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“All models are wrong, but some are useful.”

(George Box, 1976)





RESUMO

O monitoramento de condição baseado em vibração destaca-se como uma abordagem
de manutenção preditiva devido à sua resposta rápida e relação custo-benefício. Conse-
quentemente, a necessidade de modelos robustos capazes de distinguir entre sinais de
vibração saudáveis e defeituosos é de extrema importância. Neste trabalho, avaliamos
a eficácia de vários classificadores para diagnosticar estados de saúde de engrenagens
usando features de sinais de vibração. Duas configurações de caixa de engrenagens são
consideradas: uma conectada ao eixo do motor por meio de um sistema de correias e polias
e outra diretamente ligada ao eixo do motor. Várias rotações e cargas são estudadas. Um
acelerômetro triaxial é posicionado no mancal de rolamento do pinhão e outro no mancal
de rolamento da engrenagem. A extração de features dos sinais de aceleração abrange
features estatísticas no domínio do tempo, amplitudes das harmônicas da frequência de
engrenamento (GMF) e bandas laterais associadas nos domínios de frequência e ordem,
e amplitude das quefrências associadas às bandas laterais da GMF por meio da análise
de Cepstrum, além de outras features como o FM0, ou o pico espectral e cepstral. Essas
features servem como entradas para diferentes classificadores de aprendizado de máquina:
Logistic Regression, SVM, Random Forest Classifier e XGBoost. A otimização de hiper-
parâmetros é feita usando um algoritmo de busca aleatória com a Área Sob a Curva ROC
(AUC) como parâmetro de otimização. Três diferentes divisões de treino-teste são feitas:
(A) uma aleatória, (B) treinamento com dados do sistema de correias e polias e teste com o
sistema diretamente ligado ao motor, e (C) treinamento com o sistema diretamente ligado
ao motor e teste com o de correias e polias. Os modelos são comparados pelo seu valor
de validação AUC, duração do treinamento em segundos, acurácia e acurácia balanceada
e valor de AUC de teste. No geral, o XGBoost apresentou os melhores resultados. Na
divisão aleatória, alcançou 90% de TPR com 7% de FPR. Isso implica que modelos de
árvore podem ser suficientes para descrever o problema, não sendo necessários modelos
mais complexos, como redes neurais. Foi realizada uma análise SHAP (SHapley Additive
exPlanations) para todas as divisões do XGBoost. Features que mostraram algum aspecto
da forma do sinal se demonstraram mais importantes na análise SHAP. Isso pode ser
devido à natureza dos defeitos analisados, que geram sinais periódicos de impacto. O FM0
também apareceu como muito importante em todas as divisões. Features com informações
semelhantes apareceram como importantes tanto pelo método de Welch quanto pelo FFT
no domínio da frequência. Análises adicionais implicam que elas não são necessárias para
a tarefa de classificação, para os defeitos analisados. Investigações mostraram que, embora
os modelos treinados com a divisão (B) falhassem mais na classificação do sinal saudável,
eles apresentaram desempenho similar ao classificador treinado com a divisão (A) para a
detecção de defeitos. O classificador treinado com o conjunto de dados (C) teve o maior
número de falsos negativos, ou seja, classificou sinais como saudáveis quando na verdade
eram de um pinhão defeituoso. Isso sugere que o conjunto de dados de polia-correia é
melhor para generalizar o domínio do que a divisão de acionamento direto.

Palavras-chave: Classificação Binária, Cepstrum, Monitoramento de Condição, Detecção
de Defeitos, Engrenagens, Regressão Logística, Machinery Fault Simulator, Aprendizado
de Máquina, Sistema de Correia e Polia, Floresta Aleatória, Análise SHAP, SVM, Média
Síncrona no Tempo, TSA, XGBoost.





ABSTRACT

Vibration-based monitoring stands out as a predictive maintenance approach in view
of its rapid response and cost-effectiveness. Consequently, the need for robust models
capable of distinguishing between healthy and defective vibrational signals is of the utmost
importance. In this study, we assess the efficacy of various classifiers for diagnosing gear
health states using vibration signal features. Two gearbox configurations are considered:
one connected to the motor shaft via a pulley belt system and the other directly linked
to the motor shaft. Various rotations and loads are studied. One triaxial accelerometer
is positioned at the pinion’s bearing housing and another at the gear’s bearing housing.
Feature extraction from the acceleration signals encompasses statistical features in the
time-domain, amplitudes of the Gear Meshing Frequency (GMF) harmonics and associated
sidebands in the frequency and order-domain, and amplitude of quefrencies associated
with GMF sidebands through Cepstrum analysis, and other features such as the FM0,
or the spectral and cepstral peak. These features serve as inputs for different machine
learning classifiers: Logistic Regression, SVM, Random Forest Classifier and XGBoost.
Hyperparameter tuning is done using a randomized search with the Area Under the ROC
Curve (AUC) as the optimization parameter. Three different divisions of train-test are
made: (A) randomized one, (B) training with data from the pulley-belt system and testing
with the direct-driven system and (C) training with the direct driven system and testing
with the pulley-belt one. The models are compared by their validation AUC score, training
duration, test accuracy, balanced accuracy and AUC score. Overall XGBoost had the best
results. At the random division, it achieved 90% TPR at 7% FPR. It implies that tree
models can be sufficient to describe the problem, not requiring more complex models, such
as neural networks. A SHAP (SHapley Additive exPlanations) analysis was conducted for
all divisions of XGBoost. Features that showed some shape aspect of the signal were more
important in the SHAP analysis. This may be due to the nature of the analyzed defects,
which results in periodic impact signals. The FM0 also appeared as very important in
all divisions. Features with similar information appeared as important both from Welch
and FFT’s method at the frequency-domain. Further analysis implies that they are not
necessary for the classification task given the analysed defects. Additional investigation
showed that although the models trained with the (B) division failed more at the healthy
signal classification, they had similar performance as the classifier trained with the (A)
division for defect detection. The classifier trained with the (C) dataset had the highest
number of false negatives, or classified signals as healthy when they were actually from a
defective pinion. This suggests that the pulley-belt dataset is better at generalizing the
domain than the direct-driven division.

Keywords: Binary Classification, Cepstrum, Condition Monitoring, Defect Detection,
Gears, Logistic Regression, Machinery Fault Simulator, Machine Learning, Pulley-belt
system, Random Forest Classifier, SHAP Analysis, SVM, Time Synchonous Averaging,
TSA, XGBoost.
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1 INTRODUCTION

According to the Oxford English Dictionary a machine is “an apparatus using or

applying mechanical power and having several parts, each with a definite function and

together performing a particular task”. The parts are bearings, shafts, keys, couplings,

gears, etc, which are known as machine elements. A particular task could be the rotation

of a component. A motor, for example, generates power and rotates a shaft.

Normally in a machine, there is a need to transfer motion from one shaft to another.

Several options are available: flat belts, V-belts, toothed timing belts, chain drives, friction

wheel drives and gear drives. While belt and chain drives are usually less pricey, gearsets

are compact, slip-free, efficient, light weight, precise in timing, smooth in motion and,

therefore, competitive (COLLINS; BUSBY; STAAB, 2009). However, like any component,

wear and tear or unexpected loads deviates its behaviour and performance. If not dealt

with properly, a catastrophic failure could happen. To avoid this or, less severely, to

optimize a component’s useful life, machinery maintenance comes as a solution.

There are mainly four approaches when it comes to machinery maintenance: corrective,

preventive, predictive and prescriptive maintenance (DYNAMOX, 2021). Each of these

come with its advantages and disadvantages. Nevertheless, predictive maintenance is

recognized as the best strategy for the majority of the cases. It anticipates potential

failures, optimizes time and financial resources by enabling a planned stop for maintenance,

eliminates unnecessary revisions and increases employee safety (RANDALL, 2011). This

approach bases itself on the monitoring of several machine parameters, such as temperature,

particles in lubricant, acoustic emission or vibration. Among these, the vibration-based

condition monitoring is one of the most cost effective, because it can detect the type and

location of a defect and responds rapidly to changes in the machine (KUNDU; DARPE;

KULKARNI, 2020).

It is possible to measure vibration with proximity probes, velocity transducers,

accelerometers, dual vibration probes and laser vibrometers. The most common sensors in

condition monitoring are piezoelectric accelerometers, because of their wide frequency and

dynamic range. Up until recently, industry used accelerometers for condition monitoring

in two arrangements: either a worker went intermittently from machine to machine with

an accelerometer and vibration collector, or the accelerometer was fixed on a machine,

with continuous or frequent measurements and long carefully placed cables. The first
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arrangement risks employees safety and is not suitable to monitor machine’s sudden

breakdown. The second can continuously monitor machines, but it has the downside of

maintenance and cost of cables (RANDALL, 2011).

Vibration-based condition monitoring is an area of study that has been growing in

the past few decades. It is possible to reach conclusions while analysing raw vibration

data. However, the use of signal processing techniques considerably eases and enhances

the detection and diagnosis of defects (KUNDU; DARPE; KULKARNI, 2020).

Health indicators can be constructed to assess an asset’s health state. They can

be classified in five domains: time, frequency, quefrency, order and time-frequency. In

time, some indicators are RMS, kurtosis, crest factor, etc. The frequency-domain can

be obtained through Fourier transform, spectral kurtosis, kurtogram, etc. The order

domain is a frequency-domain that is scaled by the rotational speed of the machine. The

quefrency domain is obtained by the cepstrum – which will be later explained. The time-

frequency domain can be obtained through the short-time Fourier transform, empirical

mode decomposition, wavelet transform, etc. In these domains, we can extract health

indicators via the amplitude of harmonics or some constructed metrics.

Traditionally, vibration analysts compare vibration signals from a machine, looking

for patterns that indicated some type of fault. They employed signal processing techniques

to enhance certain signal aspects, took into consideration aspects such as the machine’s

surrounding, the element’s type of coupling, and checked if health indicators were within a

threshold. Therefore, research focused on the performance of signal processing techniques

and inventing new health indicators. However, the process is time consuming and requires

a skilled analyst.

Advances in research prompted the understanding that problems of damage identifi-

cation are fundamentally ones of statistical pattern recognition (FARRAR; WORDEN,

2007). Rytter (1993) describes a five step process to assess the damage state of a system:

(i) existence, (ii) location, (iii) type, (iv) extent and (v) prognosis. The first step, existence

or detection, can be seen as a binary classification problem, the task of categorizing the

elements of a set into one of two groups. For example, answering the question “Is it a signal

from a healthy component or a defective one?”. When applying a model to classify a health

state of machines or components, the health indicators become features – measurable

properties – of the models.

Statistical binary classification is a type of supervised learning, where the labels of
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the data are well known and defined. There are many tools for binary classification. They

can be divided into two categories: shallow learning and deep learning. Shallow learning is

a subset of machine learning algorithms that are easy to implement and interpret. They

are usually used for simpler tasks, smaller datasets, or situations where interpretability is

crucial. Deep learning is a subset of machine learning algorithms that are more complex

and require more computational power. They are typically more suitable for complex

tasks, large datasets, and scenarios where accuracy and automatic feature learning are

essential. Examples of shallow learning algorithms are decision trees, random forests,

support vector machines (SVM), logistic regression, probit model, genetic programming,

multi-expression programming, or linear genetic programming, etc. Examples of deep

learning algorithms are convolutional neural networks (CNN), recurrent neural networks

(RNN), long short-term memory (LSTM), deep belief networks (DBN), deep Boltzmann

machines (DBM), deep neural networks (DNN), etc (GERÓN, 2019).

This work focuses on defect detection on gears. There are many reviews on the

diagnosis (study of type and extent of defect) and prognosis (study of remaining useful life)

of gears and rotating machinery, such as the works of Kumar et al. (2020), Kundu, Darpe

and Kulkarni (2020) and Singh et al. (2021). These articles usually focus on deep learning

approaches – (HAN; JIANG, et al., 2018), (HAN; YANG, et al., 2019) and (ELFORJANI,

2020) – and focus on diagnosis and not detection.

1.1 OBJECTIVES

The objective of this work is to develop and compare the performance of binary

classifiers – logistic regression, SVM, random forest classifier, and XGBoost – to detect

defects in gears with features extracted from vibration signals’ time, frequency, quefrency

and order domains.

