando o input com base nos p a r m e t r o s
489 filtered_d_input = result2_d[parameters_decompo]
490

491 model_d_name = f’decompo{idx}’ # Assumindo que os modelos
s o nomeados decompo1 , decompo2 , etc.

492 expected_d_columns =
globals ()[model_d_name ]. feature_names_in_

493 available_d_columns =
filtered_d_input.columns.intersection(expected_d_columns)

494

495 if len(available_d_columns) < len(expected_d_columns):
496 st.write(f"Variables qui manquent: {model_d_name }:

{set(expected_d_columns) -
set(available_d_columns)}")

497

498 # Reorganizando o input filtrado com base nas colunas
d i s p o n v e i s

499 filtered_d_input = filtered_d_input[available_d_columns]
500 filtered_d_input =

filtered_d_input.reindex(columns=expected_d_columns ,
fill_value =0)

501

502 # Realizando a p r e v i s o
503 predictions_d =

globals ()[model_d_name ]. predict(filtered_d_input) * 100
504 predictions_d = np.round(predictions_d , 2)
505 prediction_d_str = str(predictions_d).replace("[",

"").replace("]", "")
506

507 # Exibindo o resultado individual
508 #st.write(f"{ decompo_name} est de {prediction_d_str }% sur

la consommation d’ nergie actuelle .")
509

510 # Adicionando a p r e v i s o ao dataframe de resultados
511 df_predictions = pd.concat ([ df_predictions ,

pd.DataFrame ({’decompo_name ’: [decompo_name],
’predictions_d ’: [prediction_d_str ]})],
ignore_index=True)

512

513 # Display the original df_predictions table
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514 if not df_predictions.empty:
515 df_predictions[’predictions_d ’] =

df_predictions[’predictions_d ’]. astype(float)
516

517 # Create columns for layout
518 col1 , col2 = st.columns ([2, 3]) # Three equal columns
519

520 # First column for editable table
521 with col1:
522 st.write("Modifiez les valeurs de la decompo

manuellement si necessaire:")
523 editable_df = df_predictions.copy()
524 updated_predictions_d = []
525

526 # Loop through each row to create input fields for
editing

527 for index , row in editable_df.iterrows ():
528 new_value = st.number_input(
529 f"{row[’decompo_name ’]}:",
530 value=row[’predictions_d ’],
531 key=f"predictions_d_{index}"
532 )
533 updated_predictions_d.append(new_value)
534

535 # Update the DataFrame with the new values
536 editable_df[’predictions_d ’] = updated_predictions_d
537

538 print_decompo = editable_df
539

540

541 csv_bytes = io.StringIO ()
542 print_decompo.to_csv(csv_bytes , index=False , sep=’;’,

encoding=’utf -8’) # Ensure to set the correct
separator

543 csv_bytes.seek (0) # Rewind to the start of the stream
544

545 # Add download button
546 st.download_button(
547 label="Download decompo data as CSV",
548 data=csv_bytes.getvalue (),
549 file_name=’decompo_data.csv’,
550 mime=’text/csv’ # Ensure MIME type is set for CSV
551 )
552

553

554 reverse_correspondence_quanti = {v: k for k, v in
correspondence_quanti.items()}

555 editable_df[’decompo_key ’] =
editable_df[’decompo_name ’].map(reverse_correspondence_quanti)

556

557 dec_values_first =
pd.Series(editable_df.set_index(’decompo_key ’)[’predictions_d ’]/100,
name=’dec_values ’)

558

559

560 # Second column for plots
561 with col2:
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562 # Calculate the total from the updated ’predictions_d ’
563 total_sum = editable_df[’predictions_d ’].sum()
564

565 # Prepare data for pie chart
566 pie_labels = editable_df[’decompo_name ’]. tolist ()
567 pie_sizes = editable_df[’predictions_d ’]. tolist ()
568

569 if total_sum < 100:
570 # Create a figure for the pie chart
571 fig1 , ax1 = plt.subplots(figsize =(6, 6))
572

573 # Calculate the missing part and add it to the pie
sizes and labels

574 missing_part = 100 - total_sum
575 pie_sizes.append(missing_part) # Add the missing

part
576 pie_labels.append(’Partie manquante ’) # Label for

the missing part
577

578 # Set custom colors for the pie chart
579 colors = plt.cm.tab20.colors # Using a colormap

for better colors
580

581 # Plotting the pie chart
582 ax1.pie(pie_sizes , labels=pie_labels ,

autopct=’%1.1f%%’, startangle =90, colors=colors)
583

584

585 ax1.axis(’equal ’) # Equal aspect ratio ensures
that pie is drawn as a circle.

