UNIVERSIDADE FEDERAL DE SANTA CATARINA COORDENAÇÃO DOS PROGRAMAS DE PÔS-GRADUAÇÃO

EM. ENGENHARIA

OTIMIZAÇÃO DE TENSÕES TÉRMICAS

EM JUNTAS CÔNICAS

LUIZ HENRY MONKEN E SILVA

FLORIANÓPOLÍS SANTA CATARINA - BRASIL

AGOSTO - 74

UNIVERSIDADE FEDERAL DE SANTA CATARINA COORDENAÇÃO DOS PROGRAMAS DE PÓS-GRADUAÇÃO

EM ENGENHARIA

OTIMIZAÇÃO DE TENSÕES TÉRMICAS

EM JUNTAS CÔNICAS

i.

LUIZ HENRY MONKEN E SILVA

TESE SUBMETIDA A APRECIAÇÃO COMO REQUISITO PARCIAL PARA A OBTENÇÃO DO GRAU DE: MESTRE EM CIÊNCIAS EM ENGENHARIA MECÂNICA

FLORIANÓPOLIS SANTA CATARINA - BRASIL

AGOSTO - 74

ESTA TESE FOI JULGADA ADEQUADA PARA A

OBTENÇÃO DO TÍTULO DE

"MESTRE EM CIÊNCIAS"

E APROVADA EM SUA FORMA FINAL PELO OR<u>I</u> ENTADOR E PELO CURSO DE PÓS-GRADUAÇÃO

Lovis Sperb arcellos

Orientador

Prof. Domingos Boechat Alves

Integrador do Curso de Pós-Graduação

BANCA EXAMINADORA:

her

Ā

DIVAIR,

minha esposa.

AGRADECIMENTOS

Sinceros agradecimentos:

Ao Professor CLOVIS SPERB DE BARCELLOS, Professor Orientador deste trabalho, pela correta orientação e pela constante dedicação em todas as fases de realização do mesmo.

Ao Professor JOSÉ CARLOS ZANINI, Professor Orientador durante realização do Curso de Pós - Graduação.

Ao CONSELHO NACIONAL DE PESQUISA pela concessão da Bolsa de Estudos que possibilitou a realização dos estudos de Pós - Graduação.

Aos ÓRGÃOS DIRETIVOS da UNIVERSIDADE ESTADUAL DE MARINGÁ, que pro<u>n</u> tamente atenderam ao pedido de licença para a realização desta Tese e pelo apoio financeiro prestado.

Aos Colegas do DEPARTAMENTO DE MATEMÁTICA da U.E.M., que colaboraram em minha substituição, pelo esforço e pela demonstração de apreço.

À UNIVERSIDADE FEDERAL DE SANTA CATARINA por proporcionar os estudos de Pós - Graduação almejados.

Ao DEPARTAMENTO DE CIÊNCIAS ESTATÍSTICAS E DA COMPUTAÇÃO da U.F.SC por possibilitar a realização de toda a parte computacional desta Tese.

Ao JOÃO NILDO DE SOUZA VIANNA pelo incentivo dado.

Ao JOÃO BATISTA FURQUIM DA SILVA pelo trabalho de datilografia.

Ao ILDEFONSO BORGES pelo auxílio na operação do computador.

A todos que, de uma forma ou de outra, colaboraram para o cumprimento desta etapa.

MUITO OBRIGADO

<u>sum Ario</u>

	<u>SUMÁRIO</u>	, ·
		pág.
.*	CAPÍTULO 1 - INTRODUÇÃO	1
	CAPÍTULO 2 - DEFINIÇÃO DO PROBLEMA E HIPÕTESES SIMPLIFICATIVAS • • •	8
	2.1 - Geometria	8
	2.2 - Definição e Hipóteses Simplificativas	8
		,
	CAPITULO 3 - MODELO MATEMÁTICO	14
÷.	3.1 - Modelo Matemático da Parte Tronco-Cônica · · · · · · · · · ·	14
·.	3.1.1 - Definição da Superfície de Referência	14
	3.1.2 - Coordenadas da Casca	20
	3.1.3 - Relações entre Deslocamentos e Deformações	21
	3.1.4 - Obtenção das Equações de Equilíbrio	27
	3.2 - Modelo Matemático das Regiões Cilíndricas	34
	3.2.1 - Relações entre Deslocamentos e Deformações 🧰	36
	3.2.2 – Obtenção das Equações de Equilíbrio	36
•	CAPÍTULO 4 - SOLUÇÕES DOS MODELOS MATEMÁTICOS	. 39
	4.1 - Solução do Sistema de Equações Diferenciais da Região Cônica 👍	43
,	4.1.1 - Obtenção da Solução Particular do Modelo Matemático · · ·	44
.*	4.1.2 - Obtenção da Solução Homogênea do Modelo Matemático 🔹 🖡 🚥	52
· .	4.2 - Solução do Modelo Matemático das Regiões Cilíndricas ••••	57
	4.2.1 - Solução para a Região Cilíndrica A	60
· · ·	4.2.2 - Solução para a Região Cilindrica C. • • • • • • • • •	61
	CAPÍTULO 5 - SOLICITAÇÕES E DESLOCAMENTOS DA ESTRUTURA	63
	5.1 - Equações das Solicitações e Deslocamentos na Região Cônica 🔸	63 🔨
. ·	5.1.1 - Equação da Rotação 🔹 🤄 🔹 🔹 🔹 🔹 🔹 🔹	63
· ·	5.1.2 - Equação da Força Cortante 🗰 🗰 🗰 🗰 🗰	63
	5.1.3 - Equação dos Momentos M ₁ e M ₂	64
	5.1.4 - Equação da Força N ₁	65
: '	5.1.5 - Equação da Força N ₂	66
	5.1.6 - Equações dos Deslocamentos / · · · · · · · · · · · ·	66

()

5.2 -	- Equações das Solicitações e Deslocamentos na Região Cilíndrica A 👘 🤅	57
5	5.2.1 - Equações dos Momentos M ₁ e M ₂	57
5	5.2.2 – Equações das Forças N ₁ e N ₂	57.
5	5.2.3 - Equação do Deslocamento Radial	58
5.3 -	- Equações das Solicitações e Deslocamentos na Região Cilíndrica C 👘	5 8
5	5.3.1 - Equações dos Momentos M_1 e M_2	58
5	5.3.2 - Equações das Forças N ₁ e N ₂	59
Ļ	5.3.3 - Equação do Deslocamento Radial	59 '/ .`
CAPÍTUL	LO 6 - CONDIÇÕES DE CONTORNO E DETERMINAÇÃO DAS CONSTANTES	<i>;</i> '
	DE INTEGRAÇÃO	71
6.1 -	- Condições de Contorno	71
_6.2 -	- Determinação dás Constantes	74
6	.2.1 - Rotação Meridional na Região Cônica B em Função das Reações de Descontinuidade	32
6	5.2.2 - Momento Resultante Meridional em Função das Reações de Descontinuidade • • • • • • • • • • • • • • • • • • •	34
é	5.2.3 - Momento Resultante Circunferencial em Função das Reações de Descontinuidade	35
6	5.2.4 - Força Normal Maridional em Função das Reações de Descontinuidade • • • • • • • • • • • • • • • • • • •	37
é	5.2.5 - Força Normal Circunferencial em Função das Reações de Descontinuidade	38.
6	5.2.6 - Deslocamento Radial em Função das Reações de Descontinuidade	39
6.3	- Determinação das Constantes de Integração e das Variáveis da Região Cilíndrica A, em Função das Reações de Descontinuidade 🛛 8	39
E	5.3.1 - Rotação na Região Cilíndrica A em Função das Reações de Descontinuidade	9 1
e	5.3.2 - Momentos Meridional e Circunferencial na Região Cilíndrica A, em Função das Reações de Descontinuidade .) 1
e	5.3.3 - Força Normal Meridional e Circunferencial na Região Cilíndrica A, em Função das Reações de Descontinuidade	12
	5.3.4 - Deslocamento Radial na Região Cilíndrica A, em Função das Reacões de Descontinuidade)2
6.4 -	 Determinação das Constantes de Integração e das Variáveis da Região Cilíndrica C, em Função das Reações de Descontinuidade. 	93
e	5.4.1 - Rotação Meridional · · · · · · · · · · · · · · · · · · ·	€4
e	5.4.2 - Momento Meridional e Circunferencial	€
é	5.4.3 - Força Normal Meridional e Circunferencial) 5
	5.4.4 - Deslocamento Radial na Região Cilíndrica C 🕠 💑 🦲 👡 🤤	96 ·

6.5	- Determinação das Reações de Descontinuidade em Função	0.6
•		90
CAPITU	ILÔ 7 - DETERMINAÇÃO DAS SOLICITAÇÕES E DESLOCAMENTOS DA	104
- 4		104 1
/•1	Cônica B	104
	7.1.1 - Determinação da Rotação Meridional na Região Cônica B	108
	7.1.2 - Determinação do Momento Meridional	108
	7.1.3 - Determinação do Momento Circunferencial	108
1	7.1.4 - Determinação da Força Normal Meridional e Circunferencial	109
•	7.1.5 - Determinação do Deslocamento Radial	109
7.2	- Determinação das Solicitações e Deslocamentos na Região	
e e se	Cilíndrica A	110
	7.2.1 - Determinação da Rotação Meridional	110
· ·	7.2.2 - Determinação dos Momentos Meridional e Circunferencial	110
* .	7.2.3 - Determinação da Força Normal Meridional e Circunferencial • • • • • • • • • • • • • • • • • • •	111
, en	7.2.4 - Determinação do Deslocamento Radial	111
7.3	- Determinação das Solicitações e Deslocamentos na Região Cilíndrica C	112
and the second	7.3.1 - Determinação da Rotação Meridional	112
	7.3.2 - Determinação dos Momentos Meridional e Circunferencial .	112
	7.3.3 - Determinação das Forças Normal Meridional e Circunferencial	113
	7.3.4 - Determinação do Deslocamento Radial na Região Cilíndrica C	113
÷ .		
CAPITU	JLO 8 - DETERMINAÇÃO DAS TENSÕES ATRAVÉS DA ESTRUTURA	114
8.1	- Determinação das Tensões na Parte Cônica	114
-	8.1.1 - Determinação das Tensões Meridional e Circunferencial na Superfície Externa da Região Cônica	114
• • • •	8.1.2 - Determinação das Tensões Meridional e Circunferencial	
	na Superficie interna da Região Cônica	116
8.2	- Determinação das Tensões na Região Cilíndrica A	117
	8.2.1 - Determinação das Tensões Meridional e Circunferencial na Superfície Externa da Região Cilíndrica A	118
	8.2.2 - Determinação das Tensões Meridional e Circunferencial na Superfície Interna da Região Cilíndrica A	118
8.3	- Determinação das Tensões na Região Cilíndrica C	119

	•
8.3.1 - Determinação das Tensões Meridional e Circunferencial na Superfície Externa da Região Cilíndrica C	119
8.3.2 - Determinação das Tensões Meridional e Circunferencial	
na Superfície Interna da Região Cilíndrica C	120
	•
CAPTTULO 9 - OTIMIZAÇÃO DAS TENSÕES TERMICAS	122
9.1 - Critério de Projeto Utilizado 🛛 4 · · · · · · · · · · · · · · · · · ·	122
9.2 - Equações da Programação Linear	124
9.2.1 - Equações de Restrições na Parte Cônica B	125
9.2.2 - Equações de Restrições para a Região Cilíndrica A 🚬 🚬	127
9.2.3 - Equações de Restrições para a Região Cilíndrica C 🚬 .	130
9.3 - Aplicação da Programação Linear	132
9.4 - Determinação do Parâmetro $\underline{E}_{\psi}(F)$	134
σ W	
	· · · · · · · · · · · · · · · · · · ·
CAPÍTULO 10 - RESULTADOS · · · · · · · · · · · · · · · · · · ·	135
	. 1
CAPÍTULO 11 - DISCUSSÃO DOS RESULTADOS	148
CAPÍTULO 12 - CONCLUSÕES E PROPOSIÇÕES	153
Programa Dringinal	т Т
Cubroutine AD	2
	8
	9
	10
	11
	13
	14
	15
	16
	17
Subroutina COEFI	18
	20
Subroutina DADOS	21
Subroutina COEF2	22
Subroutina ZK	23
Subroutina RESTB	26

						•
·'						
	•	:			•	
				,		•
• • •					· .	
	APÊNDICE 2 - QUADROS	DE RESULTAD	os		1	•
•	Quadro 1		• • • • •	• • • •		2
	Quadro 2		• • • • •			5
· . ·	Ouadro 3			• • • •		11
	Ouadro 4					14
	Ouadro 5			• • • •		18
	$Ouadro 6 \dots$					21
						~ _
· · · ·	BIBLIOGRAFIA	· · · · · ·		• • • •	• • • • • •	1,55
				· · · · · · · · · · · · · · · · · · ·	• • • • • •	· · · · · · · · · · · · · · · · · · ·
						·
an La secondar An an						
		•				
		· · ·				
• •		·	-1		· .	
		·				
		•	•			
		• • •	• • • •			
i • .				•		·
• .					1	
			• . *			
· .			· .	•		
·			·			
· . · ·		· · · ·				
					· ·	· .
		- · ·			· · ·	
			т. Э			
		i i .				
		; 		. , .		
•	111					
	•	· · · ·	· ·			
• .			4 · · ·			•
			· · · ·			•
•	1 () 2		,		. •	
	• • • • • • • •			N		
	171. XL					
1.						•
/						
		 				•
2 * *		*#*				

ł

RESUMO

Este trabalho refere-se à otimização das condições numa região de transição que une dois tubos cilíndricos longos de diâmetros diferentes, podendo ter coeficiente de expansão térmica e/ou temperatua distintas,com a finalidade de minimizar as tensões térmicas.

O objetivo é determinar a distribuição ótima do coeficiente de expansão térmica numa junta de transição soldada. Os resultados se aplicam aos problemas de: otimizar a distribuição de resfriadores ao longo da junta c<u>ô</u> nica; e otimizar o perfil de temperatura em processo de aliviamento de tensões.

A partir das Equações de equilíbrio, encontra-se o modelo matemático do sistema. Encontrada a solução, aplica-se a técnica dos coeficie<u>n</u> tes de influência para se determinar as constantes de integração. Em seguida , estabelece-se as equações dos deslocamentos e solicitações da estrutura em fu<u>n</u> ção dos termos do carregamento.

Utilizando o critério de projeto da máxima tensão cizalhante, tem-se uma superfície de tensão admissível, seccionalmente linear. Esta li nearidade permite o emprego de Programação Linear na otimização do carregamento que é somente de natureza térmica.

Os coeficientes das equações de restrições foram calculados através de programação própria, que usa um sistema IBM - 1130, configuração 16K da UFSC. Para resolver o problema de programação linear, utiliza-se o LP - MOSS. C

A B S T R A C T

This work, optimize conditions within a transition region that connects two long circular cilindrical shells of diferents dimensions and coefficient of thermal expansion, or temperature, in order to minimize the thermal stress.

The objective is to establish the optimum distribution of the coefficient of thermal expansion within a welded transition joint. The results, also apply to optimize the distribution of cooling in conical joint; and to optimize the temperature profile in stress relief process.

From the Equilibrium Equations is obtained the Ma^L thematical Model of the system. Established the solution of the m<u>o</u> del, the influence coefficients tecnic, is used to determine the integration constants. Following the stresses are obtained in function of the load terms.

Using the Maximum - shear - stress theory, as design criterion, the restricted surface in stress space, for the transition region, is piecewise linear. This linearity permit the use of the Linear Programming in the optimization of the load terms. The load is only of thermal nature.

A computer program is used to determine the coefficients of the restriction equations. The computacional system is: IBM - 1130, 16 K. To solve the linear programming problem, (is applied the linear programming features of the IBM Package LP -MOSS.

* *

NOMENCLATURA

A₁, A₂, A₃, A₄ - constantes de integração provenientes 'da região B. $\overline{A}_1 \in \overline{A}_2$ - quantidades da primeira forma fundamental das superficies. - raio de uma superfície cilíndrica. - constantes para desenvolvimento em A_n , B_n sērie. B₁, B₂ - constantes de integração provenientes da região A. C, C_a, C_c - constantes de integrações. C_n, a_n - coeficientes de Fourier. D3, D4 - constantes, de integração, da região C. - constante de rigidez da casca. - módulo de elasticidade longitudinal. F, G, H, D - quantidades da primeira forma fundamental das superficies. - espessura da estrutura. - função de Bessel de primeira espécie ordem p. - comprimento da parte cônica, a partir do vértice. comprimento da região cônica B. **Γ**, Μ, quantidades da segunda forma fundamental das superficies.

D

F

-continuação-

"momentos por unidade de comprimento nos planos meridional e circunferencial. - momentos na borda 1 das regiões A e C. - momentos nas bordas 1 e 2 da região B. - momento resultante, proveniente da solução particular nas bordas 1 e 2 da re gião B. - forças por unidade de comprimento nas direções : axial e circunferencial. - forças cortantes por unidade de comprimento nas direções: axial e circunferencial. - forças resultantes nas bordas 1 e 2 da região B. - forças resultantes nas bordas 1 e 2 das regiões Coe A, respectivamente. - forças cortantes, provenientes do carregamento, nas bordas 1 e 2 da região B. 🗝 carregamento externo segundo as direções: axial, circunferencial e normal. - raio das superfícies cilíndricas das re giões A e C. - raio de um paralelo.

M₁, M₂

 M_1^a, M_1^c

 M_1^b, M_2^b

1^M^P₁, 2^M^P₁

N1, N2

 Q_1, Q_2

 Q_1^b , Q_2^b

 Q_1^c , Q_2^a

 ${}_{1}Q_{1}^{p}$, ${}_{2}Q_{1}^{p}$

 $\overline{q}_1, \overline{q}_2, \overline{q}_n$

Ra, Rc

Ro

R₁

R₂

- raio de um meridiano.

- distância ao longo da normal à curva

and the second secon	
	- <u>continuação</u> -
	R _o , traçada de um ponto ao eixo de ro-
	tação da superfície.
r -	vetor posição.
т _о –	temperatura inicial.
T _a ,T _c -	temperatura das regiões A e C.
Τ(ξ)	distribuição axial de temperatura.
U ₁ , U ₂ , W -	componentes dos deslocamentos segundo
	os meridianos, paralelos e normal ã su-
	perficie.
u, v, w -	componentes do deslocamento de um ponto
	na superficie de referência.
	coordenada axial.
- α	semi-ângulo de abertura da região côni-
	ca B.
α _a , α _c –	coeficientes de expansão térmica das r <u>e</u>
	giões A e C.
α (ξ) -	distribuição axial do coeficiente de e <u>x</u>
	pansão térmica.
β _k	amplitude das funções de Heaviside.
Y _{1n} , Y _{2n}	distorções nos planos circunferencial e
	meridional, segundo a normal à superfi-
	cie de referência.
Y ₁₂ , Y ⁰ ₁₂ -	distorção no plano circunferencial se-
	gundo um paralelo e na superficie de r <u>e</u>
	ferência.
$\delta^{a}, \delta^{b}, \delta^{c}$ -	deslocamentos radiais nas regiões A, B e C.
Ne state and the second se	

-continuaçãodeformações lineares segundo os meridi-E , , anos, paralelos e normal à superfície. deformações lineares segundo os meridianos e paralelos, na superfície de re ferência. coordenada segundo a normal à superfiζ cie de referência. - coordenada circunferencial. θ - deformações provenientes de flexões se-K1, K2 gundo os meridianos e paralelos. zeros das funções de Bessel. λ_n constantes de rigidez das regiões A. B μ_a , μ_b , μ_c e C. v1, v2, v3, v4 constantes das cascas. - módulo de Poisson. coordenada axial adimensionalizada. Έ σ1, σ2, σn - tensões normais nas direções meridional, circunferencial e normal à superficie de referência. σ_1^e, σ_1^i - tensão normal axial, na superfície externa e interna da casca. σ_2^e, σ_2^i - tensão normal circunferencial, na super fície externa e interna da casca. - tensão efetiva do material, para projeto. torção da superfície.

-continuação-

 rotações nos planos axial e circunferencial.
 parâmetro controlador da distribuição de

tensões na região cônica B.

röchçoci a pranoa a,

tensoes da reglao conter n.

parametro controlador, d. actor carcao de

Clair.

and Great

X1, X2

ψ(ξ.)

CAPITULO 1 - INTRODUÇÃO

Multas vezes, em decorrência de razões de natureza tecni-. ca, econômica ou outras, surge a necessidade de se realizar a união de tubos cilíndricos de diâmetros diferentes. Em geral, estes tubos apresentam também características térmicas diversas como por exemplo: coeficiente de dilatação térmica diferente e/ou desniveis de temperatura variáveis ao longo da vida. Es tes tipos de uniões, ver figura 1 , são de utilização frequente em diversos campos da tecnologia. Para citar os mais importantes, tem-se o aero-espacial nuclear e o petroquímico; onde se apresentam na construção de aviões, foquetes espaciais, reatores atômicos, torres de refinaria, tubulações de centrais geradoras de energia etc. Nessas uniões a junta mais utilizada é a cônica circular reta com junções soldadas. Em tal situação, a região de transição estara sendo submetida à fadiga térmica por flutuações de temperatura.

Nad Imediações de variações bruscas de diâmetro, obtidas através de junções soldadas desenvolvem tensões muito elevadas que podem uitrapassar as tensões admissíveis de trabalho do material, causando, em decorrência falhas no mesmo. Exemplificando, para se ter idéia da ordem de grandeza das tensões, tome-se dois tubos cilíndricos, cujos diâmetros e espessuras sejam iguais, que tenham coeficiente de expansão térmica diverso. Considere - se ainda, que estes elementos estejam soldados conforme indica a figura 2. Se um dos tubos for de aço ferrítico e o outro de aço austenítico a diferença entre seus coeficientes de expansão térmica é de 6 X 10^{~6/o}C, Neste caso, a tensão máxima nas imediações da junção é dada por ⁴.

 $\sigma = 0,293$ E, ΔT , $\Delta \alpha$,

ondet

E e o modulo de elasticidade longitudinal do material;

1

(1)

∆T é um desnível de temperatura;

 $\Delta \alpha$ é a diferença entre os dois coeficientes de expansão térmica dos tubos.

Considerando uma mudança realística na temperatura de 540°C, resulta que a tensão térmica produzida será de aproximadamente 190 M N/m².

Neste trabalho se considera somente tubos de diâmetros diferentes, havendo então, sempre uma junta de transição.

Desta forma, as propriedades mecânicas e térmicas das transições soldadas podem desempenhar importantes funções, a fim de reduzirem as tensões térmicas introduzidas pelas flutuações da temperatura.

Sabe-se que recentes aperfeiçoamentos nas técnicas de fabricação estão permitindo que aquelas propriedades sejam controladas. Especial atenção tem sido dada ao controle do coeficiente de expansão térmica na região de transição, com a finalidade de se reduzir as tensões. Isto é devido ao fato de que aquele coeficiente é um dos mais importantes fatores que influenciam na resistência à fadiga térmica, uma vez que sua relação com as deformações é direta e proporcional.

Como se pode ter algum controle sobre o coeficiente de ex pansão térmica, é razoavel perguntar:

a) Em uma união soldada de tubos com diferentes coeficientes de expansão térm<u>i</u> ca, qual é a máxima diferença que os mesmos podem ter, para que as tensões ao longo da estrutura estejam dentro dos limites admissíveis?

b) Qual : e a sua distribuição para que isto seja possível?

Respondendo a estas indagações, foi feito um estudo⁹ por 1. W. GOODALL e C. M. WHITWAM, para juntas cilfndricas em seu artigo: "ON OPTIMIZING THERMAL STRESSES IN CILINDRICAL SHELLS ". Para responder a essas mesmas perguntas para transições cônicas circulares retas, desenvolveu-se o

presente trabalho. O objetivo inicial foi a determinação da distribuição otima do coeficiente de expansão térmica ao longo da região de transição. A formulação obtida permitiu também maximizar a diferença entre os valores dos coeficientes de expansão térmica nos extremos da junta. Este desenvolvimento, além de possibilitar a resolução dos problemas acima, resolve o problema de determinar o máximo gradiente de temperatura entre as extremidades da junta de transição, bem como sua distribuição.

Isto tem aplicabilidade em aquecimentos ou resfriamentos de tubulações cônicas e pode ser usado, por exemplo, na otimização da distribuição de resfriadores ao redor e ao longo da tubulação e no controle do perfil de temperatura em processos de aliviamento de tensões.

Neste trabalho, primeiramente, encontrou-se, a partir das equações de equilíbrio para cascas finas, as equações para as partes da estrutura, levando em consideração as suas formas e carregamento. Dessa maneira , as equações de equilíbrio sempre foram reduzidas a um sistema de equações diferenciais de segunda ordem. As soluções para os sistemas foram determinadas pela superposição da solução particular à homogênea. Na região cônica, a parte não homogênea da equação diferencial foi desenvolvida em uma série de Heaviside. Isto possibilitou a determinação das solicitações e dos deslocamentos das cascas, como combinação linear daquelas funções. A solução homogênea resu<u>i</u> tou de uma equação de Bessel modificada, cuja solução ficou em termos das funções de Kelvin ber₂y, bel₂y, Ker₂y e Kel₂y. Nas regiões cilíndricas, fig. 4 , a solução particular é nula e a solução homogênea é obtida de uma equação 11near a coeficientes constantes.

A determinação das constantes de integração foi realizada através das condições de equilíbrio e continuidade das junções.

Duas das dez constantes obtidas são facilmente relacionãveis com outras duas das oito restantes. Preferiu-se determinar estas oito

constantes não através de um sistema de 8 equações a 8 incógnitas, mas através do método dos coeficientes de influência. Assim, utilizando as condições de equilibrio nas junções, encontrou-se, resolvendo um sistema linear de 4 eguações a 4 incõgnitas, as guatro constantes da região cônica em função das " reações de descontinuidades " M_1^b , Q_1^b , M_2^b e Q_2^b . As reações de descon tinuidade são forças e momentos, introduzidas para restabelecer a continuidade da estrutura nas junções, ver figura 18. Em seguida, foi necessário o estabelecimento das equações das solicitações e deslocamentos das cascas para possibilitar o uso das condições de continuidade nas junções da estrutura. Aqui foram definidas as diversas funções de influência para cada variável. Estas funções, quando aplicadas em um determinado ponto, tornam-se os coeficientes de influência. Com isto, resolvendo outro sistema linear de 4 equações a 4 incógnitas chegou-se aquelas reações em função do carregamento. Após, obteve-se todas as equações das solicitações e deslocamentos da estrutura, bem como as das tensões, Como estas ficaram lineares em relação às funções de Heaviside e, objetivando o emprego de programação linear para otimização, bastou então, escolher um critério de projeto cuja superfície de tensão fosse seccionalmente linear.

A otimização foi realizada através do programa LP - MOSS da IBM, trazendo com isto a limitação quanto ao número de equações de restrição que pode ser de até 700 para tal programa. Os coeficientes das restrições foram obtidos através de programação própria, utilizando o Computador I B M 1130, 16K da UFSC.

Mostra≂se no apêndice 1, o fluxograma do programa elaborado para obtenção daqueles coeficientes. A aplicação do programa para diversas geometrias é fácil, porém demorada, uma vez que envolve diversas séries das funções de Bessel, cujas convergências são lentas. Além disso, deve∹se tomar precaução quanto ao argumento das funções de Kelvin ber₂ (µ_by), Ker₂ (µ_by) ; bei₂ $(\mu_b y)$ e Kei₂ $(\mu_2 y)$. O máximo valor do argumento ocorre quando y = 1, sendo então determinado por μ_b que é uma constante da parte cônica , ver eq. 88 pg. 47.

$$\mu_{\rm b}^{4} = \frac{192(1 - v^2)}{{\rm sen}^2 \alpha} \left(\frac{L}{{\rm h}}\right)^2$$
(2)

Na figura 3 mostra-se um gráfico do qual se pode obter os limites de aplicabilidade do programa.

, ur s

ond .

CAPÍTULO 2- DEFINIÇÃO DO PROBLEMA E HIPÓTESES SIMPLIFICATIVAS

Neste capítulo se apresenta a definição do problema com t<u>o</u> dos seus elementos e hipóteses simplificativas.

2.1 GEOMETRIA.

A estrutura em consideração compõe-se de duas regiões cilindricas retas ligadas por uma região cônica reta, sendo as mesmas co-axiais. Estas regiões foram denominadas conforme a figura 4 , por:

a) Região Cilíndrica A.

b) Região Cônica B.

c) Região Cilíndrica C.

As junções foram chamadas de l e ll. As regiões cilíndricas A e C possuem raios R_a e R_c, respectivamente. Os raios das bordas da região cônica B são iguais aos dos tubos cilíndricos aos quais está unida.

A espessura das paredes é considerada constante através da estrutura e igual a <u>h</u>.

O mesmo procedimento que se adotou para solucionar o problema para espessura constante, pode ser aplicado no caso de se ter espessura proporcional à distância ao ápice do cone. Pois ainda neste caso a solução do modelo matemático pode ser obtida por desmembramento.⁵

O comprimento da junta, região cônica B, e l.

2.2 DEFINIÇÃO E HIPÓTESES SIMPLIFICATIVAS.

Considere-se o material da estrutura elástico, homogêneo e isotrópico.

Supõe-se que os elementos da estrutura possam ser considerados como cascas elásticas finas, possibilitando-desta forma o emprego de <u>u</u> ma Teoria das Cascas Elásticas Finas. Logo, as equações cobtidas se fundamentam nos postulados de Love¹³:

a) A casca é fina.

b) As deformações da casca são pequenas.

- c) A tensão normal segundo a perpendicular à superfície de referência é des prezivel.
 d) Normais à superfície da casca permanecem normais a ela apôs a deforma
 - ção e não alteram o seu comprimento durante a deformação.

Uma indicação de que determinada casca é fina, é obtida da relação entre a espessura e o raio de curvatura da superfície de referência. Quando esta relação é menor que 1/10, em geral, se pode dizer que a casca é fina $\frac{13}{13}$

O segundo postulado permite referir todas as derivações e cálculos à configuração original da casca e, juntamente com a lei de Hook, assegurara linearidade do modelo matemático resultante.

0 postulado, referente à preservação da normal, implica em que as componentes das deformações na^ldireção da normal à superfície da casca, desapareçam, isto é

$$\begin{array}{rcl}
\mathbf{r} &= \mathbf{\gamma} &= \mathbf{\gamma} &= \mathbf{0};\\
\mathbf{n} & 1\mathbf{n} & 2\mathbf{n}
\end{array}$$

onde: ε_n - deformação segundo a normal;

 γ_{1n} - distorção no plano ξ = cte., segundo a normal; γ_{2n} - distorção no plano Θ = cte., segundo a normal.

A restrição de casca fina, torna razoável o terceiro postulado de Love, que é expresso por

(4)

(3)

A análise da estrutura é feita considerando as regiões cilíndricas A e C como cascas semi-infinitas, enquanto que a região cônica B é considerada curta, isto é, há interação de efeitos entre as duas bordas. 0 carregamento é somente de natureza térmica. As tensões e

9

Jer

deformações são provenientes de variações da temperatura, ou do coeficiente de expansão térmica, ou ainda de ambos, porém, restritas à direção axial da e<u>s</u> trutura. Como exemplo desse carregamento, tem-se o caso em que as junções acabaram de ser soldadas, resultando uma distribuição axial de temperatura na região de transição. Outro caso em que ocorre aquele tipo de carregamento é o da realização de um resfriamento, onde h**a** também um gradiente axial de temperatura.

Na obtenção das equações, governantes do comportamento da estrutura, o parâmetro controlador da distribuição de tensões na região cônica B é dado por, ver equação (77b) página 44;

$$\xi \frac{d(\psi)}{d\xi}; \qquad (5)$$

onde: ξ é uma coordenada axial, figo 6, e ψ foi feito

$$\psi(\xi) = \alpha(\xi) \left[T(\xi) - T_{o} \right], \qquad (6)$$

Sendo: α (ξ) - coeficiente de expansão térmica do material, variável com ξ; Τ (ξ) - distribuição de temperatura;

T_o - temperatura de referência.

Como as distribuições de tensões nas regiões cilíndricas são controladas por $\frac{d}{d} \left(\psi \right)$, foi suposto, por conveniência, uma distribuição arbitrária para a de rivada de ψ (ξ). A determinação desta distribuição é feita com a finalidade de minimizar os danos causados pela fadiga térmica. Os danos causados pela fadiga térmica são considerados minimizados quando as tensões térmicas são minimizadas. Isto não é uma consequência necessária, já que podem existir certos tipos de juntas de transição que envolvam a formação de regiões de material com baixa resistência à fadiga. Contudo, devido à falta de informações experimentais, é aqui suposto que as propriedades de fadiga na junta sejam uniformes e que, reduzindo o campo de variação das tensões, pode-se aumentar a sua vida. Fisicamente, o controle da distribuição das tensões térmicas é feito indiretamente pela função $\psi(\xi)$. O coeficiente de expansão térmica é suposto variar de α_a à (α_c) , que são os coeficientes das regiões cilíndricas A e C respectivamente. Da mesma forma, a temperatura na região de transição varia de T_a à T_c, temperaturas dos tubos cilíndricos A e C respectivamente.

Considere-se também que quando a estrutura está sob distribuição uniforme de temperatura, T_0 , o estado de tensões térmicas ao longo da mesma é nulo. A variação da temperatura ocorrerá gradativamente desde T_0 até a distribuição mostrada na figura 4, de tal modo que os efeitos transitórios possam ser desprezados. As temperaturas e coeficientes de expansão térmica nas regiões cilíndricas A e C foram consideradas constantes. Define-se os valores do parâmetro $\Psi(\xi)$ nas regiões A e C, respectivamente como:

$$a = \alpha \left(T - T \right),$$

$$\psi_{c} = \alpha \left(\begin{array}{c} T - T \end{array} \right) ,$$

onde: α_a - coeficiente de expansão térmica na região cilíndrica A;

α_c - coeficiente de expansão térmica na região cilíndrica C; T_a - temperatura na região A;

T - temperatura na região C.

e

Feito isto, o problema de maximizar o gradiente de tempera tura entre as extremidades da junta de transição, ou o de determinar uma distribuição adequada para o coeficiente de expansão térmica através da junta, po de ser posto matematicamente da seguinte forma: determinar a distribuição do parâmetro $\frac{d\psi}{dF}$, que maximiza a diferença $|\psi_c - \psi_a|$. Isto é realizado man-

tendo as tensões axial e circunferencial, σ_1 e σ_2 , restritas a uma superficie

(7)

(8)

do espaço de tensões de uma junta de transição de comprimento 1.De fato, as soluções dos problemas propostos podem ser obtidas deste, considerando-se no primeiro caso, $\alpha_a = \alpha_c = \alpha = cte$. e no segundo, $T_a = T_c = T = cte$., através da região de transição.