1.2 SPECIFIC OBJECTIVES

This work’s specific objectives are:

• Measuring vibrational signals of healthy and defective gears in a test bench in several

configurations;
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• Extracting features from the signals in the time, frequency, quefrency and order-

domains;

• Implementing binary classification algorithms to detect defects in gears, such as

Logistic Regression, SVM, Random Forest Classifier, and XGBoost;

• Comparing the performance of the algorithms in terms of area under the curve,

accuracy, balanced accuracy and training time.
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2 LITERATURE REVIEW

This Chapter covers an introduction on gears, gear types, gear defects, condition

monitoring of gears and a review on vibration-based approaches for diagnostics on gear

defects. It also covers signal processing techniques, binary classification, machine learning

workflow and SHAP (SHapley Additive exPlanations).

2.1 GEARS

According to (MOTT; VAVREK; WANG, 2017) “Gears are toothed, cylindrical

wheels used for transmitting motion and power from one rotating shaft to another”. Gears

can change the RPM and movement direction of a shaft with the aid of another gear. In a

gearset, there is typically a smaller “gear” that is called pinion and a larger one which is

called “gear”. In general, the pinion is the input (driver) and the gear is the output (driven

member) (COLLINS; BUSBY; STAAB, 2009).

The Gear Meshing Frequency (GMF), also found as “toothmeshing frequency” in

literature, is the rate at which gear and pinion teeth periodically engage:

GMF = fpNp = fgNg, (2.1)

where fp is the rotation frequency of the pinion, fg is the rotational frequency of the

gear, Np is the number of teeth in the pinion and Ng is the number of teeth in the gear

(COLLINS; BUSBY; STAAB, 2009).

There is a standardized nomenclature for two mating gears geometries’ encounter.

The pitch circle is an imaginary circle that passes across the contact points of two mating

gears. The pitch point is where the pitch circles are tangent to each other. Figure 2.1

shows the pitch circles of two mating gears, where P is the pitch point and O1 and O2 are

the center of each gear.

For a gearset to work, the angular velocity ratio of two mating gears must be constant

at all instants. That is known as the fundamental law of gearing which states that the

angular velocity ratio between the gears of a gearset must remain constant throughout the

mesh (NORTON, 2010). It can be expressed with the following relations:

f1(t)
f2(t)

= D2

D1
= N2

N1
, (2.2)
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Figure 2.1 – Pitch circle ilustration. Source: Author

where the subscripts 1 and 2 represent two mating gears, f is the angular velocity, D is

the pitch circle diameter and N is the number of teeth.

2.1.1 Gear types

The type of gear depends on its application scenario and the limitation they have.

Some of the design constraints are reduction ratio required, power to be transmitted,

rotational speeds, budget, geometric and noise-level limitations. On these accounts, there

are three shafting arrangements encountered:

1. Parallel shafts axes

• Straight-tooth spur gears: with an involute profile1, they are easy to design,

manufacture and check for precision. It imposes radial load only on supporting

bearings. Their speed is usually limited because of noise-levels.

• Helical gears: their teeth are angled to the axis of rotation, forming parallel

helical spirals. It imposes both radial and axial loads on supporting bearings

because of its angled teeth.

2. Intersecting shafts axes

• Straight bevel gears: the pitch surface is conical frustum2. Normal to the tooth

axis, the tooth profile resembles an involute. They impose both radial and axial

load on supporting bearings.
1 The involute curve was proposed by L. Euler. It is the trajectory from completely stretched string that

is being unwrapped around a circle. It ensures the fundamental law of gearing.
2 Frustum (pl. frusta) is a truncated solid, usually a cone.
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• Spiral bevel gears: also have conical frustum as pitch surface, but the teeth are

spiral.

3. Shaft axes are neither parallel nor do they intersect

• Hypoid gears: similar to the spiral bevel gears, but with an offset between the

gear axes.

Figure 2.2 gives an example of the above mentioned gear types. Other gear types are

face, zero bevel, spiroid, crossed-helical and worm gearsets.

Figure 2.2 – A few types of gears. Adapted from: (COLLINS; BUSBY; STAAB, 2009)

2.1.2 Gearset and gear trains

A gear must always be in contact with another gear in order to fulfill its purpose. A

pair of meshing gears is called gearset. A gear train is a series of gearsets positioned in a

way to produce a desired output speed, torque and direction of rotation.

Figure 2.3 shows a simple gear train and two compound gear trains. In a simple gear

train, such as in Figure 2.3 (a), all gears are mounted on parallel shafts. The iddle gear (2)

functions only to reverse the direction of rotation in opposition to a direct mesh of gears

(1) and (3), but not the magnitude of the angular velocity ratio.

In a compound gear train, there are at least two gears mounted the same shaft. This

imposes the same velocity and direction of rotation on the two gears, which are called

compound gear. Figure 2.3 (b) and (c) show reverted and nonreverted compound gear
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trains, respectively. Figure 2.3 (b) is reverted because the input shaft and output shaft are

colinear (they are the same shaft). Figure 2.3 (c) is nonreverted because the input shaft

and output shaft are not colinear (COLLINS; BUSBY; STAAB, 2009). A special case

of gear trains is the planetary or epicyclic gear train showed on Figure 2.3 (d), usually

applied at wind turbines and automatic transmissions.

(a) Simple gear train. (b) Compound gear train;
reverted.

(c) Compound gear train;
nonreverted.

(d) Epicyclic gear train with
ring gear.

Figure 2.3 – Gear trains. Adapted from: (COLLINS; BUSBY; STAAB, 2009)

2.1.3 Gear defects

To discuss gear defects, let us consider the type of load is imposed on gears. Typically,

gears rotate in a single direction. Consequently, the teeth experience bending in only one

direction each time they go through the mesh. Due to this non-zero cyclic stresses, the

gear root are prone to fatigue failure (COLLINS; BUSBY; STAAB, 2009).

Likewise, the teeth surface receive cyclic loads. When elastic materials come in

contact, they deform and produce what is known as Hertzian contact stresses3. The

subsurface’s stresses are higher, consequently cracking the subsurface and generating

surface pits. Usually the pinion pits first than the gear, since it has a smaller diameter,
3 Its theory comes from the areas of tribology and contact mechanics.
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faster rotation and more frequent toothmesh (COLLINS; BUSBY; STAAB, 2009). Other

failures like adhesive and abrasive wear, ghost components4, etc may happen.

Alban (1985) divides failure modes in four groups of decreasing occurence frequency:

fatigue, impact, wear and stress rupture. Fatigue can come from tooth bending or surface

contact. Impact is random, and, the tooth gets fractured within a few cycles. Wear comes

from lack of lubricant or abrasive particles in oil. When internal stresses increase to a

magnitude beyond the strength of the material, the tooth ruptures.

Table 2.1 shows part of the “Appearance of Gear Teeth: Terminology of Wear and

Failure” from the American Gear Manufacturers Association Technical Commitee, which

classifies and standardizes nomenclature for gear failures.

2.2 CONDITION MONITORING OF GEARS

Diagnostics of gears can be physics-based, data-driven and hybrid approaches

(KUNDU; DARPE; KULKARNI, 2020). Diagnosis techniques are different for constant or

varying angular speed gears (KUMAR et al., 2020). A gear train is usually immersed in oil,

increases its temperature during operation, vibrates and produces noise. As stated at the

introduction, it is possible to monitor assets by vibration, oil analysis, noise, acoustic emis-

sion (high frequency vibrations), temperature, etc. This work focuses on vibration-based

approaches for gears with constant angular speed.

2.2.1 Vibration-based condition monitoring of gears

According to Kundu, Darpe and Kulkarni (2020), in general the vibration signal is

quite responsive and contains the most information related to gear dynamics compared to

other sensors, like microphones for noise. On the other hand, it requires expert knowledge to

extract health indicators, it is direction dependent, and the signal is affected by structural

response and mechanical background noise. Raw vibration signal acquired in a gearbox

may have the following elements: (1) periodic components due to the meshing pair(s) of

gear teeth, (2) periodic impact due to tooth fault and (3) background noise.

It is common to construct some health indicators to distinguish the signal’s elements

and assess a gearbox’s health state. This health indicator extraction can be done in

different domains: time, frequency, quefrency, order and time-frequency. It is established
4 Because of inadequate manufacturing, gear vibration signal may present a ghost component, which

appear like GMF components but corresponds to a different number of teeth to those actually cut.
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Table 2.1 – Nomenclature of gear failure modes. Source: (AGMA, 1995)
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that increases in the amplitude of significant components, such as the GMF or its sidebands,

indicate deterioration (RANDALL, 2011).

Table 2.2 shows a list of signal processing techniques and metrics for gear signals en-

countered in the literature. The acronyms are: root mean square (RMS), time-synchronous

averaging (TSA), Short-time Fourier Transform (STFT), Correlation coefficient of residual

vibration signal (CCR), gear mesh frequency (GMF), average logarithmic ratio (ALR),

complementary ensemble empirical mode decomposition (CEEMD), variable mode decom-

position (VMD), orthogonal empirical mode decomposition (OEMD). More about FM0

(which will be further discussed at subsection 2.3.5), NA4, NA4*, FM4, M6A, energy ratio,

NB4, NP4 can be found at (SAIT; SHARAF-ELDEEN, 2011).

Table 2.2 – Summary of the health indicators used for diagnostics of various types of gear
failure modes. Adapted from: (KUNDU; DARPE; KULKARNI, 2020)
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2.3 SIGNAL PROCESSING TECHNIQUES AND HEALTH INDICATORS

This section will delve deeper into the signal processing techniques and health

indicadores mentioned earlier and utilized in this study.

2.3.1 Time-domain

Time-domain health indicators are calculated directly from the time-domain ac-

celeration signal. Most of them are statistics of the signal. Definitions are taken from

(MONTGOMERY; RUNGER, 2003), (TAYLOR, 2003) and (MCFADDEN; SMITH, 1985).

We define the following:

• Peak to peak (pk_pk): difference between the maximum and minimum values of the

signal.

pk_pk = max(x) − min(x), (2.3)

where x is the signal. The peak to peak is a measure of the signal’s amplitude.

• RMS: root mean square of the signal

RMS(x) =

√√√√ 1
N

N∑
i=1

x2
i , (2.4)

where xi is the i-th sample of the signal and N is the number of samples of the signal.

The RMS is a measure of the signal’s energy.

• Kurtosis: a statistical measure used to describe the shape of a signal’s distribution,

particularly in terms of the "tailedness" or the presence of outliers.

Kurtosis = 1
N

N∑
i=1

(
xi − µ

σ

)4
, (2.5)

where xi is the i-th sample of the signal, µ is the mean and σ is the standard deviation.

For a given signal, kurtosis quantifies how much of the signal’s variance is due to extreme

values (tails) compared to a normal distribution.

• Skewness: measure that describes the asymmetry of a signal’s distribution around

its mean.
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Skewness = 1
N

N∑
i=1

(
xi − µ

σ

)3
, (2.6)

where xi is the i-th sample of the signal, µ is the mean and σ is the standard

deviation.

• Shape factor: ratio of the RMS to the mean of the absolute signal

Shape factor = RMS(x)
1
N

∑n
i=1 |xi|

. (2.7)

It is a measure of the signal’s shape.

• Crest factor: ratio of the peak to the RMS of the signal

CF = max |x|
RMS . (2.8)

It is the extent to which a waveform’s peak amplitude exceeds its average or RMS (root

mean square) value. It is a dimensionless measure.

• Impulse factor: used to characterize the sharpness or spikiness of a signal. It is

particularly useful in identifying signals that contain sudden, high-energy impulses

or transients.

Impulse factor = max |x|
1
N

∑n
i=1 |xi|

. (2.9)

In summary, the impulse factor provides insight into the presence and severity of

sudden, high-energy components within a signal, making it a valuable tool in various fields

for detecting and analyzing transient events.

• Clearance factor: quantifies the sharpness or peakiness of a signal relative to the

overall energy content, specifically emphasizing the presence of high-amplitude

transients.