586 ax1.set_title("Distribution des Predictions y
compris les parties qui manquent", pad =20) #
Adjusted title position

587

588 # Display the pie chart
589 st.pyplot(fig1)
590 else:
591 # If total sum is greater than 100, display a

message instead of a chart
592 surplus = total_sum - 100
593 fig2 , ax2 = plt.subplots(figsize =(6, 6)) # Create

a new figure for the surplus bar chart
594

595 # Plotting the surplus bar chart with customizations
596 ax2.bar([’Surplus ’], [surplus], color=’skyblue ’) #

Changed bar color
597 ax2.set_ylabel(’Pourcentage n c e s s a i r e d\’ tre

e n l e v de la d c o m p o actuelle (%)’,
fontsize =8) # Y-axis label

598 ax2.set_title(’Surplus ’, fontsize =10, pad =20) #
Title for the surplus bar chart

599 ax2.set_xticks ([]) # X-axis empty
600

601 # Display the surplus chart
602 st.pyplot(fig2)
603

604
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605 else:
606 st.write ()
607

608

609

610 except KeyError:
611 # Custom error message for KeyError
612 st.error("Les p a r a m t r e s i n s r s ne sont pas valides.")
613 except Exception:
614 # General error message for any other exceptions
615 st.error("Une erreur inattendue est survenue. Veuillez

v r i f i e r vos e n t r e s .")
616

617

618

619

620 #######################################################################################################################################################################
621

622 # Pergunta: " V o c quer gerar as d e c o m p o s i e s ?"
623 response2 = st.radio("Voulez -vous g n e r e r les gains des AAPEs?",

("Oui", "Non"), index =1)
624

625 # Se a resposta for "Oui", executa a f u n o
626 if response2 == "Oui":
627

628

629 st.header(" P r d i c t i o n des AAPEs:")
630

631

632 # F u n o para selecionar as AAPEs e criar available_columns
internamente

633 def create_aape_variable_selector(f_types ,
target_to_qualitative_map):

634 selected_aapes = st.multiselect("Types d’AAPE:", f_types) #
Multiselect para s e l e o

635 selected_aape_indices = [f_types.index(col) + 1 for col in
selected_aapes] # ndices incrementados

636

637 # Processo interno para criar available_columns
638 available_columns = set()
639 for index in selected_aape_indices:
640 if index in target_to_qualitative_map:
641 available_columns.update(target_to_qualitative_map[index])

# Adiciona colunas sem duplicatas
642

643 return selected_aape_indices , available_columns
644

645 # Executa a f u n o sem expor ao u s u r i o
646 selected_aape_indices , available_columns =

create_aape_variable_selector(f_types ,
target_to_qualitative_map)

647

648 # A partir daqui , v o c pode usar ‘selected_aape_indices ‘ e
‘available_columns ‘ conforme n e c e s s r i o

649

650

651 # Filter classes_selection based on available_columns
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652 classes_selection = [value for key , value in
correspondence_column_dict.items() if key in available_columns]

653

654

655 def create_qualitative_variable_selector(classe_list):
656 variable_values = {}
657

658 for i, classe in enumerate(classe_list): # Use enumerate to
get an index

659 # Part 1 - List
660 category_name_input = classe
661 values_list = get_values_by_category(correspondence_dict ,

category_name_input)
662

663 # Use a unique key for each selectbox
664 selected_q_variable = st.selectbox(f"{classe }:",

values_list , key=f"{classe}_quali_{i}")
665

666 # Update dictionary with selected variable as the key and
its category as the value

667 source_category =
find_key_by_value(correspondence_column_dict ,
category_name_input)

668 source_value =
find_key_by_value_and_class(selected_q_variable ,
source_category)

669 variable_values[source_category] = source_value
670

671 return pd.Series(variable_values , name=’qualitative_values2 ’)
672

673

674

675 # Assuming list_groups is defined somewhere in your code
676 selected_qualitative =

create_qualitative_variable_selector(classes_selection)
677

678

679 #############################################################################################################
680

681 ######### FIRST INPUT
682

683 def create_numeric_variables(columns):
684 numeric_values = {}
685 for i, column3 in enumerate(columns): # Adding index ’i’ to

ensure unique key
686 max_value =

float(quanti_col_max.loc[quanti_col_max[’column_names ’]
== column3 , ’real_value ’].iloc [0])