CAPÍTULO 3 - MODELO MATEMÁTICO

Levando em consideração o exposto no Capítulo 2, procede--se, a seguir, à obtenção das equações que regem o comportamento da estrutura. Primeiramente, obtém-se o modelo matemático da parte tronco-cônica e depois os das partes cilíndricas.

3.1 MODELO MATEMÁTICO DA PARTE TRONCO-CÔNICA.

Sabe-se que uma casca fina é um corpo limitado por duas su-/ perfícies curvas, separadas. Pode ser considerada como a materialização de uma superfície curva⁵

Uma casca fina possul três identificadores fundamentais: a) Superfície de referência;

b) Espessura;

c) Contorno ou bordas.

Destes, o mais importante é a superfície de referência por definir a forma da casca e por ser ela que governa o comportamento da mesma.

3.1.1 DEFINIÇÃO DA SUPERFÍCIE DE REFERÊNCIA.

 $R_{o} = R_{o}(x),$

Trata-se de uma superfície de revolução, uma vez que é ger<u>a</u> da por uma curva plana que gira em torno de um eixo situado em seu próprio pl<u>a</u> no. A curva plana é chamada "meridiano" da superfície. Quando a curva é rotada em torno do eixo, um ponto sobre ela descreverá um círculo, chamado " paralelo ". Se a posição dos paralelos de uma superfície de revolução for definida pela coordenada " x ", figura 5, a equação do meridiano é dada por

onde R_o é o raio do paralelo à posição <u>x</u>. Com estas definições e observando a figura 5 , o vetor posição de um ponto sobre a superfície de revolução é d<u>a</u>

do por

$$\vec{r}(x, \Theta) = R_{O}(x) \cos \Theta I + R_{O}(x) \sin \Theta j + x k$$
(9)

Determina-se a seguir, as quantidades da primeira e segunda \rightarrow formas fundamentais da superfície dada por r(x, 0) em (9). Porém, antes disso, é vantagem adimensionalizar a coordenada <u>x</u>. Para tanto, faz-se

$$x = \xi L .$$
 (10)

Logo, ξ na região cônica variará entre R_a/R_c e 1, ($R_a / R_c \le \xi \le 1$). A origem do sistema de eixos foi colocada no vértice do cone. Considere um cone hipotético onde a variação do ξ fique entre 0 e 1, ($0 \le \xi \le 1$). Em decorrência da relação (10) e (9), vem que:

$$r(\xi L, \Theta) = R_{O}(\xi L) \cos \Theta I + R_{O}(\xi L) \sin \Theta J + \xi L k$$
(11a)

Sabe- se que a primeira e segunda formas fundamentais de uma superfície dada por $\vec{r}(\xi L, \Theta)$ em (11a), são, respectivamente:

$$(d_{s})^{2} = \overline{D} \cdot (d_{\xi} L)^{2} + 2F \cdot (d_{\xi} L) \cdot d_{\Theta} + \overline{G} (d_{\Theta})^{2},$$
 (11b)

e

$$K) = \overline{L} (d\xi L)^{2} + 2Md(\xi L) d\Theta + N(d\Theta)^{2}, \qquad (11c)$$

onde define-se as quantidades \overline{D} , F, \overline{G} , \overline{L} , M e N como sendo

$$\overline{D} = \frac{\partial r}{\partial \xi L} \cdot \frac{\partial r}{\partial \xi L} ; \qquad (11d)$$

$$F = \frac{\partial r}{\partial \xi L} \cdot \frac{\partial r}{\partial \Theta} ;$$

$$\overline{G} = \frac{\partial r}{\partial \Theta} \cdot \frac{\partial r}{\partial \Theta}$$
$$\overline{L} = R_{O} R_{O}'' / H$$

$$M = -\frac{\partial^2 \dot{r}}{\partial \Theta \partial \xi L} \cdot \vec{n} ;$$

16

(11e)

(11f)

(11g)

(11h)

$$N = R_0^2 / H ; (111)$$

$$H = \sqrt{\overline{D}\overline{G} - F^2}$$
 (11j)

Portanto necessita-se para obtenção das quantidades das formas fundamentais das superfícies as derivadas $\frac{\partial \vec{r}}{\partial \xi L} = \frac{\partial \vec{r}}{\partial \Theta}$, que são dadas abaixo:

$$\frac{\partial \vec{r}}{\partial \xi L} = R_0^{\dagger} \cos \Theta \vec{l} + R_0^{\dagger} \sin \Theta \vec{j} + \vec{k} e \qquad (12)$$

$$\frac{\partial \vec{r}}{\partial \Theta} = -R_{o} \sin \Theta \vec{i} + R_{o} \cos \Theta \vec{j}$$
(13)

onde a "linha "representa derivada em relação a & L. Desenhando, figura 6, um corte meridional na figura 5, verifica-se que as quantidades geométricas podem ser facilmente determinadas. Assim,

$$R_{o} = \xi L tg\alpha$$
 (14)

onde α e o semi-ângulo de abertura do cone.

As quantidades da primeira forma fundamental das superfícies¹³, substituindo as relações (12) e (13) em (11), ficam

$$\overline{D} = 1 + (R_0^{\dagger})^2$$
(15)

$$F = 0 \tag{16}$$

$$\overline{G} = R_{O}^{2}$$
(17)

$$H = R_{o} \sqrt{1 + (R_{o}^{1})^{2}}$$
(18)

Da (16) se conclui¹³ que os meridianos e paralelos formam uma família ortogonal de linhas paramétricas. Com isto, a primeira forma fundamental das superfícies ficou sendo:

$$\left(\frac{ds}{d}\right)^{2} = \overline{D} \left(\frac{d}{\xi}L\right)^{2} + \overline{G} \left(\frac{d}{\theta}\right)^{2}$$
(19)

De (14) vem
$$\frac{d\kappa_o}{d\xi L} = tg\alpha$$
 (20)

Substituindo (20) em (15), (14) em (17) e introduzindo os resultados disto na (19), resulta:

$$(ds)^{2} = (\frac{L}{\cos \alpha})^{2} \cdot (d\xi)^{2} + (\xi L t g \alpha)^{2} \cdot (d\Theta)^{2}$$
 (21)

Identificando (21) com[°]a primeira forma fundamental dada em (19), vem que: 🗡

$$\overline{A}_{1} = \sqrt{D} = \frac{L}{\cos \alpha} , e \qquad (22)$$

$$\overline{A}_2 = \sqrt{\overline{G}} = \xi \operatorname{Ltg}\alpha$$
 (23)
 $\overline{A}_1, \overline{A}_2 = quantidades da primeira forma fundamental.$

$$\overline{L} = R_{O} R_{O}^{H} / H = 0$$
 (24)

$$M = -\frac{\partial^2 \vec{r}}{\partial \Theta \partial \xi L} \quad \vec{n} = 0$$
 (25)

$$N = R_0^2 / H$$
 (26)

Como F e M são nulos, da teoria de superfícies, conclui-se que os meridianos e paralelos são linhas de curvatura principal. Os raios pri<u>n</u> cipais de curvatura são facilmente obtidos uma vez que são dados por¹³:

$$R_{1} = \overline{D} / \overline{L} e$$

$$R_{2} = \overline{G} / N$$
(27)
(28)

onde: R_1 é o raio das curvas "meridiano " da superfície R_0 (ξ);
R₂ - é a distância ao longo da normal à curva R₀ (ξ) traçada de um ponto ao eixo de revolução da superfície¹⁹; Tendo em vista (24) em (27) vem

R__=∞; logo a curvatura dos meridianos é

$$\frac{1}{R_1} = 0$$
 (29)

Trazendo em (28) os valores de G e N de (17) e (26) respectivamente, tem-se

$$R_{2} = \frac{\xi L t g \alpha}{\cos \alpha} \quad \cdot \quad \frac{1}{R_{2}} = \frac{\cos \alpha}{\xi L t g \alpha}$$
(30)

A atual combinação de $\overline{A_1}$, $\overline{A_2}$, R_1 e R_2 , substituída nas condições de Gauss - Codazzi resulta em que as mesmas são identicamente s<u>a</u> tisfeitas, como se pode verificar. Logo $\overline{A_1}$, $\overline{A_2}$, R_1 e R_2 dados em (22), (23), (29) e (30), definem a superfície cônica da região de transição.

3.1.2 COORDENADAS DA CASCA.

A hipótese que assegura a preservação da normal numa casca fina, implica em que os deslocamentos sejam linearmente distribuídos ao longo da espessura da casca. ConseqUentemente, o comportamento de um ponto genérico da casca pode ser correlacionado à intersecção da normal à superfície da casca, que passa por este ponto, com a superfície de referência. Seleciona-se para superfície de referência a superfície média da casca, isto é, aquela que dista h/2 das superfícies que limitam a casca.

Adota-se para este trabalho um sistema de coordenadas curvillneas que coincidem com as linhas ortogonais de curvaturas principais, que já foram descritas em 3.1.1.

Para descrever a locação de um ponto, no espaço ocupado pela casca, define-se o seguinte vetor:

NUCLEA CONTRACT

21

(31)

 \vec{R} (ξ , Θ , ζ) = \vec{r} (ξ , Θ) + ζ \vec{n} (ξ , Θ)

 $R_a/R_c \leq \xi \leq 1$ e $0 \leq \Theta < 2 \Pi$,

onde:

r é o vetor posição de um ponto na superfície de referência;

n - é o vetor unitário normal à superfície, traçado pelo ponto;

ζ-é a distância do ponto à superfície de referência medida segundo a normal.

A magnitude de um elemento de comprimento no espaço definido por \vec{R} (ξ , Θ , ζ) em (31), será dado por ¹³

$$(ds)^{2} = \overline{A}_{1}^{2} (1 + \zeta/R_{1})^{2} (d\xi)^{2} + \overline{A}_{2}^{2} (1 + \zeta/R_{2})^{2} (d\Theta)^{2} + (d\zeta)^{2}.$$

(32)

Tendo-se estabelecido o sistema de coordenadas, define - se agora o elemento fundamental, como sendo um elemento obtido da casca por meio de duas superfícies separadas de " d ζ ", situadas à distância ζ da superfície de referência, e por quatro cortes perpendiculares à superfície de referên cia coincidentes com dois pares de linhas paramétricas adjacentes, conforme f<u>i</u> gura 7.

Nesta figura estão apresentadas, também, todas as tensões que podem atuar no elemento e suas orientações.

3.1.3 RELAÇÕES ENTRE-DESLOCAMENTOS E DEFORMAÇÕES.

Mostra-se nos textos de Elasticidade que num sistema de coordenadas curvilíneo ortogonal, com o qual se trabalha, onde o quadrado da mag nitude de um elemento de comprimento no espaço da casca é dado por uma expressão da forma (32), as deformações lineares e as distorções são relacionadas com as componentes do deslocamento¹⁸ por:

学习的发展的现在分词引起的新闻的新闻的新闻

ger yn er

$$\varepsilon_{1} = \frac{1}{\overline{A}_{1}(1+\zeta/R_{1})} \left(\frac{\partial U_{1}}{\partial \xi} + \frac{U_{2}}{\overline{A}_{2}} \cdot \frac{\partial \overline{A}_{1}}{\partial \Theta} + \frac{\overline{A}_{1}W}{R_{1}} \right)$$
(33)

$$2 = \frac{1}{\overline{A_2(1+\zeta/R_2)}} \left(\frac{\partial U_2}{\partial \Theta} + \frac{U_1}{\overline{A_1}} \cdot \frac{\partial \overline{A_2}}{\partial \xi} + \frac{\overline{A_2}}{R_2} W\right)$$
(34)

$$\varepsilon_n = \frac{\partial W}{\partial \zeta}$$
(35)

$$Y_{1n} = \frac{1}{\overline{A_1}(1+\zeta/R_1)} \cdot \frac{\partial W}{\partial \xi} + \overline{A_1}(1+\zeta/R_1) \frac{\partial}{\partial \zeta} \frac{U_1}{\overline{A_1}(1+\zeta/R_1)}$$
(36)

$$Y_{2n} = \frac{1}{\overline{A_1}(1+\zeta/R_2)} \cdot \frac{\partial W}{\partial 0} + \overline{A_2}(1+\zeta/R_2) \frac{\partial}{\partial \zeta} \frac{U_2}{\overline{A_2}(1+\zeta/R_2)}$$
(37)
$$Y_{12} = \frac{\overline{A_2}(1+\zeta/R_2)}{\overline{A_1}(1+\zeta/R_1)} \cdot \frac{\partial}{\partial \zeta} \frac{U_2}{\overline{A_2}(1+\zeta/R_2)} + \frac{\overline{A_1}(1+\zeta/R_1)}{\overline{A_2}(1+\zeta/R_2)} \cdot \frac{\partial}{\partial \zeta} \frac{U_1}{\overline{A_1}(1+\zeta/R_1)}$$
(38)

onde:

 ϵ_1 - deformação linear segundo os meridianos, linhas de Θ = cte.; ϵ_2 - deformação linear segundo os paralelos, linhas de ξ = cte.; ϵ_n - deformação linear segundo a normal à superfície; γ_{1n} - distorção no plano circunferencial segundo a normal; γ_{2n} - distorção no plano meridional segundo a normal; γ_{12} - distorção no plano circunferencial segundo o paralelo;

 U_1 - componente do deslocamento segundo os meridianos;

 U_2 - componente do deslocamento segundo os paralelos;

🖌 – componente do deslocamento segundo a normal à superfície. 浴

Nas relações (33) a (38), observa-se que ainda não foram aplicadas as hipóteses de Love. A fim de introduzí-las, primeiramente, deve-se lembrar que a hipótese sobre a preservação da normal implica que os deslocame<u>n</u> tos sejam linearmente distribuídos através da espessura da casca. Para tanto , considere-se que as componentes do deslocamento sejam representadas pelas seguintes relações¹³:

$$U_{1}(\xi, \Theta, \zeta) = u(\xi, \Theta) + \zeta \frac{\partial u}{\partial \zeta} (\xi, \Theta, \Theta) ; \qquad (39)$$

$$U_{2}(\xi, \Theta, \zeta) = v(\xi, \Theta) + \zeta \frac{\partial v}{\partial \zeta} (\xi, \Theta, O); \qquad (40)$$

$$W(\xi,\Theta,\zeta) = w(\xi,\Theta). \qquad (41)$$

As quantidades u, v, w representam as componentes do deslocamento de um ponto na superfície de referência, segundo a direção meridional, circunferencial e normal da superfície, respectivamente. As quantidades u' e v' representam rotações da tangente à superfície de referência segundo os meridianos e paralelos da superfície. Prossegue-se, levando (41) em (35) e concluindo que:

$$\varepsilon_n = 0$$
, (42)

verificando o que foi postulado. Tendo em vista a hipótese de preservação da normal, matematicamente expressa em (3) pode-se determinar as rotações u' e v' que passam a ser denominadas de $\chi_1 e \chi_2$, respectivamente. Com efeito, substituindo (39), (40) e (41) em (36) e (37) obtém-se

$$x_1 = \frac{u}{R_1} - \frac{1}{\overline{A_1}} \frac{\partial w}{\partial \xi}$$
(43)

$$X_{2} = \frac{v}{R_{2}} - \frac{1}{\overline{A}_{2}} \frac{\partial w}{\partial \Theta}$$
(44)

Aplicando, agora, a hipótese de que a casca é fina, ζ/R<< 1, nas expressões (33), (34) e (38), e utilizando as relações (43) e (44) se encontra que as de-

formações lineares não nulas numa casca elástica fina são dadas por:

$$\varepsilon_{1} = \frac{1}{\overline{A}_{1}} \frac{\partial}{\partial \xi} \left(u + \zeta \chi_{1} \right) + \frac{v + \zeta \chi_{2}}{\overline{A}_{1} \cdot \overline{A}_{2}} \frac{\partial \overline{A}_{1}}{\partial \Theta} + \frac{w}{\overline{R}_{1}} ; \qquad (45)$$

$$\varepsilon_{2} = \frac{1}{\overline{A}_{2}} \frac{\partial}{\partial \Theta} \left(v + \zeta \chi_{2} \right) + \frac{u + \zeta \chi_{1}}{\overline{A}_{1} \cdot \overline{A}_{2}} \frac{\partial \overline{A}_{2}}{\partial \xi} + \frac{w}{\overline{R}_{2}} ;$$

e as distorções são:

 $\varepsilon_1 = \varepsilon_1^0 + \zeta \kappa_1$

 $\varepsilon = \varepsilon^0 + \zeta \kappa$

 $\gamma = \gamma^0 + \zeta \tau$

$$\gamma_{12} = \frac{\overline{A}_2}{\overline{A}_1} \frac{\partial}{\partial \xi} \left(\frac{v + \zeta \chi_2}{\overline{A}_2} \right) + \frac{\overline{A}_1}{\overline{A}_2} \frac{\partial}{\partial \Theta} \left(\frac{u + \zeta \chi_1}{\overline{A}_1} \right) ; \qquad (46)$$

As deformações lineares e distorções ainda podem ser representadas por:

(47)

(48)

(49)

$$\kappa_{1} = \frac{1}{\overline{A}_{1}} \quad \frac{\partial \chi_{1}}{\partial \xi} + \frac{\chi_{2}}{\overline{A}_{1}} \quad \frac{\partial \overline{A}_{1}}{\partial \Theta}$$

$$\kappa_{2} = \frac{1}{\overline{A}_{2}} \quad \frac{\partial \chi_{2}}{\partial \Theta} + \frac{\chi_{1}}{\overline{A}_{1}\overline{A}_{2}} \quad \frac{\partial \overline{A}_{2}}{\partial \xi}$$
$$\tau = \frac{\overline{A}_{2}}{\overline{A}_{1}} \quad \frac{\partial}{\partial \xi} \left(\frac{\chi_{2}}{\overline{A}_{2}} \right) + \frac{\overline{A}_{1}}{\overline{A}_{2}} \quad \frac{\partial}{\partial \Theta} \left(\frac{\chi_{1}}{\overline{A}_{1}} \right)$$

•

(50)

(51)

(52)

- $\epsilon_{\rm c}^0$ representa deformação linear meridional na superfície de referência;
- ϵ^0 representa deformação linear circunferencial na superfície de referê<u>n</u> cia;
- γ representa a distorção do plano ξ = cte. segundo o paralelo na super-12 fície de referência.
- κ e κ representam as componentes linearmente distribuídas das deforma-1 2 ções provenientes de flexões da superfície de referência.

 τ - é a torção da superfície de referência durante a deformação.

Tendo todas as expressões das componentes das deformações e distorções em relação à superfície de referência, falta ainda introduzir nelas o efeito da simetria axial do carregamento e da superfície de referência Assim, todas as quantidades geométricas são independentes de Θ e, conseqUentemente todas as variáveis da casca também o são. Trazendo os valores de $\overline{A_1}$, $\overline{A_2}$, $1/R_1$ e $1/R_2$ das expressões (22), (23), (29) e (30) respectivamente, para as equações (43), (44), (49), (50), (51) e (52), obtém-se

 $x_1 = -\frac{\cos\alpha}{L} \frac{dw}{d\xi}$

(53a)

 $\chi_2 = 0$

ε ⁰ ≡ 1	<u>cos</u> α L	<u>du</u> dद्र	
ε ⁰ ≡ 2	<u>cos α</u> ξLtg (, (u	tgo
γ ⁰ 12	= 0	. i	
к = 1	<u>cos α</u> L	^d χ 1 dξ	•
к = 2	<u>cos α</u> ξL	• x ₁	

(53c)

(53b)

(53d)

(5**3**e)

(53f)

(53g)

(53h)

27

 $\tau = 0$

3.1.4 OBTENÇÃO DAS EQUAÇÕES DE EQUILÍBRIO.

A linearidade das tensões e deformações através da espessura da casca, faz com que seja conveniente substituir a consideração usual de tensão pela consideração de forças e momentos por unidade de comprimento. Isto se obtém integrando as distribuições de tensões através da espessura da casca. E<u>s</u> ta integração também elimina as variações segundo z, resultando, assim, um modelo matemático bidimensional. Com esta substituição é necessário alterar a d<u>e</u> finição do elemento fundamental. De acordo com a definição anterior, sua espe<u>s</u> sura é " dz ", agora devido à integração, o elemento passa a ter espessura h. Neste elemento atuam somente as forças e momentos por unidade de comprimento j pois o carregamento é somente de natureza térmica.

As relações entre as forças e momentos por unidade de compr<u>i</u> mento e as deformações podem ser facilmente obtidas e são dadas por

$$N_{1} = \frac{Eh}{(1 - v^{2})} \cdot \frac{(\varepsilon^{0} + v\varepsilon^{0}) - Eh\alpha T}{1 - v}$$
(54a)

$$N_{2} = \frac{Eh}{(1 - v^{2})} \qquad (\varepsilon_{2}^{0} + v\varepsilon_{1}^{0}) = \frac{Eh\alpha T}{1 - v} \qquad (54b)$$

$$M_{1} = D (\kappa_{1}^{0} + v\kappa_{2}^{0}) \qquad (54c)$$

$$M_{2} = D (\kappa_{1}^{0} + v\kappa_{2}^{0}) \qquad (54d)$$

onde:

$$D = \frac{Eh^3}{12(1 - v^2)}$$
(54e)

As relações entre as forças e momentos por unidade de comprimento e as tensões são obtidas da seguinte forma: da lei de Hook se tem que:

$$\sigma_{1} = \frac{E}{1 - \nu^{2}} \left[\left(\epsilon_{1}^{0} + \nu \epsilon_{2}^{0} \right) + \zeta \left(\kappa_{1} + \nu \kappa_{2} \right) - (1 + \nu) \alpha T \right]$$
(55a)

$$\sigma_{2} = \frac{E}{1 - v^{2}} \left[\left(\varepsilon_{2}^{\circ} + v \varepsilon_{1}^{\circ} \right) + \zeta \left(\kappa_{2} + v \kappa_{1} \right) - \left(1 + v \right) \alpha T \right]$$
(55b)

Das equações (54) se tira:

 $\kappa_1 + \nu \kappa_2 = \frac{1}{D} M_1$

 $+ v\kappa_1 = \frac{1}{D} M_2$

 $\sigma_2 = \frac{N_2}{h} + \frac{12M_2}{h^3} \zeta$

onde

e

ε⁰ 1

$$+ \nu \varepsilon_{2}^{0} = \frac{\left(1 - \nu^{2}\right)}{Eh} \left[N_{1} + \frac{Eh\alpha T}{(1 - \nu)}\right], \qquad (55c)$$

$$\varepsilon_{1}^{o} = \frac{\left(1 - \nu^{2}\right)}{Eh} \left[N_{2} + \frac{Eh\alpha T}{(1 - \nu)} \right], \qquad (55d)$$

(55e)

(55f)

Substituindo em (55a) e (55b) as quantidades dadas em (55c à 55f) vem $\sigma_{1} = \frac{N_{1}}{h} + \frac{12M_{1}}{h^{3}} \zeta$ (56a)

(56Ь)

 σ_1 - tensão na direção meridional;

 σ_2 - tensão na direção circunferencial;

N₁ - força por unidade de comprimento segundo o meridiano;;

 N_2 - força por unidade de comprimento circunferencial;

M₁ - momento por unidade de comprimento no plano meridional.

 M_2 - momento por unidade de comprimento no plano circunferencial.

No restante do trabalho, omite-se a referência que as forças e momentos (N_1 , N_2 , M_1 e M_2) são por unidade de comprimento.

Na figura 8, mostra-se a ação das forças, ficando também

definida a orientação positiva de suas componentes. Da mesma forma, na figura 9 estão os momentos, e um momento positivo é definido como sendo aquele que produz tração na superfície externa da casca.

Através_do-princípio de Hamilton chega-se às equações de equilíbrio¹³ das cascas elásticas finas, que são:

$$\frac{\partial N_1 \overline{A}_2}{\partial \xi} + \frac{\partial N_{21} \overline{A}_1}{\partial \Theta} + N_{12} \frac{\partial \overline{A}_1}{\partial \Theta} - N_2 \frac{\partial \overline{A}_2}{\partial \xi} + \overline{A}_1 \overline{A}_2 \left(\frac{Q_1}{R_1} + \overline{q}_1 \right) = 0 \quad (57a)$$

$$\frac{\partial N_{12}\overline{A_{2}}}{\partial \xi} + \frac{\partial N_{2}\overline{A_{1}}}{\partial \Theta} + \frac{N_{21}}{\partial \xi} - \frac{\partial \overline{A_{2}}}{\partial \xi} - \frac{N_{1}}{\partial \Theta} + \frac{\partial \overline{A_{1}}}{\partial \Theta} + \frac{\overline{A_{1}}\overline{A_{2}}}{\partial \xi} \left(\frac{Q_{2}}{R_{2}} + \overline{q}_{2}\right) = 0$$
(57b)

$$\frac{\partial Q_1 \overline{A}_2}{\partial \xi} + \frac{\partial Q_2 \overline{A}_1}{\partial \Theta} = \left(\frac{N_1}{R_1} + \frac{N_2}{R_2}\right) \cdot \overline{A}_1 \overline{A}_2 - \overline{q}_n \overline{A}_1 \overline{A}_2 = 0$$
(57c)

$$\frac{\partial M_1 \overline{A}_2}{\partial \xi} + \frac{\partial M_2 1 \overline{A}_1}{\partial \Theta} + M_1 2 \frac{\partial \overline{A}_1}{\partial \Theta} - M_2 \frac{\partial \overline{A}_2}{\partial \xi} - Q_1 \overline{A}_1 \overline{A}_2 = 0$$
 (57d)

$$\frac{\partial M_{12}\overline{A}_{2}}{\partial \xi} + \frac{\partial M_{2}\overline{A}_{1}}{\partial \Theta} + \frac{M_{21}}{\partial \xi} - \frac{\partial \overline{A}_{2}}{\partial \xi} - \frac{M_{1}}{\partial \Theta} - \frac{Q_{2}\overline{A}_{1}\overline{A}_{2}}{\partial \xi} = 0$$
(57e)

Uma sexta equação é obtida do equilíbrio de momentos em relação à normal do elemento considerado e tem a forma:

$$\frac{M_{21}}{R_2} - \frac{M_{12}}{R_1} + \frac{N_{21}}{R_1} = 0$$
 (57f)

Esta equação não é obtida pelo princípio de Hamilton devido ao fato de ser uma identidade, considerando a simetria do tensor das tensões.

Neste estudo, devido à simetria axial da geometria e do car regamento, as equações de equilibrio ficam simplificadas e são obtidas a seguir. Da (57a), levando em consideração então, que N₁₂ = N₂₁ = 0 e a não exis tência de carga externa, $\overline{q}_1 = \overline{q}_2 = \overline{q}_n = 0$, obtém-se

$$\frac{d}{d\xi} (N_1 \xi) - N_2 = 0$$

29

(58)

Fig. 9 - Momentos Resultantes atuantes no Elemento Diferencial.

and the second second

As equações (57b e 57f) são identicamente nulas. Tem-seda equação (57c) que:

$$\frac{d}{d\xi} \left(Q_1 \xi \right) - \frac{N_2}{tg\alpha} = 0$$
(59)

Em (57d), substituindo as quantidades que nela existem e, sabendo-se que $M_{12} = M_{21} = 0$, resulta

$$\frac{d}{d\xi} \left(M_{1} \xi \right) - M_{2} - \frac{L}{\cos \alpha} Q_{1} \xi = 0$$

$$\overline{De} (57e), obtem-se: Q_{2} = 0$$
(60)

O sistema constituído pelas equações diferenciais (58),(59) e (60) não pode ser diretamente resolvido para as forças e momentos, porque o número de incógnitas, N_1 , N_2 , M_1 , M_2 e Q_1 excede o número de equações de equil<u>í</u> brio. É conveniente, para o problema em consideração, que se reduza aquele si<u>s</u> tema de três equações diferenciais de primeira ordem num sistema de duas equações diferenciais de segunda ordem¹³. Isto é feito a seguir. A primeira destas equações pode ser obtida da seguinte forma: leva-se nas equações (54c) e (54d) as quantidades dadas em (53f) e (53g) obtendo-se

$$M_{1} = \frac{Eh^{3}}{12(1 - v^{2})} \left(\frac{\cos \alpha}{L} \frac{dx_{1}}{d\xi} + v \frac{\cos \alpha}{L\xi} x_{1} \right)$$
(61a)

$$M_{2} = \frac{Eh^{3}}{12(1-v^{2})} \left(\frac{\cos\alpha}{L\xi} \chi_{1} + v \frac{\cos\alpha}{L} \frac{d\chi_{1}}{d\xi} \right)$$
(61b)

Substituindo (61a) e (61b) em (60) e efetuando as simplificações possíveis ch<u>e</u> ga-se ã primeira equação:

$$\xi \frac{d^{2} x_{1}}{d \xi^{2}} + \frac{d x_{1}}{d \xi} - \frac{x_{1}}{\xi} = \frac{L^{2}}{D \cos^{2} \alpha} Q_{1} \xi$$
 (61c)

A segunda delas é obtida como se segue. Da equação (53d) tira-se

$$w = \frac{\xi L t g \alpha}{\cos \alpha} \varepsilon_2^{\circ} = u t g \alpha$$
 (62a)

Diferenciando esta expressão em relação à variável &, vem

$$\frac{dw}{d\xi} = \frac{d}{d\xi} \left(\frac{\xi \ Ltg\alpha}{\cos\alpha} \ \varepsilon_2^{\circ} \right) - \frac{du}{d\xi} \ tg\alpha$$
(62b)

Da (53c) se obtem o valor de du, substituindo em (62b), resulta

$$\frac{dw}{d\xi} = \frac{d}{d\xi} \left(\frac{\xi L t g \alpha}{\cos \alpha} \varepsilon_2^{\circ} \right) - \frac{L t g \alpha}{\cos \alpha} \varepsilon_1^{\circ}$$
(62c)

Tendo sido suposto que a casca é elástica, pode-se empregar a lei de Hook generalizada obtendo-se para as deformações ε_1^0 e ε_2^0 as seguintes relações:

$$\varepsilon_{1}^{o} = \frac{1}{Eh} (N_{1} - vN_{2}) + \alpha (\xi) \cdot T (\xi) e$$
 (62d)

$$E_2^{o} = \frac{1}{Eh} (N_2 - vN_1) + \alpha (\xi) \cdot T (\xi)$$
 (62e)

onde o parâmetro α (ξ). T (ξ) possul uma determinada distribuição. Substituindo ε_1^0 e ε_2^0 dados em (62d) e (62e) em (62c) obtêm-se que:

$$\frac{\cos\alpha}{Ltg\alpha}\frac{dw}{d\xi} = \frac{d}{d\xi} \left\{ \xi \left[\frac{1}{Eh} \left(N_2 - \nu N_1 \right) + \alpha(\xi) \right] + \alpha(\xi) \right\} - \left[\frac{1}{Eh} \left(N_1 - \nu N_2 \right) + \alpha(\xi) \right] \right\}$$

$$+ \alpha (\xi) . T (\xi)].$$
 (62f)

Da equação (59) resulta

$$N_2 = tg\alpha \frac{d}{d\xi} (Q_1, \xi)$$
 (62g)

Este resultado serve também para eliminar N₁ da equação (58). Com efeito, trazendo (62g) a (58) chega-se a

 $\frac{d}{d\xi} (N_1 \cdot \xi) = tg\alpha \frac{d}{d\xi} (Q_1 \cdot \xi) .$

Resolvendo esta, tem-se

$$N_{1} = \frac{C}{\xi} + tg\alpha Q_{1} \quad ou$$

$$N_{1} = F_{1} (\xi) + tg\alpha Q_{1} , \qquad (62h)$$

com
$$F_1(\xi) = \frac{C}{\xi}$$
; (621)

onde C é uma constante de integração que representa uma força no sentido meridional.

Substituindo (62h) e (62g) em (62f), calculando as derivadas e já simplificando, chega-se à segunda das equações:

$$\frac{d^2}{d\xi^2} \left(Q_1 \cdot \xi \right) + \frac{d}{d\xi} \left(Q_1 \cdot \xi \right) - \frac{\left(Q_1 \cdot \xi \right)}{\xi} = -\frac{Eh}{tg^2 \alpha} X_1 - \frac{Eh}{tg\alpha} \xi \frac{d}{d\xi} \left[\alpha \left(\xi \right) \cdot T \left(\xi \right) \right] + \frac{F_1 \left(\xi \right)}{tg\alpha}$$

$$(62j)$$

Supondo não haver forças normais externas segundo a direção meridional na região cônica da estrutura, tem-se que F₁ (ξ) = 0 uma vez que a constante C é nula. Então (62j) fica reduzida a

Feito isto, obteve-se a redução desejada, ficando agora a região cônica B governada por um sistema de duas equações diferenciais de segunda ordem, constituído pelas equações (61c) e (62k).

3.2 MODELO MATEMÁTICO DAS REGIÕES CILÍNDRICAS.

A superfície de referência de uma casca cilíndrica circular, e de revolução e portanto e valido o que foi feito para a parte cônica em

35

(63)

(65)

(67)

3.1.1. As quantidades da primeira forma fundamental da superfície são facilmen te determinadas a partir das expressões dadas anteriormente, tendo a se considerar que os raios dos paralelos são constante ao longo do comprimento da casca. Seja <u>a</u> o raio da superfície de referência de uma casca cilíndrica circular como mostra a figura $10_{\rm P}$.

Das equações (15), (16), (17) e (18) determina-se

F = 0 $\overline{G} = a^2$

D

¹¹1

H = a , que são as quantidades da primeira forma fundamental da superficie em consideração. Logo, um elemento de comprimento sobre a superficie de r<u>e</u> ferência da casca, será dado de acordo com (19) por

$$(ds)^{2} = \{d(\xi L)\}^{2} + a^{2} (d\Theta)^{2}$$
. (64)

Considerando-se as coordenadas como sendo ξe⊙ e fazendo a identificação com a primeira forma fundamental, tem-se

 $\overline{A}_2 =$

As quantidades da segunda forma fundamental serão obtidas das equações (24), (25) e (26), sabendo que R_o = a = cte. Então,

$$\overline{L} = 0 \tag{66}$$

$$N = a$$

Para os raios principais tem-se que

$$R_1 = \infty \cdot \cdot \cdot \frac{1}{R_1} = 0$$
; $e R_2 = a \cdot \cdot \cdot \frac{1}{R_2} = \frac{1}{a}$

Assim, a atuai combinação de $\overline{A_1}$, $\overline{A_2}$, R_1 e R_2 definem uma superfície, já que as condições de Gauss - Codazzi são satisfeitas.