Clearance factor = max |xi|(
1
N

∑n
i=1

√
|xi|

)2 . (2.10)

2.3.2 Frequency-domain

This section presents the frequency-domain signal processing techniques and its

health indicators.
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2.3.2.1 Fast Fourier Transform (FFT)

The Fast Fourier Transform (FFT) is an efficient algorithm to compute the Discrete

Fourier Transform (DFT). The DFT is a numerical tool to compute the Fourier transform,

inverting the domain of a function – from x to 1/x. For example, from time-domain to the

frequency-domain or from distance to wavelenth. It enables the analysis of the frequency

content of a signal. The DFT is defined as:

X(f) =
N−1∑
n=0

x(n)e−j2πfn/N , (2.11)

where X(f) is the f -th frequency component of the signal, x(n) is the n-th sample of the

signal and j is the imaginary unit (SHIN; HAMMOND, 2008). The FFT is a complex-valued

function, but it is common to take the magnitude of the FFT to analyze the signal’s

frequency content. The magnitude of the FFT is defined as

|X(f)| =
√

Re(X(f))2 + Im(X(f))2, (2.12)

where Re(X(f)) is the real part of X(f) and Im(X(f)) is the imaginary part of X(f).

In the case of condition monitoring rotating machinery, periodic components related

to the rotation of the shaft, bearings, gearbox, belts, etc., are present in the vibration

signal. When a defect starts to occur at a given component, usually the amplitude of the

corresponding frequency component increases. In the case of gearboxes, we pay attention to

the amplitude of GMF, the rotation frequency of the gears and their harmonics (RANDALL,

2011).

2.3.2.2 Power spectrum

The power spectrum is the Fourier Transform of the autocorrelation of a signal. The

autocorrelation is a measure of the similarity between samples of a variable as a function

of the time delay between them. It helps to find repeating patters in a signal and dismiss

noise-like ones. The power spectrum gives a description of the energy distribution along

frequency. It is useful to identify the signal’s spectral content masked by noise (SHIN;

HAMMOND, 2008). The power spectrum can be used in Welch’s method and to calculate

the cepstrum, which will be later introduced.
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2.3.2.3 Welch’s method

The Welch’s method is a technique to estimate the power spectrum. It divides the

signal into overlapping segments, computes the FFT of each segment and averages them

to estimate the power spectrum. The Welch’s method is useful to reduce the variance of

the power spectrum estimate (WELCH, 1967).

2.3.2.4 Other frequency-domain health indicators

Other frequency-domain health indicators are the spectral flatness and the RMS

carpet. The RMS carpet (SYLVESTER; PEARCE, 2024) calculates the root mean square

of a moving average in the frequency-domain. Spectral flatness (S. DUBNOV, 2004), also

known as the tonality coefficient, is a metric designed to gauge the degree of noise-like

qualities in a sound, as opposed to tone-like qualities. A spectral flatness of one indicates

a white noise-like spectrum. It is calculated by the geometric average divided by the

arithmetic mean of the spectrum magnitude:

Spectral flatness =
N
√

x1x2 · · · xN

1
N

∑N
i=1 xi

, (2.13)

where xi is the i-th sample of the spectral magnitude.

2.3.3 Quefrency-domain

This section introduces the cepstrum and how health indicators can be obtained

through it.

2.3.3.1 Cepstrum

First designed for speech analysis (RANDALL, 2017), cepstrum is a tool for detecting

periodicity in a spectrum, such as uniform spaced families of harmonics. According to

Randall (1973), “the cepstrum is defined in a number of different ways, but all can be

considered as a spectrum of a logarithmic spectrum (i.e. logarithmic amplitude, but linear

frequency scale)”. Its original mathematical definition was:

C(τ) = |F {log (Fxx(f))}|2 , (2.14)

where F is the Fourier transform and Fxx is the power spectrum. The τ has a dimension

of time but is named quefrency.
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The quefrency gives information about frequency spacing and not absolute frequency.

Small uniform peak spacing in the spectrum are said to have high quefrency and large

uniform frequency spacing between peaks are said to have low quefrency. For example,

peaks in the cepstrum come from families of sidebands. The inverse quefrency value of a

peak represents a uniform spacing at the frequency-domain.

Figure 2.4 shows (a) a faulty gearbox and (b) a gearbox in good condition. The left

side shows the spectra and the right side shows the cepstra. The cepstrum immediately

gives an accurate value of the average spacing of all members of a given family of sidebands

without having to find the individual members of the family.

Figure 2.4 – Spectra and cepstra for two truck gearboxes, one with a fault. Source: (RAN-
DALL, 2011)

As a consequence of the kinematics, vibration of gearboxes has modulations. Thus the

spectra have sidebands around GMF and increases in these sidebands indicate deterioration.

The spacing of the sidebands give valuable information of the source of the defect. The

advantage of Cepstrum over Spectrum is that it is less sensitive to transmission path

effects because the Cepstrum component corresponding to a given sideband is an average

sideband height over the whole spectrum (RANDALL, 1973). It is important to emphasize

that Cepstrum may not be the best choice when harmonics or sidebands are not well

defined.

2.3.4 Order-domain

This section introduces the TSA and order analysis and its advantages to the

frequency-domain methods.
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2.3.5 TSA and order analysis

Regarding rotating machinery, a single rotation period encompasses all interactions

between machinery components. Any noise, disturbance, or periodic signal content in-

congruent with the rotation is eliminated by averaging across uniform rotation angles or

complete rotations, as opposed to arbitrary time segments. This method of averaging is

known as time-synchronous averaging (TSA).

The TSA effectiveness depends on the equality in the number of samples in each

segment corresponding to the rotation period. However, it is common for this equality

not to be met due to various factors. For example, the analyzed signal may exhibit small

fluctuations in the extraction frequency, resulting in variations in the value of the period

such as illustrated in Figure 2.5. To address this issue, it is possible to manipulate the

signal applying interpolation techniques to ensure an equal number of samples in each

segment known as angular resampling (DOMINGUES, 2023).

Figure 2.5 – Comparison of data sampling schemes (△, uniform ∆t vs □, uniform ∆θ).
Source: (FYFE; MUNCK, 1997)

In the context of gear analysis, Stewart (1977) first proposed the FM0 (Figure of

Merit 0) as a health indicator. The FM0 is calculated as:

FM0 = pk_pk∑N
i=1 GMF(i)

, (2.15)

where pk_pk is the peak-to-peak value, GMF(i) is the amplitude of the i-th harmonic of

the GMF on the spectrum of the TSA signal and N is the total number of harmonics. It

increases when heavy wear occurs due to the the peak-to-peak value staying constant and

the GMF shrinking. Conversely, it is not as sensitive for minor tooth damage.
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It is possible to derive the difference signal and residual signal from the TSA signal.

The residual signal removes the shaft frequency and its harmonics, gear mesh frequencies

and their harmonics from the TSA signal. The difference signal removes shaft frequency

and its harmonics, gear frequencies and their harmonics, first sidebands on gear frequencies

and their harmonics from the TSA signal (KUNDU; DARPE; KULKARNI, 2020). They

are most useful with geartrains with several gears. Sait and Sharaf-Eldeen (2011) detail

the health indicators which are derived from them.

2.4 BINARY CLASSIFICATION

Classification involves determining the category or subpopulation to which an obser-

vation or observations belong. When there are only two categories to choose from, it is

known as binary classification. In the context of this study, the categories are defective

and healthy components. The goal is to predict the category of a new observation based

on the features extracted from the vibration signal.

2.4.1 Binary classification metrics

A variety of metrics are available for evaluating and comparing models. It falls

upon the modeler to select a metric that highlights the problem’s scope and definition. In

binary classification, we typically delineate the categories as positive and negative, and

the samples in these categories will be named P and N, respectively. In the context of

detection, we designate “Positive” for defective components and “Negative” for healthy

components. This study primarily concentrates on accuracy, balanced accuracy, the ROC

curve, and the AUC score (area under the ROC curve).

In order to construct metrics, it proves beneficial to define certain concepts. True

Positive (TP) represents the quantity of data correctly classified as positive, while True

Negative (TN) indicates the quantity of data correctly classified as negative. False Positive

(FP) signifies the quantity of data erroneously classified as positive, and False Negative

(FN) denotes the quantity of data erroneously classified as negative.

Further definitions encompass the True Positive Rate and the False Positive Rate.

The True Positive Rate (TPR), also recognized as sensitivity, recall, or probability of

detection, represents the ratio of True Positive to the sum of True Positive and False

Negative. Conversely, the False Positive Rate (FPR), also termed the probability of false
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alarm, reflects the ratio of False Positive to the sum of False Positive and True Negative

(GRANDINI; BAGLI; VISANI, 2020). They are defined as

TPR = TP
TP + FN = TP

P , and (2.16)

FPR = FP
FP + TN = FP

N . (2.17)

2.4.1.1 Accuracy and balanced accuracy

Accuracy and balanced accuracy are commonly used metrics to assess the performance

of binary classifiers. Accuracy measures the proportion of correctly classified instances

among all instances. It is calculated as

ACC = TP + TN
TP + TN + FP + FN . (2.18)

Balanced accuracy, on the other hand, is a metric that considers the class imbalance

in the dataset. It calculates the TPR and TNR to provide a more balanced assessment of

classifier performance. It is defined as

BA = TPR + TNR
2 . (2.19)

Balanced accuracy is particularly useful when dealing with imbalanced datasets,

where one class significantly outnumbers the other. In summary, accuracy considers all

predictions equally, while balanced accuracy gives equal weight to both classes, providing

a more fair evaluation when dealing with skewed datasets.

2.4.1.2 ROC curve and AUC

The receiver operating characteristic (ROC) curve depicts the True Positive Rate

(TPR) on the y-axis and the False Positive Rate (FPR) on the x-axis, while varying the

threshold of classification. This threshold is determined by the probability distribution

of both True Positive and False Positive outcomes (FAWCETT, 2006). As exemplified

in Figure 2.6, proximity to the top-left corner (TPR=1 and FPR=0), indicates superior

classifier performance (GERÓN, 2019). To summarize the information derived from the

ROC curve, which has two components (TPR and FPR), the Area Under the Curve (AUC)

is defined as the area under the ROC curve.
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Figure 2.6 – ROC curve. Source: (WIKIPEDIA, 2024b)

2.4.2 Logistic Regression

Logistic regression applies a linear combination of variables (features, in this context)

to a sigmoid function:

σ(t) = 1
1 + e−(x−µ)/s

(2.20)

where µ is a location parameters and s is a scale parameter. A standard logistic function

(µ = 0 and s = 1) is depicted at Figure 2.7. Although it is a continuous function, it finds

utility in binary classification by establishing a threshold along the curve. In Figure 2.7

we could designate 0.5 as the threshold, where values equal to or greater than it would be

classified as defective, while those lower would be regarded as healthy.

Figure 2.7 – Standard logistic function representation. Source: (WIKIPEDIA, 2024a)
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2.4.3 SVM

Support Vector Machine (SVM) is a classification model capable of operating both

linearly and nonlinearly. It functions by identifying hyperplanes that effectively sets appart

data points by minimizing the distance between the classification borders. Consider the

illustration in Figure 2.8: various hyperplanes can potentially separate the brown and blue

classes. In essence, a separation that will broadly generalize the classifier is the one in

which the hyperplane maximizes the distance to the nearest training data points (known

as the functional margin) (SCIKIT-LEARN, 2024d). Moreover, SVM can accommodate

nonlinear kernels and exhibits sensitivity to scaling.

Figure 2.8 – SVM example. Source: (SCIKIT-LEARN, 2024d)

2.4.4 Decision trees and Random Forest Classifier

The Random Forest model, utilized for classification or regression tasks, employs

decision trees as its foundational components. Decision trees originate from a guiding

question or premise, such as "should I accept this new job offer?" as depicted in Figure 2.9.

Alternatively, they may address inquiries like "does this signal originate from a defective

component?". To address such queries, a decision tree commences with a root node.

Subsequently, branches are formed from this root node based on available features (e.g.,

“is the RMS> 2.5?”), which are designated as decision nodes. The evaluations conducted at

each decision node aim to generate homogeneous subsets. At the terminus of each branch

lies a leaf node, representing potential outcomes of the model. This structure emulates

human decision-making processes, enhancing interpretability while necessitating minimal

data preprocessing (JAMES et al., 2023). However, it should be noted that Random Forest
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employs a greedy search strategy, which can entail higher training costs compared to other

algorithms (IBM, 2024).

Figure 2.9 – Decision tree. Source: (WENIG, 2024)

2.4.5 XGBoost

XGBoost, abbreviated from "eXtreme Gradient Boosting," represents a decision

tree model that employs a boosting algorithm. Deviating from the parallel training

approach of Random Forests, the boosting algorithm sequentially trains models, iteratively

correcting errors and refining performance with each iteration. It leverages gradient descent

optimization techniques to ascertain the direction of error reduction. XGBoost is renowned

for its efficiency, scalability, and high performance, making it a popular choice for various

machine learning tasks (CHEN; GUESTRIN, 2016).