687 min_value =
float(quanti_col_min.loc[quanti_col_min[’column_names ’]
== column3 , ’real_value ’].iloc [0])

688

689 default_value = (max_value - min_value) / 2
690 name = find_corresponding_name(column3 ,

correspondence_quanti)
691

692 value = st.number_input(
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693 "{} avec valeur minimale de {:.2f} et maximale de
{:.2f}: ".format(name , min_value , max_value),

694 value=default_value ,
695 key=f"num_input_{column3}_{i}" # Unique key using ’i’

and column name
696 )
697

698 # Verificar se o valor e s t dentro dos limites
699 if (min_value is None or value >= min_value) and (max_value

is None or value <= max_value):
700 numeric_values[column3] = value
701 else:
702 # Exibir avisos se o valor estiver fora dos limites
703 if min_value is not None and max_value is not None:
704 st.warning("La valeur doit tre entre {} et {}

pour la variable {}. S’il vous p l a t , inserez
une nouvelle valeur.".format(min_value ,
max_value , name))

705 elif min_value is not None:
706 st.warning("La valeur doit tre s u p r i e u r e {}

pour la variable {}. S’il vous p l a t , inserez
une nouvelle valeur.".format(min_value , name))

707 elif max_value is not None:
708 st.warning("La valeur doit tre i n f r i e u r e {}

pour la variable {}. S’il vous p l a t , inserez
une nouvelle valeur.".format(max_value , name))

709

710

711 return pd.Series(numeric_values , name=’numer_values ’)
712

713

714 # Filter f_gen based on available_columns
715 column_list_a = [column for column in f_gen if column in

available_columns]
716

717 selected_quantitative = create_numeric_variables(column_list_a)
718

719

720

721

722 #############################################################################################################
723

724

725 ### Second input
726

727 def aape_decompo(columns):
728

729 dec_values = {}
730 for i, column in enumerate(columns): # Adding index ’i’ to

ensure unique key
731 max_value =

float(quanti_col_max.loc[quanti_col_max[’column_names ’]
== column , ’real_value ’].iloc [0]) *100

732 min_value =
float(quanti_col_min.loc[quanti_col_min[’column_names ’]
== column , ’real_value ’].iloc [0]) *100

733
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734 default_value = (max_value - min_value) / 2
735 name = find_corresponding_name(column ,

correspondence_quanti)
736

737 value = st.number_input(
738 "{} avec valeur minimale de {:.2f} et maximale de

{:.2f}: ".format(name , min_value , max_value),
739 value=default_value ,
740 key=f"num_input_{column}_{i}" # Unique key using ’i’

and column name
741 )
742

743 # Verificar se o valor e s t dentro dos limites
744 if (min_value is None or value >= min_value) and (max_value

is None or value <= max_value):
745 dec_values[column] = value /100
746 else:
747 # Exibir avisos se o valor estiver fora dos limites
748 if min_value is not None and max_value is not None:
749 st.warning("La valeur doit tre entre {} et {}

pour la variable {}. S’il vous p l a t , inserez
une nouvelle valeur.".format(min_value ,
max_value , name))

750 elif min_value is not None:
751 st.warning("La valeur doit tre s u p r i e u r e {}

pour la variable {}. S’il vous p l a t , inserez
une nouvelle valeur.".format(min_value , name))

752 elif max_value is not None:
753 st.warning("La valeur doit tre i n f r i e u r e {}

pour la variable {}. S’il vous p l a t , inserez
une nouvelle valeur.".format(max_value , name))

754

755

756 return pd.Series(dec_values , name=’dec_values ’)
757

758 # Filter f_gen based on available_columns
759 column_list_dec = [column for column in f_pEF if column in

available_columns]
760

761 # Inicializando a s r i e e a lista de missing_values
762 selected_decomposition = pd.Series(dtype=float)
763 missing_values = []
764

765 # I t e r a o sobre as colunas da lista
766 for column in column_list_dec:
767 if column in dec_values_first.index:
768 # Adiciona o valor correspondente s r i e
769 selected_decomposition[column] = dec_values_first[column]
770 else:
771 # Adiciona o nome da coluna lista de missing_values
772 missing_values.append(column)
773

774 # V e r i f i c a o e a p l i c a o da f u n o aape_decompo se houver
missing_values

775 if missing_values:
776 missing_values_series = aape_decompo(missing_values)
777
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778 # Concatenando a missing_values_series selected_decomposition
779 selected_decomposition = pd.concat ([ selected_decomposition ,

missing_values_series ])
780

781

782 #############################################################################################################
783