3.2.1 RELAÇÕES ENTRE DESLOCAMENTOS E DEFORMAÇÕES.

 $X_{1} = -\frac{1}{L}\frac{dw}{d\varepsilon}$

 $\chi_{2} = 0$

 $\varepsilon_1^0 = \frac{1}{L} \frac{du}{d\xi}$

 $\varepsilon^{0} = \frac{W}{a}$

 $\gamma_{12}^{0} = 0$

= 0

∍.0

ĩ

As regiões cilíndricas, da mesma forma como a reglão cônica, apresentam simetria axial de geometria e de carregamento, consequentemente todas as quantidades geométricas são independentes da coordenada circunferen cial 0. Então, das relações (43), (44), (49) e (50) e tendo em vista a (65)/, obtém-se

(68a)

(68b)

(68c)

(68d)

(68e) $\kappa_1 = \frac{1}{L} \frac{dx_1}{d\epsilon}$

(68f)

(68g)

(68h)

OBTENÇÃO DAS EQUAÇÕES DE EQUILÍBRIO. 3.2.2

adş

1.21

O procedimento é análogo ao para a região cônica.

As relações entre as forças e momentos e as tensões são Idênticas às dadas em (56a) e (56b). Substituindo em (57) os valores de A₁, A₂, $1/R_1 = 1/R_2$ encontrados em (65) e (67), obtém-se o seguinte sistema de equações diferencials:

$$\frac{d}{d\xi} (N_1 a) = 0$$

 $\frac{d}{d\xi} (Q_1 a) = N_2 L$

$$\frac{d}{d\xi} (M_1) = Q_1 L ,$$

 $M_{1} = \frac{D}{L} \frac{dx_{1}}{d\xi}$

 $M_2 = vM_1$

que governa as regiões cilindricas.

Como anteriormente, este sistema não pode ser resolvido diretamente para as forças e momentos, porque o número de incógnitas é maior que o de equações. Faz-se a modificação deste sistema para um de duas equações diferenciais de segunda ordem. A obtenção do mesmo é idêntica à realizada em 3.1.4. De (68f) e (68g) em (54c) e (54d) tem-se

(70a)

(70Б)

Estas equações, levadas na terceira das equações (69) fornece a primeira equação do novo sistema, que é

$$\frac{d^2 x_1}{d \xi^2} = \frac{L^2}{D} Q_1$$
 (70c)

Como para a região cônica, a obtenção da segunda equação é mais trabalhosa pode ser obtida assim: de (68c) e (68d) tira-se

$$\frac{du}{d\xi} = L\varepsilon_1^0 , e$$
 (71a)

$$w = a\varepsilon_2^0$$
 . (71b)

Empregando a lei de Hook em (71b) para exprimir ε_2^0 em função das forças meridional e circunferencial, vem

37

(69)

$$w = \frac{a}{Eh} \left(N_2 - v N_1 \right) + a \alpha \left(\xi \right) \cdot T(\xi)$$
(71c)

Eliminando $N_2 \in N_1$, entre as duas primeiras equações de equilíbrio (69), encontra-se

$$N_2 = \frac{1}{L} \frac{d}{d\xi} (Q_1 = 1)$$
, (71d)

e

 $N_1 = C_c$

onde C_c tem o mesmo significado que em (621). Derivando (71c) em relação a ξ vem

$$\frac{dw}{d\xi} = \frac{a}{Eh} \frac{d}{d\xi} \left(N_2 - v N_1 \right) + a \frac{d}{d\xi} \left[\alpha(\xi) \cdot T(\xi) \right]$$
(71f)

Substituindo em (71f) as expressões de N_2 e N_1 dadas em (71d) e (71e) chega-se

$$\frac{dw}{d\xi} = \frac{a}{Eh} \frac{d}{d\xi} \left[\frac{1}{L} \frac{d}{d\xi} \left(Q_1 a \right) \right] + a \frac{d}{d\xi} \left[\alpha(\xi) \cdot T(\xi) \right]$$
(71g)

Levando em consideração (68a) obtêm-se a segunda das equações, na forma segui<u>n</u> te

$$\frac{d^2}{d\xi^2} \left(Q_1 a \right) = -L^2 \frac{Eh}{a} \chi_1 - LEh \frac{d}{d\xi} \left[\alpha(\xi) \underline{T}(\xi) \right]$$
(71h)

Então, o sistema de equações que governa as partes cilíndricas A e C, apenas com modificações geométricas, é constituído pelas equações diferenciais de s<u>e</u> gunda ordem dadas em (70c) e (71h).

CAPÍTULO 4 - SOLUÇÕES DOS MODELOS MATEMÁTICOS

Sendo o modelo matemático linear, várias formas de sosodues ções são possíveis, devido à validade do princípio de superposição.

As soluções pesquisadas foram as seguintes:

- a) Analisar, separadamente, os elementos da estrutura, somente superpondo o carregamento, conforme ilustra a figura 11.
- b) Considerar a estrutura e o carregamento como a superposição de duas estruturas mais simples, como llustra a figura 12.
- c) Analisar a região cônica com condições de contorno homogêneas e superpor ao estado de solicitação determinado, os efeitos, dos carregamentos de borda, que nada mais são do que os efeitos que cada região transmite às adjacentes, conforme figura 13.

Adota-se no trabalho a primeira solução. A superposição <u>b</u> é abandonada por não trazer nenhuma vantagem sobre a primeira, uma vez que da mesma forma que em <u>a</u> recai-se na solução de dois sistemas de equações lineares para obtenção das constantes de integração. Além disso, as variáveis são o resultado da superposição dos problemas b.1 e b.2.

Com a superposição <u>c</u> pretende-se a determinação dos autov<u>a</u> lores e autovetores do problema, uma vez que o operador diferencial do modelo matemático, como pode ser verificado é auto-adjunto³. Todavia, as condições de contorno fazem o operador não Hermitiano, acarretando a não ortogonalida de dos seus autovetores. A este fato, soma-se as dificuldades na obtenção dos autovalores e autovetores que resultam das equações de Bessel, envolvendo demasiado tratamento algébrico. Este problema é normalmente levantado, empregando -se o método das aproximações sucessivas para a obtenção dos primeiros autovetores⁷. Porém, como é desejado a seqUência infinita deles para formar uma b<u>a</u> se do espaço de solução do Modelo matemático, abandona-se este método. Desta

Fig. 12 - Superposição de Estrutura e Carregamento.

forma, justifica-se a escolha feita inicialmente.

4.1. SOLUÇÃO DO SISTEMA DE EQUAÇÕES DIFERENCIAIS DA REGIÃO CÔNICA.

Abaixo transcreve-se o sistema obtido em (61c) e (62k) onde faz-se $\chi_1 = \chi$

$$\xi \frac{d^{2}\chi}{d\xi^{2}} + \frac{d\chi}{d\xi} - \frac{\chi}{\xi} = \frac{L^{2}}{D\cos^{2}\alpha} \left(Q_{1} \xi \right), e \qquad (72a)$$

$$\xi \frac{d^{2}}{d\xi^{2}} \left(Q_{1} \xi \right) + \frac{d}{d\xi} \left(Q_{1} \xi \right) - \frac{\left(Q_{1} \xi \right)}{\xi} = -\frac{Eh}{tg^{2}\alpha} \chi - \frac{Eh}{tg\alpha} \cdot \frac{Eh}{tg\alpha} \cdot \frac{Eh}{tg^{2}\alpha} \cdot \frac{Eh}{tg$$

Observando o sistema (72) nota-se que a parte não homogênea é dada pelo parâmetro

 $\xi \frac{d}{d\xi} \left[\alpha(\xi) \cdot T(\xi) \right];$

sendo ele, portanto o controlador da distribuição de tensões na região cônica da estrutura. Identifica-se o sistema (72) como sendo um sistema de equações diferenciais ordinárias de segunda ordem, linear e não homogêneo. Logo, a sol<u>u</u> ção geral deste sistema pode ser obtida pela determinação da solução particular e da homogênea separadamente. A solução geral é obtida pela superposição dessas duas, isto é,

onde:

V - representa a solução geral;

V^h - representa a solução homogênea;

 $V = V^h + V^p$

V^p - representa a solução particular.

A solução particular leva em conta os termos do carregamento enquanto que a homogênea refere-se às condições de contorno, pois esta traz à solução geral as constantes de integração a serem determinadas atravês das condições de contorno. Desta forma, todas as variáveis da casca são resultantes da soma da parcela homogênea à particular. Assim, tem-se:

$$x = x^{h} + x^{p}$$
(73)
$$Q_{1} = Q_{1}^{h} + Q_{1}^{p}$$
(74)

OBTENÇÃO DA SOLUÇÃO PARTICULAR DO MODELO MATEMÁTICO. 4,1,1.

Primeiramente, faz-se

Primeiramente, faz-se uma mudança na variável independente
do sistema,
$$\gamma = \sqrt{\xi}$$
 (75)
Logo, $d\xi = 2 \sqrt{\xi} dy$. Então os operadores ficam sendo
 $\frac{d}{d\xi} = \frac{1}{2\sqrt{\xi}} \frac{d}{dy}$ e (76a)

$$\frac{d^2}{d\xi^2} = \frac{1}{4\xi} \frac{d^2}{d\gamma^2} - \frac{1}{4\xi\sqrt{\xi}} \frac{d}{d\gamma}$$
(76b)

Levando (76a) e (76b) em (72a) e (72b) vem

$$\frac{d^{2}\chi}{dy^{2}} + \frac{1}{y}\frac{d\chi}{dy} - \frac{4\chi}{y^{2}} = \frac{4L^{2}}{D\cos^{2}\alpha} (Q_{1} \xi) e$$
(77a)

$$\frac{d^{2}}{dy^{2}} (Q_{1} \xi) + \frac{1}{y} \frac{d}{dy} (Q_{1} \xi) - \frac{(Q_{1} \xi)}{y^{2}} = -\frac{4Eh}{tg^{2}\alpha} x - \frac{4Eh}{tg\alpha}$$

. $\xi \frac{d}{d\xi} \left[\alpha(\xi), T(\xi) \right]$ (77b)

A solução particular do sistema (77) pode ser encontrada, fazendo-se ¹⁶ uso do fato de que a função de Bessel de primeira especie e segu<u>n</u> da ordem, J_2 ($\lambda_{\hat{n}}\gamma$), \hat{e} solução da seguinte equação diferencial:

$$\frac{d^{2}V}{dy^{2}} + \frac{1}{y}\frac{dV}{dy} + (\lambda_{n}^{2} - \frac{4}{y^{2}}) V = 0$$

Portanto, temase que

$$\frac{d^2}{dy^2} J_2 \left(\lambda_n y \right) + \frac{1}{y} \frac{d}{dy} J_2 \left(\lambda_n y \right) + \left(\lambda_n^2 - \frac{4}{y^2} \right) J_2 \left(\lambda_n y \right) = 0$$
(78)

Para efeito de determinação da solução particular, considere -se a região cônica a partir de seu vértice e, consequentemente, a variável independente, y, nesta região varia entre zero e 1, isto é, $0 \le y \le 1$. 0 termo não homogêneo em (72), é suposto pertencer ao espaço das funções seccional mente continuas em [0, 1]. Sabe-se que as funções de Bessel de primeira espé cie $J_p(\lambda_k y)$, k = 1, 2, 3... com $p \ge 0$ e $\lambda_1 < \lambda_2 < \lambda_3$... onde λ_k são os zeros positivos de $J_p(y) = 0$, formam uma base para o espaço das funções seccional mente contínuas em [0, 1]. Então toda função pertencente a este espaço pode ser escrita univocamente na forma¹⁴.

$$f(y) = \sum_{n=1}^{\infty} C_n J_p(\lambda_n y),$$
 (79)

onde a série converge na média para f em (0, 1) e o coeficiente de Fourier C_n é dado por

$$C_{n} = \frac{2}{\{J_{p+1}(\lambda_{n})\}^{2}} \int_{0}^{1} f(y) J_{p}(\lambda_{n}y) y dy$$
(80)

Assim o parâmetro controlador da distribuição de tensões na casca pode ser expandido em uma série de Fourier - Bessel. Por conveniência, expande-se esse pa râmetro em uma série das funções de Bessel de primeira espécie e segunda ordem J_2 ($\lambda_n y$). Então de acordo com (79) e (80), pode-se escrever que

$$f(\xi) \approx \xi \frac{d}{d\xi} \left[\alpha(\xi) \cdot T(\xi) \right] = \sum_{n=1}^{\infty} a_n J_2(\lambda_n \gamma), \qquad (81)$$

onde

$$a_{n} = \frac{2}{\{J_{3}(\lambda_{n})\}^{2}} \int_{0}^{1} f(y) J_{2}(\lambda_{n}y) y dy$$
(82)

Suponha agora que as funções Q_1^p , $\xi \in \chi^p$ possam também ser ex pandidas em séries análogas à anterior, da seguinte forma:

$$\begin{aligned}
\varrho_1^{\mathsf{p}} \cdot y^2 &= \sum_{n=4}^{\infty} A_n J_2 \left(\lambda_n y \right) \\
\chi^{\mathsf{p}} &= \sum_{n=4}^{\infty} B_n J_2 \left(\lambda_n y \right) ,
\end{aligned} \tag{83}$$

sendo A_n e B_n coeficientes arbitrários a determinar. Para isto, substitua - se (81), (83) e (84) em (77a) e (77b), resultando

$$\frac{d^{2}}{d\gamma^{2}} \left[\sum_{n=i}^{\infty} B_{n}J_{2} \left(\lambda_{n}\gamma \right) \right] + \frac{1}{\gamma} \frac{d}{d\gamma} \left[\sum_{n=i}^{\infty} B_{n}J_{2} \left(\lambda_{n}\gamma \right) \right] - \frac{4}{\gamma^{2}} \sum_{n=i}^{\infty} B_{n}J_{2} \left(\lambda_{n}\gamma \right) = \frac{4L^{2}}{D\cos^{2}\alpha} \sum_{n=i}^{\infty} A_{n}J_{2} \left(\lambda_{n}\gamma \right)$$
(85a)

para a primeira delas e para a segunda:

$$\frac{d^2}{dy^2} \left[\sum_{n=1}^{\infty} A_n J_2 \left(\lambda_n y \right) \right] + \frac{1}{y} \frac{d}{dy} \left[\sum_{n=1}^{\infty} A_n J_2 \left(\lambda_n y \right) \right] = \frac{4}{y^2} \sum_{n=1}^{\infty} A_n J_2 \left(\lambda_n y \right) = \frac{4Eh}{y^2} \sum_{n=1}^{\infty} A_n J_2 \left(\lambda_n y \right) = \frac{4Eh}{y^2} \sum_{n=1}^{\infty} A_n J_2 \left(\lambda_n y \right) = \frac{4Eh}{y^2} \sum_{n=1}^{\infty} A_n J_2 \left(\lambda_n y \right) = \frac{4Eh}{y^2} \sum_{n=1}^{\infty} A_n J_2 \left(\lambda_n y \right) = \frac{4Eh}{y^2} \sum_{n=1}^{\infty} A_n J_2 \left(\lambda_n y \right) = \frac{4Eh}{y^2} \sum_{n=1}^{\infty} A_n J_2 \left(\lambda_n y \right) = \frac{4Eh}{y^2} \sum_{n=1}^{\infty} A_n J_2 \left(\lambda_n y \right) = \frac{4Eh}{y^2} \sum_{n=1}^{\infty} A_n J_2 \left(\lambda_n y \right) = \frac{4Eh}{y^2} \sum_{n=1}^{\infty} A_n J_2 \left(\lambda_n y \right) = \frac{4Eh}{y^2} \sum_{n=1}^{\infty} A_n J_2 \left(\lambda_n y \right) = \frac{4Eh}{y^2} \sum_{n=1}^{\infty} A_n J_2 \left(\lambda_n y \right) = \frac{4Eh}{y^2} \sum_{n=1}^{\infty} A_n J_2 \left(\lambda_n y \right) = \frac{4Eh}{y^2} \sum_{n=1}^{\infty} A_n J_2 \left(\lambda_n y \right) = \frac{4Eh}{y^2} \sum_{n=1}^{\infty} A_n J_2 \left(\lambda_n y \right) = \frac{4Eh}{y^2} \sum_{n=1}^{\infty} A_n J_2 \left(\lambda_n y \right) = \frac{4Eh}{y^2} \sum_{n=1}^{\infty} A_n J_2 \left(\lambda_n y \right) = \frac{4Eh}{y^2} \sum_{n=1}^{\infty} A_n J_2 \left(\lambda_n y \right) = \frac{4Eh}{y^2} \sum_{n=1}^{\infty} A_n J_2 \left(\lambda_n y \right) = \frac{4Eh}{y^2} \sum_{n=1}^{\infty} A_n J_2 \left(\lambda_n y \right) = \frac{4Eh}{y^2} \sum_{n=1}^{\infty} A_n J_2 \left(\lambda_n y \right) = \frac{4Eh}{y^2} \sum_{n=1}^{\infty} A_n J_2 \left(\lambda_n y \right) = \frac{4Eh}{y^2} \sum_{n=1}^{\infty} A_n J_2 \left(\lambda_n y \right) = \frac{4Eh}{y^2} \sum_{n=1}^{\infty} A_n J_2 \left(\lambda_n y \right) = \frac{4Eh}{y^2} \sum_{n=1}^{\infty} A_n J_2 \left(\lambda_n y \right) = \frac{4Eh}{y^2} \sum_{n=1}^{\infty} A_n J_2 \left(\lambda_n y \right) = \frac{4Eh}{y^2} \sum_{n=1}^{\infty} A_n J_2 \left(\lambda_n y \right) = \frac{4Eh}{y^2} \sum_{n=1}^{\infty} A_n J_2 \left(\lambda_n y \right) = \frac{4Eh}{y^2} \sum_{n=1}^{\infty} A_n J_2 \left(\lambda_n y \right) = \frac{4Eh}{y^2} \sum_{n=1}^{\infty} A_n J_2 \left(\lambda_n y \right) = \frac{4Eh}{y^2} \sum_{n=1}^{\infty} A_n J_2 \left(\lambda_n y \right) = \frac{4Eh}{y^2} \sum_{n=1}^{\infty} A_n J_2 \left(\lambda_n y \right) = \frac{4Eh}{y^2} \sum_{n=1}^{\infty} A_n J_2 \left(\lambda_n y \right) = \frac{4Eh}{y^2} \sum_{n=1}^{\infty} A_n J_2 \left(\lambda_n y \right) = \frac{4Eh}{y^2} \sum_{n=1}^{\infty} A_n J_2 \left(\lambda_n y \right) = \frac{4Eh}{y^2} \sum_{n=1}^{\infty} A_n J_2 \left(\lambda_n y \right) = \frac{4Eh}{y^2} \sum_{n=1}^{\infty} A_n J_2 \left(\lambda_n y \right) = \frac{4Eh}{y^2} \sum_{n=1}^{\infty} A_n J_2 \left(\lambda_n y \right) = \frac{4Eh}{y^2} \sum_{n=1}^{\infty} A_n J_2 \left(\lambda_n y \right) = \frac{4Eh}{y^2} \sum_{n=1}^{\infty} A_n J_2 \left(\lambda_n y \right) = \frac{4Eh}{y^2} \sum_{n=1}^{\infty} A_n J_2 \left(\lambda_n y \right) = \frac{4Eh}{y^2} \sum_{n=1}^{\infty} A_n J_2 \left(\lambda_n y \right) = \frac{4E$$

$$= -\frac{4Eh}{tg^{2}\alpha} \sum_{n=1}^{B} B_{n}J_{2} \left(\lambda_{n}Y\right) - \frac{4Eh}{tg\alpha} \sum_{n=1}^{B} a_{n}J_{2} \left(\lambda_{n}Y\right)$$
(85b)

$$\sum_{n=1}^{\infty} B_n \left\{ \frac{d^2}{dy^2} \left[J_2 \left(\lambda_n y \right) \right] + \frac{1}{y} \frac{d}{dy} \left[J_2 \left(\lambda_n y \right) \right] - \frac{4}{y^2} J_2 \left(\lambda_n y \right) \right\} = \frac{4L^2}{D\cos^2 \alpha} \sum_{n=1}^{\infty} A_n J_2 \left(\lambda_n y \right)$$
(85c)

$$\sum_{n=1}^{\infty} A_n \left\{ \frac{d^2}{dy^2} \left[J_2 \left(\lambda_n y \right) \right] + \frac{1}{y} \frac{d}{dy} \left[J_2 \left(\lambda_n y \right) \right] - \frac{4}{y^2} J_2 \left(\lambda_n y \right) \right\} =$$

$$= \frac{4E\hbar}{tg^{2}\alpha} \sum_{n=1}^{\infty} B_{n}J_{2} \left(\lambda_{n}y\right) - \frac{4E\hbar}{tg\alpha} \sum_{n=1}^{\infty} a_{n}J_{2} \left(\lambda_{n}y\right)$$
(85d)

Levando em consideração a equação (78) em (85c) e (85d), obtém-se

j

$$-\sum_{n=1}^{\infty} B_n \lambda_n^2 J_2(\lambda_n y) = \sum_{n=1}^{\infty} \frac{4L^2 A_n}{D \cos^2 \alpha} J_2(\lambda_n y), \qquad (85e)$$

$$\sum_{n=1}^{\infty} A_n \lambda_n^2 J_2(\lambda_n y) = \sum_{n=1}^{\infty} \frac{4Eh}{tg\alpha} \left(\frac{B_n}{tg\alpha} + a_n \right) J_2(\lambda_n y)$$
(85f)

Para haver a igualdade das séries em (85e) e (85f) é necessário e suficiente que os coeficientes das funções de Bessel sejam Iguals para cada valor de n $\,$. Logo, deve-se ter, de (85e), que

$$B_{n} \lambda_{n}^{2} = \frac{4L^{2}}{D\cos^{2}\alpha} A_{n}$$
(85g)

e de (85f),

е

$$A_{n} \lambda_{n}^{2} = \frac{4Eh}{tg\alpha} \left(\frac{B_{n}}{tg\alpha} + a_{n} \right)$$
(85h)

O sistema constituído pelas equações (85g) e (85h) pode ser visto como um sistema de equações lineares nas incógnitas $A_n \in B_n$. Resolvendo -o, obtem-se

$$B_{n} = -\frac{\frac{\mu_{b} t g \alpha^{a} n}{4}}{\frac{\lambda_{a} + \mu_{b}}{2}}$$

$$A_{n} = \frac{4Eh}{tg_{\alpha}} \frac{a_{n}}{\lambda_{n}^{2}} \left(1 - \frac{\mu_{b}}{\lambda_{n}^{4} + \mu_{b}^{4}}\right)$$

onde define-se

$$\frac{4}{\mu_b} = \frac{192(1 - N^2)}{\sec^2 \alpha} \left(\frac{L}{h}\right)^2$$

que é um parâmetro da casca.

47

(86)

(87)

(88)

Tem-se a determinar ainda, os coeficientes a_n. Com esta finalidade é que se adota o seguinte procedimento. Das equações (70c) e (71h), observa-se que o parâmetro controlador da distribuição de tensões nas regiões cilíndricas possul a seguinte forma:

$$\frac{d}{d\xi} \left[\alpha(\xi), T(\xi) \right]$$
(89)

Por outro lado, o da parte cônica é dado conforme (81). Examinando (81) e (89) vê-se que o fator $\frac{d}{d\xi} \left[\alpha(\xi) \cdot T(\xi) \right]$ está presente nas duas. Logo, conhecida a distribuição de $\frac{d}{d\xi} \left[\alpha(\xi) \cdot T(\xi) \right]$, conhece-se também as distribuições dos parâmetros.

Como é suposto que nas partes cilíndricas os coeficientes de dilatação térmica e a temperatura são constantes, muito embora possam ser dif<u>e</u> rentes, conclui-se que nestas regiões a função $\frac{d}{d\xi} \left[\alpha(\xi) \cdot T(\xi) \right]$ é nuia. Todavia, na região cônica, como α e T podem ter variações axiais, aquela função tem uma certa distribuição que é determinada pela otimização das tensões através da região de transição. Então, o fator $\frac{d}{d\xi} (\alpha.T)$ tem a seguinte variação:

$$\frac{d}{d\xi} \left[\alpha(\xi), T(\xi) \right] = \begin{cases} 0 & \text{em } \xi < R_a/R_c \\ g(\xi) & \text{em } R_a/R_c < \xi < 1 \\ 0 & \text{em } 1 < \xi \end{cases}$$
(90)

Tendo em consideração o significado físico da função g(ξ) pode-se afirmar que se ela não for contínua será seccionalmente contínua. Sabe -se que toda função seccionalmente contínua pode ser desenvolvida através de uma série de Heaviside ⁸. Para o desenvolvimento do trabalho, expande-se g(ξ) em uma série destas funções, obtendo-se $g(\xi) = \beta_{k} H(\xi - \xi_{k})$ (91) onde $H(\xi - \xi_{k}), \tilde{e}$ a função de grau unitário definida por $H(\xi - \xi_{k}) = \begin{cases} 0 & ----\xi < \xi_{k} \\ -----\xi > \xi_{k} \end{cases}$ (92)

Suponha a distribuição mostrada na figura 14 para a função g (ξ) onde para maior facilidade, as funções de Heaviside foram igualmente espaçadas no intervalo de atuação. A figura 14 também mostra a função dada em (90), uma vez que esta coincide no intervalo correspondente ã região cônica B com a função g (ξ).

Seguindo o procedimento adotado para a obtenção da solução particular do sistema (77), analisa-se aqui a parte cônica, embora o interesse seja para faixas que não contenham o vértice, resultando dal uma região tronco - cônica. A solução particular do sistema (77) só será utilizada no intervalo $R_a/R_c \le \xi \le 1$. Desta forma, observando (81), a função controladora da distribuição de tensões na região cônica fica assim definida:

 $f(\xi) = \xi g(\xi) em R_a/R_c < \xi < 1$ (93)

Da (93) se tem que, além de ser seccionalmente continua, f(ξ) es tá no intervalo (0, 1) podendo, então, ser expandida em uma série de Fourier - Bessel pelos motivos já expostos e é o que se faz a seguir. Observando a mudança de variável, y = $\sqrt{\xi}$, os coeficientes da série são dados, conforme (82), por

 $a_{n} = \frac{2}{[J_{3}(\lambda_{n})]^{2}} \left\{ \int_{\frac{K=1}{\sqrt{R}}\beta_{k}}^{\frac{N-1}{2}} \beta_{k}H(y - y_{k}) \right\}$

Fig. 14 - Distribuição do Parâmetro Controlador de Tensões.

$$. J_{2}(\lambda_{n}y) y^{3} dy] \}$$
(94)

ou ainda

$$a_{n} = \frac{2}{J_{3}(\lambda_{n})} \sum_{k=1}^{N-1} \left[\beta_{k} \int_{\sqrt{z_{k}}}^{1} y^{3} J_{2}(\lambda_{n}y) dy \right]$$
(95)

A Integral que aparece em (95) pode ser assim resolvida¹⁰ : seja

$$I = \int_{\sqrt{\xi_k}}^{1} y^3 J_2(\lambda_n y) dy$$

Das propriedades das funções de Bessel tem-se que

$$\frac{d}{dt} \left[t^{p} J_{p} (t) \right] = t^{p} J_{p-1} (t)$$
(97)

Fazendo a mudança de variável

 $t = \lambda_n y$,

e utilizando a propriedade expressa por (97) em (96) obtém-se

$$I = \frac{1}{\lambda_{n}^{4}} \int_{\lambda_{n}\sqrt{\xi_{k}}}^{\lambda_{n}} \left[t^{3} J_{2}(t)\right] dt = \frac{1}{\lambda_{n}^{4}} \left[t^{3} J_{3}(t)\right]_{\lambda_{n}\sqrt{\xi_{k}}}^{\lambda_{n}}$$

Então:

$$I = \frac{1}{\lambda_n} \left[J_3(\lambda_n) - (\sqrt{\xi_k})^3 J_3(\lambda_n \sqrt{\xi_k}) \right]$$
(98)

Substituindo (98) em (95), vem

$$a_{n} = \frac{2}{\lambda_{n} J_{3}(\lambda_{n})^{2}} \sum_{k=1}^{N-1} \beta_{k} \left[J_{3}(\lambda_{n}) - (\sqrt{\xi_{k}})^{3} J_{3}(\lambda_{n}\sqrt{\xi_{k}}) \right]$$
(99)

Com isto a solução particular de (77) ficou determinada. Substituindo (99) em (86) e (87) e o resultado em (83) e (84), a força cortante e a rotação ficam $Q_1^p \xi = \frac{8Eh}{tg\alpha} \sum_{n=1}^{\infty} \sum_{k=1}^{N-1} \left[\lambda_n^4 D_n C_{n,k} \beta_k J_2 (\lambda_n y) \right]$ (100)

(96)

$$\chi^{p} = -2 \mu_{b}^{4} tg\alpha \sum_{n=1}^{\infty} \sum_{k=1}^{N-1} \left[\lambda_{n}^{2} D_{n} C_{n,k} \beta_{k} J_{2}(\lambda_{n} y) \right]$$
(101)
com y = $\sqrt{\xi}$; onde define-se:

$$D_{n} = \frac{1}{\lambda_{n}^{3} \left[J_{3}(\lambda_{n}) \right]^{2} (\lambda_{n}^{4} + \mu_{b}^{4})}, \qquad (102)$$

$$C_{n,k} = J_3(\lambda_n) - (\sqrt{\xi_k})^3 J_3(\lambda_n \sqrt{\xi_k})$$
 (103)

4.1.2. OBTENÇÃO DA SOLUÇÃO HOMOGÊNEA DO MODELO MATEMÁTICO.

Considere-se o sistema (77) porém desta vez homogêneo. En-

52

tão fica

1 de la barry

Condede

$$L (Q_{1}^{h}, \xi) = -\frac{4Eh}{tg^{2}\alpha} \chi^{h}, e$$
(104a)
$$L (\chi^{h}) = \frac{4L^{2}}{D\cos^{2}\alpha} (Q_{1}^{h}, \xi)$$
(104b)

onde L () é o operador diferencial dado por:

.

$$L() = \frac{d^{2}()}{dy^{2}} + \frac{1}{y}\frac{d()}{dy} - \frac{4()}{y^{2}}$$
(104c)

Aplicando novamente o operador L dado em (104c) na equação (104b), resulta:

$$L(L)(\chi^{h}) = \frac{4L^{2}}{D\cos^{2}\alpha} L(Q_{1}^{h} \xi)$$
(104d)

Utilizando a equação (104a) na equação (104d) e tendo em consideração (88) chega-se a

$$L(L(\chi^{h})) = -\mu_{b}^{4}\chi^{h}$$
 (105)

A equação (105) pode ser desmembrada em duas equações de segunda ordem. Para

îsto, suponha-se que a solução desta equação também satisfaça esta:

$$E(x^{h}) + \lambda^{2} x^{h} = 0 , \qquad (106a)$$

onde λ é um parametro constante a determinar. Aplicando em (106a) o operador dado em (104c), temese

$$L(L(\chi^{h})) = -\lambda^{2} L(\chi^{h}) = \lambda^{4} \chi^{h}$$
(106b)

Substituindo este resultado em (105) obtem-se

444 (106c) disc

$$\lambda^{4} + \mu_{b}^{4}$$
) $\chi^{h} = 0$ (106c)

De (106c), conclui-se que, como não interessa a solução trivial $\chi^{h} = 0$, o termo entre parênteses deve ser nulo, ficando determinado o parâmetro λ , que pode ser:

$$(\lambda_1)^2 = i\mu_b^2$$
 e

 $(\lambda_2)^2 = l\mu_b^2$ ou fazendo

$$(\lambda_1)^2 = (\lambda_2)^2 = \lambda^2 = i\mu_b^2$$
 (106d)

onde <u>i</u> é a unidade Imaginária, $I = \sqrt{-1}$ e a Barra sobre o símbolo indica o com plexo conjugado. Quando isto é satisfeito, a equação (105) pode ser reduzida ao par de equações:

$$L(\chi^{h}) + \lambda^{2}\chi^{h} = 0$$
, e (106e)

$$L(\chi^{h}) + \overline{\lambda^{2}}\chi^{h} = 0$$
 (106f)

Cada uma das equações (106e) e (106f) tem duas soluções complexas linearmente independentes e a solução de uma delas de complexa conjugada da outra¹³. Sejam as soluções de (106e) dadas por

 $(1, \beta)$

(106h)

(107)

 $x_1^h = s_1 - is_2$ e $x_2^h = s_3 - is_4$

onde:

S_j, j = 1, 2, 3, 4 são funções reals. Então as soluções da (106f) são:

$$\chi_{3}^{h} = S_{1} + IS_{2} = \overline{\chi_{1}^{h}}$$
 e
 $\chi_{4}^{h} = S_{3} + IS_{4} = \overline{\chi_{2}^{h}}$

Portanto, a solução homogênea completa de (105) será obtida pela combinação l<u>i</u> near das soluções (106g) e (106h), sendo então

$$x^{h} = c_{1} x_{1}^{h} + c_{2} x_{2}^{h} + \overline{c_{1} x_{1}^{h}} + \overline{c_{2} x_{2}^{h}}$$

ondet

Sejam

$$C_1 = \frac{A_1 + iA_2}{2} e C_2 = \frac{A_3 + iA_4}{2}$$
, (108)

onde:

A₁ ~ são constantes reals arbitrárias. Levando C₁ e C₂ dadas por (108) em (107), resulta

$$\chi^{h} = A_{1} S_{1} + A_{2} S_{2} + A_{3} S_{3} + A_{4} S_{4}$$
(109)

Observa-se na equação (109) que todas suas quantidades são reals. Para a deter minação da força cortante, substitui-se (109) em (1046) e levando em consideração (106a), resulta

$$Q_1^h \cdot \xi = \mu_b^2 \frac{D\cos^2 \alpha}{4L^2} (A_2 S_1 - A_1 S_2 + A_4 S_3 - A_3 S_4)$$
 (110)

Considere-se a equação (106f), que toma o aspecto:

$$\frac{d^{2}}{dy^{2}} x^{h} + \frac{1}{y} \frac{d}{dy} x^{h} - (1\mu_{b}^{2} + \frac{4}{y^{2}}) x^{h} = 0$$
(111)

A fim de trazer esta equação para uma forma mais conveniente, faz-se a seguinte transformação de variavel independente

$$z = \mu_{b} y$$
 (112)

Com isto a equação (111) toma a seguinte forma

$$z^{2} \frac{d^{2}}{dz^{2}} \chi^{h} + z \frac{d\chi^{h}}{dz} - (1z^{2} + 2^{2}) \chi^{h} = 0$$
 (113)

A equação (113) pode ser trazida para a forma de uma equação de Bessel através de uma nova mudança de variável independente

t = 🗸 i z ,

é

resultando com isto a equação:

$$t^{2} \frac{d^{2}}{dt^{2}} \chi^{h} + t \frac{d\chi^{h}}{dt} - (t^{2} + 4) \chi^{h} = 0$$
 (114)

Esta se identifica com uma equação de Bessel modificada, cuja solução geral , como se sabe, tem como base as funções de Bessel modificada de primeira e segunda espécie, de segunda ordem, respectivamente $I_2(t) \in K_2(t)$. Logo, as sol<u>u</u> ções desta equação são comb. lineares de $I_2(1^{1/2}z) \in K_2(1^{1/2}z)$.Com isto em vista, e sabendo¹⁰ ainda que

$$Ber_{p}(x) + 1bel_{p}(x) = J_{p}(1^{3/2} x) = I^{p}I_{p}(1^{1/2} x)$$
(115a)

$$\operatorname{Ker}_{p}(x) + \operatorname{tKet}_{p}(x) = \operatorname{t}^{-p} \operatorname{K}_{p}(\operatorname{t}^{1/2} x)$$

(1156)
conclui-se que

$$per_2 z + ibel_2 z = J_2(i^{3/2}z), e$$
 (115c)

$$\text{Ker}_{2}^{z} + \text{i}\text{Kel}_{2}^{z} = 1^{-2} \text{K}_{2}(1^{1/2}z)$$

onde:

ber₂z - e a parte real da função de Bessel,
$$J_2(i^{3/2}z)$$
;
bel₂z - e a parte Imaginária da função $J_2(i^{3/2}z)$;

 $\operatorname{Ker}_2 z - \tilde{e}$ a parte real da função de Bessel, $1^{2} \operatorname{K}_2(1^{1/2} z);$

Kel₂z - é a parte imaginária da função , $i^{-2} K_2(i^{1/2}z)$. Então, comparando (106h) com (115c) e (115d) se obtém

 $S_1 = ber_2 z_1$

 $S_2 = bet_2 z$

 $s_3 = Ker_2 z$ $s_4 = Ket_2 z$

Substituindo as funções S, , expressas por (116) em (109) e (110), obtêm - se para a rotação axial

$$\chi^{h} = A_{1} \text{ Ber}_{2}(\mu_{b}\gamma) + A_{2} \text{ Bel}_{2}(\mu_{b}\gamma) + A_{3} \text{ Ker}_{2}(\mu_{b}\gamma) + A_{4} \text{ Kel}_{2}(\mu_{b}\gamma)$$

e para a força cortante:

$$Q_1^h \cdot \xi = \mu_b^2 \frac{D\cos^2 \alpha}{4L^2} \left[A_2 \ ber_2(\mu_b \gamma) - A_1 \ bel_2(\mu_b \gamma) + A_4 \ Ker_2(\mu_b \gamma) \right]$$

ric gent da fus

See Allinger

(115d)

(116)

- (117)

<u>:</u> ...

onde:

$$\frac{R_a}{R_c} < \xi < 1,$$

As equações (117) e (118) são a solução homogênea do sist<u>e</u> ma (77).