2.5 MACHINE LEARNING WORKFLOW

A typical machine learning methodology follows a prescribed workflow, as illustrated

in Figure 2.10. Initially, a dataset (in our case the health indicators extracted from

vibration signals) is partitioned into training and test subsets. Subsequently, the model

undergoes training using a cross-validation strategy, which will be further explained at

subsection 2.5.1. In summary, it subdivides the training data-set into N groups, trains a

model with a set of hyperparameters (denoted as "Parameters" in Figure 2.10 and will

be further explained in the next section) with data from N − 1 groups and then predicts
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and calculates the chosen metrics (such as accuracy, balanced accuracy or AUC score) in

the group that was left out of training – which is called validation. This process is done

iteratively at the groups. After all groups were used in validation, the process starts again

with a different set of hyperparameters. After iterating this procecss multiple times, the

hyperparameters yielding the highest performance scores are selected. The model is then

retrained using the entire training dataset. Finally, the trained model is applied to the

test data, where its performance is evaluated to assess its efficacy.

Figure 2.10 – Machine learning workflow. Source: (SCIKIT-LEARN, 2024a)

2.5.1 Train test split and cross-validation

Each model is trained with a specific set of hyperparameters. Hyperparameters serve

to regulate the learning process, determining aspects such as the number of splits a tree is

permitted to make (referred to as max depth in tree models). This is in contrast to model

parameters, which are derived from the learning process itself, such as the coefficients

of a logistic regression. Given the infinite possibilities of hyperparameters, which can

significantly impact model results, hyperparameter tuning is commonly employed as a

crucial step in the model development process.

According to the Oxford dictionary, prediction entails "saying or estimating that (a

specified thing) will happen in the future or will be a consequence of something". In the

context of predictive modeling, the objective is to assess the performance of a model that

has been trained, or fitted, on one dataset and tested on an unseen dataset. To mitigate the

risks of overfitting and selection bias, cross-validation is employed. Typically, all available

data is partitioned into training, validation, and test sets.

Figure 2.11 depicts an example of k-fold cross-validation, where the training set

is divided into k=5 folds. Utilizing a set of hyperparameters, a model is trained on 4
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of the folds and tested on the 5th fold, with this process iterated across all folds. The

average of the results obtained on the tested folds constitutes the performance metric

for the validation set. Subsequently, after training the model multiple times with various

hyperparameter combinations, the best model is selected based on a specified evaluation

metric. This optimal model is subsequently evaluated on the test set.

Figure 2.11 – K-fold validation illustration. Source: (SCIKIT-LEARN, 2024a)

2.5.2 SHapley Additive exPlanations (SHAP)

After implementation, Machine Learning models often function similarly to a black

box. To enhance comprehension of these models, evaluating the importance of each feature

proves insightful. Various methods exist for this purpose. For instance, interpreting the

coefficients within a regression model. However, such approaches can potentially lead to

misinterpretations. Additionally, they solely consider the overall importance of features,

neglecting the potential impact of varying feature values on model outcomes.

Drawing from game theory, SHAP (SHapley Additive exPlanations) values offer a

means to address these limitations. These values estimate the influence of feature inputs

on the model’s outcomes, thereby facilitating the ranking of feature importance. They also

provide insights into how higher or lower feature values may affect the model’s predictions.

Nevertheless, it is important to note that SHAP values do not directly assess the quality

of model predictions (SHAP, 2024).
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3 EXPERIMENTAL MATERIALS & METHODS

In this Chapter, we list the workflow and equipment that was used in this study.

3.1 MACHINERY FAULT SIMULATOR

This work utilizes SpectraQuest’s Machinery Fault Simulator (SPECTRAQUEST,

2023) (see Figure 3.1) as a test bench that simulates industrial machinery in a controlled

environment, allowing for an in-depth understanding of machine behavior. Several configu-

rations are possible, enabling study of different machine components and their faults. For

operation, it uses a motor driven by a frequency inverter, allowing users to control the

rotational speed.

To study gear fault detection, our research group opted to use a gearbox with a pair

of straight bevel gears, as shown in Figure 3.2. The pinion has 20 teeth and the gear, 30.

There is a healthy pinion, a pinion with a missing tooth, see Figure 3.3 (a), and one with

a chipped tooth, see Figure 3.3 (b). The gear remained healthy ad unchanged thoughout

the experiments.

The gearbox input shaft is coupled with the pinion. Additionally, there is a magnetic

brake associated with the gear shaft, from Magtork, model MTL 10-5/8 (MAGTORK,

2023). Its function is to generate load in the system. The load is variable, varying from

0,5 lb − in to 10 lb − in (0,06 Nm to 1,2 Nm) of torque. The magnetic brake’s scale can

be set from 0 (minimum load) to 5 (maximum load). Based on the experience of the

Figure 3.1 – Machinery fault simulator with the pulley-belt configuration
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Figure 3.2 – Opened gearbox

(a) Pinion with a chipped tooth (b) Pinion with a missing tooth

Figure 3.3 – Defective straight tooth pinions

authors, the magnetic brake’s adjustment scale has a nonlinear relation to the torque. This

information will be later used to properly define the loads applied to the system.

3.1.1 Machine configurations: pulley-belt and direct driven

Among the several possible machine configurations, this work adopts two configura-

tions: the pulley-belt (see Figure 3.4) and the direct driven (see Figure 3.5).

At the pulley-belt configuration, the motor is coupled by a beam coupling to a shaft

supported by two bearing housings. At the shaft’s opposite side of the motor, there is

a pulley-belt system, as depicted in Figure 3.4 (b), which is linked to the gearbox. The

pulleys from the motor shaft and pinion shaft have diameters of 5 and 12.5 cm, respectively.

They share the same linear velocity, but the angular velocity takes into consideration

the pulleys’ radii. Therefore, the fpinion at the pulley-belt system is 40%fmotor. For the

pulley-belt configuration, there were a tachometer pointed at the motor’s shaft and another

pointed at the pinion’s pulley, as shown in Figure 3.4 (a).

At the direct driven configuration, the motor is coupled directly to the gearbox by a
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(a) Tachometer pointed at the pinion
pulley (b) Close-up of the pulley-belt

Figure 3.4 – Pulley-belt configuration details

beam coupling, as shown in Figure 3.5 (a). A tachometer was directed at the motor’s shaft.

Unlike the pulley-belt configuration, the direct driven configuration enables the study of

gearbox vibration signatures without any belt, shaft, or bearing imprint, which will have

their own vibration signature.

Another difference between the direct driven and the pulley-belt systems is the higher

slippage in the pulley-belt system. This means that the rotational variation is higher in

the pulley-belt system. The setups mimic two different machines. Therefore, it allows for

the study of the model’s generalization capability. It is also possible to investigate how

each feature is able to differentiate vibration signals from different machines.

(a) Isometric view (b) Top view

Figure 3.5 – Direct driven gearbox mounting
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3.2 SENSORS

This work utilized tachometers, as well as uniaxial and triaxial accelerometers.

Triaxial accelerometers 4525-B (characteristics and information are available on Table 3.1)

from Brüel & Kjaer were placed on top of the pinion and gear’s bearing housing, as shown

in Figure 3.5 (b). The accelerometers were calibrated before utilization.

Table 3.1 – Triaxial DeltaTron Accelerometers with TEDS Types 4525-B characteristics.
Source: (B&K, 2023)

Characteristics
Dimension 21,1 mm (cable entrance) × 12,2 mm × 12,2 mm
Weight 6 g
Operational temperature −54 ◦C ≤ T ≤ 121 ◦C
Sensitivity X- axis 9,897 mV/g (1,009 mV/m/s2)
Sensitivity Y- axis 10,58 mV/g (1,079 mV/m/s2)
Sensitivity Z- axis 10,19 mV/g (1,039 mV/m/s2)
Frequency range (±10%) up to 10 kHz
Dynamic Range ±500 g

At the motor, we used PCB Piezotronics model 352C33 (characteristics and infor-

mation are available on Table 3.2) uniaxial accelerometers – one at the drive end and one

at the non drive end. For the data analysis, we did not use the motor’s accelerometers

data. Nevertheless, it will be stated here to possibily guide future works.

Table 3.2 – PBC 352C33 characteristics. Source: (PCB, 2002)

Characteristics
Dimension 15,7 mm (height) × 12,2 mm (hex)
Weight 5,8 g
Operational temperature −54 ◦C ≤ T ≤ 93 ◦C
Sensitivity 100 mV/g (10,2 mV/m/s2)
Frequency range (±10%) up to 15 kHz
Dynamic Range ±50 g pk

3.3 TEST MATRIX AND EXPERIMENTAL PROCEDURE

Considering the different parameters available (configuration, load, rotational speed,

and pinion condition), we decided on the test matrix described in Table 3.3. Iniatilly we

assembled a configuration with a given load. The screws were tightened with a screw-

driver with torque control to ensure the same mounting conditions. For the pulley-belt

configuration, we adjusted the belt tighting screws up to a mark.
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Table 3.3 – Test matrix

Configuration Load RPM Condition Replicate
Pulley-belt system 500, 1000,

0 1500, Healthy 3x

2.5 2000,
4 2500, Chipped tooth 2x

5 3000,
3500 Missing tooth 2x

Direct-driven 200, 400, 500, 600,
0 800, 1000, 1200, Healthy 3x

2.5 1400, 1500,
4 2000, 2500, Chipped tooth 2x

5 2000, 2500,
3000, 3500 Missing tooth 2x

For the measurements, we turned on the motor, waited for the RPM to stabilize at

the tachometer display, and then collected the data. An user interface was developed at

the Acoustics and Vibration Laboratory (LVA) to configurate and save the metadata for

each measurement. We used a National Instruments acquisition board. The measurement

and its metadata was then saved in a database. This was done for a set of RPMs.

Then, we changed the load and repeated the process. The signals have 30 seconds and a

sampling rate of 25 600 Hz. The backend system employed in the user interface measures

an additional duration of approximately five seconds. However, the initial and final 2.5 of

the measurement are excluded from the saved signal.

Replicates are important to evaluate the repeatability of the data acquisition system

and the machine behavior. To ensure the repeatability and to try to balance our data

distribution, we collected three replicates for the healthy pinion condition and two for

the defective ones. The replicate recordings were collected under different mountings

(disassembling and assembling the machine), and same parameters.

We selected seven different RPMs – 500, 1000, 1500, 2000, 2500, 3000, and 3500 – at

the motor for the pulley-belt configuration. Due to speed reduction from the motor to the

pinion shaft in the pulley-belt configuration, we chose thirteen RPMs – 200, 400, 500, 600,

800, 1000, 1200, 1400, 1500, 2000, 2500, 3000, and 3500 – at the motor for the direct-driven

configuration. We selected four different loads, including minimum, maximum, and two

intermediate levels. Some combinations of parameters were not collected either because

the motor did not endure the configuration or due to problems when storing the data.

These include:
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• From the direct driven configuration:

– Missing pinion tooth load 4 and 5 for 200 rpm and 2nd replicate;

– Chipped pinion tooth load 4 and 5 200 rpm and 2nd replicate;

– Healthy pinion tooth load 4 and 5 200 rpm and 3rd replicate;

– All rpms for the healthy condition and load 5.

As we solely analyze the accelerometers fixed to the gearbox, we obtained six signals

(comprising three channels per triaxial accelerometer) for a set of parameters. Following

the dataset cleansing, we retained 3234 signals, consisting of 1890 defective and 1344

healthy ones. It is noteworthy that the dataset utilized exhibits an imbalance, which could

potentially influence the performance of the models.

3.4 SIGNAL REPRESENTATION IN TIME-DOMAIN

Figure 3.6 shows the signals in the time-domain in the vertical direction on top of

the pinion. The signals are from the direct-driven configuration on the left and pulley-

belt configuration on the right. From top to bottom we have the healthy, chipped, and

missing conditions consecutively. The rotational speed is 600 rpm for the direct driven

configuration and 1500 rpm for the pulley-belt configuration, so it is possible to compare

vibration signature with the same pinion rotation and load 2.5 on both. The signals are

from the triaxial accelerometer fixed to the gearbox. It is important to pay attention to

the plot’s scale. Adjustments were made to improve signal visualization and comparison,

while preserving information.