784 # Streamlit UI for user input
785 st.subheader(" R s u l t a t de la prediction des AAPEs:")
786

787 export_df = pd.DataFrame(columns =[’AAPE’, ’Gain (%)’])
788

789

790 try:
791

792 result = pd.concat ([ selected_quantitative ,
selected_qualitative , selected_decomposition], axis =0)

793 # Suponha que ’series ’ seja a sua Series com o nome desejado
794 result = result.to_frame(name=’Nome da Coluna ’)
795

796 # Supondo que seu DataFrame seja chamado result
797 result = result[result[’Nome da Coluna ’] != ’Nome da Coluna ’]
798 result2 = result.T
799

800

801 # Assuming selected_aape_indices is a list of your AAPE values
802 for idx in selected_aape_indices:
803 # Get the relevant AAPE name using idx - 1
804 aape_name = f_types[idx - 1]
805

806 # Get the relevant variables for the current AAPE
807 parameters_aape = target_to_qualitative_map[idx]
808

809 # Filter result based on the relevant parameters
810 filtered_input = result2[parameters_aape]
811

812 # Use the corresponding model for predictions
813 model_name = f’model{idx}’ # Assuming models are named

model1 , model2 , ..., model12
814

815 predictions = globals ()[model_name ]. predict(filtered_input)
* 100

816 predictions = np.round(predictions , 2)
817

818 # Prepare the prediction for display
819 prediction_str = str(predictions).replace("[",

"").replace("]", "")
820 export_df = pd.concat ([export_df , pd.DataFrame ({’AAPE’:

[aape_name], ’Gain (%)’: [prediction_str ]})],
ignore_index=True)

821

822 # Display the results
823 st.write(f"Le gain nergtique de l’AAPE {aape_name} est

de {prediction_str }% de la consommation d’ nergie
actuelle.")

824

825 # Convert the DataFrame to CSV for download
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826

827

828 # Convert export_df DataFrame to CSV using BytesIO
829 csv_export_bytes = io.StringIO ()
830 export_df.to_csv(csv_export_bytes , index=False ,

encoding=’utf -8’)
831 csv_export_bytes.seek (0) # Rewind to the start of the stream
832

833 # Add download button
834 st.download_button(
835 label="Download AAPE Gains as CSV",
836 data=csv_export_bytes.getvalue (),
837 file_name=’aape_gains.csv’
838 )
839

840

841 except KeyError:
842 # Custom error message for KeyError
843 st.error("Les p a r a m t r e s i n s r s ne sont pas valides.")
844

845 except Exception:
846 # General error message for any other exceptions
847 st.error("Une erreur inattendue est survenue. Veuillez

v r i f i e r vos e n t r e s .")
848

849

850

851 elif page == "Analyse des bases de d o n n e s ":
852

853 st.write(’’)
854 st.write(’’)
855 st.write(’’)
856

857 col_a ,col_inexistante , col_b = st.columns ([10 ,1 ,10])
858

859

860 col_a.header("Analyse des variables quantitatives")
861 col_a.write(’’)
862

863 col_a.write(’’)
864

865

866 # Dropdown menu for selecting column
867 name_a = col_a.selectbox(’Selectionnez un

p a r a m t r e ’,list(plots_quanti.values ()))
868

869 selected_col = find_key(plots_quanti ,name_a)
870

871

872 name_a = find_corresponding_name(selected_col ,plots_quanti)
873

874 # Slider for selecting x-axis interval
875 x_min , x_max = col_a.slider(’Selectionez l\’intervale de Consommation

(kWh/ m .an)’, min_value=float(data[’EF.total’].min()),
876 max_value=float(data[’EF.total’].max()),

value=( float(data[’EF.total’].min()),
float(data[’EF.total ’].max())))
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877

878 # Filter DataFrame based on selected interval
879 filtered_df = data[(data[’EF.total ’] >= x_min) & (data[’EF.total’] <=

x_max)]
880

881 y_min , y_max = col_a.slider(f’Selectionez l\’intervale pour {name_a}’,
min_value=float(filtered_df[selected_col ].min()),

882 max_value=float(filtered_df[selected_col ].max()),
value=( float(filtered_df[selected_col ].min()),
float(filtered_df[selected_col ].max())))

883

884 # Filter DataFrame based on selected interval
885 filtered_df = filtered_df [( filtered_df[selected_col] >= y_min) &