4.2. SOLUÇÃO DO MODELO MATEMÁTICO DAS REGIÕES CILÍNDRICAS.

Devido às características do carregamento e o fato de seter o coeficiente de expansão têrmica e a temperatura constantes nas regiões A e C da estrutura, o sistema de equações diferenciais expresso pelas (70c) e (71h) torna-se homogêneo. Então a solução do sistema é dada pela solução homogênea, isto é,

$$x_1 = x = x^h$$
 e $Q_1 = Q_1^h$ (119)

O sistema, com aquelas suposições ficou sendo:

$$\frac{d^{2} \chi}{d\xi^{2}} = Q_{1} \frac{L^{2}}{D}$$
(120a)
$$\frac{d^{2} \chi}{d\xi^{2}} = -\frac{L^{2}Eh}{2} \chi$$
(120b)

cas, como val ser visto adiante.

Para a solução do sistema (120), define-se o seguinte oper<u>a</u> dor diferencial linear:

 $L() = \frac{d^{2}()}{d\epsilon^{2}}$

(120c)

(118)

(121)

Aplicando o operador dado por (120c) em (120a) e considerando (120b) chega-se facilmente a

$$L(L(\chi)) + \overline{\mu}^{4} \chi = 0$$
, (120d)

onde:

 $\overline{\mu}^4$ - \bar{e} uma constante da casca, dada por

$$\overline{\mu}^{4} \neq \frac{12(1-\nu^{2})}{a^{2}h^{2}}L^{4}, \qquad (120e)$$

sendo:

a maio da superfície cilíndrica de referência.

A equação (120d) identifica-se com a equação (105) e, devido às características dos operadores serem análogas, a solução desta equação pode ser apresentada naquela forma. Assim, a rotação pode ser expressa por

$$x = B_3 S_1 + B_4 S_2 + B_1 S_3 + B_2 S_4$$

e a força cortante por

$$Q_{1} = \frac{\overline{\mu}^{2} D}{L^{2}} \left(B_{4} S_{1} - B_{3} S_{2} + B_{2} S_{3} - B_{1} S_{4} \right)$$
(122)

onde:

B₁ - são constantes de integração a determinar;

S₁ - são funções reals.

Para obtenção dos S₁, tomou∽se do desmembramento realizado, a seguinte equação:

$$\frac{d^2 \chi}{d\xi^2} \sim i\overline{\mu}^2 \chi = 0$$
(123a)

A fim de colocar (123a) numa forma mais conveniente, foi feito

$$\frac{4}{1} = \frac{3(1 - v^2)L^4}{a^2 h^2},$$
 (123b)

obtendo~se em (123a)

$$\frac{d^2 x}{d\xi^2} - 2 i \mu^2 x = 0$$
 (123c)

Adota-se, para solucionar a equação (123c) o seguinte procedimento¹³. Suponha soluções da forma

$$\chi = c Exp(k\xi)$$
, (123d)

onde:

c ; k < são constantes,

Quando (123d) é substituída em (123c) e, devido ao fato de que não interessa a solução trivial, obtém-se pela fôrmula de Moivre que a constante k deve ser

$$k = \frac{1}{2} \mu \sqrt{21} = \frac{1}{2} \mu \left(1 \frac{4}{2} 1 \right)$$
 (123e)

As soluções de (123c) têm a forma dada em (106g). Substituindo (123e)em (123d) resulta

$$x_1 = S_1 - IS_2 = e^{-\mu}(1 - I)\xi = e^{-\mu\xi}(\cos_{\mu\xi} + I \sin_{\mu\xi})$$
 (123f)

$$x_2 = S_3 - IS_4 = e^{\mu(1-1)\xi} = e^{\mu\xi}(\cos_\mu\xi - 1\sin_\mu\xi)$$
 (123g)

fornecendo:

е

$$S_1 = e^{-\mu\xi} \cos\mu\xi$$
$$S_2 = r e^{-\mu\xi} \sin\mu\xi$$

(123h)

$$S_{\mu} = e^{\mu \xi} sen_{\mu \xi}$$

 $S_3 = e^{\mu\xi} \cos\mu\xi$

Levando (123h) em (121) e (122) encontra-se a solução desejada na forma:

 $\chi = e^{-\mu\xi} (B_3 \cos\mu\xi - B_4 \sin\mu\xi) + e^{\mu\xi} (B_1 \cos\mu\xi + B_2 \sin\mu\xi)$ (124)

para a rotação e

$$Q_1 = 2\mu \frac{2}{L^2} \frac{D}{e^{-\mu\xi}} (B_4 \cos\mu\xi + B_3 \sin\mu\xi) +$$

+ $e^{\mu\xi}$ ($B_2 \cos\mu\xi - B_1 \sin\mu\xi$)

para a força cortante.

4.2.1. SOLUÇÃO PARA A REGIÃO CILÍNDRICA A.

Como a região cilíndrica A da estrutura foi considerada uma casca semi-infinita, a solução apresentada em (124) e (125) sofre algumas alt<u>e</u> rações.

À origem do sistema de coordenadas de toda a estrutura ficou no ponto onde seria o vértice do cone, conforme a figura 15.

A constante da casca para esta região, μ_a , é obtida de (123b), observando que

Logo,

$$\mu_{a}^{4} = 3(1 - \nu^{2})(\frac{L}{R_{a}})^{2}(\frac{L}{h})^{2} , \qquad (126)$$

onde coloca-se em destaque, propositadamente, as relações L/R_a e L/R_h. Sendo a casca semi-infinita, conforme figura 15, os primeiros termos do lado direito das equações (124) e (125), tornam-se infinitos quando $\xi \rightarrow -\infty$. Como na r<u>e</u> alidade χ e Q₁ são nulos nessa região, conclui-se que os coeficientes daqueles termos devem ser nulos. Com isto tem-se

$$\chi = e^{\mu_{a}\xi} (B_{1} \cos \mu_{a}\xi + B_{2} \sin \mu_{a}\xi)$$
, (127)

e $Q_1 = 2\mu_a^2 \frac{D}{L^2} e^{\mu_a \xi} (B_2 \cos \mu_a \xi - B_1 \sin \mu_a \xi), \xi < R_a/R_c$

que são respectivamente as expressões da rotação e da força cortante segundo

(125)

(128)

D. P. A. C.

a geratriz da superfície cilíndrica da região A.

4.2.2. SOLUÇÃO PARA A REGIÃO CILÍNDRICA C

Da mesma forma que para a região A, considera-se a parte C como uma casca cilindrica semininita. A figura 16 mostra a sua geometria. A constante, agora é

$$\mu_{c}^{4} = 3 \left(1 - \nu^{2} \right) \left(\frac{L}{R_{c}} \right)^{2} \left(\frac{L}{h} \right)^{2}$$
(129)

A solução para a região C, considerando que quando $\xi \longrightarrow \infty$ a rotação χ e a força cortante Q₁ são nulas, conclui-se que nas equações (124) e (125) se deve ter, $B_1 = B_2 = 0$. Então, a solução fica:

$$\chi = e^{-\mu_{c}\xi} \left(D_{3} \cos \mu_{c} \xi - D_{4} \sin \mu_{c} \xi \right)$$
(130)

para a rotação e

$$Q_{1} = 2\mu_{c}^{2} \frac{D}{L^{2}} \left[e^{-\mu_{c}\xi} \left(D_{4} \cos \mu_{c}\xi + D_{3} \sin \mu_{c}\xi \right) \right]$$
(131)

para a força cortante, sendo $\xi > 1$ e onde se trocou B_3 por D_3 e B_4 por D_4 -

Fig. 16 - Geometria da Região Cilíndrica C

,

CAPÍTULO 5 - SOLICITAÇÕES E DESLOCAMENTOS DA ESTRUTURA

Por conveniência se adimensionaliza todas as variáveis da estrutura. Considerando que as solicitações foram definidas por unidade de com primento, os fatores adimensionalizantes são Eh para as forças por unidade de comprimento e Eh² para os momentos por unidade de comprimento. As tensões propriamente ditas são adimensionalizadas dividindo-as por E, sendo E o módulo de elasticidade longitudinal do material e h a espessura da estrutura, ambos constantes ao longo dela.

5.1. EQUAÇÕES DAS SOLICITAÇÕES E DESLOCAMENTOS NA REGIÃO CÔNICA.

5.1.1. Equação da rotação

Substituindo em (73) as expressões encontradas em (101) (109) para χ^{P} e χ^{h} , resulta

$$\chi = A_{1} \operatorname{ber}_{2}(\mu_{b}y) + A_{2} \operatorname{bel}_{2}(\mu_{b}y) + A_{3} \operatorname{Ker}_{2}(\mu_{b}y) + A_{4} \operatorname{Kel}_{2}(\mu_{b}y) -$$

$$- 2 \mu_{b}^{4} \operatorname{tga} \sum_{n=1}^{\infty} \sum_{k=1}^{N-1} \lambda_{n}^{2} \overline{D_{n}} C_{n,k} \beta_{k} J_{2}(\lambda_{n}y)$$
(132)

5.1.2. EQUAÇÃO DA FORÇA CORTANTE.

Adimensionalizando (74), conforme foi dito acima, vem:

 $\frac{Q_1}{Eh} = \frac{Q_1^h}{Eh} + \frac{Q_1^p}{Eh}$

Trazendo para esta equação as expressões de Q^h e Q^p , dadas por (118) e (100), respectivamente, e após manipulações algébricas, encontra-se:

$$\frac{Q_{1}}{Eh} = \frac{\mu_{b}^{2} \cos^{2} \alpha}{48(1 - \nu^{2})} \left(\frac{h}{L}\right)^{2} \frac{1}{\gamma^{2}} \left[A_{2} ber_{2}(\mu_{b} \gamma) - A_{1} bei_{2}(\mu_{b} \gamma) + A_{1} bei_{2}(\mu_{b} \gamma) - A_{1} bei_{2}(\mu_{b} \gamma) + A_{1} bei_{2}(\mu_{b} \gamma) - A_{1} bei_{2}(\mu_{b} \gamma) + A_{2} bei_{2}$$

$$C_{n,k} \beta_{k} J_{2} (\lambda_{n} y)$$
 (133)

5.1.3. EQUAÇÃO DOS MOMENTOS M₁ e M₂

Com a mudança de variável, y = √ξ as equações (61a)

(61b) ficam

$$M_{1} = \frac{D\cos\alpha}{L} \frac{1}{\gamma} \left(\frac{1}{2} \frac{d\chi}{d\gamma} + \frac{\nu}{\gamma} \chi \right) , \qquad (134a)$$

$$M_{2} = \frac{D\cos\alpha}{L} \frac{1}{\gamma} \left(\frac{\chi}{\gamma} + \frac{\nu}{2} \frac{d\chi}{d\gamma} \right) . \qquad (134b)$$

Adimensionalizando (134a) e (1346), vem

$$\frac{M_{1}}{Eh^{2}} = \frac{\cos\alpha}{12 (1 - v^{2})} \cdot (\frac{h}{L}) \cdot \frac{1}{y} \cdot (\frac{1}{2} \frac{d\chi}{dy} + \frac{v}{y} \chi) ; \qquad (134c)$$

$$\frac{M_2}{Eh^2} = \frac{\cos\alpha}{12 (1 - v^2)} \cdot (\frac{h}{L}) \cdot \frac{1}{y} \cdot (\frac{\chi}{y} + \frac{v}{2} \frac{d\chi}{dy})$$
(134d)

Necessita-se, ainda da derivada, em relação a y, da rotação, que calculando da (132) resulta

$$\frac{d\chi}{dy} = A_{1} \text{ ber}_{2}^{1} (\mu_{b}y) + A_{2} \text{ bei}_{2}^{1} (\mu_{b}y) + A_{3} \text{ Ker}_{2}^{1} (\mu_{b}y) + A_{4} \text{ Kei}_{2}^{1} (\mu_{b}y)$$

$$- 2\mu_{b}^{4} \text{ tga} \sum_{n=1}^{\infty} \sum_{k=1}^{N-1} \lambda_{n}^{2} D_{n} C_{n,k} \beta_{k} J_{2}^{1} (\lambda_{n}y) \qquad (134e)$$

onde a "linha" representa derivada em relação y. Substituindo (134e) em (134c) e (134d), obtém-se para os momentos as seguintes equações:

$$\frac{M_{1}}{Eh^{2}} = \frac{\cos\alpha}{12(1-v^{2})} \left(\frac{h}{L}\right) \frac{1}{y} \left\{\frac{1}{2}\left[A_{1} \text{ ber}_{2}^{\prime}\left(\mu_{b}y\right) + A_{2} \text{ bei}_{2}^{\prime}\left(\mu_{b}y\right) + A_{3} \text{ Ker}_{2}^{\prime}\left(\mu_{b}y\right) + A_{4} \text{ Kei}_{2}^{\prime}\left(\mu_{b}y\right) - 2\mu_{b}^{4} \text{ tga} \sum_{n=1}^{\infty} \sum_{k=1}^{N-1} \lambda_{n}^{2} \tilde{D}_{n}.$$

64.

е

$$\tilde{r} C_{n,k} \beta_{k} J_{2}' (\lambda_{n} \gamma) + \frac{\nu}{\gamma} \left[A_{1} \text{ ber}_{2} (\mu_{b} \gamma) + A_{2} \text{ bei}_{2} (\mu_{b} \gamma) + A_{4} \text{ Kei}_{2} (\mu_{b} \gamma) - 2 \mu_{b}^{4} tg\alpha \sum_{n=1}^{\infty} \sum_{k=1}^{N-1} \lambda_{n}^{2} D_{n} C_{n,k} \beta_{k} J_{2} (\lambda_{n} \gamma) \right]$$
(135)

para o momento meridional e

$$\frac{M_{2}}{Eh^{2}} = \frac{\cos\alpha}{12(1-v^{2})} \left(\frac{h}{L}\right) \frac{1}{y} \left\{\frac{1}{y}\left[A_{1} \text{ ber}_{2}(u_{b}y) + A_{2} \text{ bei}_{2}(u_{b}y) + A_{2} \text{ bei}_{2}(u_{b}y) + A_{3} \text{ Ker}_{2}(u_{b}y) + A_{4} \text{ Kei}_{2}(u_{b}y) - 2u_{b}^{4} \text{ tga} \sum_{n=1}^{\infty} \sum_{k=1}^{N-1} \lambda_{n}^{2} D_{n} \right],$$

$$\cdot C_{n,k} \beta_{k} J_{2}(\lambda_{n}y) + A_{4} \text{ Kei}_{2}(u_{b}y) + A_{2} \text{ bei}_{2}(u_{b}y) + A_{2} \text{ bei}_{2}(u_{b}y) + A_{2} \text{ bei}_{2}(u_{b}y) + A_{3} \text{ Ker}_{2}(u_{b}y) + A_{4} \text{ Kei}_{2}(u_{b}y) - 2u_{b}^{4} \text{ tga} \sum_{n=1}^{\infty} \sum_{k=1}^{N-1} \lambda_{n}^{2} D_{n} \right],$$

$$\cdot C_{n,k} \beta_{k} J_{2}(\lambda_{n}y) + A_{4} \text{ Kei}_{2}(u_{b}y) - 2u_{b}^{4} \text{ tga} \sum_{n=1}^{\infty} \sum_{k=1}^{N-1} \lambda_{n}^{2} D_{n} \right],$$

$$(136)$$

$$Para o momento circunferencial.$$

5.1.4. EQUAÇÃO DA FORÇA N1

De (62h) tem-se que

$$N_1 = tg\alpha Q_1$$

ou na forma adimensional

$$\frac{N_1}{Eh} = tg\alpha \frac{Q_1}{Eh}$$

Substituindo na equação (137a), Q₁/Eh dado por (133), encontra-se

$$\frac{N_1}{Eh} = \frac{\mu_b^2 \operatorname{sen2\alpha}}{96 (1 - \nu^2)} (\frac{h}{L})^2 \frac{1}{\gamma^2} \left[A_2 \operatorname{ber}_2 (\mu_b \gamma) - A_1 \operatorname{bei}_2 (\mu_b \gamma) + \frac{1}{\gamma^2} \right]$$

65

(137a)

+
$$A_4 \text{ Ker}_2 (\mu_b y) - A_3 \text{ Kei}_2 (\mu_b y)] + \frac{8}{y^2} \sum_{n=1}^{\infty} \sum_{k=1}^{N-1} \lambda_n^4 D_n$$

$$C_{n,k} \beta_k J_2 (\lambda_n \gamma)$$
 (137b)

5.1.5 EQUAÇÃO DA FORÇA N2

De (62g), considerando a mudança de variável y = $\sqrt{\xi}$, tem -se já na forma adimensional, a força na direção circunferencial dada por

$$\frac{N_2}{Eh} = tg_{\alpha} \frac{1}{2y} \frac{d}{dy} \left(\frac{Q_1 \cdot \xi}{Eh} \right)$$
(138a)

Calculando de (133), a derivada e substituindo o resultado em (138a), obtém-se

$$\frac{N_{2}}{Eh} = \frac{\mu_{b}^{2} \operatorname{sen} 2\alpha}{192 (1 - \nu^{2})} (\frac{h}{L})^{2} \frac{1}{y} \left[A_{2} \operatorname{ber}_{2}^{i} (\mu_{b} y) - A_{1} \operatorname{bei}_{2}^{i} (\mu_{b} y) + A_{4} \operatorname{Ker}_{2}^{i} (\mu_{b} y) - A_{3} \operatorname{Kei}_{2}^{i} (\mu_{b} y) \right] + \frac{4}{y} \sum_{n=1}^{\infty} \sum_{k=1}^{N-1} \lambda_{n}^{4} D_{n} C_{n,k} .$$

$$\cdot \beta_{k} J_{2}^{i} (\lambda_{n} y)$$
(138b)

5.1.6. EQUAÇÕES DOS DESLOCAMENTOS.

É de interesse para aplicação das condições de contorno, o deslocamento radial, §^b. Este deslocamento pode ser dado assim

$$\delta^{b} = R_{o} \varepsilon_{2}^{o}.$$
(139a)

Expressando ϵ_2° em função das tensões resultantes da lei de Hooke e já substituindo em (139a), vem

$$\delta^{b} = R_{o} \left[\frac{N_{2}}{Eh} - v \frac{N_{1}}{Eh} + \alpha(\xi) \cdot T(\xi) \right]$$

(139Ь)

Substituindo em (1396), N₁/Et e N₂/Et dados por (1376) e (1386), respectivame<u>n</u> te, e, tendo em vista (14), determina-se a equação do deslocamento radial na região cônica, que fica:

$$\delta^{b} = \xi L t g \alpha \left\{ \frac{\mu_{b}^{2} \operatorname{sen} 2\alpha}{192(1 - \nu^{2})} \left(\frac{h}{L} \right)^{2} \frac{1}{\gamma} \left[A_{2} \left(\operatorname{ber}_{2}^{1} \mu_{b} \gamma - \frac{2\nu}{\gamma} \operatorname{ber}_{2} \mu_{b} \gamma \right) - A_{1} \left(\operatorname{bei}_{2}^{1} \mu_{b} \gamma - \frac{2\nu}{\gamma} \operatorname{bei}_{2} \mu_{b} \gamma \right) + A_{4} \left(\operatorname{Ker}_{2}^{1} \mu_{b} \gamma - \frac{2\nu}{\gamma} \operatorname{Ker}_{2} \mu_{b} \gamma \right) - A_{3} \left(\operatorname{Kei}_{2}^{1} \mu_{b} \gamma - \frac{2\nu}{\gamma} \operatorname{Kei}_{2} \mu_{b} \gamma \right) \right] + \frac{4}{\gamma} \sum_{n=1}^{\infty} \sum_{k=1}^{N-1} \lambda_{n}^{4} D_{n} C_{n,k}^{\beta} \kappa$$

$$\cdot \left[J_{2}^{1} \left(\lambda_{n} \gamma \right) - \frac{2\nu}{\gamma} J_{2} \left(\lambda_{n} \gamma \right) \right] + \alpha \left(\xi \right) \cdot T(\xi) \right\} \qquad (139c)$$

5.2 - EQUAÇÕES DAS SOLICITAÇÕES E DESLOCAMENTOS NA REGIÃO CILÍNDRICA A 5.2.1. EQUAÇÃO DO MOMENTO M_2

Calculando a derivada de (127) em relação a 🥇 , substitui<u>n</u> do o resultado em (70a) e (70b) e as adimensionalizando, obtém-se o momento m<u>e</u> ridional na forma.

$$\frac{M_{1}}{Eh^{2}} = \frac{\mu_{a}}{12(1 - \nu^{2})} \left(\frac{h}{L}\right) e^{\mu_{a}\xi} \left[B_{1}(\cos\mu_{a}\xi - \sin\mu_{a}\xi) + B_{2}(\cos\mu_{a}\xi + \sin\mu_{a}\xi)\right], \qquad (140)$$

enquanto que o momento circunferencial por unidade de comprimento, é

$$\frac{M_2}{Eh^2} = v \frac{M_1}{Eh^2}$$

5.2.2. EQUAÇÕES DAS FORÇAS N1 e N2

Da (71e) se tem para a força meridional, que

(142)

(141)

onde C_a é uma constante de integração que será determinada mais tarde das condições de contorno. A força circunferencial já na forma adimensionalizada, é obtida derivando (128) em relação a **§** e substituindo o resultado na equação (71d). Disto resulta

$$\frac{N_{2}}{Eh} = \frac{\mu_{a}^{3}}{6(1 - \nu^{2})} \left(\frac{R_{a}}{L}\right) \left(\frac{h}{L}\right)^{2} e^{\mu_{a}\xi} \left[B_{2}(\cos\mu_{a}\xi - \sin\mu_{a}\xi) - \frac{h}{L}\right]^{2} \left[B_{2}(\cos\mu_{a}\xi - \sin\mu_{a}\xi) - \frac{h}{L}\right]^{2} e^{\mu_{a}\xi} \left[B_{2}(\cos\mu_{a}\xi - \sin\mu_{a}\xi) + \frac{h}{L}\right]^{2} e^{\mu_{a}\xi} \left[B_{2}(\cos\mu_{a}\xi - \sin\mu_{a}\xi) + \frac{h}{L}\right]^{2} e^{\mu_{a}\xi} \left[B_{2}(\cos\mu_{a}\xi - \sin\mu_{a}\xi) + \frac{h}{L}\right]^{2} e^{\mu_{a}\xi} \left[B_{2}(\sin\mu_{a}\xi - \sin\mu_{a}\xi] + \frac{h}{L}\right]^{2} e^{\mu_{a}\xi} \left[B_{2}(\sin\mu_{a}\xi - \sin\mu_{a}\xi]$$

- $B_1(\cos\mu_a\xi + \sin\mu_a\xi)$

5.2.3. EQUAÇÃO DO DESLOCAMENTO RADIAL.

Da mesma forma que em (139b), tem-se agora que o deslocamento radial na região A é:

$$\delta^{a} = R_{a} \left(\frac{N_{2}}{Eh} - v \frac{N_{1}}{Eh} + \alpha_{a} \cdot T_{a} \right)$$
(144a)

Substituindo nesta expressão as equações (142) e (143), chega-se a

$$\delta^{a} = -R_{a} \left[\frac{\mu_{a}^{3}}{6(1 - \nu^{2})} \left(\frac{R_{a}}{L} \right) - \left(\frac{h}{L} \right)^{2} e^{\mu_{a}\xi} \left[B_{2}(\cos\mu_{a}\xi - \sin\mu_{a}\xi) - B_{1}(\cos\mu_{a}\xi + \sin\mu_{a}\xi) \right] - \nu \frac{C_{a}}{Eh} + \alpha_{a} T_{a} \}$$
(144b)

5.3. EQUAÇÕES DAS SOLICITAÇÕES E DESLOCAMENTOS NA REGIÃO CILÍNDRICA C. A rotação meridional e a força cortante são dadas pelas

quações (130) e°(131). As demais variáveis são obtidas como no item 5.2 .

5.3.1. EQUAÇÕES DOS MOMENTOS M1 e M2

Derivando (130) em relação a ç e substituindo em (70a)

(70b), obtém-se

(143) /

é-

$$\frac{M_{1}}{Eh^{2}} = -\frac{\mu_{c}}{12(1-\nu^{2})} \left(\frac{h}{L}\right) e^{-\mu_{c}\xi} \left[D_{3}(\cos\mu_{c}\xi + \sin\mu_{c}\xi) + D_{4}(\cos\mu_{c}\xi - \sin\mu_{c}\xi)\right] e$$
(145)

$$\frac{M_2}{Eb^2} = v \frac{M_1}{Eb^2} , \qquad (146)$$

que são, respectivamente, as equações para o momento meridional e circunferencial, na região cilíndrica C.

5.3.2. EQUAÇÕES DAS FORÇAS $N_1 e N_2$

Na parte C da estrutura conforme (71e), a força normal segundo as geratrizes, é

$$N_1 = C_c$$
, (147)

em que C $_{\rm C}$ representa uma constante de integração que será determinada posteriormente. Derivando (131) em relação a ξ e, substituindo o resultado em (71d) obtém-se

$$\frac{N_2}{Eh} = \frac{\mu_b^3}{6(1 - \nu^2)} \left(\frac{R_c}{L}\right) \left(\frac{h}{L}\right)^2 e^{-\mu_b \xi} \left[D_3(\cos\mu_c \xi - \sin\mu_c \xi) - D_4(\cos\mu_c \xi + \sin\mu_c \xi)\right], \quad (148)$$

que é a força normal na direção circunferencial.

5.3.3. EQUAÇÃO DO DESLOCAMENTO RADIAL.

Em (139b), considerando que nesta região $R_{c} = R_{c}$, tem-se

$$\delta^{c} = R_{c} \left(\frac{N_{2}}{Eh} - \nu \frac{N_{1}}{Eh} + \alpha_{c} \cdot T_{c} \right) . \qquad (149a)$$

Substituindo as expressões (147) e (148) na expressão acima, resulta

69

(145)

 $= D_4 \left(\cos \mu_c \xi + \sin \mu_c \xi \right) = \frac{C_a}{Eh} + \alpha_c \cdot T_c$

para o deslocamento radial na região cilíndrica C.

(1496)

CAPFTULO 6 - CONDIÇÕES DE CONTORNO E DETERMINAÇÃO DAS CONSTANTES DE

INTEGRAÇÃO

6.1. CONDIÇÕES DE CONTORNO.

A análise da estrutura, realizada no Capítulo 4, envolve 10 constantes arbitrárias. Portanto, são necessárias dez condições para determiná-las. O procedimento adotado é o que segue.

Separa-se a estrutura nas duas junções entre as cascas, dei xando-as se deformarem livremente sob ação da " carga térmica " conforme a figura 17. Os deslocamentos e as rotações das peças não são, respectivamente, iguais nas junções liberadas¹³. A fim de restaurar a continuidade da estrutura, introduz-se reações internas, que são as solicitações que cada região tran<u>s</u> mite à adjacente através da junta. Tais reações são simbolizadas por $M_m^n = Q_m^n$ em cada junção, como mostra a figura 18. Aqui, n = a, b, c identifica a casca e m = 1, 2 identifica a borda em que atuam o momento ou a força cortante.

Supõe-se também que nas junções não foram aplicadas solicitações externas. Então, sejam as condições de equilíbrio da junção I:

 $M_2^a = M_1^b$ (150a)

(150b)

(150c)

(150d)

e da junção II:

 Q_2^a

δ^a2

 $M_2^b = M_1^c$ $Q_2^b = Q_1^c$

δ

 $= Q_1^{b}$

Por outro lado, a condição de continuidade da estrutura requer a continuidade das deflexões e rotações através da junção. Logo, na junção I deve-se ter

(150e)

м<mark>b</mark> 1

м^а 2

x₂^a = x₁^b (150f) e na 11

(150g)

(151a)

(151b)

(151c)

(151d)

73

Continuando a fazer a análise isolada de cada parte da estrutura, e,considera<u>n</u> do o procedimento adotado, chega-se às condições de contorno de cada uma delas. Na região cônica B da estrutura, observando a figura 18, tem-se as segui<u>n</u> tes condições:

δ^C 1

δ^b2

$$Q_1 = Q_1^b$$
$$M_1 = M_1^b$$

<u>b)_emξ</u>=

ć,

e

$$Q_1 = Q_2^b$$
$$M_1 = M_2^b$$

 $M_1 = M_2^a$

 $N_1 = - Q_2^a sen \alpha$

Para a região cilíndrica A, observando a figura 18, encontra-se que, para ξ = Ra/Rc, deve-se ter

$$Q_1 = Q_2^a \cos \alpha$$

(151e)

(151f)

(151g)

Finalmente na região cilíndrica C, deve-se ter em $\xi = 1$:

$$Q_1 = Q_1^c \cos \alpha (151h); \quad M_1 = M_1^c$$
 (151i)

(151j)

As dez condições expressas pelas equações (151), permitem a determinação das dez constantes provenientes da solução das equações que governam o comportamento da estrutura.

6.2. DETERMINAÇÃO DAS CONSTANTES

 $N_1 = -Q_1^c sen \alpha$

Das equações (151g) e (151j), determina-se diretamente as constantes C_a e C_c tendo em vista as equações (142) e (147), respectivamente . Estas constantes ficaram sendo dadas por

$$C_a = - Q_2^a sen\alpha$$
(152)

$$C_{c} = -Q_{1}^{c} sen\alpha$$
 (153)

As demais constantes são determinadas de modo análogo ao metodo dos coeficientes de influência^{13, 2} como se segue.

A partir das condições de continuidade e equilíbrio, (150), determina-se as reações de descontinuidade das regiões cilíndricas após terem sido determinadas as da região cônica. Para isto, utiliza-se: condições de con torno da região cônica, (151a) e (151b), para encontrar as constantes de integração desta região, A_1 , A_2 , A_3 e A_4 , em função das reações de descontinuidade que ali atuam, Q_1^b , Q_2^b , M_1^b e M_2^b . A seguir, emprega-se as condições de equilíbrio e continuidade da estrutura, para obter estas reações em função dos termos do carregamento.