In the direct driven configuration, the healthy condition shows a relatively constant

amplitude. At the chipped condition, there seems to be some modulation in the same

periodicity as the pinions rotation, which is 10 Hz. The missing pinion presents peaks at

the same periodicity as the pinion rotation, probably coming from the impact caused by

the missing tooth.

Visually, the signals from the pulley-belt configuration are not as visually differen-

tiable. They seem however to have higher peaks above zero, than bellow. The amplitudes

are greater at the healthy and pinion condition, when compared to the direct driven

configuration.
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(a) Direct driven healthy pinion (b) Pulley-belt healthy pinion

(c) Direct driven chipped pinion (d) Pulley-belt chipped pinion

(e) Direct driven missing pinion (f) Pulley-belt missing pinion

Figure 3.6 – Time-domain acceleration signals at the pinion’s accelerometer vertical direc-
tion
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4 MACHINE LEARNING METHODS

This Chapter details the machine learning methods used in this work. Feature

extraction, train-test split, hyperparameter tuning, cross-validation, model selection, and

pipelines are described. The metrics used to evaluate the models are also presented. Finally,

the SHAP analysis is explained.

4.1 FEATURE EXTRACTION

This section details the process of feature extraction. Each section delves the signal

processing methods and analyses the values of some features from that domain. In the

plots DIR and PUL represent the direct driven and pulley-belt configurations, respectively.

The conditions are represented by H, C, and M, which stand for healthy, chipped, and

missing tooth, respectively. To avoid overloading the text, the plots and tables showed in

this section are only from the vertical direction of the accelerometer at the pinion and first

mounting assembly. It is important to remind that the conical form of the gears apply

load in the three directions at the mesh.

The signals were accessed at the database to then be processed. The signals were

processed in the time, frequency, quefrency, and order domains. In the frequency-domain,

we used the Fast Fourier Transform (FFT) and Welch’s method. Cepstrum was used to

analyse the signals in the quefrency-domain and TSA for the order-domain.

Table 4.1 shows the features extracted from each domain, where GMF, fp, and fg

represent gear meshing frequency’s, pinion frequency’s, and gear frequency’s amplitudes

respectively. The numbers (1, 2, 3) represent the extracted harmonics (multiples) of those

quefrencies. So, for example, 2X GMF represents the amplitude of twice the quefrency

associated with the GMF (1/GMF, or the inverse of GMF). The crest factor plus is

a variation of the crest factor. The calculation method for this parameter will remain

confidential.

Similarly, a reasoning is made with the metrics on the frequency and order-domain.

So, for example, (1, 2, 3)X fp means that the amplitude associated with the first three

harmonics of the pinion frequency was extracted. Some GMF sidebands associated with

the gear and pinion frequency were also extracted. To account for possible rotation speed

variations, we utilized the average rotation speed from the tachometer to calculate the
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Table 4.1 – Extracted features from their respective domains.

Time Frequency Quefrency Order
peak-to-peak, RMS carpet, spectral flatness, (1, 2, 3)X GMF, (1, 2, 3)X GMF,

kurtosis, RMS, (1, 2, 3)X GMF, (1, 2, 3)X fp, (1, 2, 3)X fp,
crest factor, (1, 2, 3)X fp, (1, 2, 3)X fg, FM0

crest factor plus, (1, 2, 3)X fg, cepstral peak
skewness, (1, 2, 3)X GMF ± (1, 2, 3)X fp,

shape factor, (1, 2, 3)X GMF ± (1, 2, 3)X fg

impulse factor,
clearance factor

metrics.

There are 9 features from the time-domain, 48 features from the frequency-domain

which were extracted from the FFT and the Welch method, 10 features from the quefrency-

domain, and 7 features from the order-domain. This totals 122 features analyzed. The

next section will give a more detailed explanation in how these metrics are extracted from

each domain.

4.1.1 Time-domain

The time-domain features come from the raw signal. The features extracted from

this domain are peak-to-peak, kurtosis, RMS, crest factor, crest factor plus, skewness,

shape factor, impulse factor, and clearance factor. In this section, we will delve into the

RMS, kurtosis, shape factor and skewness.

Table 4.2 shows the time-domain feature analysis for the direct driven configuration

at 1000 rpm. In general, they seem to increase with the severity of the defect. This

behaviour is not observed in the skewness for loads 4 and 5. The kurtosis for missing

condition seems to decrease in value as the load increases. The shape factor is higher for

the missing condition, and the skewness is higher for the chipped condition.

Table 4.3 shows the time-domain feature analysis for the pulley-belt configuration

at 1000 rpm. In the case of this division, there is no clear pattern of increase in the

kurtosis values with the severity of the defect. This is expected since their plots differed

significantly from each other. Furthermore, there seems to be two outliers in the RMS:

missing condition for load 0 and 5. The skewness even yielded negative values for the

chipped condition at 0 load and missing condition at load 5.
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Table 4.2 – Time-domain feature analysis for the direct driven configuration.

config. cond. rpm load RMS kurtosis shape_factor skewness
DIR H 1,000 0.0 0.10 4.35 1.30 0.36
DIR C 1,000 0.0 0.19 12.25 1.42 0.87
DIR M 1,000 0.0 0.86 54.21 1.78 1.71
DIR H 1,000 2.5 0.14 5.38 1.33 0.16
DIR C 1,000 2.5 0.21 8.01 1.43 0.26
DIR M 1,000 2.5 0.87 42.02 1.67 0.89
DIR H 1,000 4.0 0.15 4.57 1.32 0.26
DIR C 1,000 4.0 0.28 9.73 1.44 0.54
DIR M 1,000 4.0 0.83 25.15 1.54 0.23
DIR H 1,000 5.0 0.18 5.83 1.36 0.35
DIR C 1,000 5.0 0.29 9.54 1.48 0.20
DIR M 1,000 5.0 0.88 21.67 1.52 0.30

Table 4.3 – Time-domain feature analysis for the pulley-belt configuration.

config. cond. rpm load RMS kurtosis shape_factor skewness
PUL H 1,000 0.0 0.74 10.32 1.79 1.61
PUL C 1,000 0.0 8.22 7.60 1.45 -0.06
PUL M 1,000 0.0 0.72 11.33 1.80 1.72
PUL H 1,000 2.5 0.73 13.43 1.81 2.01
PUL C 1,000 2.5 0.71 15.15 1.82 2.15
PUL M 1,000 2.5 0.70 15.94 1.84 2.32
PUL H 1,000 4.0 0.76 14.21 1.80 2.17
PUL C 1,000 4.0 0.76 13.98 1.80 2.06
PUL M 1,000 4.0 0.72 16.07 1.84 2.36
PUL H 1,000 5.0 0.62 15.62 1.83 2.37
PUL C 1,000 5.0 0.77 13.73 1.79 2.05
PUL M 1,000 5.0 8.15 3.37 1.26 -0.25

4.1.2 Frequency-domain

At the frequency-domain, we extracted the RMS carpet, spectral flatness as well as

the first three harmonics associated with the GMF, pinion frequency, represented as fp,

gear frequency, represented as fg. The pinion frequency is acquired from the tachometer,

and the gear frequency and GMF are calculated by the gearing ratio and number of teeth.

The features were extracted from “pure” FFT and from Welch’s method. More details on

the methods can be found in the next subsections.

The harmonics from the pinion and gear frequency were estimated as the maximum

value in the range of ±5% of the expected associated frequency. The GMF was estimated

by the maximum value in the range ±0,5 Hz around its frequency value. The different
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range applied to the GMF was due to the fact that the GMF is close to sidebands, and

could be mistakenly identified as a sideband. Specially at higher frequencies, the range of

range of ±5% could be too wide and include peaks greater than but that were not a GMF.

We also extracted the sidebands associated with pinion and gear frequencies around

the GMF. We extracted sidebands around the first three harmonics of the GMF. We

considered sidebands ± (1, 2, 3)X from the pinion and gear frequencies. So, for example,

the second GMF’s harmonic sideband associated with a “negative” third pinion harmonic

would be represented as 2 ∗ GMF − 3Xfp. The sidebands were extracted in a similar way

as the GMF harmonics: by the maximum value in the range ±0,5 Hz around the sideband

frequency value.

4.1.2.1 Fast Fourier Transform

At the FFT, we utilized a rectangular window. Figure 4.1 shows the full range of the

frequency spectrum for the direct driven and pulley-belt configurations. High peaks around

6kHz and 12kHz are frequencies associated with the motor’s inversor. It is noticeable that

the pulley-belt configuration has a higher amplitude in general than the direct driven

configuration. It is noteworthy since they have the same rpm at the motor, therefore, the

pinion’s should be rotating at 400 rpm.

(a) Direct driven healthy pinion
full range frequency

spectrum

(b) Pulley-belt healthy pinion
full range frequency

spectrum

Figure 4.1 – FFT acceleration signals at the pinion’s accelerometer vertical direction

In order to better visualize the signals, we limited the frequency range to a bit more

than 3 times the GMF. This way, we could better visualize the GMF and its harmonics.

Figure 4.2 shows the FFT signals for the direct driven and pulley-belt configurations.
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The first three harmonics of the GMF are 333.3, 666.6 and 1000 Hz for the direct driven

configuration and 133.3, 266.6 and 400 Hz for the pulley-belt configuration.

The amplitude of the pulley-belt configuration is higher than the direct driven

configuration. There is not a clear differentiation in general amplitude for the healthy and

chipped conditions at the direct driven configuration. The missing condition, however,

seems to have a higher amplitude than the other conditions. The highest peak in both

conditions seem to be between 350 and 400 Hz. Sidebands around the GMF’s third

harmonic are more prominent.

At the pulley-belt configuration, it seems that there are some frequencies with much

more influence when compared to others. There seems to be peaks near first and second

harmonics of the GMF, but only the second harmonic seems to increase with defect

severity.
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(a) Direct driven healthy pinion (b) Pulley-belt healthy pinion

(c) Direct driven chipped pinion (d) Pulley-belt chipped pinion

(e) Direct driven missing pinion (f) Pulley-belt missing pinion

Figure 4.2 – FFT acceleration signals at the pinion’s accelerometer vertical direction

4.1.2.2 Welch’s method

For the Welch’s method we utilized a Hanning window, a number of segments to

achieve 0,5 Hz resolution at the frequency and 90 percent overlap between segments. Since

FFT and Welch carry similar information, we will not delve into the same details as we

did for the FFT. Nevertheless, to emphasizes their difference, we compare both methods

with a log scale in y-axis plot (Figure 4.3). The noise is significantly reduced while still

preserving the curve’s shape. Note that the welch method shows the plot in power ([g2])

while the FFT shows the amplitude ([g]).
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(a) FFT’s direct driven healthy
pinion

(b) Welch’s direct driven
healthy pinion

(c) FFT’s pulley-belt healthy
pinion

(d) Welch’s pulley-belt healthy
pinion

Figure 4.3 – Comparison Welch and FFT in a log scale in y-axis plot at the pinion’s
accelerometer vertical direction

4.1.3 Quefrency-domain: Cepstrum

In the quefrency-domain, we have extracted amplitudes (or gamnitudes) of quefrencies

which are the inverse of frequencies of interest – first three harmonics of GMF, pinion

frequency, and gear frequency. These gamnitudes were calculated based on the maximum

value within a bandwidth of ±5% of the associated quefrency. The cepstral peak was also

extracted.

In order to better visualize the signals, we limited the quefrency range to a bit less

than 3 times the inverse of the GMF, as can be seen in Figure 4.4. It seems that for the

pulley-belt configuration, cepstrum shows little information, at least on the analised plots.

At the direct driven configuration, the peak at 0.003, around the inverse of the frequency

associated with the first GMF harmonic, seems to decrease with the severity of the defect.
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(a) Direct driven healthy pinion (b) Pulley-belt healthy pinion

(c) Direct driven chipped pinion (d) Pulley-belt chipped pinion

(e) Direct driven missing pinion (f) Pulley-belt missing pinion

Figure 4.4 – Cepstrum acceleration signals at the pinion’s accelerometer vertical direction

4.1.4 Order-domain: TSA

For the order-domain, first we apply an angular resampling to the signal, then we

apply the TSA. After these steps, we apply the FFT to transform the TSA signal, then

divide the frequency vector by the rotation of the pinion to see spectral content into the

order-domain. At the order-domain, we extracted the FM0 and the first three harmonics

associated with the GMF and fp. The harmonics was extracted from the maximum value

in the range of ±0.001% of the expected associated order.