(filtered_df[selected_col] <= y_max)]
886

887 plt.figure ()
888 plt.scatter(filtered_df[’EF.total ’], filtered_df[selected_col],

alpha =0.3, c=’green’)
889 plt.xlabel(’Consommation (kWh/ m .an)’)
890 plt.ylabel(name_a)
891 plt.title(f’Correlation entre {name_a} \n et la Consommation

(kWh/ m .an)’)
892 plt.grid(True)
893

894 # Display plot in Streamlit
895 col_b.pyplot(plt)
896

897

898

899 color_palette = "pastel"
900

901 st.subheader("Analyse des variables qualitatives")
902

903 col_c ,col_inexistant , col_d = st.columns ([10 ,1 ,10])
904

905

906 # Lista de colunas qualitativas
907 graph_geral = data_quali
908

909

910

911 y_min , y_max = col_c.slider(’Selectionez l\’intervale pour la
Consommation
(kWh/ m .an)’,min_value=float(graph_geral[’EF.total ’].min()),

912 max_value=float(graph_geral[’EF.total ’].max()),
value=( float(graph_geral[’EF.total ’].min()),
float(graph_geral[’EF.total’].max())))

913

914 # Copie o DataFrame original para que a filtragem n o afete os dados
originais

915 graph_conso = graph_geral.copy()
916 # Filtrar DataFrame com base no intervalo selecionado
917 graph_conso = graph_conso [( graph_conso[’EF.total’] >= y_min) &

(graph_conso[’EF.total’] <= y_max)]
918

919

920
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921 # Slider for selecting column
922 name_c = col_c.selectbox(’Selectionnez un p a r a m t r e ’,

list(plots_quali.values ()))
923

924 selected_column = find_key(plots_quali ,name_c)
925

926 graph_conso_ape = pd.DataFrame ()
927

928 graph_conso_ape[’ape’] = graph_conso[selected_column]
929

930 graph_conso_ape = graph_conso_ape.rename(columns ={’ape’:
selected_column })

931

932 graph_conso_ape[’EF.total’] = graph_conso[’EF.total ’]
933

934 selected_classes = {}
935

936 # Obtenha a lista de valores nicos da coluna selecionada
937 unique_values = graph_conso_ape[selected_column ]. unique ().tolist ()
938

939 # Use a lista completa como valor p a d r o
940 default_value = unique_values
941

942 # Use a lista completa como valor p a d r o na f u n o multiselect
943 selected_classes[selected_column] = col_d.multiselect(f’Selectionnez

les classes de {name_c }:’, unique_values , default=default_value)
944

945 fig , (ax1 , ax2) = plt.subplots(1, 2, figsize =(15, 6))
946

947 # Filtrar DataFrame com base nas classes selecionadas
948 for col , classes in selected_classes.items ():
949 graph_conso_ape =

graph_conso_ape[graph_conso_ape[col].isin(classes)]
950

951 # Criar g r f i c o de barras mostrando a f r e q u n c i a de cada
categoria na coluna atual

952 freq = graph_conso_ape[col]. value_counts ()
953 sns.barplot(x=freq.index , y=freq.values , palette=color_palette ,

ax=ax1)
954 # Personalizar r t u l o s e t t u l o do g r f i c o de barras
955 ax1.set_xlabel(f’{name_c}’)
956 ax1.set_ylabel(’Frequence ’)
957 ax1.set_title(f’Frequence de {name_c}’)
958 ax1.set_xticklabels(ax1.get_xticklabels (), rotation =45)
959

960 # Definir a ordem das categorias com base no g r f i c o de barras
para c o n s i s t n c i a

961 order = freq.index
962

963 # Criar um g r f i c o de violino lado a lado
964 sns.violinplot(x=graph_conso_ape[col],

y=graph_conso_ape[’EF.total’], order=order ,
data=graph_conso_ape , palette=color_palette , linewidth=0,
ax=ax2)

965

966 # Personalizar r t u l o s e t t u l o do g r f i c o de violino
967 ax2.set_xlabel(f’{name_c}’)
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968 ax2.set_ylabel(’Consommation (kWh/ m .an)’)
969 ax2.set_title(f’Correlation entre {name_c} et Consommation

(kWh/ m .an)’)
970 ax2.set_xticklabels(ax2.get_xticklabels (), rotation =45)
971

972 # Exibir o g r f i c o
973 st.pyplot(fig)
974

975

976 #elif page == "Analyse du M t a m o d l e ":
977

978 # st.header (" Analyse de la performance de la s e n s i b i l i t du
m t a m o d l e ")

979

980 if __name__ == "__main__":
981 main()

Listing C.8 – Code 7- Metamodel
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