Com efeito, levando (151a) em (133) e definindo

$$v_1 = \frac{\mu_b^2 \cos^2 \alpha}{48(1 - v^2)} (\frac{h}{L})^2 (\frac{Rc}{Ra})$$

$$n_1 = \mu_b Ra/Rc,$$

encontra-se

$$= \frac{Q_1}{Eh} - \frac{8}{tg\alpha} \left(\frac{Rc}{Ra}\right) \sum_{n=1}^{\infty} \sum_{k=1}^{n-1} \lambda_n^4 D_n C_{n,k} \beta_k J_2 \left(\lambda_n \sqrt{Ra/Rc}\right) \quad (154c)$$

Substituindo (151b) em (135) e definindo

$$v_3 = \frac{\cos \alpha}{12(1 - v^2)} (\frac{h}{L}) \cdot \sqrt{\frac{Rc}{Ra}}$$
, (155a)

resulta

$$A_{1}\left(\frac{\nu_{3}}{2} \operatorname{ber}_{2}^{i} n_{1} + \nu_{3} \nu \sqrt{R_{c}^{2}/R_{a}} \operatorname{ber}_{2} n_{1}\right) + A_{2}\left(\frac{\nu_{3}}{2} \operatorname{bei}_{2}^{i} n_{1} + \nu_{3} \nu \sqrt{R_{c}^{2}/R_{a}}\right)$$

$$\cdot \operatorname{bei}_{2} n_{1} + A_{3}\left(\frac{\nu_{3}}{2} \operatorname{Ker}_{2}^{i} n_{1} + \nu_{3} \nu \sqrt{R_{c}^{2}/R_{a}} \operatorname{Ker}_{2} n_{1}\right) + A_{4}\left(\frac{\nu_{3}}{2} \operatorname{Ker}_{2}^{i} n_{1} + \nu_{3} \nu \sqrt{R_{c}^{2}/R_{a}} \operatorname{Ker}_{2} n_{1}\right) + A_{4}\left(\frac{\nu_{3}}{2} \operatorname{Ker}_{2}^{i} n_{1} + \nu_{3} \nu \sqrt{R_{c}^{2}/R_{a}} \operatorname{Ker}_{2} n_{1}\right) + A_{4}\left(\frac{\nu_{3}}{2} \operatorname{Ker}_{2}^{i} n_{1} + \nu_{3} \nu \sqrt{R_{c}^{2}/R_{a}} \operatorname{Ker}_{2} n_{1}\right) + A_{4}\left(\frac{\nu_{3}}{2} \operatorname{Ker}_{2}^{i} n_{1} + \nu_{3} \nu \sqrt{R_{c}^{2}/R_{a}} \operatorname{Ker}_{2} n_{1}\right) + A_{4}\left(\frac{\nu_{3}}{2} \operatorname{Ker}_{2}^{i} n_{1} + \nu_{3} \nu \sqrt{R_{c}^{2}/R_{a}} \operatorname{Ker}_{2} n_{1}\right) + A_{4}\left(\frac{\nu_{3}}{2} \operatorname{Ker}_{2}^{i} n_{1} + \nu_{3} \nu \sqrt{R_{c}^{2}/R_{a}} \operatorname{Ker}_{2} n_{1}\right) + A_{4}\left(\frac{\nu_{3}}{2} \operatorname{Ker}_{2}^{i} n_{1} + \nu_{3} \nu \sqrt{R_{c}^{2}/R_{a}} \operatorname{Ker}_{2} n_{1}\right) + A_{4}\left(\frac{\nu_{3}}{2} \operatorname{Ker}_{2}^{i} n_{1} + \nu_{3} \nu \sqrt{R_{c}^{2}/R_{a}} \operatorname{Ker}_{2} n_{1}\right) + A_{4}\left(\frac{\nu_{3}}{2} \operatorname{Ker}_{2}^{i} n_{1} + \nu_{3} \nu \sqrt{R_{c}^{2}/R_{a}} \operatorname{Ker}_{2} n_{1}\right) + A_{4}\left(\frac{\nu_{3}}{2} \operatorname{Ker}_{2}^{i} n_{1} + \nu_{3} \nu \sqrt{R_{c}^{2}/R_{a}} \operatorname{Ker}_{2} n_{1}\right) + A_{4}\left(\frac{\nu_{3}}{2} \operatorname{Ker}_{2}^{i} n_{1} + \nu_{3} \nu \sqrt{R_{c}^{2}/R_{a}} \operatorname{Ker}_{2} n_{1}\right) + A_{4}\left(\frac{\nu_{3}}{2} \operatorname{Ker}_{2}^{i} n_{1} + \nu_{3} \nu \sqrt{R_{c}^{2}/R_{a}} \operatorname{Ker}_{2} n_{1}\right) + A_{4}\left(\frac{\nu_{3}}{2} \operatorname{Ker}_{2}^{i} n_{1} + \nu_{3} \nu \sqrt{R_{c}^{2}/R_{a}} \operatorname{Ker}_{2} n_{1}\right) + A_{4}\left(\frac{\nu_{3}}{2} \operatorname{Ker}_{2}^{i} n_{1} + \nu_{3} \nu \sqrt{R_{c}^{2}/R_{a}} \operatorname{Ker}_{2} n_{1}\right) + A_{4}\left(\frac{\nu_{3}}{2} \operatorname{Ker}_{2} n_{1} + \nu_{3} \nu \sqrt{R_{c}^{2}/R_{a}} \operatorname{Ker}_{2} n_{1}\right) + A_{4}\left(\frac{\nu_{3}}{2} \operatorname{Ker}_{2} n_{1} + \nu_{3} \nu \sqrt{R_{c}^{2}/R_{a}} \operatorname{Ker}_{2} n_{1}\right) + A_{4}\left(\frac{\nu_{3}}{2} \operatorname{Ker}_{2} n_{1} + \nu_{3} \nu \sqrt{R_{c}^{2}/R_{a}} \operatorname{Ker}_{2} n_{1}\right) + A_{4}\left(\frac{\nu_{3}}{2} \operatorname{Ker}_{2} n_{1} + \nu_{3} \nu \sqrt{R_{c}^{2}/R_{a}} \operatorname{Ker}_{2} n_{1}\right) + A_{4}\left(\frac{\nu_{3}}{2} \operatorname{Ker}_{2} n_{1} + \nu_{4} \nu \sqrt{R_{c}^{2}/R_{a}} \operatorname{Ker}_{2} n_{1}\right) + A_{4}\left(\frac{\nu_{3}}{2} \operatorname{Ker}_{2} n_{1} + \nu_{4} \nu \sqrt{R_{c}^{2}/R_{a}} \operatorname{Ker}_{2} n_{1$$

Impondo as condições de contorno na borda maior da região cônica, isto é, sub<u>s</u> tituindo primeiramente (1<u>51</u>c) em (1<u>33</u>) e, definindo-se

$$v_{2} = \frac{\mu_{b}^{2} \cos^{2} \alpha}{48(1 - v^{2})} \left(\frac{h}{L}\right)^{2} , \qquad (156a)$$

75

(154a)

obtem-se

$$A_1 v_2 bei_2 \mu_b + A_2 v_2 ber_2 \mu_b - A_3 v_2 Kei_2 \mu_b + A_4 v_2 Ker_2 \mu_b = \frac{Q_2^b}{Eh}$$
(156b)

que se refere à força cortante. Depois, levando (151d) em (135), vem:

$$A_1 \left(\frac{\nu_4}{2} \text{ ber}_2' \mu_b + \nu_4 \nu \text{ ber}_2' \mu_b\right) + A_2 \left(\frac{\nu_4}{2} \text{ bei}_2' \mu_b + \nu_4 \nu \text{ bei}_2' \mu_b\right) +$$

$$+ A_{3} \left(\frac{\nu_{4}}{2} \operatorname{Ker}_{2}^{\prime} \mu_{b} + \nu_{4} \nu \operatorname{Ker}_{2}^{\prime} \mu_{b} \right) + A_{4} \left(\frac{\nu_{4}}{2} \operatorname{Kei}_{2}^{\prime} \mu_{b} + \nu_{4} \nu \operatorname{Kei}_{2} \mu_{b} \right) =$$

$$= \frac{M_{2}^{b}}{Eh^{2}} + \mu_{b}^{4} \nu_{4} \operatorname{tga} \sum_{n=1}^{\infty} \sum_{k=1}^{N-1} \lambda_{n}^{2} D_{n} C_{n,k} \beta_{k} J_{2}^{\prime} (\lambda_{n}) , \qquad (157a)$$

que se refere ao momento e onde define-se

$$v_{4} = \frac{\cos \alpha}{12(1 - v^{2})} \left(\frac{h}{L}\right)$$
(157b)

O sistema formado pelas equações (154c), (155b), (156b) e (157a) pode ser tratado como um sistema linear não homogêneo com relação às incógnitas A_1 , A_2 , A_3 e A_4 . Como este sistema é não singular, pode-se aplicar qualquer método para resolvê-lo. Entretanto, para maior facilidade na obtenção de um resultado analítico, foi utilizado o método Gauss - Jordan. Como o manuseio algébrico é bastante extenso, os coeficientes das incógnitas foram assim denominados:

$$c_{1} = -v_{1} bei_{2} n_{1}$$

$$c_{2} = v_{1} ber_{2} n_{1}$$

$$d_{1} = v_{1} Kei_{2} n_{1}$$

$$d_{1} = v_{1} Kei_{2} n_{1}$$

$$c_{3} = v_{2} \operatorname{bei}_{2} \mu_{b}$$

$$c_{4} = v_{2} \operatorname{ber}_{2} \mu_{b}$$

$$d_{3} = -v_{2} \operatorname{Kei}_{2} \mu_{b}$$

$$d_{4} = v_{2} \operatorname{Ker}_{2} \mu_{b}$$

$$b_{1} = v_{3} \left(\frac{\operatorname{ber}_{2}^{1} n_{1}}{2} + v \sqrt{R_{c}/R_{a}} \operatorname{ber}_{2} n_{1} \right)$$

$$b_{2} = v_{3} \left(\frac{\operatorname{bei}_{2}^{1} n_{1}}{2} + v \sqrt{R_{c}/R_{a}} \operatorname{bei}_{2} n_{1} \right)$$

$$k_{1} = v_{3} \left(\frac{\operatorname{Ker}_{2}^{1} n_{1}}{2} + v \sqrt{R_{c}/R_{a}} \operatorname{Ker}_{2} n_{1} \right)$$

$$k_{2} = v_{3} \left(\frac{\operatorname{Ker}_{2}^{1} n_{1}}{2} + v \sqrt{R_{c}/R_{a}} \operatorname{Ker}_{2} n_{1} \right)$$

$$k_{3} = v_{4} \left(\frac{\operatorname{ber}_{2}^{1} \mu_{b}}{2} + v \operatorname{ber}_{2} \mu_{b} \right)$$

$$k_{3} = v_{4} \left(\frac{\operatorname{Ker}_{2}^{1} \mu_{b}}{2} + v \operatorname{ker}_{2} \mu_{b} \right)$$

$$k_{4} = v_{4} \left(\frac{\operatorname{Ker}_{2}^{1} \mu_{b}}{2} + v \operatorname{Ker}_{2} \mu_{b} \right)$$

Além desses coeficientes, verifica-se nas equações (154c), (155b), (156b) e (157a) que nos seus membros direitos os segundos termos são parcelas provenientes da solução particular, isto é, são provenientes do cafregamento. Então ,

(158)

define-se:

$$\frac{1^{Q_{1}^{p}}}{Eh} = \frac{8}{tg\alpha} \left(\frac{R_{c}}{R_{a}}\right) \sum_{n=1}^{\infty} \sum_{k=1}^{N-1} \lambda_{n}^{4} D_{n} C_{n,k} \beta_{k} J_{2} \left(\lambda_{n} \sqrt{R_{a}/R_{c}}\right)$$
(159a)
$$\frac{2^{Q_{1}^{p}}}{Eh} = 0 \quad ; \qquad (159b)$$

que são as parcelas da força cortante na borda menor e maior respectivamente , da região cônica B. As parcelas dos momentos ficam sendo:

$$\frac{1^{M_{1}^{p}}}{Eh^{2}} = v_{3} \mu_{b}^{4} tg\alpha \sum_{n=1}^{\infty} \sum_{k=1}^{N-1} \lambda_{n}^{2} D_{n} C_{n,k} \beta_{k} \cdot \left[J_{2}^{1} (\lambda_{n} \sqrt{R_{a}/R_{c}}) + 2v \sqrt{R_{c}/R_{a}} \right]$$

$$\cdot J_{2} (\lambda_{n} \sqrt{R_{a}/R_{c}})]; \qquad (159c)$$

na borda menor e

$$\frac{2^{M_{1}^{p}}}{Eh} = \mu_{b}^{4} tg\alpha v_{4} \sum_{n=1}^{\infty} \sum_{k=1}^{N-1} \lambda_{n}^{2} D_{n} C_{n,k} \beta_{k} J_{2}^{\dagger} (\lambda_{n})$$
(159d)

na borda maior da região de transição. O índice à esquerda da letra indica a borda que se refere à variável.

Define-se, também, os segundos membros das equações (154c), (155b), (156b) e (157a) como:

$$Q^1 = (Q_1^b - Q_1^p) / Eh$$
 (159e)

$$Q^2 = Q_2^b / Eh$$
 (159f)

$$M^{1} = (M_{1}^{b} + M_{1}^{p}) / Eh^{2}$$
(159g)

$$M^2 = (M_2^b + {}_2M_1^p) /Eh^2$$

Com os coeficientes dados por (158) e (159) o sistema fica, na forma matricial

78

(159h)

$$\begin{bmatrix} c_{1} & c_{2} & d_{1} & d_{2} \\ c_{3} & c_{4} & d_{3} & d_{4} \\ b_{1} & b_{2} & k_{1} & k_{2} \\ b_{3} & b_{4} & k_{3} & k_{4} \end{bmatrix} \begin{bmatrix} A_{1} \\ A_{2} \\ A_{3} \\ A_{4} \end{bmatrix} = \begin{bmatrix} Q \\ Q^{2} \\ M^{1} \\ M^{2} \end{bmatrix}$$
(160)

Na solução é vantajoso definir uma série de coeficientes Para a obtenção das constantes A₄ , A₃ , A₂ e A₁ , define-se

$$G = C_4 C_1 - C_3 C_2$$
 (161a)

$$r = \frac{k_2 G - b_1 (d_2 C_4 - C_2 d_4) - b_2 (C_1 d_4 - C_3 d_2)}{k_1 G - b_1 (d_1 C_4 - C_2 d_3) - b_2 (d_3 C_1 - C_3 d_1)}$$
(161b)

$$s = \frac{M^{1}G - b_{1}(Q^{1}C_{4} - C_{2}Q^{2}) - b_{2}(Q^{2}C_{1} - C_{3}Q^{1})}{K_{1}G - b_{1}(d_{1}C_{4} - C_{2}d_{3}) - b_{2}(d_{3}C_{1} - C_{3}d_{1})}$$
(161c)

$$G_{1} = k_{4}G - b_{3}(d_{2}C_{4} - C_{2}d_{4}) - b_{4}(d_{4}C_{1} - C_{3}d_{2}) - b_{4}(d_{4}C_{$$

$$\{k_3G - b_3(d_1C_4 - C_2d_3) - b_4(d_3C_1 - C_3d_1)\};$$

e chega-se a

$$A_{4} = \frac{1}{G_{1}} \{ M^{2}G - b_{3}(C_{4}Q^{1} - C_{2}Q^{2}) - b_{4}(C_{1}Q^{2} - C_{3}Q^{1}) - [k_{3}G - b_{3}(C_{4}d_{1} - C_{2}d_{3}) - b_{4}(C_{1}d_{3} - C_{3}d_{1})] s \}$$
(162)

$$A_3 = s - rA_4$$
 (163)

$$A_{2} = \frac{c_{1}q^{2} - c_{3}q^{1} - (c_{1}d_{3} - c_{3}d_{1})s}{G} - \left[\frac{d_{4}(c_{1} - c_{2}) - (c_{1}d_{3} - c_{3}d_{1})r}{G}\right]A_{4}$$
(164)

79

(161d)

$$=\frac{Q^{1}C_{4}-C_{2}Q^{2}-(C_{4}d_{1}-C_{2}d_{3})s}{G}-\left[\frac{d_{2}C_{4}-d_{4}C_{2}-(d_{1}C_{4}-d_{3}C_{2})r}{G}\right]A_{4}$$
(165)

Para o desenvolvimento do trabalho é conveniente expressar as constantes como combinação linear das reações de descontinuidade. Para isso se define coeficientes que, para uma determinada casca, estão perfeitamente definidos, uma vez que dependem somente de sua geometria. Para explicitar os fatores das reações de descontinuidade de A_4 , define-se

$$G_2 = k_1 G - b_1 (d_1 C_4 - C_2 d_3) - b_2 (d_3 C_1 - C_3 d_1);$$
 (166a)

$$G_3 = k_3 G - b_3 (d_1 C_4 - C_2 d_3) - b_4 (d_3 C_1 - C_3 d_1);$$
 (166b)

$$G_4 = \frac{1}{G_1} \left(b_3 C_2 + \frac{G_3 b_2 C_1}{G_2} - b_4 C_1 - \frac{G_3 b_1 C_2}{G_2} \right) ;$$
 (166c)

$$G_5 = \frac{1}{G_1} (b_4 C_3 + \frac{G_3 b_1 C_4}{G_2} - b_3 C_4 - \frac{G_3 b_2 C_3}{G_2};$$
 (166d)

e encontra-se

e

$$A_{4} = \frac{G}{G_{1}} \left(\frac{M_{2}^{b}}{Eh^{2}}\right) - \frac{G_{3}}{G_{1}} \frac{G}{G_{2}} \left(\frac{M_{1}^{b}}{Eh^{2}}\right) + G_{4} \left(\frac{Q_{2}^{b}}{Eh}\right) + G_{5} \left(\frac{Q_{1}^{b}}{Eh}\right) + \frac{G}{Eh} + \frac{G}{G_{1}} \left(\frac{2M_{1}^{p}}{Eh^{2}}\right) - \frac{G_{3}}{G_{1}} \frac{G}{G_{2}} \left(\frac{1M_{1}^{p}}{Eh^{2}}\right) - G_{3} \left(\frac{1Q^{p}}{Eh}\right)$$
(166e)

De modo análogo, a constante A₃ foi escrita nesta forma, definindo os seguintes coeficientes:

$$G_6 = \frac{G}{G_2} (1 + r \frac{G_3}{G_1})$$

(167a)

1	Ű.	₽.		C			٦
	NOVI	124		e ma		-	I
		-	A 1	100	. 54		

8Ò

$$= \frac{b_1 c_2 - b_2 c_1}{c_2} - r c_4; \qquad (167b)$$

$$G_8 = \frac{b_2 C_3 - b_1 C_4}{G_2} - r G_5 ; \qquad (167c)$$

que aplicados em (163) e se considerando (161b), (161c) e (162), resulta em

$$A_{3} = -\frac{rG}{G_{1}} \left(\frac{M_{2}^{b}}{Eh^{2}}\right) + G_{6} \left(\frac{M_{1}^{b}}{Eh^{2}}\right) + G_{7} \left(\frac{Q_{2}^{b}}{Eh}\right) + G_{8} \left(\frac{Q_{1}^{b}}{Eh}\right) - \frac{rG}{G_{1}} \left(\frac{2M_{1}^{p}}{Eh^{2}}\right) + G_{6} \left(\frac{1M_{1}^{p}}{Eh^{2}}\right) - G_{8} \left(\frac{1Q_{1}^{p}}{Eh}\right)$$
(167d)

Para que A₂ possa ser escrito assim, define-se

,

$$G_9 = d_4 C_1 - C_3 d_2 - (d_3 C_1 - C_3 d_1) r ;$$
 (168a)

$$G_{10} = \frac{1}{G_2} \left[\frac{G_9 G_3}{G_1} - (d_3 C_1 - C_3 d_1) \right] ;$$
 (168b)

$$G_{11} = \frac{1}{GG_2} \left[G_2 C_1 + (C_1 d_3 - C_3 d_1) (C_1 b_2 - b_1 C_2) - G_9 G_4 G_2 \right]$$
(168c)

$$G_{12} = \frac{1}{GG_2} \left[-G_2 C_3 + (C_1 d_3 - C_3 d_1) (C_4 b_1 - C_3 b_2) - G_9 G_5 G_2 \right]$$
(168d)

e chega-se a

11200

$$A_{2} = -\frac{G_{9}}{G_{1}} \left(\frac{M_{2}^{b}}{Eh^{2}}\right) + G_{10} \left(\frac{M_{1}^{b}}{Eh^{2}}\right) + G_{11} \left(\frac{Q_{2}^{b}}{Eh}\right) + G_{12} \left(\frac{Q_{1}^{b}}{Eh}\right) - \frac{G_{9}}{G_{1}} \left(\frac{2^{M_{1}^{p}}}{Eh^{2}}\right) + G_{10} \left(\frac{1^{M_{1}^{p}}}{Eh^{2}}\right) - G_{12} \left(\frac{1^{Q_{1}^{p}}}{Eh}\right)$$

Por ultimo define-se:

(168e)

$$G_{13} = d_2 C_4 - d_4 C_2 - (d_1 C_4 - d_3 C_2) r ;$$
 (169a)

$$G_{14} = \frac{1}{G_2} \left[-\frac{G_3 G_{13}}{G_1} - (d_1 C_4 - d_3 C_2) \right];$$
(169b)

$$G_{15} = \frac{1}{GG_2} \left[-c_2 G_2 + (c_4 d_1 - c_2 d_3) (c_1 b_2 - c_2 b_1) - G_{13} G_4 G_2 \right] (169c)$$

$$G_{16} = \frac{1}{GG_2} \left[C_4 G_2 + (C_4 d_1 - C_2 d_3) (C_4 b_1 - C_3 b_2) - G_{13} G_5 G_2 \right];$$
 (169d)

para obter A₁ na forma:

$$\frac{G_{13}}{A_1} = -\frac{G_{13}}{G_1} \left(\frac{\frac{M^b_2}{2}}{Eh^2}\right) + G_{14} \left(\frac{\frac{M^b_1}{1}}{Eh^2}\right) + G_{15} \left(\frac{Q^b_2}{Eh}\right) + G_{16} \left(\frac{Q^b_1}{Eh}\right) - \frac{G_{13}}{G_1} \left(\frac{2^{M^b_1}}{Eh^2}\right) + G_{14} \left(\frac{1^{M^b_1}}{Eh^2}\right) - G_{16} \left(\frac{1^{Q^b_1}}{Eh}\right)$$
(169e)

Assim, as constantes de integração ficam em função das reações de descontinui dade M_1^b , Q_1^b , M_2^b , Q_2^b . Uma vez conhecidas estas reações, as constantes A_4 , A_3 , A_2 e A_1 ficam determinadas e quando, substituídas nas equações governantes das partes da estrutura, pode-se obter qualquer variável. Então, em continuação ã obtenção daquelas constantes, determina-se as reações de descontinui dade em função dos termos do carregamento. Para se fazer isso, necessita - se das condições de continuidade das deflexões e rotações através das junções (150e, f). Portanto, primeiramente, tem-se que obter as equações das deflexões e rotações nas partes constituintes da estrutura em função das reações de descontinuidade. Como consequência também são obtidas todas as solicitações, bem como os deslocamentos radiais atravês da estrutura.

6.2.1. ROTAÇÃO MERIDIONAL NA REGIÃO CÔNICA B EM FUNÇÃO DAS REAÇÕES DE DESCONTINUIDADE.

Levando (166e), (167d), (168e) e (169e) na equação da rota-

ção na região cônica (132) e, agrupando-se os termos de mesmas reações de descontinuidade, vem

$$\chi = h_{1} \left(\mu_{b} \gamma \right) \left(\frac{M_{2}^{b}}{Eh^{2}} \right) + h_{2} \left(\mu_{b} \gamma \right) \left(\frac{M_{1}^{b}}{Eh^{2}} \right) + h_{3} \left(\mu_{b} \gamma \right) \left(\frac{Q_{2}^{b}}{Eh} \right) + h_{4} \left(\mu_{b} \gamma \right) \left(\frac{Q_{1}^{p}}{Eh} \right) + h_{1} \left(\mu_{b} \gamma \right) \left(\frac{2^{M_{1}^{p}}}{Eh^{2}} \right) + h_{2} \left(\mu_{b} \gamma \right) \left(\frac{1^{M_{1}^{p}}}{Eh^{2}} \right) - h_{4} \left(\mu_{b} \gamma \right) \left(\frac{1^{Q_{1}^{p}}}{Eh} \right) - 2 \mu_{b}^{4} tg\alpha \sum_{n=1}^{\infty} \sum_{k=1}^{N-1} \lambda_{n}^{2} D_{n} C_{n,k} \beta_{k} J_{2} \left(\lambda_{n} \gamma \right) ; (170a) / h_{4} \int \lambda_{1}^{2} d\mu_{1} d\mu_{2} \int \lambda_{1}^{2} d\mu_{1} d\mu_{2} d\mu_{2} \int \lambda_{1}^{2} d\mu_{1} d\mu_{2} d\mu_{2} \int \lambda_{1}^{2} d\mu_{2} d\mu_{2} d\mu_{2} \int \lambda_{1}^{2} d\mu_{2} d\mu_{2} d\mu_{2} \int \lambda_{1}^{2} d\mu_{2} d\mu_{$$

onde os fatores h, são denominados de "funções de influência "e ficam assim definidas:

$$h_{1}(\mu_{b}y) = \frac{1}{G_{1}} \{ -G_{13} \text{ ber}_{2}(\mu_{b}y) - G_{9} \text{ bei}_{2}(\mu_{b}y) - rG \text{ Ker}_{2}(\mu_{b}y) + G \text{ Kei}_{2}(\mu_{b}y) \}; \qquad (170b)$$

$$m_2(\mu_b y) = G_{14} ber_2(\mu_b y) + G_{10} bei_2(\mu_b y) + G_6 Ker_2(\mu_b y) - G_6$$

$$-\frac{G_3^G}{G_1^G_2} \operatorname{Kei}_2(\mu_b y); \qquad (170c)$$

$$h_{3}(\mu_{b}y) = G_{15}ber_{2}(\mu_{b}y) + G_{11}bei_{2}(\mu_{b}y) + G_{7}Ker_{2}(\mu_{b}y) + G_{11}Ker_{2}(\mu_{b}y) + G_{11}Ker_{2}(\mu_{b}y)$$

+
$$G_4 \text{ Kei}_2 (\mu_b \gamma);$$
 (170d)

$$h_4 (\mu_b y) = G_{16} ber_2 (\mu_b y) + G_{12} bei_2 (\mu_b y) + G_8 Ker_2 (\mu_b y) +$$

+
$$G_5 Kei_2 (\mu_b y)$$
 (170e)

Estas funções de influência quando calculadas em um ponto específico, passam a ser os "coeficientes de influência " de cada uma das reações de descontinui-

dade para a variável em consideração. Assim, por exemplo, $h_1 (\mu_b y)$ é a função de influência da reação ($\frac{M_b^2}{Eh^2}$) para a rotação e em um determinado argumento é o coeficiente de influência. Da mesma forma, são obtidas todas as outras variáveis da região cônica.

6.2.2. MOMENTO RESULTANTE MERIDIONAL EM FUNÇÃO DAS REAÇÕES DE DESCONTINUIDADE.

Para a obtenção da equação do momento meridional em função, das reações de descontinuidade, substitui-se as equações das constantes A_4, A_3 , A_2 e A_1 em (135) e define-se as seguintes funções de influência:

$$h_{5}(\mu_{b}\gamma) = \frac{\nu_{4}}{\gamma} \left\{ -\frac{G_{13}}{G_{1}} \left[\frac{1}{2} \operatorname{ber}_{2}^{\prime}(\mu_{b}\gamma) + \frac{\nu}{\gamma} \operatorname{ber}_{2}(\mu_{b}\gamma) \right] - \frac{G_{9}}{G_{1}} \left[\frac{1}{2} \operatorname{bei}_{2}^{\prime}(\mu_{b}\gamma) + \frac{\nu}{\gamma} \operatorname{bei}_{2}(\mu_{b}\gamma) \right] - \frac{rG}{G_{1}} \left[\frac{1}{2} \operatorname{Ker}_{2}^{\prime}(\mu_{b}\gamma) + \frac{\nu}{\gamma} \operatorname{Ker}_{2}(\mu_{b}\gamma) \right] + \frac{G}{G_{1}} \left[\frac{1}{2} \operatorname{Kei}_{2}^{\prime}(\mu_{b}\gamma) + \frac{\nu}{\gamma} \operatorname{Kei}_{2}(\mu_{b}\gamma) \right] \right\} ;$$

$$(171a)$$

$$+ \frac{v}{y} \operatorname{Ker}_{2}(\mu_{b}y) - \frac{G_{3}G}{G_{1}G_{2}} \left[\frac{1}{2} \operatorname{Kei}_{2}(\mu_{b}y) + \frac{v}{y} \operatorname{Kei}_{2}(\mu_{b}y) \right] ;$$
(171b)

$$(\mu_{b}y) = \frac{\sqrt{4}}{y} \{ G_{15} \left[\frac{1}{2} ber_{2}'(\mu_{b}y) + \frac{\sqrt{2}}{y} ber_{2}(\mu_{b}y) \right] + G_{11} \left[\frac{1}{2} bei_{2}'(\mu_{b}y) + \frac{\sqrt{2}}{y} bei_{2}(\mu_{b}y) \right] + G_{7} \left[\frac{1}{2} Ker_{2}'(\mu_{b}y) \right]$$

$$+ \frac{v}{y} \operatorname{Ker}_{2}(\mu_{b} y)] + G_{4} \left[\frac{1}{2} \operatorname{Kei}_{2}(\mu_{b} y) + \frac{v}{y} \operatorname{Kei}_{2}(\mu_{b} y) \right] ;$$
(171c)

$$h_{8}(\mu_{b}y) = \frac{\nu_{4}}{\gamma} \left(G_{16} \left[\frac{1}{2} \operatorname{ber}_{2}^{\prime}(\mu_{b}y) + \frac{\nu}{\gamma} \operatorname{ber}_{2}^{\prime}(\mu_{b}y) \right] + G_{8} \left[\frac{1}{2} \operatorname{Ker}_{2}^{\prime}(\mu_{b}y) + \frac{\nu}{\gamma} \operatorname{Ker}_{2}^{\prime}(\mu_{b}y) + \frac{\nu}{\gamma} \operatorname{Ker}_{2}^{\prime}(\mu_{b}y) + \frac{\nu}{\gamma} \operatorname{Ker}_{2}^{\prime}(\mu_{b}y) \right] + G_{8} \left[\frac{1}{2} \operatorname{Ker}_{2}^{\prime}(\mu_{b}y) + \frac{\nu}{\gamma} \operatorname{Ker}_{2}^{\prime}(\mu_{b}y) + \frac{\nu}{\gamma} \operatorname{Ker}_{2}^{\prime}(\mu_{b}y) \right] \right]$$
(171d)

para encontrar a seguinte expressão do momento meridional na região cônica B:

$$\frac{M_{1}}{Eh^{2}} = h_{5}(\mu_{b}y)\left(\frac{M_{2}^{b}}{Eh^{2}}\right) + h_{6}(\mu_{b}y)\left(\frac{M_{1}^{b}}{Eh^{2}}\right) + h_{7}(\mu_{b}y)\left(\frac{Q_{2}^{b}}{Eh}\right) + h_{8}(\mu_{b}y)\left(\frac{Q_{1}^{b}}{Eh}\right) + h_{5}(\mu_{b}y)\left(\frac{2M_{1}^{p}}{Eh^{2}}\right) + h_{6}(\mu_{b}y)\left(\frac{1M_{1}^{p}}{Eh}\right) - h_{8}(\mu_{b}y)\left(\frac{1Q_{1}^{p}}{Eh^{2}}\right) - h_{8}(\mu_{b}y)\left(\frac{1Q_{1}^{p}}{Eh^{2}}\right) + h_{6}(\mu_{b}y)\left(\frac{1}{Eh^{2}}\right) - h_{8}(\mu_{b}y)\left(\frac{1Q_{1}^{p}}{Eh^{2}}\right) - h_{8}(\mu_{b}y)\left(\frac{1}{Eh^{2}}\right) - h_{8}(\mu_$$

6.2.3. MOMENTO RESULTANTE CIRCUNFERENCIAL EM FUNÇÃO DAS REAÇÕES DE DESCONTINUIDADE.

Para obtenção do momento resultante circunferencial, substitui-se em (136) as constantes de integração expressas em (166e), (167d) , (168e) e (169e) e define-se as seguintes funções de influência:

$$h_{9}(\mu_{b}y) = \frac{\nu_{4}}{\gamma} \left\{ -\frac{G_{13}}{G_{1}} \left[\frac{1}{y} \text{ ber}_{2}(\mu_{b}y) + \frac{\nu}{2} \text{ ber}_{2}'(\mu_{b}y) \right] - \frac{G_{9}}{G_{1}} \left[\frac{1}{y} \text{ bei}_{2}(\mu_{b}y) + \frac{\nu}{2} \text{ bei}_{2}'(\mu_{b}y) \right] - \frac{rG}{G_{1}} \left[\frac{1}{y} \text{ Ker}_{2}(\mu_{b}y) + \frac{\nu}{2} \text{ bei}_{2}'(\mu_{b}y) \right] - \frac{rG}{G_{1}} \left[\frac{1}{y} \text{ Ker}_{2}(\mu_{b}y) + \frac{\nu}{2} \text{ bei}_{2}'(\mu_{b}y) \right] - \frac{rG}{G_{1}} \left[\frac{1}{y} \text{ Ker}_{2}(\mu_{b}y) \right] + \frac{v}{2} \text{ bei}_{2}'(\mu_{b}y) = \frac{rG}{G_{1}} \left[\frac{1}{y} \text{ Ker}_{2}(\mu_{b}y) \right] + \frac{v}{2} \text{ bei}_{2}'(\mu_{b}y) = \frac{rG}{G_{1}} \left[\frac{1}{y} \text{ Ker}_{2}(\mu_{b}y) \right] + \frac{v}{2} \text{ bei}_{2}'(\mu_{b}y) = \frac{rG}{G_{1}} \left[\frac{1}{y} \text{ Ker}_{2}(\mu_{b}y) \right] + \frac{v}{2} \text{ bei}_{2}'(\mu_{b}y) = \frac{rG}{G_{1}} \left[\frac{1}{y} \text{ Ker}_{2}(\mu_{b}y) \right] + \frac{v}{2} \text{ bei}_{2}'(\mu_{b}y) = \frac{rG}{G_{1}} \left[\frac{1}{y} \text{ Ker}_{2}(\mu_{b}y) \right] + \frac{v}{2} \text{ bei}_{2}'(\mu_{b}y) = \frac{rG}{G_{1}} \left[\frac{1}{y} \text{ Ker}_{2}(\mu_{b}y) \right] + \frac{v}{2} \text{ bei}_{2}'(\mu_{b}y) = \frac{rG}{G_{1}} \left[\frac{1}{y} \text{ Ker}_{2}(\mu_{b}y) \right] + \frac{v}{2} \text{ bei}_{2}'(\mu_{b}y) = \frac{rG}{G_{1}} \left[\frac{1}{y} \text{ Ker}_{2}(\mu_{b}y) \right] + \frac{v}{2} \text{ bei}_{2}'(\mu_{b}y) = \frac{rG}{G_{1}} \left[\frac{1}{y} \text{ Ker}_{2}(\mu_{b}y) \right] + \frac{v}{2} \text{ bei}_{2}'(\mu_{b}y) = \frac{rG}{G_{1}} \left[\frac{1}{y} \text{ Ker}_{2}(\mu_{b}y) \right] + \frac{v}{2} \text{ bei}_{2}'(\mu_{b}y) = \frac{rG}{G_{1}} \left[\frac{1}{y} \text{ Ker}_{2}(\mu_{b}y) \right] + \frac{v}{2} \text{ bei}_{2}'(\mu_{b}y) = \frac{rG}{G_{1}} \left[\frac{1}{y} \text{ Ker}_{2}(\mu_{b}y) \right] + \frac{v}{2} \text{ bei}_{2}'(\mu_{b}y) = \frac{rG}{G_{1}} \left[\frac{1}{y} \text{ Ker}_{2}(\mu_{b}y) \right] + \frac{v}{2} \text{ bei}_{2}'(\mu_{b}y) = \frac{rG}{G_{1}} \left[\frac{1}{y} \text{ bei}_{2}'(\mu_{b}y) \right] + \frac{v}{2} \text{ bei}_{2}'(\mu_{b}y) = \frac{rG}{G_{1}} \left[\frac{1}{y} \text{ bei}_{2}'(\mu_{b}y) \right] + \frac{v}{2} \text{ bei}_{2}'(\mu_{b}y) = \frac{rG}{G_{1}} \left[\frac{1}{y} \text{ bei}_{2}'(\mu_{b}y) \right] + \frac{v}{2} \text{ bei}_{2}'(\mu_{b}y) = \frac{rG}{G_{1}} \left[\frac{1}{y} \text{ bei}_{2}'(\mu_{b}y) \right] + \frac{v}{2} \text{ bei}_{2}'(\mu_{b}y) = \frac{rG}{G_{1}} \left[\frac{1}{y} \text{ bei}_{2}'(\mu_{b}y) \right] + \frac{v}{2} \text{ bei}_{2}'(\mu_{b}y) = \frac{rG}{G_{1}} \left[\frac{1}{y} \text{ bei}_{2}'(\mu_{b}y) \right] + \frac{v}{2} \text{ bei}_{2}'(\mu_{b}y) = \frac{rG}{G_{1}} \left[\frac{1}{y} \text{ bei}_{2}'(\mu_{b}y) \right] + \frac{v}{2} \text{ bei}_{2}'(\mu_{b}y)$$