The reason why fg was not extracted is because it was completely filtered out from
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the signals, as can be seen on Figure 4.5. This may be due to a few reasons. The geabox is

quite simple, containing only one stage. Another reason is that the signal has 30 seconds,

which encompasses lot of rotations. The TSA signal is obtained by averaging the signal

over a number of rotations. This procedure may have filtered out any frequency that was

not a direct multiple of the rotation of the pinion. The curves’ shape, however, did not

differ much from the FFT and Welch.

(a) Direct driven healthy pinion (b) Pulley-belt healthy pinion

(c) Direct driven chipped pinion (d) Pulley-belt chipped pinion

(e) Direct driven missing pinion (f) Pulley-belt missing pinion

Figure 4.5 – Order acceleration signals at the pinion’s accelerometer vertical direction
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4.2 TRAIN TEST SPLIT

We decided on three different train-test divisions: (A) random division with one-third

of the data for the test set, (B) training with data from the pulley-belt configuration and

testing with data from the direct driven configuration, and (C) training with data from

the pulley-belt and direct driven configurations, and testing with data from the pulley-belt

configuration. Train-test splits (B) and (C) were intended to mimic real-world applications,

where the models are usually trained in a particular configuration, and may be applied to

different configurations.

4.2.1 Hyperparameter tuning and cross-validation

For the hyperparameter optimization, we carried out a cross-validation with three

folds, which will be detailed in the next paragraph. With a specific set of hyperparameters,

a model was trained using two of the folds and tested on the third one. This process was

done interchangeably for all the folds. The mean of the AUC score from the tested fold

represented the result of the validation set. After training the model several times with

different combinations of hyperparameters, the best model was selected according to a

given metric. The best model was retrained using the entire training set and subsequently

tested on the test set.

For the cross-validation strategy, we chose a GroupKFold with three splits. GroupK-

Fold is a variant of K-fold cross-validation that guarantees each group within the dataset

is exclusively present either in the training or validation sets, but not both simultaneously

(SCIKIT-LEARN, 2024a). In this case, the groups were chosen based on the combination

of their experimental configuration. For example, all the replicates from a combination of

load 0, 500 RPM, healthy pinion at the pulley-belt configuration were present either in

the training or testing sets. The replicates with the same combination were never divided

in the sets. This procedure was applied in the train and validation division and also in the

train and test. This was done in order to avoid data leakage from training to testing.

Table 4.4 shows the default hyperparameters search range for each model. Loguniform

and uniform stand for the probability distribution functions with the same name. The

function randint returns a random integer. The values inside the functions stand for the

search range. We chose the RandomizedSearchCV (SCIKIT-LEARN, 2024b) from the

scikit-learn library. An analysis on the number of iterations is performed and can be
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seen on Appendix A. In about 25 iterations, there’s already a convergence on the models’

performance. Nevertheless, the number of iterations for the “default” models is set to 100.

Table 4.4 – Default hyperparameters search space

Model Hyperparameter Search Space
Logistic Regression C loguniform(10−6, 105)

C loguniform(10−6, 105)SVM gamma loguniform(10−6, 105)
n_estimators randint(50,400)
max_depth randint(1,64)

max_features [None, “sqrt”, “log2”]
min_samples_split randint(2, 16)
min_samples_leaf randint(1, 10)

Random Forest Classifier

ccp_alpha uniform(10−6, 1)
max_depth randint(1, 64)

learning_rate uniform(0.01, 0.1)
subsample uniform(10−6, 1)XGBoost

n_estimators randint(50, 400)

4.3 MODEL PIPELINES

In total, four classifiers were implemented: Logistic Regression, SVM, Random Forest

and XGBoost. We only considered two classes: healthy and defective, where the latter

encompasses the chipped and missing tooth pinions’ condition. To deal with the data,

some pipelines were created. The first step was to remove the columns with metadata

associated. In the case of SVM and Logistic Regression, which greatly benefit from scaling,

another pipeline step was added, which entailed the data standardization performed by

the StandardScaler algorithm from the scikit-learn library (SCIKIT-LEARN, 2024c). The

standardization is given by the formula:

z = x − µ

σ
(4.1)

where z is the standardized value, x is the original value, µ is the mean of the feature in

the train data-set, and σ is the standard deviation. This step is not necessary for the tree

models, as they are not sensitive to the scale of the features as explained in “Decision

trees and Random Forest Classifier” (subsection 2.4.4).
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4.3.1 Metrics

After the models were trained, their performance was evaluated by a few parameters:

validation AUC, represented as “Val. AUC”, test accuracy, represented as “ACC test”,

test balanced accuracy, represented as “BA test”, the AUC from the test, represented as

“AUC test”, the FPR from the test for a TPR of 90%, represented as “FPR (TPR≥90%)”,

and the time it took to train the model with 11 processors/threads, represented as “Time

[s]”. Then, ROC curves for the test group were plotted for all divisions.

4.3.2 SHAP analysis

After implementation, machine learning models often work like a black box. To

better understand models, it is beneficial to evaluate the importance of each feature to the

final result. There are several ways to do this. For example, interpreting the coefficients

in a regression model. However, this can lead to misinterpretations. Furthermore, this

method only takes into account the feature’s overall importance, but not how higher

or lower values may impact the model’s outcome. From game theory, SHAP (SHapley

Additive exPlanations) values are a way of overcoming these limitations. It can estimate

how much an input from a feature impacted the model’s outcome, and then rank the

feature’s importance. Nonetheless, it does not evaluate the quality of the prediction itself

(SHAP, 2024).
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5 RESULTS & DISCUSSIONS

This Chapter is dedicated to the results and discussions of this work. It is divided

into two sections. The first section divided into subsections, each one corresponding to a

different division of the dataset. For each division we present: variability analysis, ROC

curve, SHAP analysis, and confusion matrix.

The second section is dedicated to the comparison between classifiers that were

trained with all features except the ones generated from the FFT and Welch methods,

classifiers that were trained with all the features but the ones from FFT and, classifiers

that were trained with all the features but the ones from Welch. The models names were

shortened to LR, SVM, RFC, and XGB for Logistic Regression, Support Vector Machine,

Random Forest Classifier, and XGBoost, respectively.

5.1 DEFAULT MODEL ANALYSIS

This section analyses the variability of the default models, their ROC curves, SHAP

analysis, and “confusion matrix” for each division. The “confusion matrices” are modified

to show the model’s mistakes (FP and FN) and successes (TP and TN) but they are

segregated by the pinion’s condition – unlike the usual confusion matrix. Nevertheless,

for simplicity sake, it will be labeled “confusion matrix” in this work’s scope. The default

models are trained with all features, and 100 iterations, as stated in machine learning

methods (chapter 4).

There are basically two possible ways in which we can introduce randomness in our

model’s training. The first one is the train-test split, and the second one is the hyperpa-

rameter search. The hyperparameter search is performed by the RandomizedSearchCV

method from the scikit-learn library. This method randomly selects hyperparameters from

a given range and performs a cross-validation to evaluate the model’s performance. The

variability analysis aims to evaluate how the model’s performance varies with the train-test

split and hyperparameter search. The models are trained and tested 15 times for each

division. The mean and standard deviation of the AUCval, ACCtest, BAtest, AUCtest, FPR

(for a TPR≥ 90%), and time in seconds are the evaluated metrics.

Following this analysis, we illustrate the models performance with their ROC curves.

To enhance our comprehension of the models, summaries of the SHAP analysis were gener-



68

ated, plotting the top 20 features of each model. Since the XGBoost model demonstrated

the best performance in most cases, considering also the training time, we selected it for

the analysis. The SHAP library is a unified approach to explain the output of any machine

learning model.

The SHAP summary plot comprises three elements: the y-axis, the x-axis, and the

colorbar. The y-axis exhibits the features, while the x-axis displays the SHAP value. A

positive SHAP value signifies that the feature contributes positively to the prediction,

leading the model to predict 1 (indicating a defect in our case). Conversely, a negative

SHAP value suggests that the feature negatively influences the prediction, guiding the

model towards predicting 0, which indicates a healthy state. The colorbar represents the

feature values, with blue indicating lower feature values, and red indicating higher feature

values. The “thickness” of a feature’s plot along the axis of the SHAP value (x-axis)

illustrates the amount of features that have that value.

We also analise the XGBoost model mistakes and successes in a confusion matrix,

to gain a better insight on the model. The confusion matrix plot for other models are

illustrated at Appendix C.

The default model hyperparameters can be checked at at Appendix B. It is noteworthy

that the results presented at the ROC curve, SHAP analysis and confusion matrix were

generated with a pseudo-random algorithm, with a “random seed” set to 5, so that they

can be reproducible.

5.1.1 (A) Random division

This section presents the results for the (A) division.

5.1.1.1 Train-test split variability

Table 5.1 shows the summary statistics for the train-test split variability in the

(A) division. Overall, the standard deviation is less than 0.01, indicating that the data

distribution is fair among groups. It is also important to remember that the hyperparameter

search algorithm performs a randomized exploration. Since the model’s performance is not

being highly affected by a randomized search, it may suggest that the optimization problem

has many local minima which are close to the global minimum. This same conclusion can

be extended to the next results of variability analysis.
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The results show that the XGBoost model has the best performance in all metrics. Its

time is around 202 seconds, about half of the Random Forest Classifier’s time. Furthermore,

the XGBoost model presented a higher AUCtest than AUCval. This may indicate that the

quantity of information in the train and test datasets are different. It is interesting to note

that SVM performed better than the Random Forest Classifier. The Logistic Regression

model has the worst performance in all metrics. The FPR is the metric with highest

variance among the models. This is expected since the FPR is a metric that is highly

dependent on the threshold.

Table 5.1 – Summary statistics for the train test split variability in (A) division.

LR SVM RFC XGB
mean std mean std mean std mean std

AUCval 0.93 7.8e-03 0.94 6.7e-03 0.94 8.9e-03 0.96 6.6e-03
ACCtest 0.85 1.7e-02 0.89 1.5e-02 0.87 1.7e-02 0.91 1.6e-02
BAtest 0.85 1.9e-02 0.89 1.6e-02 0.86 1.8e-02 0.91 1.9e-02

AUCtest 0.93 1.1e-02 0.95 1.1e-02 0.95 9.7e-03 0.98 7.5e-03
FPR 0.22 4.5e-02 0.13 3.7e-02 0.18 4.1e-02 0.07 3.0e-02
Time 3.14 5.5e-02 76.18 2.8e+00 539.18 7.6e+00 202.54 7.0e+00

5.1.1.2 Randomized search variability

Table 5.2 shows the summary statistics for the hyperparameter search variability in

the (A) division. It is interesting to note that the FPR was higher for the Random Forest

Classifier (0.34 against 0.18) as well as for the XGBoost model (0.07 against 0.08) when

comparing to Table 5.1. This may indicate that the hyperparameter search variability is

finding local minima.

Table 5.2 – Summary statistics for the hyperparameter search variability in (A) division.

LR SVM RFC XGB
mean std mean std mean std mean std

AUCval 0.93 3.7e-05 0.94 3.1e-03 0.92 1.9e-02 0.97 5.4e-04
ACCtest 0.83 2.6e-03 0.85 1.9e-02 0.81 4.1e-02 0.91 4.3e-03
BAtest 0.83 2.2e-03 0.86 1.7e-02 0.81 4.5e-02 0.91 4.3e-03

AUCtest 0.92 5.1e-04 0.94 1.1e-02 0.89 4.4e-02 0.98 1.2e-03
FPR 0.27 8.0e-04 0.25 4.9e-02 0.34 1.3e-01 0.08 6.9e-03
Time 1.50 8.7e-02 34.55 1.2e+00 315.58 6.0e+01 88.24 7.7e+00
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5.1.1.3 ROC curve

Figure 5.1 illustrates the performance of the models for the (A) division. XGBoost

is the best performing model with a TPR of 1, for an FPR of 0.3 to 0.4. The rest of the

models present the plateau at the FPR about at 0.6. SVM was the second best performing

model. Random Forest Classifier has a very similar ROC curve to the Logistic Regression’s,

which is a simpler model.

Since the performance SVM was greater than the Logistic Regression’s, it implies

that there are some non-linearities at the analyzed problem. The SVM algorithm used in

this work considers a Radial Basis Function (RBF) kernel, which computes a similarity

score between data points based on their distance in the input space.

Figure 5.1 – ROC curve for the (A) division.

5.1.1.4 SHAP Analysis

Figure 5.2 shows the SHAP analysis for the XGBoost model and (A) division. The

first seven most important features are from the cepstrum, order and time-domain. The

most important being the first rahmonic of the gear rotation and the fourth feature, the

third rahmonic. More specifically, high values of the feature predict a healthy signal, while
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low values predict defects. This may be because the defective pinion transmits less load to

the gear, which then vibrates less.

Although FM0, which comes from the TSA, appeared at the second place, other

features derived from this transformation appeared on 11th and 19th place only. One should

observe that it needs tachometer information and requires far more computational resources

than the other transformation or features presented. Therefore, its cost-performance ratio

raises debate about an extended real world application.

Kurtosis, shape factor and crest factor plus ranked third, fifth, and seventh respec-

tively. All three provide insights into the signal’s shape, peaks, or impulsiveness. The

SHAP analysis suggests that higher values of kurtosis predict defective signals. This finding

aligns with existing literature, as defects such as a missing gear tooth often manifest as

impulsive behavior in the signal. The same trend applies to shape factor and crest factor

plus.

It stands out that the first six features have the most spread values. Also, features

from the frequency-domain appeared from the eighth importance on. This may be because

the information from the frequency-domain is embeded in the other features.

5.1.1.5 Confusion matrix

Figure 5.3 shows a confusion matrix for the XGBoost model. There were only four

mistakes for the missing pinion condition, sixty one for the chipped one and thirty three

for the healthy condition. This suggests that the model is better at predicting the missing

pinion condition than the chipped one. This is expected since the missing pinion condition

is a more severe defect than the chipped one, which would imply in higher differentiation

to the healthy condition.
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Figure 5.2 – SHAP analysis for the (A) division.
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Figure 5.3 – Confusion matrix for (A) division and XGBoost.
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5.1.2 (B) Pulley-belt division

This section presents the results for the (B) division.

5.1.2.1 Randomized search variability

Table 5.3 shows the summary statistics for the hyperparameter search variability

in the (B) division. The standard deviation is less than 0.05 for all metrics. The AUCval

has similar values, when comparing to the (A) division. The tests scores performed worse

than the (A) division, presenting FPR values higher than 0.70. It was expected, since the

model was tested in a condition in which it was not trained.

Table 5.3 – Summary statistics for the hyperparameter search variability in (B) division.

LR SVM RFC XGB
mean std mean std mean std mean std

AUCval 0.90 3.1e-05 0.92 8.9e-03 0.89 2.0e-02 0.93 4.8e-04
ACCtest 0.65 8.4e-04 0.64 5.0e-03 0.69 1.8e-02 0.68 3.9e-03
BAtest 0.61 7.3e-04 0.59 7.9e-03 0.64 2.1e-02 0.62 5.5e-03

AUCtest 0.66 3.7e-04 0.61 2.0e-02 0.78 2.0e-02 0.81 5.2e-03
FPR 0.73 2.1e-03 0.74 5.6e-03 0.60 4.8e-02 0.61 1.8e-02
Time 0.96 3.4e-02 10.22 2.9e-01 162.96 2.9e+01 62.08 3.5e+00

5.1.2.2 ROC curve

Figure 5.4 illustrates the performance of the models for the (B) division. XGBoost

and Random Forest Classifier had similar performance, with XGBoost having the highest

AUC score and lower training time. Logistic Regression overall performed better than the

SVM model. For a TPR lower than 0.5, SVM performed similarly to a dummy regressor,

which guesses randomly the input’s label. Logistic Regression has a linear kernel, meanwhile

SVM has a non-linear one. Since the models scored better at training, it seems that SVM

had more overfitting than Logistic Regression at this division.

5.1.2.3 SHAP Analysis

Figure 5.5 shows the SHAP analysis for the XGBoost model and (B) division. The

most important feature is the FM0, followed by the shape factor. These two show the most

spread values. High values of the first rahmonic of the GMF, the third most important

feature, indicate most certainly a defective signal. The same can be said for the eighth
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Figure 5.4 – ROC curve for the (B) division.

most important feature, the second rahmonic of the GMF. As in (A) division, kurtosis is

one of the most important features and high values of it predict defective signals.

In this division, the third and first harmonics of the pinion rotation frequency appear

as the fourth and fifth most important features, exceeding in importance order compared

to the features from the frequency-domain. This may be because the TSA not only reduces

noise in the signal, but also included the angular resampling, which reduces the influence

of the pulley-belt system slippage.

There are nine features of harmonics from the frequency-domain. Six of them are

related to GMF sidebands. Sidebands are associated with modulation in the signal. The

pulley-belt system as overall more variation in rpm, which may smear the rpm peak

generating sidebands. There are “repeated” features that come from both Welch and

FFT methods, such as the sidebands of minus one gear frequency in the third GMF

(3*GMF-1f_p). Although they differ, since Welch’s method is a statistical one, and FFT

is a deterministic one, they both provide similar information. In that sense, they may be

concurring in the model’s decision.

Spectral flatness, the tenth most important feature, serves as a reliable predictor of

defects when its values are low. However, it consistently predicts defects, regardless of

the signal characteristics. Therefore, when spectral flatness values are high, other features
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should be considered to evaluate the component’s health. On the other hand, low values of

the first rahmonic of the pinion rotation predict healthy component. High values, however,

are not as conclusive.

Figure 5.5 – SHAP analysis for the (B) division.
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5.1.2.4 Confusion matrix

Figure 5.6 shows a confusion matrix for the XGBoost model. The majority of mistakes

were of false positives. There were only four mistakes for the missing pinion condition,

sixty three for the chipped one and 591 for the healthy condition. One should observe

that, although the mistakes for the healthy condition were more than one order higher

when compared to the random division, the mistakes for the defective conditions were

about the same in number.

Figure 5.6 – Confusion matrix for (B) division and XGBoost.

5.1.3 (C) Direct driven division

This section presents the results for the (C) division.

5.1.3.1 Randomized search variability

Table 5.4 shows the summary statistics for the hyperparameter search variability in

the (C) division. The metrics also presented low standard deviation, with values less than

0.05.

The (C) division had by far the best score at validation, reaching up to a hundred

percent with XGBoost. On the other hand, it generally had the worst results in the test.

There are a few differences between the configurations. One of them is that the pulley-belt

system has a higher slippage. This means that the rotational variation is higher in the

pulley-belt system. The pulley-belt system also has imprinting of other rotating component
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– such as the belt, the main shaft and its bearings, etc. The direct driven division, on the

other hand, consists only of the motor, the coupling, and the gearbox. This implies that

the direct driven signals are “cleaner” than the pulley-belt signals.

Another difference between the divisions themselves is that there were more RPMs

analyzed in the (C) division than in the (B) division (13 compared to 7). This means that

there were more signals acquired from (C) than from (B). Even though the (C) division

had more data to fit to, it yielded worse results when tested in another configuration. In

both (C) and (B) divisions, there was some overfitting, as the train and test scores differed

considerably from each other.

Table 5.4 – Summary statistics for the hyperparameter search variability in (C) division.

LR SVM RFC XGB
mean std mean std mean std mean std

AUCval 0.99 7.5e-06 0.98 2.4e-03 0.96 1.2e-02 1.00 1.8e-04
ACCtest 0.61 6.3e-04 0.64 1.6e-02 0.70 1.0e-02 0.66 9.6e-03
BAtest 0.56 6.7e-04 0.59 1.9e-02 0.67 1.5e-02 0.63 1.2e-02

AUCtest 0.68 8.4e-04 0.70 2.8e-02 0.78 4.9e-03 0.77 7.1e-03
FPR 0.74 3.4e-03 0.66 2.5e-02 0.64 7.7e-02 0.71 2.3e-02
Time 1.42 5.5e-02 31.01 7.1e-01 259.41 4.9e+01 60.01 5.7e+00

5.1.3.2 ROC curve

Figure 5.7 illustrates the performance of the models for the (C) division. Random

Forest Classifier and XGBoost had similar performances, with Random Forest Classifier

outperforming XGBoost ater FPR of 0.5. SVM had a better performance at (C) division

than at (B) division, but still equal or worse than the Logistic Regression model.

5.1.3.3 SHAP Analysis

Figure 5.8 shows the SHAP analysis for the XGBoost model and (C) division. The

first five features present the most spread in feature values. The first two are the first

and third rahmonic of the gear rotation. Again, this may be because the defective pinion

transmits less load to the gear. It is essential to thoroughly analyze the signals affecting

this behavior. The fifth feature, the first rahmonic of the pinion rotation, and the tenth,

the third rahmonic of the pinion rotation, and eighteenth, cepstral peak, are also features

from the quefrency-domain. It seems that no division presented a second rahmonic as an

important feature.
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Figure 5.7 – ROC curve for the (C) division.

Kurtosis and FM0 were at the most important features, just as in the other divisions.

The shape factor also appeared as important. Eleven features are harmonic amplitudes

from the frequency-domain, mostly associated with sidebands.

5.1.3.4 Confusion matrix

Figure 5.9 shows a confusion matrix for the XGBoost model. The (C) division

mistook less at the healthy condition than the (B) division, but more at the defective

conditions compared to all divisions. The (C) division mistook thirteen missing tooth

pinion condition, more than three times than the other divisions.
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Figure 5.8 – SHAP analysis for the (B) division.
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Figure 5.9 – Confusion matrix (C) division and XGBoost.
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5.2 FFT VS WELCH VS NEITHER

After noticing that there were features with similar information from the frequency-

domain, we decided to test models where the features came solely from either Welch’s

method or the FFT method. We also tested models that excluded frequency-domain

features altogether. Since the results were repetitive, we decided to display Table 5.5.

Tables for the other conditions can be found at Appendix D.

Table 5.5 – Comparison of fft vs welch method for Random Forest Classifier and XGBoost
(A) division.

RFC XGB
method welch fft none welch fft none
AUCval 0.93 0.93 0.94 0.96 0.97 0.96
ACCtest 0.82 0.83 0.82 0.90 0.90 0.88
BAtest 0.83 0.83 0.82 0.91 0.91 0.88

AUCtest 0.92 0.92 0.92 0.98 0.97 0.96
FPR 0.24 0.24 0.27 0.09 0.09 0.13
Time 343.32 344.67 147.99 115.73 115.49 43.89

Overall, the three conditions yielded similar results, with the models excluding

frequency-domain features performing better at times. This contradicts the literature,

which emphasizes the importance of frequency-domain features in fault diagnosis. This

may be due to the analysed defects, which are more severe types of defects, and the signals

are more impulsive than modulated. Impulsive signals affect more broadband frequencies,

than tonal or specific ones. These defects are better captured by time-domain features.



83

6 CONCLUSION

Among the existing machine elements, gear defects are critical not only for their

malfunctioning, but also for the possibility of damaging other components. Nevertheless,

there are few studies that focus on comparing binary classifiers for gear defect detection.

This work focuses on defect detection and not diagnosis (locating and identifying the type

of defect) or prognosis. This step can be seen as one of binary classification: “defective or

healthy signal?”. To answer this question, the literature suggests different features. We

implemented statistical features from the time domain, amplitudes from the frequency and

order-domain, gamnitudes from the cepstrum analysis, and a few others, such as the FM0.

Our configuration setups comprised a gearbox connected directly to the motor and

another with a pulley-belt system. There were three investigated train-test divisions: (A)

random division, (B) training with pulley-belt data and testing with the direct driven,

and (C) training with the direct driven data and testing with the pulley-belt one. The

latter two mimicked real-world applications, where a model is trained in a machine and

we try to reproduce it on other machines.

We compared four different classifiers, Logistic Regression, SVM, Random Forest

and XGBoost. To train and optimize hyperparameters, we used the AUC score as the

main metric. To evaluate the models thoroughly, we used the validation and test AUC,

the FPR for a TPR of 90% at the test, test accuracy and balanced accuracy, and the time

spent training the models.