$$+ \frac{v}{2} \operatorname{Ker}_{2}^{i} (\mu_{b} y)] + \frac{G}{G_{1}} \left[\frac{1}{y} \operatorname{Kei}_{2} (\mu_{b} y) + \frac{v}{2} \operatorname{Kei}_{2}^{i} (\mu_{b} y) \right] ;$$
(172a)

$$h_{10}(\mu_{b} y) = \frac{v_{4}}{y} \{ G_{14} \left[\frac{1}{y} \operatorname{ber}_{2} (\mu_{b} y) + \frac{v}{2} \operatorname{ber}_{2}^{i} (\mu_{b} y) \right] +$$

$$+ G_{10} \left[\frac{1}{y} \operatorname{bei}_{2} (\mu_{b} y) + \frac{v}{2} \operatorname{bei}_{2}^{i} (\mu_{b} y) \right] + G_{6} \left[\frac{1}{y} \operatorname{Ker}_{2} (\mu_{b} y) +$$

$$+ \frac{v}{2} \operatorname{Ker}_{2}^{i} (\mu_{b} y) \right] - \frac{G_{3}G}{G_{1}G_{2}} \left[\frac{1}{y} \operatorname{Kei}_{2} (\mu_{b} y) + \frac{v}{2} \operatorname{Kei}_{2}^{i} (\mu_{b} y) \right] ;$$

$$h_{11}(\mu_{b} y) = \frac{v_{4}}{y} \{ G_{15} \left[\frac{1}{y} \operatorname{ber}_{2} (\mu_{b} y) + \frac{v}{2} \operatorname{ber}_{2}^{i} (\mu_{b} y) \right] + G_{7} \left[\frac{1}{y} \operatorname{Ker}_{2} (\mu_{b} y) +$$

$$+ \frac{v}{2} \operatorname{Ker}_{2}^{i} (\mu_{b} y) + \frac{v}{2} \operatorname{bei}_{2}^{i} (\mu_{b} y) + \frac{v}{2} \operatorname{Kei}_{2}^{i} (\mu_{b} y) \right] ;$$

$$h_{12}(\mu_{b} y) = \frac{v_{4}}{y} \{ G_{16} \left[\frac{1}{y} \operatorname{ber}_{2} (\pi_{b} y) + \frac{v}{2} \operatorname{ber}_{2}^{i} (\mu_{b} y) \right] + G_{7} \left[\frac{1}{y} \operatorname{Ker}_{2} (\mu_{b} y) \right] ;$$

$$h_{12}(\mu_{b} y) = \frac{v_{4}}{y} \{ G_{16} \left[\frac{1}{y} \operatorname{ber}_{2} (\pi_{b} y) + \frac{v}{2} \operatorname{ber}_{2}^{i} (\mu_{b} y) \right] + G_{8} \left[\frac{1}{y} \operatorname{Ker}_{2} (\mu_{b} y) + \frac{v}{2} \operatorname{Kei}_{2}^{i} (\mu_{b} y) \right] ;$$

$$h_{12}(\mu_{b} y) = \frac{v_{4}}{y} \{ G_{16} \left[\frac{1}{y} \operatorname{ber}_{2} (\pi_{b} y) + \frac{v}{2} \operatorname{bei}_{2}^{i} (\mu_{b} y) \right] + G_{8} \left[\frac{1}{y} \operatorname{Ker}_{2} (\mu_{b} y) + \frac{v}{2} \operatorname{Kei}_{2}^{i} (\mu_{b} y) \right] ;$$

$$(172c)$$

o que resulta em

$$\frac{M_2}{Eh^2} = h_9(\mu_b \gamma) \left(\frac{M_2^b}{Eh^2}\right) + h_{10}(\mu_b \gamma) \left(\frac{M_1^b}{Eh^2}\right) + h_{11}(\mu_b \gamma) \left(\frac{Q_2^b}{Eh}\right) + h_{12}(\mu_b \gamma) \left(\frac{Q_1^b}{Eh^2}\right) + h_9(\mu_b \gamma) \left(\frac{2M_1^p}{Eh^2}\right) + h_{10}(\mu_b \gamma) \left(\frac{1M_1^p}{Eh^2}\right) - h_{12}(\mu_b \gamma) \left(\frac{1Q_1^p}{Eh}\right) - \frac{\nu_4}{\gamma} \mu_b^4 tg\alpha \sum_{n=1}^{\infty} \sum_{k=1}^{N-1} \lambda_n^2 D_n C_{n,k} \beta_k \left[\frac{2}{\gamma} J_2(\lambda_n \gamma)\right]$$

$$\pm v J_2(\lambda_n y)$$

6.2.4. FORÇA NORMAL MERIDIONAL EM FUNÇÃO DAS REAÇÕES DE DESCONTINUIDADE.

Analogamente, levando A₁ , A₂ , A₃ e A₄ na equação da força normal meridional na região cônica, (137b) e definindo as funções de influência:

$$h_{13}(\mu_{b}\gamma) = \frac{\mu_{b}^{2} \text{sen} 2_{\alpha}}{96(1 - \nu^{2})} \left(\frac{h}{L}\right)^{2} \frac{1}{\gamma^{2}} \left[-\frac{G_{9}}{G_{1}} \text{ber}_{2}(\mu_{b}\gamma) + \frac{G_{13}}{G_{1}} \text{bei}_{2}(\mu_{b}\gamma)\right]$$

$$+ \frac{G}{G} \text{Ker}_{2}(\mu_{b}\gamma) + r \frac{G}{G} \text{Kei}_{2}(\mu_{b}\gamma)]; \qquad (173a)$$

$$h_{14}(\mu_{b}\gamma) = \frac{\mu_{b}^{2} \operatorname{sen} 2\alpha}{96(1 - \nu^{2})} \left(\frac{h}{L}\right)^{2} \frac{1}{\gamma^{2}} \left[G_{10} \operatorname{ber}_{2}(\mu_{b}\gamma) - G_{14} \operatorname{bei}_{2}(\mu_{b}\gamma) - \frac{GG_{3}}{G_{1}G_{2}} \operatorname{ker}_{2}(\mu_{b}\gamma) - G_{6} \operatorname{Kei}_{2}(\mu_{b}\gamma)\right]; \qquad (173b)$$

$$h_{15}(\mu_{b}y) = \frac{\mu_{b}^{2} \operatorname{sen2}\alpha}{96(1 - \nu^{2})} \left(\frac{h}{L}\right)^{2} \frac{1}{\gamma^{2}} \left[G_{11} \operatorname{ber}_{2}(\mu_{b}y) - G_{15} \operatorname{bei}_{2}(\mu_{b}y) + \right]$$

+
$$G_4 \operatorname{Ker}_2(\mu_b y) - G_7 \operatorname{Kei}_2(\mu_b y)];$$
 (173c)

$$h_{16}(\mu_{b}y) = \frac{\mu_{b}^{2} \operatorname{sen2\alpha}}{96(1 - \nu^{2})} \left(\frac{h}{L}\right)^{2} \frac{1}{\gamma^{2}} \left[G_{12} \operatorname{ber}_{2}(\mu_{b}y) - G_{16} \operatorname{bei}_{2}(\mu_{b}y) + G_{5} \operatorname{Ker}_{2}(\mu_{b}y) - G_{8} \operatorname{Kei}_{2}(\mu_{b}y)\right];$$

$$(173d)$$

encontra-se

$$\frac{N_{1}}{Eh} = h_{13}(\mu_{b}y) \left(\frac{M_{2}^{b}}{Eh^{2}}\right) + h_{14}(\mu_{b}y) \left(\frac{M_{1}^{b}}{Eh^{2}}\right) + h_{15}(\mu_{b}y) \left(\frac{Q_{2}^{b}}{Eh}\right) + h_{15}($$

87

(172e)

$$+ h_{16}(\mu_{b}y) \left(\frac{Q_{1}^{b}}{Eh}\right) + h_{13}(\mu_{b}y) \left(\frac{2^{M_{1}^{p}}}{Eh^{2}}\right) + h_{14}(\mu_{b}y) \left(\frac{1^{M_{1}^{p}}}{Eh^{2}}\right) - h_{16}(\mu_{b}y) \left(\frac{1^{Q_{1}^{p}}}{Eh}\right) + \frac{8}{y^{2}} \sum_{n=1}^{\infty} \sum_{k=1}^{N-1} \lambda_{n}^{4} D_{n} C_{n,k} \beta_{k} J_{2}(\lambda_{n}y) .$$
(173e)

6.2.5. FORÇA NORMAL CIRCUNFERENCIAL EM FUNÇÃO DAS REAÇÕES DE DESCONTINUIDADE.

Para obtenção da força normal circunferencial em função das reações de descontinuidade, substitui-se as constantes A_4 , A_3 , A_2 e A_1 na e-quação (138b) e, define-se as funções de influência:

$$h_{17}(\mu_{b}y) = \frac{\mu_{b}^{2} \operatorname{sen}2\alpha}{192(1 - \nu^{2})} \left(\frac{h}{L}\right)^{2} \frac{1}{y} \left[-\frac{G_{9}}{G_{1}}\operatorname{ber}_{2}'(\mu_{b}y) + \frac{G_{13}}{G_{1}}\operatorname{bei}_{2}'(\mu_{b}y) + \frac{G_{13}}{G_{1}}\operatorname{bei}_{2$$

$$h_{18}(\mu_{b}y) = \frac{\mu_{b}^{2} \operatorname{sen} 2\alpha}{192(1 - \nu^{2})} \left(\frac{h}{L}\right)^{2} \frac{1}{y} \left[G_{10} \operatorname{ber}_{2}^{\prime}(\mu_{b}y) - G_{14} \operatorname{bei}_{2}^{\prime}(\mu_{b}y) - \frac{G_{6}^{2}}{G_{1}^{2}G_{2}} \operatorname{Ker}_{2}^{\prime}(\mu_{b}y) - G_{6}^{2} \operatorname{Kei}_{2}^{\prime}(\mu_{b}y)\right]; \qquad (174b)$$

$$h_{19}(\mu_{b}y) = \frac{\mu_{b}^{2} \operatorname{sen2\alpha}}{192(1 - \nu^{2})} \left(\frac{h}{L}\right)^{2} \frac{1}{y} \left[G_{11} \operatorname{ber}_{2}^{\prime}(\mu_{b}y) - G_{15} \operatorname{bei}_{2}^{\prime}(\mu_{b}y) + G_{4} \operatorname{Ker}_{2}^{\prime}(\mu_{b}y) - G_{7} \operatorname{Kei}_{2}^{\prime}(\mu_{b}y)\right]; \qquad (174c)$$

$$h_{20}(\mu_{b}y) = \frac{\mu_{b}^{2} \operatorname{sen}2\alpha}{192(1 - \nu^{2})} (\frac{h}{L})^{2} \frac{1}{y} \left[G_{12} \operatorname{ber}_{2}'(\mu_{b}y) - G_{16} \operatorname{bei}_{2}'(\mu_{b}y) + G_{5} \operatorname{Ker}_{2}'(\mu_{b}y) - G_{8} \operatorname{Kei}_{2}'(\mu_{b}y) \right]; \qquad (174d)$$

encontra-

N

$$\frac{N_{2}}{Eh} = h_{17}(\mu_{b}y) \left(\frac{M_{2}^{b}}{Eh^{2}}\right) + h_{18}(\mu_{b}y) \left(\frac{M_{1}^{b}}{Eh^{2}}\right) + h_{19}(\mu_{b}y) \left(\frac{Q_{2}^{b}}{Eh}\right) + h_{20}(\mu_{b}y) \left(\frac{Q_{1}^{b}}{Eh}\right) + h_{17}(\mu_{b}y) \left(\frac{2M_{1}^{p}}{Eh^{2}}\right) + h_{18}(\mu_{b}y) \left(\frac{1M_{1}^{p}}{Eh^{2}}\right) - h_{20}(\mu_{b}y) \left(\frac{1Q_{1}^{p}}{Eh}\right) + \frac{4}{y}\sum_{n=1}^{\infty}\sum_{k=1}^{N-1}\lambda_{n}^{4}D_{n}C_{n,k}\beta_{k}J_{2}(\lambda_{n}y)$$
(174e)

6.2.6. DESLOCAMENTO RADIAL EM FUNÇÃO DAS REAÇÕES DE DESCONTINUIDADE.

Para obtenção do deslocamento radial não é necessário definir novas funções de influência, pois já se conhece as expressões de N₁/Eh N_{2} /Eh. Então, levando as expressões (173e) e (174e) em (139b) tem-se

$$\delta^{b} = \xi \ L \ tg\alpha \left\{ \left[h_{17}(\mu_{b}\gamma) - \nu h_{13}(\mu_{b}\gamma) \right] \left(\frac{M_{2}^{b}}{Eh^{2}} + \frac{2M_{1}^{p}}{Eh^{2}} \right) + \left[h_{18}(\mu_{b}\gamma) - \nu h_{14}(\mu_{b}\gamma) \right] \left(\frac{M_{1}^{b}}{Eh^{2}} + \frac{1M_{1}^{p}}{Eh^{2}} \right) + \left[h_{19}(\mu_{b}\gamma) - \nu h_{15}(\mu_{b}\gamma) \right] \left(\frac{Q_{2}^{b}}{Eh} \right) + \left[h_{20}(\mu_{b}\gamma) - \nu h_{16}(\mu_{b}\gamma) \right] \left(\frac{Q_{1}^{b}}{Eh} - \frac{1Q_{1}^{p}}{Eh} \right) \right\} + \frac{4\xi L tg\alpha}{\gamma} \sum_{n=1}^{\infty} \sum_{k=1}^{N-1} \lambda_{n}^{4}$$

$$\cdot \ D_{n} \ C_{n,k} \ \beta_{k} \left[J_{2}^{i}(\lambda_{n}\gamma) - \frac{2\nu}{\gamma} J_{2}(\lambda_{n}\gamma) \right] + \xi L tg\alpha \left[\alpha(\xi) \cdot T(\xi) \right]$$
(175)

6.3. DETERMINAÇÃO DAS CONSTANTES DE INTEGRAÇÃO E DAS VARIÁVEIS DA REGIÃO CILÍNDRICA A, EM FUNÇÃO DAS REAÇÕES DE DESCONTINUIDADE.

Neste item, além da determinação das constantes $B_1 e B_2$ em função das reações de descontinuidade introduzidas nesta parte, precisa-se expressa-las em função das reações que atuam na parte cônica, a fim de não aumentar o número de incógnitas do problema.

(128) e, definindo

$$n_a = \mu_a R_a/R_c ,$$

tem-se para a força cortante:

$$\frac{Q_1}{Eh} = + \frac{Q_2^a \cos \alpha}{Eh} = \frac{\mu_a^2}{6(1 - \nu^2)} \left(\frac{h}{L}\right)^2 e^{n_a} \left(B_2 \cos n_a - B_1 \sin n_a\right)$$

Tendo em vista a condição de equilíbrio na junção I, dada em (150b), resulta:

$$\frac{Q_{1}^{b}}{Eh}\cos\alpha = \frac{\mu_{a}^{2}}{6(1-\nu^{2})} \left(\frac{h}{L}\right)^{2} e^{\eta_{a}} \left(B_{2}\cos\eta_{a} - B_{1}\sin\eta_{a}\right)$$
(176)

Para o momento, aplicando (151f) em (140) e, jã levando em consideração a condição de equilíbrio (150a), obtém-se

$$\frac{M_{1}^{b}}{Eh^{2}} = \frac{\mu_{a}}{12(1 - \nu^{2})} \left(\frac{h}{L}\right) e^{\eta_{a}} \left[B_{1}(\cos \eta_{a} - \sin \eta_{a}) + B_{2}(\cos \eta_{a} + \sin \eta_{a})\right]$$
(177)

Resolvendo simultaneamente (176) e (177) para $B_1 = B_2$ encontra-se:

$$B_{1} = g_{1} \left(\frac{M_{1}^{b}}{Eh^{2}}\right) - g_{2} \left(\cosh_{a} + \operatorname{senn}_{a}\right) \left(\frac{Q_{1}^{b}}{Eh}\right) , \qquad (178)$$

$$B_{2} = g_{1} tgn_{a} \left(\frac{M_{1}^{b}}{Eh^{2}}\right) + g_{2} \left(\cos n_{a} - senn_{a}\right) \left(\frac{Q_{1}^{b}}{Eh}\right) ; \qquad (179)$$

onde g₁ e g₂ são dados por:

$$g_{1} = \frac{12(1 - v^{2})e^{-\eta_{a}}\cos\eta_{a}}{\mu_{a}}(\frac{L}{h})$$

$$\frac{6(1)-v^2}{\mu_a^2} = \frac{-\eta_a}{\cos\alpha} \left(\frac{L}{h}\right)^2$$

Tendo sido determinadas as constantes B₁ e B₂ em função das reações de desco<u>n</u> tinuidade, prossegue-se com a obtenção das variáveis desta parte da estrutura, em função delas.

6.3.1. ROTAÇÃO NA REGIÃO CILÍNDRICA A EM FUNÇÃO DAS REAÇÕES DE DESCONTINUIDADE.

Substituindo em (127) as constantes $B_1 e B_2$, encontradas em (178), (179) respectivamente, e fatorando os termos de mesmas reações de descontinuidade, define-se as funções de influência:

$$p_1(\mu_a\xi) = \frac{e^{\mu_a\xi}}{\cos\eta_a} g_1 \cos(\eta_a - \mu_a\xi)$$
 (180a)

$$p_2(\mu_a\xi) = e^{\mu_a\xi} g_2 \left[-\cos(\eta_a - \mu_a\xi) + sen(\eta_a - \mu_a\xi) \right].$$
 (180b)

Com isto, encontra-se a rotação meridional na região A, na forma:

$$\chi = p_1(\mu_a \xi) \left(\frac{M_1^b}{Eh^2}\right) + p_2(\mu_a \xi) \left(\frac{Q_1^b}{Eh}\right) .$$
 (180c)

6.3.2. MOMENTOS MERIDIONAL E CIRCUNFERENCIAL NA REGIÃO CILÍNDRICA A, EM FUNÇÃO DAS REAÇÕES DE DESCONTINUIDADE.

Substitui-se (178) em (140) e define-se as funções de influência p₃ e p₄ , como

$$p_{3}(\mu_{a}\xi) = e^{-\eta_{a}} \cdot e^{\mu_{a}\xi} \left[\cos(\eta_{a} - \mu_{a}\xi) + \sin(\eta_{a} - \mu_{a}\xi) \right]$$
 (181a)

$$p_{4}(\mu_{a}\xi) = \frac{e^{-\eta} a \cos \alpha}{\mu_{a}}(\frac{L}{h}) e^{-\eta} sen(\mu_{a}\xi - \eta_{a})$$
(181b)
Dessa maneira, o momento meridional pode ser expresso por

$$\frac{M_{1}}{Eh^{2}} = p_{3}(\mu_{a}\xi) \left(\frac{M_{1}^{b}}{Eh^{2}}\right) + p_{4}(\mu_{a}\xi) \left(\frac{Q_{1}^{b}}{Eh}\right)$$
(181c)

e o momento circunferencial por

$$\frac{M_2}{Eh^2} = v p_3(\mu_a \xi) \left(\frac{M_1^b}{Eh^2}\right) + v p_4(\mu_a \xi) \left(\frac{Q_1^b}{Eh}\right)$$
(181d)

6.3.3. FORÇA NORMAL MERIDIONAL E CIRCUNFERENCIAL NA REGIÃO CILÍNDRICA A, EM FUNÇÃO DAS REAÇÕES DE DESCONTINUIDADE.

Substituindo (152) em (142) e considerando (150b), obtém-se

$$\frac{N_{1}}{Eh} = - \operatorname{sen}\alpha \left(\frac{Q_{1}^{b}}{Eh}\right) , \qquad (182)$$

que é a força normal meridional. Para a obtenção da força normal circunferen cial, substitui-se as constantes $B_1 e B_2$ determinadas em (178) e (179) em (143), tendo sido definidas as seguintes funções de influência:

$$p_{5}(\mu_{a}\xi) = 2 \mu_{a}^{2} \left(\frac{R_{a}}{L}\right) \left(\frac{h}{L}\right) e^{-n_{a}} e^{\mu_{a}\xi} \left[sen(n_{a} - \mu_{a}\xi) - cos(n_{a} - \mu_{a}\xi)\right]; \qquad (183a)$$

$$p_{6}(\mu_{a}\xi) = 2 \mu_{a} \cos \alpha \left(\frac{R_{a}}{L}\right) e^{-\eta_{a}} e^{\mu_{a}\xi} \cos \left(\eta_{a} - \mu_{a}\xi\right)$$
 (183b)

Assim resulta que

$$\frac{N_{2}}{Eh} = p_{5}(\mu_{a}\xi) \left(\frac{M_{1}^{b}}{Eh^{2}}\right) + p_{6}(\mu_{a}\xi) \left(\frac{Q_{1}^{b}}{Eh}\right)$$
(183c)

6.3.4. DESLOCAMENTO RADIAL NA REGIÃO CILÍNDRICA A, EM FUNÇÃO DAS REAÇÕES DE DESCONTINUIDADE.

Trazendo em (144a) as expressões de N_1 /Eh e N_2 /Eh, encon-

tradas em (182) e (183c), respectivamente, obtém-se o deslocamento radial, na forma:

$$\delta^{a} = R_{a} \{ p_{5}(\mu_{a}\xi) (\frac{M_{1}^{b}}{Eh^{2}}) + \left[p_{6}(\mu_{a}\xi) + \nu_{sen\alpha} \right] (\frac{Q_{1}^{b}}{Eh}) \} + R_{a}\alpha_{a}T_{a}$$
(184)

6.4. DETERMINAÇÃO DAS CONSTANTES DE INTEGRAÇÃO E DAS VARIÁVEIS DA REGIÃO CILÍNDRICA C, EM FUNÇÃO DAS REAÇÕES DE DESCONTINUIDADE.

Como em 6.3, determina-se primeiramente as constantes de integração D $_3$ e D $_4$, em função das reações de descontinuidade impostas à região cônica B.

Utilizando as condições de contorno (151h) e (151i) se obtem de (131) e (145), respectivamente, que:

$$\cos\alpha \left(\frac{Q_{1}^{c}}{Eh}\right) = \frac{\mu_{c}^{2}}{6(1-v^{2})} \left(\frac{h}{L}\right)^{2} e^{-\mu_{c}} \left(D_{4} \cos\mu_{c} + D_{3} \sin\mu_{c}\right) \quad (185a)$$

е

$$\frac{M_{1}^{c}}{Eh^{2}} = -\frac{\mu_{c}}{12(1-v^{2})} \left(\frac{h}{L}\right)^{2} e^{-\mu_{c}} \left[D_{3}(\cos\mu_{c} + \sin\mu_{c}) + D_{4}(\cos\mu_{c} - \sin\mu_{c})\right]$$
(185b)

Considerando as condições de equilibrio na junta II, dadas em (150c) e (150d), nas equações (185a) e (185b) vem que:

$$\cos \alpha \left(\frac{Q_{2}^{b}}{Eh}\right) = \frac{\mu_{c}^{2}}{6(1-v^{2})} \left(\frac{h}{L}\right)^{2} e^{-\mu_{c}} \left(D_{4} \cos \mu_{c} + D_{3} \sin \mu_{c}\right)$$
(185c)

 $\frac{M_{2}^{b}}{Eh^{2}} = -\frac{\mu_{c}}{12(1-\nu^{2})} \left(\frac{h}{L}\right) e^{-\mu_{c}} \left[D_{3}(\cos\mu_{c} + \sin\mu_{c}) + \frac{\mu_{c}}{2}\right]$

$$= D_{4}(\cos \mu_{c} - \sin \mu_{c})$$
 (185d)

As equações (185c) e (185d) constituem um sistema linear em $D_3 e D_4$, que resolvido fornece:

$$D_3 = -g_3 \left(\frac{M_2^b}{Eh^2}\right) - g_4 \left(\cos \mu_c - \sin \mu_c\right) \left(\frac{Q_2^b}{Eh}\right)$$
, (185e)

$$D_{4} = g_{3} tg\mu_{c} \left(\frac{M_{2}^{b}}{Eh^{2}}\right) + g_{4} \left(\cos\mu_{c} + \sin\mu_{c}\right) \left(\frac{Q_{2}^{b}}{Eh}\right).$$
(185f)

onde:

$$g_{3} = \frac{12(1 - v^{2}) e^{\mu_{c}} \cos \mu_{c}}{\mu_{c}} \left(\frac{L}{h}\right)$$
$$g_{4} = \frac{6(1 - v^{2}) e^{\mu_{c}} \cos \alpha}{\mu_{c}^{2}} \left(\frac{L}{h}\right)^{2}$$

6.4.1. ROTAÇÃO MERIDIONAL.

Levando D₃ e D₄ em (130) e definindo-se as funções de influência q₁ e q₂ para a rotação, vem

$$\chi = q_1(\mu_c \xi) \left(\frac{M_2^b}{Eh^2}\right) + q_2(\mu_c \xi) \left(\frac{Q_2^b}{Eh}\right)$$
(186a)

onde:

$$q_{1}(\mu_{c}\xi) = -g_{3}e^{-\mu_{c}\xi}\left[\frac{\cos \mu_{c}(1-\xi)}{\cos \mu_{c}}\right],$$
 (186b)

 $q_{2}(\mu_{c}\xi) = -g_{4}e^{-\mu_{c}\xi} \{\cos\left[\mu_{c}(1-\xi)\right] - \sin\left[\mu_{c}(1-\xi)\right]\}, \quad (186c)$

6.4.2. MOMENTO MERIDIONAL E CIRCUNFERENCIAL.

Desta vez, substitui-se as constantes $D_3 = D_4$ dadas (185e) e (185f) em (145) e (146) e define-se as funções de influência.

$$q_{3}(\mu_{c}\xi) = e^{\mu_{c}} e^{-\mu_{c}\xi} \{\cos \left[\mu_{c}(1-\xi)\right] - \sin \left[\mu_{c}(1-\xi)\right]\}$$
(187a)

$$q_4(\mu_c\xi) = -\frac{e^{\mu_c}c_{c3\alpha}}{\mu_c}(\frac{L}{h})e^{-\mu_c\xi}sen\left[\mu_c(1-\xi)\right];$$
 (187b)

Assim obtém-se o momento meridional na forma:

$$\frac{M_1}{Eh^2} = q_3(\mu_c\xi) \left(\frac{M_2^b}{Eh^2}\right) + q_4(\mu_c\xi) \left(\frac{Q_2^b}{Eh}\right)$$
(187c)

e o circunferencial:

$$\frac{M_2}{Eh^2} = q_3(\mu_c \xi) v \left(\frac{M_2^b}{Eh^2}\right) + q_4(\mu_c \xi) v \left(\frac{Q_2^b}{Eh}\right) .$$
(187d)

6.4.3. FORÇA NORMAL MERIDIONAL E CIRCUNFERENCIAL.

Substituindo em (147) a constante C_c determinada em (153), e já considerando a condição de equilíbrio (150d), obtém-se para a força normal meridional, na região cilíndrica C, a expressão:

$$\frac{N_1}{Eh} = - \operatorname{sen}\alpha \left(\frac{Q_2^b}{Eh}\right)$$
(188)

A força normal circunferencial é determinada pela substituição das constantes D₃ e D₄, dadas por (185e) e (185f) em (148). Observando-se os termos de mesmas reações de descontinuidade, define-se as funções de influência

$$q_{5}(\mu_{c}\xi) = -2 \mu_{c}^{2} (\frac{R_{c}}{L}) (\frac{h}{L}) e^{-\mu_{c}\xi} \{\cos \left[\mu_{c}(1-\xi)\right] +$$

em

+ sen
$$[\mu_{c}(1 - \xi)]$$
 (189a)

$$q_{6}(\mu_{c}\xi) = -2 \mu_{c} \cos \alpha \left(\frac{R_{c}}{L}\right) e^{\mu_{c}} e^{-\mu_{c}\xi} \cos \left[\mu_{c}(1-\xi)\right];$$
 (189b)

que permitem escrever a força normal circunferencial, assim:

$$\frac{N_2}{Eh} = q_5(\mu_c \xi) \left(\frac{M_2^b}{Eh^2}\right) + q_6(\mu_c \xi) \left(\frac{Q_2^b}{Eh}\right)$$
(189c)

6.4.4. DESLOCAMENTO RADIAL NA REGIÃO CILÍNDRICA C .

Substituindo os valores de N₁/Eh e N₂/Eh encontrados em (188) e (189c), respectivamente, na expressão (149a) obtém-se:

$$\delta^{c} = R_{c} \{ q_{5}(\mu_{c}\xi) (\frac{M_{2}^{b}}{Eh^{2}}) + [q_{6}(\mu_{c}\xi) + \nu sen\alpha] (\frac{Q_{2}^{b}}{Eh}) \} + R_{c}\alpha_{c}T_{c}$$
(190)

6.5. DETERMINAÇÃO DAS REAÇÕES DE DESCONTINUIDADE EM FUNÇÃO DO CARREGAMENTO.

Dos itens 6.2, 6.3 e 6.4, observa-se que todas as variáveis da estrutura estão em função das reações de descontinuidade:

$$\frac{M_2^b}{Eh^2}$$
, $\frac{M_1^b}{Eh^2}$, $\frac{Q_2^b}{Eh}$ e $\frac{Q_1^b}{Eh}$

Uma vez que estas sejam determinadas em função do "carregamento", as constantes de integração são obtidas pelas equações (166e), (167d), (168e) e (169e). Portanto, tem-se a determinar quatro incógnitas. Para isso, impõe-se as condições de continuidade dos deslocamentos lineares e angulares através das ju<u>n</u> ções, expressas em (150e), (150f), (150g) e (150h). Isto permite determinar aquelas reações.

Aplicando a condição de continuidade da rotação na junção

I, vem de (150f) que

$$x_2^a - x_1^b = 0$$
 (191a)
onde:

 χ_2^a e χ_1^b - são as rotações das regiões A e B calculadas em $\xi = R_a/R_c$. Então, substituindo em (191a) os seus valores provenientes de (180c) e (170a), obtêm-se:

$$-h_{1}^{1}\left(\frac{M_{2}^{b}}{Eh^{2}}\right) - \left(h_{2}^{1} - p_{1}^{2}\right) \left(\frac{M_{1}^{b}}{Eh^{2}}\right) - h_{3}^{1}\left(\frac{Q_{2}^{b}}{Eh}\right) - \left(h_{4}^{1} - p_{2}^{2}\right) \left(\frac{Q_{1}^{b}}{Eh}\right) =$$

$$=h_{1}^{1}\left(\frac{2^{M_{1}^{p}}}{Eh^{2}}\right) + h_{2}^{1}\left(\frac{1^{M_{1}^{p}}}{Eh^{2}}\right) - h_{4}^{1}\left(\frac{1^{Q_{1}^{p}}}{Eh}\right) - 2\mu_{b}^{4} tg\alpha \sum_{n=1}^{\infty} \sum_{k=1}^{N-1} \lambda_{n}^{2} D_{n} C_{n,k}.$$

$$\cdot \beta_{k} J_{2}\left(\lambda_{n}\sqrt{R_{a}/R_{c}}\right)$$
(191b)

Agora, tendo em vista os deslocamentos radiais na junção, tem-se de acordo com (150e), que

$$\delta_2^a - \delta_1^b = 0 \tag{192a}$$

Calcula-se os deslocamentos $\delta_2^a e \delta_1^b$ pelas equações (184) e (175) com $\xi = R_a/R_c$ pois são respectivamente os deslocamentos radiais das regiões A e B na junção I, conforme a figura 18. Pela substituição de δ_1^b e δ_2^a em (192a) resulta

$$- \left(h_{17}^{1} - \nu h_{13}^{1}\right) \left(\frac{M_{2}^{b}}{Eh^{2}}\right) - \left(h_{18}^{1} - \nu h_{14}^{1} - p_{5}^{2}\right) \left(\frac{M_{1}^{b}}{Eh^{2}}\right) - \left(h_{19}^{1} - \nu h_{15}^{1}\right) .$$

$$\cdot \left(\frac{Q_{2}^{b}}{Eh}\right) - \left(h_{20}^{1} - \nu h_{16}^{1} - p_{6}^{2} - \nu sen\alpha\right) \left(\frac{Q_{1}^{b}}{Eh}\right) = \left(h_{17}^{1} - \nu h_{13}^{1}\right) \left(\frac{2M_{1}^{p}}{Eh^{2}}\right) +$$

$$+ \left(h_{18}^{1} - \nu h_{14}^{1}\right) \left(\frac{1M_{1}^{p}}{Eh^{2}}\right) - \left(h_{20}^{1} - \nu h_{16}^{1}\right) \left(\frac{1Q_{1}^{p}}{Eh}\right) +$$

+
$$4\sqrt{R_c/R_a} \sum_{n=1}^{\infty} \sum_{k=1}^{N-1} \lambda_n^4 D_n C_{n,k} \beta_k \left[J_2^{+} (\lambda_n \sqrt{R_a/R_c}) - \lambda_n^{+} D_n C_{n,k} \beta_k \right]$$

$$-2v \sqrt{R_c/R_a} J_2 \left(\lambda_n \sqrt{R_a/R_c}\right) \right].$$
(192b)

Os termos h_{j}^{j} , i = 1, 2, 20 e j = 1, 2, são os valores das funções de influência h_{i} anteriormente definidas, calculadas na borda menor, 1, e na borda maior, 2, da região cônica, sendo por isto chamados " coeficientes de influência ". Da mesma forma, tem-se que:

$$p_m^n$$
, $m = 1$, ..., 6; $n = 2$

$$q_m^n$$
, m = 1, ... 6; n = 1

são os coeficientes de influência nas bordas das regiões cilíndricas A e C conforme figura 18.

Aplicando agora na junção II, as condições de continuidade das rotações e deslocamentos radiais, tem-se primeiramente da (150h) que

$$x_2^b - x_1^c = 0$$
; (193a)

sendo χ_2^b e χ_1^c obtidos, respectivamente de (170a) e (186a), quando se faz $\xi=1$. Substituindo o resultado em (193a), vem

$$-(h_{1}^{2}-q_{1}^{1})(\frac{M_{2}^{b}}{Eh^{2}}) - h_{2}^{2}(\frac{M_{1}^{b}}{Eh^{2}}) - (h_{3}^{2}-q_{1}^{1})(\frac{Q_{2}^{b}}{Eh}) - h_{4}^{2}(\frac{Q_{1}^{b}}{Eh}) =$$

$$= h_{1}^{2}(\frac{2^{M_{1}^{p}}}{Eh^{2}}) + h_{2}^{2}(\frac{1^{M_{1}^{p}}}{Eh^{2}}) - h_{4}^{2}(\frac{1^{Q_{1}^{p}}}{Eh}) .$$
(193b)

De (150g) calcula-se os deslocamentos radiais das regiões B e C pelas expressões (175) e (190) onde se faz ξ = 1. Disto resulta a quarta equação, necessária para a determinação das reações de descontinuidade, e que fica

$$-\left(h_{17}^{2}-\nu h_{13}^{2}-q_{5}^{1}\right)\left(\frac{M_{2}^{b}}{Eh^{2}}\right)-\left(h_{18}^{2}-\nu h_{14}^{2}\right)\left(\frac{M_{1}^{b}}{Eh^{2}}\right)-\left(h_{19}^{2}-\nu h_{15}^{2}-u h_{15}^{2}\right)\right)$$
$$-\left(h_{20}^{1}-\nu h_{16}^{2}\right)\left(\frac{Q_{1}^{b}}{Eh}\right)=\left(h_{17}^{2}-\nu h_{13}^{2}\right)\left(\frac{2M_{1}^{p}}{Eh^{2}}\right)+\left(h_{20}^{2}-\nu h_{16}^{2}\right)\left(\frac{Q_{1}^{b}}{Eh}\right)=\left(h_{17}^{2}-\nu h_{13}^{2}\right)\left(\frac{2M_{1}^{p}}{Eh^{2}}\right)+\left(h_{18}^{2}-\nu h_{14}^{2}\right)\left(\frac{1M_{1}^{p}}{Eh^{2}}\right)-\left(h_{20}^{2}-\nu h_{16}^{2}\right)\left(\frac{1Q_{1}^{p}}{Eh}\right)+4\sum_{n=1}^{\infty}\sum_{k=1}^{N-1}\lambda_{n}^{4} p_{n}\right).$$

$$\cdot C_{n,k} \beta_{k} J_{2}^{\dagger} (\lambda_{n})$$
(194)

As equações (191b), (192b), (193b) e (194) podem ser consideradas como um sistema linear a ser resolvido para as reações de descontinuidade. Sua solução é idêntica à do sistema (160). Tal como lá, para maior facilidade de manuseio dos coeficientes da matriz, foi feito:

$$\overline{C}_{2} = - (h_{2}^{1} - p_{1}^{2})$$

$$\overline{d}_{1} = - h_{3}^{1}$$

$$\overline{d}_{2} = - (h_{4}^{1} - p_{2}^{2})$$

$$\overline{C}_{3} = - (h_{17}^{1} - \nu h_{13}^{1})$$

$$\overline{C}_{4} = - (h_{18}^{1} - \nu h_{14}^{1} - p_{5}^{2})$$

$$\overline{d}_{3} = - (h_{19}^{1} - \nu h_{15}^{1})$$

$$\overline{d}_{4} = - (h_{20}^{1} - \nu h_{16}^{1} - p_{6}^{2} - \nu sen\alpha)$$

$$\overline{b}_{4} = - (h_{20}^{2} - n_{16}^{1})$$

<u>c</u>1

`(195)

$$\overline{b}_{2} = -h_{2}^{2}$$

$$\overline{k}_{1} = -(h_{3}^{2} - q_{2}^{1})$$

$$\overline{k}_{2} = -h_{4}^{2}$$

$$\overline{b}_{3} = -(h_{17}^{2} - \nu h_{13}^{2} - q_{5}^{1})$$

$$\overline{b}_{4} = -(h_{18}^{2} - \nu h_{14}^{2})$$

$$\overline{k}_{3} = -(h_{19}^{2} - \nu h_{15}^{2} - q_{6}^{1} - \nu sen\alpha)$$

$$\overline{k}_{4} = -(h_{20}^{2} - \nu h_{16}^{2}) ;$$

que são os elementos da matriz dos coeficientes. Os elementos do vetor constante do sistema são obtidos dos segundos membros das equações (191b), (192b) (193b) e (194), onde se leva em consideração as expressões de $1^{Q_1^p}$ /Eh, $2^{Q_1^p}$ /Eh, $1^{M_1^p}$ /Eh² e $2^{M_1^p}$ /Eh² dadas em (159a), (159b), (159c) e (159d). Tais elementos são, pois:

$$F_{1} = \mu_{b}^{4} tg\alpha \sum_{n=1}^{\infty} \sum_{k=1}^{N-1} \lambda_{n}^{2} D_{n} C_{n,k} \beta_{k} \{ J_{2}(\lambda_{n}\sqrt{R_{a}/R_{c}}) [2\nu \cdot \nu_{3}\sqrt{R_{c}/R_{a}} \cdot \frac{\sqrt{R_{c}/R_{a}}}{\sqrt{R_{c}/R_{a}}}] + \nu_{4} J_{2}^{\prime}(\lambda_{n}) h_{1}^{1} + \nu_{3} J_{2}^{\prime}(\lambda_{n}\sqrt{R_{a}/R_{c}})$$

 h_{2}^{1}

(196a)

proveniente da (191b) ,

$$F_{2} = \mu_{b}^{4} tg\alpha \sum_{n=1}^{\infty} \sum_{k=1}^{N-1} \lambda_{n}^{2} D_{n} C_{n,k} \beta_{k} \{ J_{2} (\lambda_{n} \sqrt{R_{a}/R_{c}}) \cdot [(h_{18}^{1} - \nu h_{14}^{1})$$

$$\cdot 2\nu\nu_{3}\sqrt{R_{c}/R_{a}} - (h_{20}^{1} - \nu h_{16}^{1}) \cdot \frac{8\lambda_{n}^{2}}{\mu_{b}^{4} tg^{2}\alpha} (\frac{R_{c}}{R_{a}}) - \frac{8\lambda_{n}^{2}\nu}{\mu_{b}^{4} tg\alpha} (\frac{R_{c}}{R_{a}})] + + \nu_{4}(h_{17}^{1} - \nu h_{13}^{1}) J_{2}'(\lambda_{n}) + J_{2}'(\lambda_{n}\sqrt{R_{a}/R_{c}}) \left[\frac{4\lambda_{n}^{2}}{\mu_{b}^{4} tg\alpha} \sqrt{R_{c}/R_{a}} + + \nu_{3}(h_{18}^{1} - \nu h_{14}^{1})]\}$$
(196b)

proveniente da (192b).

e

Da mesma forma, obtém-se de (193b) e (194), respectivamente os seguintes elementos:

$$F_{3} = \mu_{b}^{4} tg\alpha \sum_{n=1}^{\infty} \sum_{k=1}^{N-1} \lambda_{n}^{2} D_{n} C_{n,k} \beta_{k} \{ J_{2} (\lambda_{n} \sqrt{R_{a}/R_{c}}) [2\nu\nu_{3} \sqrt{R_{c}/R_{a}} h_{2}^{2} - \frac{8 \lambda_{n}^{2}}{\sqrt{R_{c}/R_{a}}} (\frac{R_{c}}{R_{c}}) h_{4}^{2}] + \nu_{4}^{2} h_{1}^{2} J_{2}^{1} (\lambda_{n}) + \nu_{3} J_{2}^{1} (\lambda_{n} \sqrt{R_{a}/R_{c}}) h_{2}^{2} \}$$

$$(196c)$$

Reescrevendo o sistema considerando os coeficientes dados em (195) e os elementos do vetor constante expressos por (196a), (196b), (196c) e (196d), na forma matricial, vem

$$\begin{bmatrix} \overline{c}_{1} & \overline{c}_{2} & \overline{d}_{1} & \overline{d}_{2} \\ \overline{c}_{3} & \overline{c}_{4} & \overline{d}_{3} & \overline{d}_{4} \\ \overline{b}_{1} & \overline{b}_{2} & \overline{k}_{1} & \overline{k}_{2} \\ \overline{b}_{3} & \overline{b}_{4} & \overline{k}_{3} & \overline{k}_{4} \end{bmatrix} \begin{bmatrix} M_{2}^{b} / Eh^{2} \\ M_{1}^{b} / Eh^{2} \\ Q_{2}^{b} / Eh \\ Q_{1}^{b} / Eh \end{bmatrix} = \begin{bmatrix} F_{1} \\ F_{2} \\ F_{3} \\ F_{4} \end{bmatrix}$$
(197)

Sendo este sistema também 4 x 4 pode-se usar a solução anteriormente obtida. Os coeficientes definidos para a solução tem as mesmas fo<u>r</u> mas que lá e para obtê-los substitui-se os elementos dados em (195). Para diferenciá-los coloca-se uma barra sobre seu símbolo. Assim, a solução pode ser dada por analogia com a obtida em (166e), (167d), (168e) e (169e). Com efeito, encontra-se por analogia com (166e), (167d), (168e) e (169e):

$$\frac{Q_1^b}{Eh} = \frac{\overline{G}}{\overline{G}_1} F_4 - \frac{\overline{G}_3 \overline{G}}{\overline{G}_1 \overline{G}_2} F_3 + \overline{G}_4 F_2 + \overline{G}_5 F_1$$
(198)

$$\frac{Q_2^b}{Eh} = \frac{\overline{r} \cdot \overline{G}}{\overline{G}_1} F_4 + \overline{G}_6 F_3 + \overline{G}_7 F_2 + \overline{G}_8 F_1$$

$$M_1^b \quad \overline{G}_0$$
(199)

$$\frac{M_{1}^{2}}{Eh^{2}} = -\frac{G_{9}}{\overline{G}_{1}}F_{4} + \overline{G}_{10}F_{3} + \overline{G}_{11}F_{2} + \overline{G}_{12}F_{1}$$
(200)

$$\frac{M_{2}^{b}}{Eh^{2}} = -\frac{\overline{G}_{13}}{\overline{G}_{1}}F_{4} + \overline{G}_{14}F_{3} + \overline{G}_{15}F_{2} + \overline{G}_{16}F_{1}$$
(201)

Assim, estão determinadas as reações de descontinuidade . Com isto, todas as constantes de integração podem ser obtidas. Todavia, o procedimento adotado possibilita a determinação de todas as variáveis da estrutu-

ra diretamente das reações de descontinuidade, quando substituídas nas suas ex pressões encontradas nos itens 6.2, 6.3 e 6.4. Isto será feito no capítulo seguinte. CAPÍTULO 7 - DETERMINAÇÃO DAS SOLICITAÇÕES E DESLOCAMENTOS DA ESTRUTURA

7.1. DETERMINAÇÃO DAS SOLICITAÇÕES E DESLOCAMENTOS NA REGIÃO CÔNICA B.

Se as equações das reações de descontinuidade forem escritas na forma explícita, cada uma é uma série, bastando para isto substituir as expressões de F_1 , F_2 , F_3 e F_4 encontradas em (196). Como as parcelas da solução particular se apresentam também em forma de série, e como a forma das expressões das variáveis, encontradas em (6.2), (6.3) e (6.4), sempre possuem fatores que são os próprios elementos do vetor constante do sistema (160), isto é,

$$\frac{M_2^b}{Eh^2} + \frac{2^{M_1^p}}{Eh^2} ; \frac{M_1^b}{Eh^2} + \frac{1^{M_1^p}}{Eh^2} ; \frac{Q_2^b}{Eh} ; \frac{Q_1^b}{Eh} - \frac{1^{Q_1^p}}{Eh} ,$$

pode-se escrever estes elementos em forma de série. Por conveniência, determina-se seus enésimos termos que foram denominados de Z_{1n} , Z_{2n} , Z_{3n} e Z_{4n} . Para obtenção do enésimo termo de M_2^b / Eh^2 + $_2M_1^p$ / Eh^2 , Z_{1n} , substitui - se na equação (201) as expressões de F_1 , F_2 , F_3 e F_4 dadas por (196a,d) e, tendo em vista (159d), resulta em

$$Z_{1n} = J_{2}(\lambda_{n} \sqrt{R_{a}/R_{c}}) \{ 2\nu\nu_{3} \sqrt{R_{c}/R_{a}} \left[-\frac{\overline{G}_{13}}{\overline{G}_{1}} (h_{18}^{2} - \nu h_{14}^{2}) + \overline{G}_{14} h_{2}^{2} + \overline{G}_{15}(h_{18}^{1} - \nu h_{14}^{1}) + \overline{G}_{16} h_{2}^{1} \right] + \frac{8 \lambda_{n}^{2}}{\mu_{b}^{4} tg^{2}\alpha} (\frac{R_{c}}{R_{a}}) \left[\frac{\overline{G}_{13}}{\overline{G}_{1}} (h_{20}^{2} - \nu h_{16}^{2}) + \frac{1}{2} \right] + \frac{8 \lambda_{n}^{2}}{\mu_{b}^{4} tg^{2}\alpha} (\frac{R_{c}}{R_{a}}) \left[\frac{\overline{G}_{13}}{\overline{G}_{1}} (h_{20}^{2} - \nu h_{16}^{2}) + \frac{1}{2} \right] + \frac{1}{2} \left[\frac{1}{2} + \frac{1}{2$$

$$-\overline{G}_{14} h_{4}^{2} - \overline{G}_{15} (h_{20}^{1} - vh_{16}^{1}) - \overline{G}_{16} h_{4}^{1} - \overline{G}_{15} \frac{8 \lambda_{n}^{2}}{\mu_{b}^{4} tg\alpha} (\frac{R_{c}}{R_{a}}) - 2\overline{G}_{16}$$

$$+ J_{2}^{i}(\lambda_{n} \sqrt{R_{a}/R_{c}}) \{ v_{3} \left[-\frac{\overline{G}_{13}}{\overline{G}_{1}} \cdot (h_{18}^{2} - vh_{14}^{2}) + \overline{G}_{14} h_{2}^{2} + \overline{G}_{15}(h_{18}^{1} - vh_{14}^{1}) + \overline{G}_{16} h_{2}^{1} \right] + \overline{G}_{15} \frac{4 \lambda_{n}^{2}}{\mu_{b}^{4} tg\alpha} \sqrt{R_{c}/R_{a}} \} + J_{2}^{i}(\lambda_{n}) \{ -\frac{\overline{G}_{13}}{\overline{G}_{1}} \left[v_{4}(h_{17}^{2} - vh_{13}^{2}) + \frac{4 \lambda_{n}^{2}}{\mu_{b}^{4} tg\alpha} \right] + v_{4} \left[\overline{G}_{14} h_{1}^{2} + \frac{1}{2} \right] + V_{4} \left[\overline{G}$$

$$+ \overline{G}_{15}(h_{17}^{1} - vh_{13}^{1}) + \overline{G}_{16}h_{1}^{1} + 1]$$
(202)

com isto, pode-se escrever que

$$\frac{M_2^b}{Eh^2} + \frac{2^{M_1^p}}{Eh^2} = \sum_{n=1}^{\infty} \sum_{k=1}^{N-1} \beta_k E_{n,k} Z_{1n} , \qquad (203)$$

onde faz-se

$$E_{n,k} = \mu_b^4 tg\alpha \lambda_n^2 D_n C_{n,k}$$
(204)

O enésimo termo do momento resultante na borda menor da região cônica, $M_1^b/Eh^2 + {}_1M_1^p/Eh^2$, Z_{2n} , é obtido de modo igual ao Z_{1n} . Para isto se substitui em (200) as equações (196a, d) e considera-se ${}_1M_1^p/Eh^2$, dado em (159c). Disto resulta

$$Z_{2n} = J_{2} \left(\lambda_{n} \sqrt{R_{a}/R_{c}}\right) \left\{-2\nu v_{3} \sqrt{R_{c}/R_{a}} \left[-\frac{\overline{G}_{9}}{\overline{G}_{1}} \left(h_{18}^{2} - \nu h_{14}^{2}\right) + \overline{G}_{10} h_{2}^{2} + \frac{1}{\overline{G}_{11}} \left(h_{18}^{1} - \nu h_{14}^{1}\right) + \overline{G}_{12} h_{1}^{2} + 1\right] + \frac{8\lambda_{n}^{2}}{\mu_{b}^{4} t_{g}^{2} \alpha} \left(\frac{R_{c}}{R_{a}}\right) \left[\frac{\overline{G}_{9}}{\overline{G}_{1}} \left(h_{20}^{2} - \nu h_{16}^{2}\right) - \nu h_{16}^{2}\right] - \nu h_{16}^{2} - \nu h_{16}^{1}\right] - \overline{G}_{11} \frac{8\lambda_{n}^{2}}{\mu_{b}^{4} t_{g} \alpha}.$$

$$(\frac{R_{c}}{R_{a}}) - 2 \overline{G}_{12} + J_{2}'(\lambda_{n} \sqrt{R_{a}/R_{c}}) \{ v_{3} \left[-\frac{\overline{G}_{9}}{\overline{G}_{1}} (h_{18}^{2} - vh_{14}^{2}) + \overline{G}_{10} h_{2}^{2} + \overline{G}_{11}(h_{18}^{1} - vh_{14}^{1}) + \overline{G}_{12} h_{2}^{1} + 1 \right] + \overline{G}_{11} \frac{4 \lambda_{n}^{2}}{\mu_{b}^{4} tg\alpha} \sqrt{R_{c}/R_{a}} \}$$

$$+ J_{2}'(\lambda_{n}) \{ -\frac{\overline{G}_{9}}{\overline{G}_{1}} \left[v_{4}(h_{17}^{2} - vh_{13}^{2}) + \frac{4 \lambda_{n}^{2}}{\mu_{b}^{4} tg\alpha} \right] + \overline{G}_{10} v_{4} h_{1}^{2} +$$

1

$$\overline{G}_{11} v_4 (h_{17}^1 - vh_{13}^1) + \overline{G}_{12} v_4 h_1^1$$
(205)

Logo,

$$\frac{M_{1}^{b}}{Eh^{2}} + \frac{1}{Eh^{2}} = \sum_{n=1}^{\infty} \sum_{k=1}^{N-1} \beta_{k} E_{n,k} Z_{2n}$$
(206)

Da mesma forma encontra-se

$$\frac{Q_2^b}{Eh} = \sum_{n=1}^{\infty} \sum_{k=1}^{N-1} \beta_k E_{n,k} Z_{3n}$$
 (207)

onde Z_{3n} é o enésimo termo da série representativa da força cortante na borda maior da região cónica e é determinado pela substituição dos valores de F₁, F₂, F₃ e F₄ de (196a, d) em (199).

Então,

$$Z_{3n} = J_{2}(\lambda_{n} \sqrt{R_{a}/R_{c}}) 2\nu\nu_{3} \sqrt{R_{c}/R_{a}} \left[-\frac{\overline{rG}}{\overline{G}_{1}} (h_{18}^{2} - \nu h_{14}^{2}) + \overline{G}_{6} h_{2}^{2} + \overline{G}_{7}(h_{18}^{1} - \nu h_{14}^{1}) + \overline{G}_{8} h_{2}^{2} \right] + \frac{8 \lambda_{n}^{2}}{\mu_{b}^{4} tg^{2}\alpha} (\frac{R_{c}}{R_{a}}) \left[\frac{\overline{r}}{\overline{G}_{1}} (h_{20}^{2} - \nu h_{16}^{2}) - \overline{G}_{6} h_{4}^{2} - \overline{G}_{7}(h_{20}^{1} - \nu h_{16}^{1}) - \overline{G}_{8} h_{4}^{1} \right] - \overline{G}_{7} \frac{8 \lambda_{n}^{2}\nu}{\mu_{b}^{4} tg\alpha} (\frac{R_{c}}{R_{a}}) - 2 \overline{G}_{8} + + J_{2}'(\lambda_{n} \sqrt{R_{a}/R_{c}}) \{\nu_{3} \left[-\frac{\overline{r}}{\overline{G}_{1}} (h_{18}^{2} - \nu h_{14}^{2}) + \overline{G}_{6} h_{2}^{2} + \frac{1}{2} \right] \}$$

$$\overline{G}_{6}h_{2}^{2} + \overline{G}_{7}(h_{18}^{1} - \nu h_{14}^{1}) + \overline{G}_{8}h_{2}^{1}] + \overline{G}_{7}\frac{4\lambda_{n}^{2}}{\mu_{b}^{4} tg \alpha}\sqrt{R_{c}/R_{a}} + J_{2}^{1}(\lambda_{n}) .$$

$$\cdot \left\{ -\frac{\overline{r} \ \overline{G}}{\overline{G}_{1}} \left[\nu_{4}(h_{17}^{2} - \nu h_{13}^{2}) + \frac{4\lambda_{n}^{2}}{\mu_{b}^{4} tg \alpha} \right] + \overline{G}_{6} + h_{1}^{2} + \overline{G}_{7}\nu_{4}(h_{17}^{1} - \nu h_{13}^{1}) + \frac{4\lambda_{n}^{2}}{\mu_{b}^{4} tg \alpha} \right] + \overline{G}_{6} + h_{1}^{2} + \overline{G}_{7}\nu_{4}(h_{17}^{1} - \nu h_{13}^{1}) + \overline{G}_{8}\nu_{4}h_{1}^{1} \right\}$$

$$(208)$$

Por último substitui-se as equações (196a, d) em (198) e, considerando o termo independente ${}_{1}Q_{1}^{p}$ / Eh dado por (159a), obtém-se o enésimo termo da série que representa a força cortante na borda menor da região cônica, na forma:

$$\begin{aligned} Z_{4n} &= J_{2} \left(\lambda_{n} \sqrt{R_{a}/R_{c}}\right) \left(2vv_{3} \sqrt{R_{c}/R_{a}} \left[\frac{\overline{G}}{\overline{G_{1}}} \left(h_{18}^{2} - vh_{14}^{2}\right) - \frac{\overline{G}}{\overline{G_{1}}} \frac{\overline{G}_{3}}{\overline{G_{1}}} h_{2}^{2} + \\ &+ \overline{G}_{4} \left(h_{18}^{1} - vh_{14}^{1}\right) + \overline{G}_{5} h_{2}^{1}\right] + \frac{8\lambda_{n}^{2}}{\mu_{b}^{4} t g^{2} \alpha} \left(\frac{R_{c}}{R_{a}}\right) \left[-\frac{\overline{G}}{\overline{G}_{1}} \left(h_{20}^{2} - vh_{16}^{2}\right) + \\ &+ \frac{\overline{G}_{3}}{\overline{G}_{1}} \frac{\overline{G}}{\overline{G}_{2}} h_{4}^{2} - \frac{1}{\overline{G}_{4}} \left(h_{20}^{1} - vh_{16}^{1}\right) - \overline{G}_{5} h_{4}^{1} - 1\right] - \overline{G}_{4} \frac{8\lambda_{n}^{2}}{\mu_{b}^{4} t g \alpha} \left(\frac{R_{c}}{R_{a}}\right) - \\ &- 2 \overline{G}_{5} \right) + J_{2}^{1} \left(\lambda_{n} \sqrt{R_{a}/R_{c}}\right) \left\{v_{3} \left[\frac{\overline{G}}{\overline{G}_{1}} \left(h_{18}^{2} - vh_{14}^{2}\right) - \frac{\overline{G}}{\overline{G}_{3}} h_{2}^{2} + \\ &+ \overline{G}_{4} \left(h_{18}^{1} - vh_{14}^{1}\right) + \overline{G}_{5} h_{2}^{1}\right] + \overline{G}_{4} \frac{4\lambda_{n}^{2}}{\mu_{b}^{4} t g \alpha} \sqrt{R_{c}/R_{a}} \lambda_{n}^{2}\right\} + J_{2}^{1} \left(\lambda_{n}\right) \\ &\cdot \left(\frac{\overline{G}}{\overline{G}_{1}} \left[v_{4} \left(h_{17}^{2} - vh_{13}^{2}\right) + \frac{4\lambda_{n}^{2}}{\mu_{b}^{4} t g \alpha}\right] - \frac{\overline{G}}{\overline{G}_{3}} v_{4} h_{1}^{2} + \overline{G}_{4} v_{4} \left(h_{17}^{1} - vh_{13}^{1}\right) + \overline{G}_{5} v_{4} h_{1}^{1}\right) \\ &= 0 \text{ que torna possivel escrever } Q_{1}^{b}/Eh - J_{2}^{b}/Eh, \text{ na forma:}
 \right. \end{aligned}$$

.....

$$\frac{Q_1^b}{Eh} = \frac{1}{Eh} \frac{Q_1^p}{Eh} = \sum_{n=1}^{\infty} \sum_{k=1}^{N-1} \beta_k E_{n,k} Z_{4n}$$
(210)

Com as expressões (203), (206), (207) e (210) a determinação das solicitações e deslocamentos através da estrutura, ficou simplificada e é feita a seguir.

7.1.1. DETERMINAÇÃO DA ROTAÇÃO MERIDIONAL NA REGIÃO CÔNICA B.

Levando as equações das forças cortantes e momentos nas bor das da região cônica, dadas em (203), (206), (207) e (210) na equação (170a), obtém-se para a rotação meridional a seguinte expressão:

$$\zeta = \sum_{n=1}^{\infty} \sum_{k=1}^{N-1} \beta_{k} E_{n,k} \left[Z_{1n} h_{1}(\mu_{b}y) + Z_{2n} h_{2}(\mu_{b}y) + Z_{3n} h_{3}(\mu_{b}y) + Z_{3n} h_{3}(\mu_{b}y) + Z_{4n} h_{4}(\mu_{b}y) - 2 J_{2}(\lambda_{n}y) \right]$$
(211)

7.1.2. DETERMINAÇÃO DO MOMENTO MERIDIONAL.

Da equação do momento meridional dada em (171e), tendo em vista as equações (203), (206), (207) e (210) encontra-se:

$$\frac{M_{1}}{Eh^{2}} = \sum_{n=1}^{\infty} \sum_{k=1}^{N-1} \beta_{k} E_{n,k} \{ Z_{1n} h_{5}(\mu_{b}y) + Z_{2n} h_{6}(\mu_{b}y) + Z_{3n} h_{7}(\mu_{b}y) \} +$$

$$+ z_{4n} h_8(\mu_b y) - \frac{\nu_4}{y} \left[J_2'(\lambda_n y) + \frac{2\nu}{y} J_2(\lambda_n y) \right] \right\}$$
(212)

7.1.3. DETERMINAÇÃO DO MOMENTO CIRCUNFERENCIAL.

A determinação do momento circunferencial é realizada pela substituição da força cortante e do momento na expressão (172e). Logo

$$\frac{M_2}{Eh^2} = \sum_{n=1}^{\infty} \sum_{k=1}^{N-1} \beta_k E_{n,k} \{ z_{1n} h_9(\mu_b y) + z_{2n} h_{10}(\mu_b y) + z_{3n} h_{11}(\mu_b y) + z_{3n} h_{11}(\mu_b y) \}$$

+
$$Z_{4n} h_{12}(\mu_{b}y) - \frac{\nu_{4}}{y} \left[\frac{2}{y} J_{2}(\lambda_{n}y) + \nu J'_{2}(\lambda_{n}y) \right] \right\}$$
 (213)

7.1.4. DETERMINAÇÃO DA FORÇA NORMAL MERIDIONAL E CIRCUNFERENCIAL.

De modo idêntico aos anteriores obtém-se de (173e) e (174e) respectivamente a força normal meridional;

$$\frac{N_{1}}{Eh} = \sum_{n=1}^{\infty} \sum_{k=1}^{N-1} \beta_{k} E_{n,k} \left[Z_{1n} h_{13}(\mu_{b}y) + Z_{2n} h_{14}(\mu_{b}y) + Z_{3n} h_{15}(\mu_{b}y) + Z_{3n} h_{15}(\mu_{b}y) + Z_{4n} h_{16}(\mu_{b}y) + \frac{8 \lambda_{n}^{2}}{\mu_{b}^{4} tg\alpha} \frac{1}{y^{2}} J_{2}(\lambda_{n}y) \right], \qquad (214)$$

e a força normal circunferencial

$$\frac{N_{2}}{Eh} = \sum_{n=1}^{\infty} \sum_{k=1}^{N-1} \beta_{k} E_{n,k} \left[Z_{1n} h_{17} (\mu_{b} \gamma) + Z_{2n} h_{18} (\mu_{b} \gamma) + Z_{3n} h_{19} (\mu_{b} \gamma) + Z_{3n} h_{19} (\mu_{b} \gamma) + Z_{4n} h_{20} (\mu_{b} \gamma) + \frac{4 \lambda_{n}^{2}}{\mu_{b}^{4} tg\alpha} \frac{1}{\gamma} J_{2}^{\prime} (\lambda_{n} \gamma) \right]$$
(215)

7.1.5. DETERMINAÇÃO DO DESLOCAMENTO RADIAL.

Substituindo as equações (203), (206), (207) e (210) na (175), obtém-se para o deslocamento radial na região cônica, a seguinte expre<u>s</u>são:

$$\delta^{b} = \xi L t g \alpha \sum_{n=1}^{\infty} \sum_{k=1}^{N-1} \beta_{k} E_{n,k} \{ Z_{1n} \left[h_{17}(\mu_{b} \gamma) - \nu h_{13}(\mu_{b} \gamma) \right] + z_{2n} \left[h_{18}(\mu_{b} \gamma) - \nu h_{14}(\mu_{b} \gamma) \right] + Z_{3n} \left[h_{19}(\mu_{b} \gamma) - \nu h_{15}(\mu_{b} \gamma) \right] + z_{4n} \left[h_{20}(\mu_{b} \gamma) - \nu h_{16}(\mu_{b} \gamma) \right] + \frac{4 \lambda_{n}^{2}}{\mu_{b}^{4} \gamma t g \alpha} \left[J_{2}'(\lambda_{n} \gamma) - \frac{2\nu}{\gamma} J_{2}(\lambda_{n} \gamma) \right] + z_{4n} \left[h_{20}(\mu_{b} \gamma) - \nu h_{16}(\mu_{b} \gamma) \right] + \frac{4 \lambda_{n}^{2}}{\mu_{b}^{4} \gamma t g \alpha} \left[J_{2}'(\lambda_{n} \gamma) - \frac{2\nu}{\gamma} J_{2}(\lambda_{n} \gamma) \right] + z_{4n} \left[h_{20}(\mu_{b} \gamma) - \nu h_{16}(\mu_{b} \gamma) \right] + z_{4n} \left[h_{20}(\mu_{b} \gamma) - \nu h_{16}(\mu_{b} \gamma) \right] + z_{4n} \left[h_{20}(\mu_{b} \gamma) - \nu h_{16}(\mu_{b} \gamma) \right] + z_{4n} \left[h_{20}(\mu_{b} \gamma) - \nu h_{16}(\mu_{b} \gamma) \right] + z_{4n} \left[h_{20}(\mu_{b} \gamma) - \nu h_{16}(\mu_{b} \gamma) \right] + z_{4n} \left[h_{20}(\mu_{b} \gamma) - \nu h_{16}(\mu_{b} \gamma) \right] + z_{4n} \left[h_{20}(\mu_{b} \gamma) - \nu h_{16}(\mu_{b} \gamma) \right] + z_{4n} \left[h_{20}(\mu_{b} \gamma) - \nu h_{16}(\mu_{b} \gamma) \right] + z_{4n} \left[h_{20}(\mu_{b} \gamma) - \nu h_{16}(\mu_{b} \gamma) \right] + z_{4n} \left[h_{20}(\mu_{b} \gamma) - \nu h_{16}(\mu_{b} \gamma) \right] + z_{4n} \left[h_{20}(\mu_{b} \gamma) - \nu h_{16}(\mu_{b} \gamma) \right] + z_{4n} \left[h_{20}(\mu_{b} \gamma) - \nu h_{16}(\mu_{b} \gamma) \right] + z_{4n} \left[h_{20}(\mu_{b} \gamma) - \nu h_{16}(\mu_{b} \gamma) \right] + z_{4n} \left[h_{20}(\mu_{b} \gamma) - \nu h_{20}(\mu_{b} \gamma) \right] + z_{4n} \left[h_{20}(\mu_{b} \gamma) - \nu h_{20}(\mu_{b} \gamma) \right] + z_{4n} \left[h_{20}(\mu_{b} \gamma) - \nu h_{20}(\mu_{b} \gamma) \right] + z_{4n} \left[h_{20}(\mu_{b} \gamma) - \nu h_{20}(\mu_{b} \gamma) \right] + z_{4n} \left[h_{20}(\mu_{b} \gamma) - \nu h_{20}(\mu_{b} \gamma) \right] + z_{4n} \left[h_{20}(\mu_{b} \gamma) - \nu h_{20}(\mu_{b} \gamma) \right] + z_{4n} \left[h_{20}(\mu_{b} \gamma) - \nu h_{20}(\mu_{b} \gamma) \right] + z_{4n} \left[h_{20}(\mu_{b} \gamma) - \nu h_{20}(\mu_{b} \gamma) \right] + z_{4n} \left[h_{20}(\mu_{b} \gamma) - \nu h_{20}(\mu_{b} \gamma) \right] + z_{4n} \left[h_{20}(\mu_{b} \gamma) - \nu h_{20}(\mu_{b} \gamma) \right] + z_{4n} \left[h_{20}(\mu_{b} \gamma) - \nu h_{20}(\mu_{b} \gamma) \right] + z_{4n} \left[h_{20}(\mu_{b} \gamma) - \nu h_{20}(\mu_{b} \gamma) \right] + z_{4n} \left[h_{20}(\mu_{b} \gamma) - \nu h_{20}(\mu_{b} \gamma) \right] + z_{4n} \left[h_{20}(\mu_{b} \gamma) - \nu h_{20}(\mu_{b} \gamma) \right] + z_{4n} \left[h_{20}(\mu_{b} \gamma) \right] + z_{4n} \left[h_{20}(\mu_{b} \gamma) - \nu h_{20}(\mu_{b} \gamma) \right] + z_{4n} \left[h_{20}(\mu_{b} \gamma) - \nu h_{20}(\mu_{b} \gamma) \right] + z_{4n} \left[h_{20}(\mu_{b} \gamma) + z_{2n} \left[h_{20}(\mu_{b}$$

+ $\xi L tg\alpha \left[\alpha(\xi) . T(\xi) \right]$

Assim ficam determinadas as solicitações e OS deslocamentos da estrutura na região cônica. A seguir, determinam-se as variáveis das regiões cilíndricas.

7.2. DETERMINAÇÃO DAS SOLICITAÇÕES E DESLOCAMENTOS NA REGIÃO CILÍNDRICA A.

A partir das definições estabelecidas no item 7.1, as variáveis da região cilíndrica A podem ser determinadas, notando-se, contudo,que as parcelas provenientes da solução particular são nulas nesta região. Por co<u>n</u> seguinte, para a região cilíndrica tais parcelas não devem constar nas expressões de Z_{1n}, Z_{2n}, Z_{3n} e Z_{4n}.