In all divisions, the training time, from faster to slower, was as follows: Logistic

Regression, SVM, XGBoost, and Random Forest Classifier. XGBoost had, overall, the best

results. The random division performed the best with all classifiers. The pulley-belt train

division displayed better results than the direct driven division, even though it had less

data for training. In contrast, the direct-driven configuration includes only the motor, the

coupling, and the gearbox, which means the direct-driven signals are “cleaner” compared

to the pulley-belt signals. Another difference is that the pulley-belt system experiences

higher slippage, resulting in greater rotational variation. A model trained with data with

more variability is more likely to perform better with data with less variability. Models

require domain generalization techniques to be applied at a larger scale.

The random division had a satisfying performance with all models. For the XGBoost

model, a 90% TPR was achieved at 7% FPR. Although SVM had the second best
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performance at the random division, it is not as applicable in real-world context, since the

data was standardized in the pipeline. Random Forest Classifier had a similar performance

to the Logistic Regression model, but it was the slowest to train. It seems that more

complex models, such as neural networks, could be an overkill for these requirements,

especially when thinking of a real-world application, which demand low latency and

computational costs. This may be true if data is diverse in training conditions, just as the

random division. Moreover, shallow learning models are easier to interpret and explain

than deep learning ones.

Ranked by SHAP values, the twentieth most important features from XGBoost were

analyzed. Kurtosis and FM0 were deemed as important in all divisions. The SHAP analysis

suggests that features that are a measure of the signal’s shape are, in general, the best to

classify the signal as defective. This may be because of the nature of the analyzed defects:

chipped and missing tooth, which give rise to periodic impact. A worn gear is unlikely to

produce such an impulsive response.

Looking at the model’s mistakes and successes based on the pinion’s condition, we

observed that the (C) division failed more often to classify the defective pinion. Although

(B) division erred more often in classifying the healthy pinion, it had a similar performance

to the (A) division. It seems that (B) is better at generelizing the domain than (C).

Analysis excluding features from the frequency-domain showed similar performance

to the full feature set, contradicting literature on their importance. This may be because

the other features already entailed the information. Another reason could be due to the

dynamic response style of the defective signals.

6.1 FUTURE WORK

This work opens up a few possibilities for future research. We could investigate the

following topics with data already available:

• Investigate the influence of direction (vertical, horizontal or axial) on feature values

and classification performance for the studied defects;

• Do a multiclass classification and investigate which features describe better each

defect individually;
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• Check model’s performance without TSA features, to see if they are really necessary,

since they are not applicable extensively in many “real world” context;

• Apply domain generalization techniques to the models and investigate their perfor-

mance to the different configurations;

• There were important features which gave similar information (e.g. kurtosis, shape

factor or crest factor plus). It would be interesting to train a model with few

features with little overlapping information. To evaluate overlapping features, we

could evaluate the correlation between them and the importance of each feature

in the model. This could be done with a correlation matrix and a SHAP analysis,

respectively.

Moreover, other investigations with new data could be:

• Investigate a geartrain with more stages;

• Investigate other gear defects, such as wear;

• Cross defects that are commonly occuring with gears, such as bearing defects, and

evaluate the model’s hability to classify the signal as defective or healthy and

differentiate the defects.
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APPENDIX A – NUMBER OF ITERATIONS

Table A.1 – Influence of number of iterations on Logistic Regression and SVM for the (A)
division.

LR SVM
niter 10 25 50 100 10 25 50 100

AUCval 0.93 0.93 0.93 0.93 0.92 0.93 0.94 0.95
ACCtest 0.82 0.82 0.82 0.82 0.77 0.80 0.84 0.86
BAtest 0.83 0.83 0.83 0.83 0.79 0.82 0.84 0.87

AUCtest 0.92 0.92 0.92 0.92 0.90 0.91 0.94 0.95
FPR 0.30 0.28 0.27 0.27 0.36 0.36 0.24 0.19
Time 2.16 0.53 0.92 1.55 4.75 8.72 17.74 35.52

Table A.2 – Influence of number of iterations on Random Forest Classifier and XGBoost
for the (A) division.

RFC XGB
niter 10 25 50 100 10 25 50 100

AUCval 0.83 0.93 0.93 0.93 0.96 0.96 0.96 0.96
ACCtest 0.57 0.83 0.84 0.83 0.90 0.90 0.90 0.91
BAtest 0.50 0.83 0.84 0.83 0.91 0.91 0.90 0.91

AUCtest 0.77 0.92 0.92 0.92 0.97 0.97 0.97 0.98
FPR 1.00 0.23 0.24 0.24 0.09 0.09 0.09 0.08
Time 21.74 69.53 113.10 228.66 12.28 27.08 49.30 95.58

Table A.3 – Influence of number of iterations on Logistic Regression and SVM for the (B)
division.

LR SVM
niter 10 25 50 100 10 25 50 100

AUCval 0.90 0.90 0.90 0.90 0.89 0.91 0.93 0.93
ACCtest 0.64 0.64 0.65 0.65 0.65 0.64 0.63 0.63
BAtest 0.60 0.60 0.61 0.61 0.60 0.60 0.58 0.58

AUCtest 0.65 0.65 0.66 0.66 0.64 0.63 0.58 0.58
FPR 0.75 0.74 0.73 0.73 0.71 0.72 0.74 0.74
Time 0.31 0.42 0.62 0.97 1.64 2.75 5.54 10.73
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Table A.4 – Influence of number of iterations on Random Forest Classifier and XGBoost
for the (B) division.

RFC XGB
niter 10 25 50 100 10 25 50 100

AUCval 0.62 0.91 0.90 0.91 0.93 0.93 0.93 0.93
ACCtest 0.59 0.71 0.71 0.71 0.68 0.69 0.69 0.68
BAtest 0.50 0.66 0.66 0.65 0.62 0.63 0.63 0.62

AUCtest 0.70 0.81 0.81 0.80 0.79 0.82 0.82 0.81
FPR 1.00 0.54 0.54 0.56 0.62 0.59 0.59 0.60
Time 11.03 33.91 55.34 113.48 8.92 19.00 34.47 67.87

Table A.5 – Influence of number of iterations on Logistic Regression and SVM for the (C)
division.

LR SVM
niter 10 25 50 100 10 25 50 100

AUCval 0.99 0.99 0.99 0.99 0.96 0.98 0.98 0.99
ACCtest 0.61 0.61 0.61 0.61 0.70 0.66 0.66 0.62
BAtest 0.56 0.56 0.56 0.56 0.67 0.62 0.62 0.57

AUCtest 0.68 0.68 0.68 0.68 0.78 0.74 0.74 0.66
FPR 0.74 0.74 0.74 0.74 0.58 0.66 0.66 0.70
Time 0.40 0.55 0.87 1.45 4.12 8.17 15.94 31.80

Table A.6 – Influence of number of iterations on Random Forest Classifier and XGBoost
for the (C) division.

RFC XGB
niter 10 25 50 100 10 25 50 100

AUCval 0.86 0.98 0.98 0.98 1.00 1.00 1.00 1.00
ACCtest 0.57 0.70 0.70 0.70 0.68 0.68 0.68 0.68
BAtest 0.50 0.67 0.67 0.67 0.64 0.64 0.64 0.64

AUCtest 0.77 0.78 0.78 0.79 0.78 0.78 0.78 0.78
FPR 0.63 0.59 0.58 0.60 0.68 0.68 0.68 0.68
Time 19.72 61.00 99.15 195.27 8.44 18.64 33.95 65.49
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APPENDIX B – HYPERPARAMETERS

Table B.1 – Default hyperparameters for the (A) division.

Model Hyperparameter Value
Logistic Regression C 0.0390

SVM C 14.3278
gamma 0.0106

Random Forest Classifier

ccp_alpha 0.0022
max_depth 27
max_features sqrt
min_samples_leaf 7
min_samples_split 2
n_estimators 223

XGBoost

learning_rate 0.0930
max_depth 26
n_estimators 355
subsample 0.3653

Table B.2 – Default hyperparameters for the (B) division.

Model Hyperparameter Value
Logistic Regression C 0.1052

SVM C 8.4008
gamma 0.0342

Random Forest Classifier

ccp_alpha 0.0022
max_depth 27
max_features sqrt
min_samples_leaf 7
min_samples_split 2
n_estimators 223

XGBoost

learning_rate 0.0527
max_depth 40
n_estimators 309
subsample 0.6536
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Table B.3 – Default hyperparameters for the (C) division.

Model Hyperparameter Value
Logistic Regression C 2.0630

SVM C 14.3278
gamma 0.0106

Random Forest Classifier

ccp_alpha 0.0022
max_depth 27
max_features sqrt
min_samples_leaf 7
min_samples_split 2
n_estimators 223

XGBoost

learning_rate 0.0866
max_depth 31
n_estimators 258
subsample 0.2968
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APPENDIX C – CONFUSION MATRICES

Figure C.1 – Confusion matrix for (A) division and Logistic Regression.

Figure C.2 – Confusion matrix for pinion condition for (A) division and SVM.
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Figure C.3 – Confusion matrix for (A) division and Random Forest Classifier.

Figure C.4 – Confusion matrix for (B) division and Logistic Regression.
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Figure C.5 – Confusion matrix for (B) division and SVM.

Figure C.6 – Confusion matrix for (B) division and Random Forest Classifier.
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Figure C.7 – Confusion matrix for (C) division and Logistic Regression.

Figure C.8 – Confusion matrix for (C) division and SVM.
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Figure C.9 – Confusion matrix for (C) division and Random Forest Classifier.
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APPENDIX D – RESULTS FFT VS WELCH

Table D.1 – Comparison of FFT vs Welch’s method for Logistic Regression and SVM (A)
division.

LR SVM
method welch fft none welch fft none
AUCval 0.93 0.93 0.93 0.95 0.94 0.95
ACCtest 0.82 0.82 0.81 0.87 0.86 0.84
BAtest 0.83 0.83 0.82 0.88 0.87 0.85

AUCtest 0.92 0.92 0.90 0.95 0.95 0.94
FPR 0.29 0.30 0.28 0.17 0.18 0.21
Time 1.13 1.10 0.99 26.30 26.33 20.19

Table D.2 – Comparison of FFT vs Welch’s method for Logistic Regression and SVM (B)
division.

LR SVM
method welch fft none welch fft none
AUCval 0.91 0.90 0.90 0.93 0.92 0.91
ACCtest 0.64 0.66 0.67 0.63 0.64 0.65
BAtest 0.60 0.62 0.62 0.58 0.58 0.59

AUCtest 0.65 0.68 0.71 0.58 0.59 0.62
FPR 0.74 0.70 0.68 0.75 0.74 0.72
Time 0.83 0.84 0.78 8.43 8.52 6.85

Table D.3 – Comparison of FFT vs Welch’s method for Random Forest Classifier and
XGBoost (B) division.

RFC XGB
method welch fft none welch fft none
AUCval 0.91 0.91 0.91 0.94 0.94 0.93
ACCtest 0.69 0.70 0.69 0.68 0.70 0.69
BAtest 0.64 0.65 0.64 0.62 0.64 0.64

AUCtest 0.79 0.82 0.84 0.80 0.83 0.82
FPR 0.60 0.50 0.58 0.64 0.57 0.62
Time 174.97 174.36 81.52 82.22 80.87 32.61
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Table D.4 – Comparison of FFT vs Welch’s method for Logistic Regression and SVM (C)
division.

LR SVM
method welch fft none welch fft none
AUCval 0.99 0.99 0.98 0.99 0.99 0.98
ACCtest 0.62 0.62 0.71 0.63 0.62 0.71
BAtest 0.57 0.57 0.69 0.58 0.57 0.70

AUCtest 0.71 0.69 0.75 0.70 0.67 0.74
FPR 0.77 0.71 0.86 0.71 0.68 0.82
Time 1.08 1.11 0.90 23.86 23.93 18.31

Table D.5 – Comparison of FFT vs Welch’s method for Random Forest Classifier and
XGBoost (C) division.

RFC XGB
method welch fft none welch fft none
AUCval 0.98 0.98 0.98 1.00 1.00 0.99
ACCtest 0.70 0.71 0.70 0.68 0.65 0.70
BAtest 0.67 0.68 0.67 0.65 0.61 0.68

AUCtest 0.77 0.78 0.78 0.77 0.77 0.79
FPR 0.58 0.56 0.55 0.76 0.75 0.64
Time 299.03 300.64 135.80 77.96 77.94 31.37
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