7.2.1. DETERMINAÇÃO DA ROTAÇÃO MERIDIONAL.

Substituindo na (180c) as expressões de M_1^b/Eh^2 e Q_1^b/Eh , obtidas a partir das (206) e (210), respectivamente, obtém-se para a rotação meridional a seguinte equação:

$$\chi = \sum_{n=1}^{\infty} \sum_{k=1}^{N-1} \beta_{k} E_{n,k} \{ Z_{2n} p_{1}(\mu_{a}\xi) + Z_{4n} p_{2}(\mu_{a}\xi) - \nu_{3} \}$$

$$\cdot \left[J_{2}'(\lambda_{n} \sqrt{R_{a}/R_{c}}) + 2\nu \sqrt{R_{c}/R_{a}} J_{2}(\lambda_{n} \sqrt{R_{a}/R_{c}}) \right] p_{1}(\mu_{a}\xi) + \frac{8 \lambda_{n}^{2}}{\mu_{b}^{4} t_{g}^{2} \alpha} \left(\frac{R_{c}}{R_{a}} \right) J_{2}(\lambda_{n} \sqrt{R_{a}/R_{c}}) p_{2}(\mu_{a}\xi) \}$$
(217)

7.2.2. DETERMINAÇÃO DOS MOMENTOS MERIDIONAL E CIRCUNFERENCIAL.

De modo análogo, utiliza-se a (181c), para encontrar o momento meridional na forma:

 $\frac{M_1}{Eh^2} = \sum_{n=1}^{\infty} \sum_{k=1}^{N-1} \beta_k E_{n,k} \{ Z_{2n} P_3(\mu_a \xi) + Z_{4n} P_4(\mu_a \xi) - E_{n+1} \}$

(216)

$$v_{3} J_{2}^{\prime} \left(\begin{array}{c} \lambda \\ n \end{array} \right) \frac{\sqrt{R_{a}/R_{c}}}{R_{a}} p_{3} \left(\begin{array}{c} \mu_{a} \xi \end{array} \right) + J_{2} \left(\begin{array}{c} \lambda \\ n \end{array} \right) \frac{\sqrt{R_{a}/R_{c}}}{\sqrt{R_{a}/R_{c}}} \left(\begin{array}{c} \frac{8 \lambda_{n}^{2}}{\mu_{b} t g_{\alpha}^{2}} \left(\begin{array}{c} \frac{R_{c}}{R_{a}} \right) \right)$$

$$P_4(\mu_a\xi) - 2\nu\nu_3 \sqrt{R_c/R_a} P_3(\mu_\xi)] \}$$

0 momento circunferencial é

$$\frac{M_2}{Eh^2 = v} \frac{M_1}{Eh^2},$$
(219)
com (M_1/Eh^2) dado em (218).

DETERMINAÇÃO DA FORÇA NORMAL MERIDIONAL E CIRCUNFERENCIAL. 7.2.3.

Da mesma forma, obtém-se as forças normais meridional e cir cunferencial, que são:

$$\frac{N_{1}}{Eh} = - \sin\alpha \sum_{n=1}^{\infty} \sum_{k=1}^{N-1} \beta_{k} E_{n,k} \{ Z_{4n} + \frac{8 \lambda_{n}^{2}}{\mu_{b}^{4} t_{g}^{2} \alpha} (\frac{R_{c}}{R_{a}}) J_{2} (\lambda_{n} \sqrt{R_{a}/R_{c}}) \}$$
(220)

$$\frac{N_{2}}{Eh} = \sum_{n=1}^{\infty} \sum_{k=1}^{N-1} \beta_{k} E_{n,k} \{ Z_{2n} P_{5}(\mu_{a}\xi) + Z_{4n} P_{6}(\mu_{a}\xi) - \nu_{3} \}$$

$$= J_{2}'(\lambda_{n} \sqrt{R_{a}/R_{c}}) P_{5}(\mu_{a}\xi) + J_{2}(\lambda_{n} \sqrt{R_{a}/R_{c}}) \left[\frac{8 \lambda_{n}^{2}}{\mu_{b}^{4} tg^{2}\alpha} (\frac{R_{c}}{R_{a}}) P_{6}(\mu_{a}\xi) - 2\nu\nu_{3} \sqrt{R_{c}/R_{a}} P_{5}(\mu_{a}\xi) \right] \}$$

$$= 2\nu\nu_{3} \sqrt{R_{c}/R_{a}} P_{5}(\mu_{a}\xi)] \}$$

$$(221)$$

7.2.4. DETERMINAÇÃO DO DESLOCAMENTO RADIAL.

De posse das forças normais pode-se obter deslocamento 0 radial diretamente de (144a), resultando:

(218)

$$\delta^{a} = R_{a} \sum_{n=1}^{\infty} \sum_{k=1}^{N-1} \beta_{k} E_{n,k} \left\{ \left\{ Z_{2n} P_{5} \left(\mu_{a} \xi \right) + Z_{4n} \left[P_{6} \left(\mu_{a} \xi \right) + \nu sen \alpha \right] - \frac{1}{2} \left(\lambda_{n} \sqrt{R_{a}/R_{c}} \right) P_{5} \left(\mu_{a} \xi \right) + J_{2} \left(\lambda_{n} \sqrt{R_{a}/R_{c}} \right) \left\{ \frac{8 \lambda_{n}^{2}}{\mu_{b}^{4} tg^{2} \alpha} \left(\frac{R_{c}}{R_{a}} \right) \right\} \right\}$$

$$\cdot \left[P_{6} \left(\mu_{a} \xi \right) + \nu sen \alpha \right] - 2\nu \nu_{3} \sqrt{R_{c}/R_{a}} P_{5} \left(\mu_{a} \xi \right) \right\} \right\} + R_{a} \alpha_{a} T_{a}$$

$$(222)$$

7.3. DETERMINAÇÃO DAS SOLICITAÇÕES E DESLOCAMENTOS NA REGIÃO CILÍNDRICA C. A determinação das solicitações e deslocamentos na região cilíndrica C sepá feita como no item 7.2, para a região A.

7.3.1. DETERMINAÇÃO DA ROTAÇÃO MERIDIONAL.

De (186a), substituindo M_2^b/Eh^2 e Q_2^b/Eh , que podem ser obtidos das (203) e (207), respectivamente, chega-se a

$$\sum_{n=1}^{\infty} \sum_{k=1}^{N-1} \beta_k E_{n,k} \left[Z_{1n} q_1(\mu_c \xi) - \nu_4 J_2(\lambda_n) q_1(\mu_c \xi) + \frac{1}{2} (\lambda_n) q_1(\mu_c \xi) + \frac{1}{2} (\lambda_n$$

+ $Z_{3n} q_2(\mu_c \xi)$], (223)

que é a equação da rotação meridional na região C da estrutura,

7.3.2. DETERMINAÇÃO DOS MOMENTOS MERIDIONAL E CIRCUNFERENCIAL.

Da (187c) resulta

$$\frac{M_{1}}{Eh^{2}} = \sum_{n=1}^{\infty} \sum_{k=1}^{N-1} \beta_{k} E_{n,k} \left\{ \left[Z_{1n} - v_{4} J_{2}'(\lambda_{n}) \right] q_{3}(\mu_{c}\xi) + Z_{3n} q_{4}(\mu_{c}\xi) \right\}$$
(224)

para o momento meridional. Por outro lado a determinação do momento circunferencial é imediata, conforme (187d),

$$\frac{M_2}{Eh^2} = v \frac{M_1}{Eh^2}$$

7.3.3. DETERMINAÇÃO DAS FORÇAS NORMAL MERIDIONAL E CIRCUNFERENCIAL.

A força normal meridional será determinada de (188), subst<u>i</u> tuindo nela a equação de Q_2^b/Eh , dada em (207), ficando

$$\frac{N_{1}}{Eh} = - \sin \alpha \sum_{n=1}^{\infty} \sum_{k=1}^{N-1} \beta_{k} E_{n,k} Z_{3n}$$
(226)

Da (189c) determina-se a força normal circunferencial, sub<u>s</u> tituindo-se as reações de descontinuidade M_2^b/Eh^2 e Q_2^b/Eh , que podem ser obtidas de (203) e (207), respectivamente, encontrando-se

$$\frac{N_{2}}{Eh} = \sum_{n=1}^{\infty} \sum_{k=1}^{N-1} \beta_{k} E_{n,k} \{ [Z_{1n} - v_{4} J_{2}'(\lambda_{n})] q_{5}(\mu_{c}\xi) + Z_{3n} q_{6}(\mu_{c}\xi) \}$$
(227)

7.3.4. DETERMINAÇÃO DO DESLOCAMENTO RADIAL NA REGIÃO CILÍNDRICA C.

Tendo sido determinadas as forças normal e circunferencial adimensionalizadas, o deslocamento radial na região C pode ser obtido da expressão (149b) através da substituição das equações (226) e (227), ficando:

$$\delta^{c} = R_{c} \sum_{n=1}^{\infty} \sum_{k=1}^{N-1} \beta_{k} E_{n,k} \{ Z_{1n} q_{5}(\mu_{c}\xi) + Z_{3n} [q_{6}(\mu_{c}\xi) + vsen\alpha] - v_{4} J_{2}^{\dagger}(\lambda_{n}) q_{5}(\mu_{c}\xi) \} + R_{c} \alpha_{c} T_{c}$$
(228)

Assim ficam determinadas as variáveis das cascas que compõem a estrutura. Conhecidas estas variáveis, pode-se encontrar a distribuição de tensões através da estrutura, o que será objeto do próximo capítulo.

(225)

CAPÍTULO 8 - DETERMINAÇÃO DAS TENSÕES ATRAVES DA ESTRUTURA

Como conseqUência do tipo de carregamento e das hipóteses <u>i</u> niciais referentes à estrutura, as únicas tensões atuantes são as tensões normais meridional e circunferencial. Além disso, como a distribuição do parâmetro $\alpha(\xi)$. T (ξ) apresenta simetria axial, as tensões podem ser determinadas pelas expressões (56a) e (56b). Para o prosseguimento do trabalho são n<u>e</u> cessárias as distribuições de tensões somente nas superfícies externas e inte<u>r</u> nas. Isto decorre do fato de que são nas vizinhanças dessas superfícies que ocorrem valores extremos das tensões ao longo da normal a superfície de referê<u>n</u> cia. Todavia a formulação realizada permite a determinação da distribuição em qualquer superfície do espaço da casca.

8.1. DETERMINAÇÃO DAS TENSÕES NA PARTE CÔNICA.

As expressões (56a) e (56b) podem ser escritas numa forma mais conveniente, dividindo-as pelo módulo de elasticidade do material da estrutura, E. Assim tem-se

$$\frac{\sigma_{1}}{E} = \left(\frac{N_{1}}{E_{h}}\right) + \frac{12}{h}\left(\frac{M_{1}}{E_{h}}\right) \zeta ,$$

e

(229)

$$\frac{\sigma_2}{E} = \left(\frac{N_2}{Eh}\right) + \frac{12}{h}\left(\frac{M_2}{Eh^2}\right) \zeta , \qquad (230)$$

para as tensões adimensionalizadas meridional e circunferencial respectivamente. Portanto, para se determinar a distribuição através da estrutura basta que se substitua em (229) e (230) as forças normais e os momentos, já determinados em 7.1, 7.2 e 7.3 .

8.1.1 TENSÕES NA SUPERFÍCIE EXTERNA

A superfície externa é individualizada pela sua distância

à superficie de referência que aqui é

$$\zeta = \frac{h}{2} \cdot \cdot$$

е

Logo as equações (229) e (230) ficam sendo:

$$\frac{\sigma_1^{e}}{E} = \left(\frac{N_1}{Eh}\right) + 6\left(\frac{M_1}{Eh^2}\right) , \qquad (231a)$$

$$\frac{\sigma_2^{e}}{E} = \left(\frac{N_2}{Eh}\right) + 6\left(\frac{M_2}{Eh^2}\right)$$
(231b)

Substituindo em (231a) e (231b) as equações de M_1/Eh^2 , M_2/Eh^2 , N_1/Eh e N_2/Eh , encontradas em (212), (213), (214) e (215) respectivamente, vem

$$\frac{\sigma_{1}^{e}}{E} = \sum_{n=1}^{\infty} \sum_{k=1}^{N-1} \beta_{k} E_{n,k} \{ Z_{1n} \left[h_{13}(\mu_{b}\gamma) + 6h_{5}(\mu_{b}\gamma) \right] + Z_{2n} \left[h_{14}(\mu_{b}\gamma) + 6h_{6}(\mu_{b}\gamma) \right] + Z_{3n} \left[h_{15}(\mu_{b}\gamma) + 6h_{7}(\mu_{b}\gamma) \right] + Z_{4n} \left[h_{16}(\mu_{b}\gamma) + 6h_{8}(\mu_{b}\gamma) \right] + J_{2}(\lambda_{n}\gamma) \frac{1}{\gamma^{2}} \left[\frac{8\lambda_{n}^{2}}{\mu_{b}^{4} tg\alpha} + 12\nu_{4}(1-\nu) \right] - \frac{6\nu_{4}\lambda_{n}}{\gamma} .$$

$$\int_{1}^{N} (\lambda_{n}\gamma) \}, \qquad (231c)$$

$$\frac{\sigma_2^e}{E} = \sum_{n=1}^{\infty} \sum_{k=1}^{N-1} \beta_k E_{n,k} \{ Z_{1n} \left[h_{17}(\mu_b y) + 6h_9(\mu_b y) \right] + Z_{2n} .$$

$$\cdot \left[h_{18}(\mu_b y) + 6h_{10}(\mu_b y) \right] + Z_{3n} \left[h_{19}(\mu_b y) + 6h_{11}(\mu_b y) \right] +$$

$$Z_{4n} \left[h_{20}(\mu_{b}y) + 6h_{12}(\mu_{b}y) \right] + \frac{\lambda_{n} J_{1}(\lambda_{n}y)}{y} \left(\frac{4 \lambda_{n}^{2}}{\mu_{b} t_{g\alpha}} - 6\nu\nu_{4} \right) +$$

$$J_{2}(\lambda_{n}\gamma) \frac{1}{\gamma^{2}} \left[\frac{8 \lambda_{n}^{2}}{\mu_{b}^{4} tg\alpha} + 12\nu\nu_{4}(1-\nu) \right] \}, \qquad (231d)$$

que são as equações das tensões meridional e circunferencial na superfície externa da casca, respectivamente.

8.1.2. DETERMINAÇÃO DAS TENSÕES MERIDIONAL E CIRCUNFERENCIAL NA SUPERFÍCIE INTERNA DA REGIÃO CÔNICA.

Como a superfície de referência da casca é aquela situada ao meio entre a externa e interna, tem-se que a superfície interna está à coor denada:

 $\zeta = -\frac{h}{2}$

Então, as tensões meridional e circunferencial na parte interna, levando o valor de ç correspondente, em (229) e (230), ficam sendo

$$\frac{\sigma_{1}^{i}}{E} = \left(\frac{N_{1}}{Eh}\right) - 6\left(\frac{M_{1}}{Eh^{2}}\right) ,$$

(2**3**2a)

(232b)

 $\frac{\sigma_{2}^{i}}{E} = \left(\frac{N_{2}}{Eh}\right) - 6\left(\frac{M_{2}}{Eh^{2}}\right)$

Agora, substituindo nestas expressões as expressões encontradas em (212) (213), (214) e (215)para M₁/Eh², M₂/Eh², N₁/Eh e N₂/Eh, obtém-se

$$\frac{\sigma_{1}^{i}}{E} = \sum_{n=1}^{\infty} \sum_{k=1}^{N-1} \beta_{k} E_{n,k} \{ Z_{1n} [h_{13}(\mu_{b}y) - 6h_{5}(\mu_{b}y)] +$$

+
$$z_{2n} \left[h_{14}(\mu_b y) - 6h_6(\mu_b y) \right] + z_{3n} \left[h_{15}(\mu_b y) - 6h_7(\mu_b y) \right] +$$

+
$$Z_{4n} \left[h_{16}(\mu_{b}y) - 6h_{8}(\mu_{b}y) \right] + J_{2}(\lambda_{n}y) \frac{1}{y^{2}} \left[\frac{\delta \lambda_{n}}{\mu_{b} t g \alpha} - 12 \nu_{4}(1 - \nu) \right] + \frac{\delta}{\nu} \nu_{4} \lambda_{n} J_{1}(\lambda_{n}y) \}$$

para a tensão normal meridional e

$$\frac{\sigma_{2}^{i}}{E} = \sum_{n=1}^{\infty} \sum_{k=1}^{N-1} \beta_{k} E_{n,k} \{ Z_{1n} [h_{17}(\mu_{b}y) - 6h_{9}(\mu_{b}y)] + Z_{2n} .$$

$$\cdot [h_{18}(\mu_{b}y) - 6h_{10}(\mu_{b}y)] + Z_{3n} [h_{19}(\mu_{b}y) - 6h_{11}(\mu_{b}y)] +$$

$$+ Z_{4n} [h_{20}(\mu_{b}y) - 6h_{12}(\mu_{b}y)] + \frac{\lambda_{n} J_{1}(\lambda_{n}y)}{y} (\frac{4 \lambda_{n}^{2}}{\mu_{b}^{4} tg\alpha} + 6\nu\nu_{4}) -$$

$$- J_{2}(\lambda_{n}y) \frac{1}{y^{2}} [\frac{8 \lambda_{n}^{2}}{\mu_{b}^{4} tg\alpha} - 12\nu_{4}(1-\nu)] \} \qquad (232d)$$

para a tensão normal circunferencial na superfície interna.

8.2. DETERMINAÇÃO DAS TENSÕES NA REGIÃO CILÍNDRICA A.

A distribuição de tensões nesta região pode ser determinada pelas equações (229) e (230). Novamente, as superfícies externa e interna são identificadas por

$$\zeta = \frac{+}{2} \frac{h}{2}$$

respectivamente, e as tensões são determinadas somente nestas superfícies.

117

(232c)

8.2.1. DETERMINAÇÃO DAS TENSÕES MERIDIONAL E CIRCUNFERENCIAL NA SUPERFÍCIE EXTERNA DA REGIÃO CILÍNDRICA A.

Para determinação destas tensões, substitui-se as expressões dos momentos e das forças_normais que foram encontradas em (218), (219), (220) e (221) em (231a) e (231b), resultando:

$$\frac{\sigma_{1}^{e}}{E} = \sum_{n=1}^{\infty} \sum_{k=1}^{N-1} \beta_{k} E_{n,k} \left\{ \left\{ Z_{2n} 6p_{3} \left(\mu_{a} \xi \right) + Z_{4n} \left[6p_{4} \left(\mu_{a} \xi \right) - sen\alpha \right] + J_{2} \left(\lambda_{n} \sqrt{R_{a}/R_{c}} \right) \left\{ \frac{8 \lambda_{n}^{2}}{\mu_{b}^{4} tg^{2} \alpha} \left(\frac{R_{c}}{R_{a}} \right) \left[6p_{4} \left(\mu_{a} \xi \right) - sen\alpha \right] - 12\nu\nu_{3}\sqrt{R_{c}/R_{a}} \right\}$$

$$p_{3}(\mu_{a}\xi) - 6\nu_{3}J_{2}'(\lambda_{n}\sqrt{R_{a}/R_{c}})p_{3}(\mu_{a}\xi) \}, \qquad (233a)$$

para a tensão normal meridional e

$$\frac{g_{2}^{e}}{f_{2}^{e}} = \sum_{n=1}^{\infty} \sum_{k=1}^{N-1} \beta_{k} E_{n,k} \{\{ Z_{2n} \left[p_{5}(\mu_{a}\xi) + 6\nu p_{3}(\mu_{a}\xi) \right] + Z_{4n} \}, \\ \cdot \left[p_{6}(\mu_{a}\xi) + 6\nu p_{4}(\mu_{a}\xi) \right] + J_{2}(\lambda_{n} \sqrt{R_{a}/R_{c}}) \} \{ \frac{8 \lambda_{n}^{2}}{\mu_{h} t_{g}^{2} \alpha} (\frac{R_{c}}{R_{a}}) \}.$$

$$\cdot \left[p_6(\mu_a \xi) + 6\nu p_4(\mu_a \xi) \right] - 2\nu \nu_3 \sqrt{R_c/R_a} \left[p_5(\mu_a \xi) + 6\nu p_3(\mu_a \xi) \right] - 2\nu \nu_3 \sqrt{R_c/R_a} \left[p_5(\mu_a \xi) + 6\nu p_3(\mu_a \xi) \right]$$

$$- v_{3} J_{2}^{\dagger} (\lambda_{n} \sqrt{R_{a}/R_{c}}) \left[p_{5} (\mu_{a}\xi) + 6vp_{3} (\mu_{a}\xi) \right] \}, \qquad (233b)$$

para a tensão circunferencial na superfície externa da região A.

8.2.2. DETERMINAÇÃO DAS TENSÕES MERIDIONAL E CIRCUNFERENCIAL NA SUPERFÍCIE INTERNA DA REGIÃO CILÍNDRICA A.

Aqui leva-se (218), (219), (220) e (221) em (232a, b) re-

sultando para a tensão meridional interna a seguinte forma:

$$\frac{J_{1}}{L} = \sum_{n=1}^{\infty} \sum_{k=1}^{N-1} \beta_{k} E_{n,k} \{\{ -Z_{2n} 6 P_{3}(\mu_{a}\xi) - Z_{4n} [6 P_{4}(\mu_{a}\xi) + sen\alpha] - J_{2}(\lambda_{n} \sqrt{R_{a}/R_{c}}) \{ \frac{8 \lambda_{n}^{2}}{\mu_{b}^{4} tg^{2}\alpha} (\frac{R_{c}}{R_{a}}) [6 P_{4}(\mu_{a}\xi) + sen\alpha] - 12\nu\nu_{3} \sqrt{R_{c}/R_{a}} P_{3}(\mu_{a}\xi) \} + 6\nu_{3} J_{2}'(\lambda_{n} \sqrt{R_{a}/R_{c}} P_{3}(\mu_{a}\xi)) \}$$
(234a)

e para a circunferencial:

$$\sum_{k=1}^{5} \sum_{n=1}^{\infty} \sum_{k=1}^{N-1} \beta_{k} E_{n,k} \{ \{ Z_{2n} \left[p_{5}(\mu_{a}\xi) - 6\nu p_{3}(\mu_{a}\xi) \right] + Z_{4n} \} \}$$

$$\cdot \left[p_{6}(\mu_{a}\xi) - 6\nu p_{4}(\mu_{a}\xi) \right] + J_{2}(\lambda_{n} \sqrt{R_{a}/R_{c}}) \{ \frac{8 \lambda_{n}^{2}}{\mu_{b}^{4} tg^{2} \alpha} (\frac{R_{c}}{R_{a}}) \}$$

$$\cdot \left[p_{6}(\mu_{a}\xi) - 6\nu p_{4}(\mu_{a}\xi) \right] - 2\nu \nu_{3} \sqrt{R_{c}/R_{a}} \left[p_{5}(\mu_{a}\xi) - 6\nu p_{3}(\mu_{a}\xi) \right] \}$$

$$- \nu_{3} J_{2}^{1}(\lambda_{n} \sqrt{R_{a}/R_{c}}) \left[p_{5}(\mu_{a}\xi) - 6\nu p_{3}(\mu_{a}\xi) \right] \}$$

$$(234b)$$

8.3. DETERMINAÇÃO DAS TENSÕES NA REGIÃO CILÍNDRICA C.

A distribuição de tensões nesta parte da estrutura é determinada de modo idêntico ao item 8.2 .

8.3.1. DETERMINAÇÃO DAS TENSÕES MERIDIONAL E CIRCUNFERENCIAL NA SUPERFÍCIE EXTERNA DA REGIÃO CILÍNDRICA C.

Estas tensões resultam da substituição dos momentos e forças normais determinados em (224), (225), (226) e (227) nas equações (231a,b). Então obtém-se

$$\frac{\sigma_{1}^{e}}{E} = \sum_{n=1}^{\infty} \sum_{k=1}^{N-1} \beta_{k} E_{n,k} \{ Z_{3n} \left[6 q_{4}(\mu_{c}\xi) - sen\alpha \right] + Z_{1n} 6 q_{3}(\mu_{c}\xi) - sen\alpha \right]$$

$$- 6v_4 J_2'(\lambda_n) q_3(\mu_c \xi) \}$$
(235a)

para a tensão meridional e

$$\frac{\sigma_{2}^{e}}{E} = \sum_{n=1}^{\infty} \sum_{k=1}^{N-1} \beta_{k} E_{n,k} \{ Z_{1n} \left[q_{5}(\mu_{c}\xi) + 6\nu q_{3}(\mu_{c}\xi) \right] + Z_{3n} .$$

$$\cdot \left[q_{6}(\mu_{c}\xi) + 6\nu q_{4}(\mu_{c}\xi) \right] - \nu_{4} J_{2}'(\lambda_{n}) \left[q_{5}(\mu_{c}\xi) + 6\nu q_{3}(\mu_{c}\xi) \right] \}$$
(235b)

para a tensão circunferencial.

8.3.2. DETERMINAÇÃO DAS TENSÕES MERIDIONAL E CIRCUNFERENCIAL NA SUPERFÍCIE INTERNA DA REGIÃO CILÍNDRICA C.

As tensões são determinadas como no item 8.3.1, mas, considerando agora as equações (232a) e (232b) para as tensões. Então, encontra--se

$$\frac{\sigma_1^{i}}{E} = \sum_{n=1}^{\infty} \sum_{k=1}^{N-1} \beta_k E_{n,k} \{ - Z_{3n} \left[6q_4(\mu_c \xi) + sen\alpha \right] - Z_{1n} 6q_3(\mu_c \xi) + sen\alpha = 0$$

+ $6\nu_4 J_2'(\lambda_n) q_3(\mu_c \xi)$; (236a)

para a tensão meridional interna; sendo que a tensão circunferencial interna fica:

$$\frac{\sigma_{2}^{i}}{E} = \sum_{n=1}^{\infty} \sum_{k=1}^{N-1} \beta_{k} E_{n,k} \{ Z_{1n} \left[q_{5}(\mu_{c}\xi) - 6\nu q_{3}(\mu_{c}\xi) \right] + Z_{3n} \left[q_{6}(\mu_{c}\xi) \right] + Z_{3n} \left[q_{6}(\mu_{c}\xi) + 2\mu_{c}\xi \right$$

Com as tensões determinadas é possível se fazer a escolha de um critério para projeto como é apresentado no próximo capítulo, por exemplo.

CAPÍTULO 9 - OTIMIZAÇÃO DAS TENSÕES TERMICAS

Emprega-se a técnica de Programação Linear para realizar a otimização das tensões térmicas. O procedimento adotado para obtenção das equ<u>a</u> ções da programação linear é apresentado a seguir.

Como já foi dito no capítulo 1, deseja-se maximizar a diferença do parâmetro ψ (ξ) entre as extremidades da junta cônica, mantendo as tensões restritas a uma determinada superfície do espaço de tensões de estrutura.

Para tanto, primeiramente, é necessária uma relação entre esta diferença e a suposta distribuição daquele parâmetro. Isto se obtém sabe<u>n</u> do que

$$\int_{\xi_{1}}^{\xi_{n}} \frac{d\psi}{d\xi} d\xi = \psi(\xi) \Big|_{\xi_{1}}^{\xi_{n}} = \psi(\xi_{n}) - \psi(\xi_{1}) = \psi_{c} - \psi_{a}$$
(237)

Por outro lado da figura 14 se tem que

$$\int_{\xi_{1}}^{\xi_{n}} \frac{d\psi}{d\xi} d\xi = \sum_{k=1}^{N-1} \beta_{k} (1 - \xi_{k})$$
(238)

Da igualdade das equações (237) e (238) resulta que aquela diferença fica assim relacionada:

$$\psi_{c} - \psi_{a} = \sum_{k=1}^{N-1} \beta_{k} (1 - \xi_{k})$$
(239)

9.1. CRITERIO DE PROJETO UTILIZADO.

A escolha da superfície de restrição das tensões leva indiretamente ao critério de projeto a ser empregado. As falhas que ocorrem em estruturas do tipo em estudo são ocasionadas principalmente por fadiga térmica e escoamento do material, uma vez que o carregamento é de natureza térmica.Sen do assim, seria apropriado o emprego do critério da Máxima Energia de Distorção por ser o que fornece valores de tensões críticas de modo mais realista, conforme indicam os valores experimentais para materiais dúteis 12 . Todavia . o emprego da programação linear para proceder a otimização requer que a superfície de restrição seja seccionalmente linear. Como a superfície de tensão limite ao escoamento do critério da M.E.D. é não linear, utiliza-se o critério da Máxima Tensão Cizalhante, que possui uma superfície seccionalmente linear . Muito embora os dois critérios somente coincidam quando σ_1 é igual a σ_2 (em módulo e sinal) ou quando o estado de tensões é unidimensional, justifica-se o emprego desse critério por ser conservativo e pelo fato de que os valores das tensões equivalentes ao estado real de tensões fornecidas por um e pelo outro critério, diferem no máximo de 15%¹⁵ .

Considerando a formulação realizada, o estado de tensão é bidimensional e as tensões normais meridional, σ_1 , e circunferencial, σ_2 , são tensões principais. Então, de acordo com o critério da Máxima Tensão Cizalhante se deve ter:

$$|^{\sigma}2^{-\sigma}1| \leq ^{\sigma}w (\xi)$$
(240)

 $|\sigma_1| \leq \sigma_w(\xi)$

 $|\sigma_2 - \sigma_1| \leq \sigma_w$

onde σ_W (ξ) é uma tensão admissível efetiva que, num caso geral pode variar com a posição. Para os cálculos, a variação σ_W com a posição, não traz maiores dificuldades. Porém, a dificuldade é se ter uma variação realista de σ_W (ξ) atravês da junta soldada, uma vez que há falta de informações experimentais . Considerando a hipótese quanto à resistência à fadiga feita inicialmente a superfície de restrição torna-se:¹⁷

$$|^{\sigma}2| \leq ^{\sigma}v$$

 $|\sigma_1| \leq \sigma_w$

 $\left| \frac{\sigma_2^e}{E} - \frac{\sigma_1^e}{E} \right| \leq \frac{\sigma_w}{E}$

 $\left|\frac{\sigma_{2}^{e}}{E}\right| \leq \frac{\sigma_{w}}{E}$

 $\left| \frac{\sigma_{1}^{e}}{F} \right| \leq \frac{\sigma_{W}}{E}$

 $\left| \frac{\sigma_2^i}{F} - \frac{\sigma_1^i}{F} \right| \leq \frac{\sigma_W}{F}$

 $\left|\frac{\sigma_{2}^{\prime}}{F}\right| \leq \frac{\sigma_{W}}{E}$

 $\left| \frac{\sigma_1}{E} \right| \leq \frac{\sigma_W}{E}$

9.2. EQUAÇÕES DA PROGRAMAÇÃO LINEAR.

Sendo a estrutura considerada compostas de três cascas finas e as hipótese de Love, válidas, a variação das tensões $\sigma_1 e \sigma_2$ através de sua espessura é linear. Logo, se as restrições (241) forem satisfeitas nas faces EXTERNAS e INTERNAS da estrutura, elas estarão sendo satisfeitas através de sua espessura. Isto possibilita trabalhar com as tensões somente naquelas superfícies. A superfície de restrição já adimensionalizada, passa a ser dada, então, por:

> , .

> > (242b)

(242a)

(242c)

(242d)

(242e)

(242f)

que são as restrições na face externa e interna respectivamente.

9.2.1. EQUAÇÕES DE RESTRIÇÕES NA PARTE CÔNICA B.

Para obter-se as equações de restrições na região cônica B, substitui-se em (242a, f) as equações das tensões adimensionalizadas encontradas em (231c, d) e (232c, d), resultando, de (242a):

$$\frac{E}{\sigma_{w}}\sum_{n=1}^{\infty}\sum_{k=1}^{N-1}\beta_{k} E_{n,k} \{ Z_{1n} \left[h_{17}(u_{b}y) + 6h_{9}(u_{b}y) - 6h_{5}(u_{b}y) - h_{13}(u_{b}y) \right] + Z_{2n} \left[h_{18}(u_{b}y) + 6h_{10}(u_{b}y) - h_{14}(by) - 6h_{6}(u_{b}y) \right] + Z_{3n} \left[h_{19}(u_{b}y) + 6h_{11}(u_{b}y) - h_{15}(u_{b}y) - 6h_{7}(u_{b}y) \right] + Z_{4n} \left[h_{20}(u_{b}y) + 6h_{12}(u_{b}y) - h_{16}(u_{b}y) - 6h_{8}(u_{b}y) \right] + \frac{\lambda_{n}}{y} \left[\frac{4\lambda_{n}^{2}}{u_{b}^{4} tg\alpha} + 6\nu_{4}(1-\nu) \right] - \frac{2J_{2}(\lambda_{n}y)}{y^{2}} \left[\frac{8\lambda_{n}^{2}}{u_{b}^{4} tg\alpha} + 0$$

+ 12 $\nu_4(1 - \nu)$]] ≤ 1 (243a)

Trazendo em (242b) a equação de σ_2^e/E encontrada em (231d), vem:

$$\frac{E}{\sigma_{w}} \sum_{n=1}^{\infty} \sum_{k=1}^{N-1} \beta_{k} E_{n,k} \{ Z_{1n} \left[h_{17} (\mu_{b} y) + 6h_{9} (\mu_{b} y) \right] + Z_{2n} \}$$

$$\cdot \left[h_{18} (\mu_{b} y) + 6h_{10} (\mu_{b} y) \right] + Z_{3n} \left[h_{19} (\mu_{b} y) + 6h_{11} (\mu_{b} y) \right] + C_{3n} \left[h_{19} (\mu_{b} y) + 6h_{11} (\mu_{b} y) \right] + C_{3n} \left[h_{19} (\mu_{b} y) + 6h_{11} (\mu_{b} y) \right] + C_{3n} \left[h_{19} (\mu_{b} y) + 6h_{11} (\mu_{b} y) \right] + C_{3n} \left[h_{19} (\mu_{b} y) + 6h_{11} (\mu_{b} y) \right] + C_{3n} \left[h_{19} (\mu_{b} y) + 6h_{11} (\mu_{b} y) \right] + C_{3n} \left[h_{19} (\mu_{b} y) + 6h_{11} (\mu_{b} y) \right] + C_{3n} \left[h_{19} (\mu_{b} y) + 6h_{11} (\mu_{b} y) \right] + C_{3n} \left[h_{19} (\mu_{b} y) + 6h_{11} (\mu_{b} y) \right] + C_{3n} \left[h_{19} (\mu_{b} y) + 6h_{11} (\mu_{b} y) \right] + C_{3n} \left[h_{19} (\mu_{b} y) + 6h_{11} (\mu_{b} y) \right] + C_{3n} \left[h_{19} (\mu_{b} y) + 6h_{11} (\mu_{b} y) \right] + C_{3n} \left[h_{19} (\mu_{b} y) + 6h_{11} (\mu_{b} y) \right] + C_{3n} \left[h_{19} (\mu_{b} y) + 6h_{11} (\mu_{b} y) \right] + C_{3n} \left[h_{19} (\mu_{b} y) + 6h_{11} (\mu_{b} y) \right] + C_{3n} \left[h_{19} (\mu_{b} y) + 6h_{11} (\mu_{b} y) \right] + C_{3n} \left[h_{19} (\mu_{b} y) + 6h_{11} (\mu_{b} y) \right] + C_{3n} \left[h_{19} (\mu_{b} y) + 6h_{11} (\mu_{b} y) \right] + C_{3n} \left[h_{19} (\mu_{b} y) + 6h_{11} (\mu_{b} y) \right] + C_{3n} \left[h_{19} (\mu_{b} y) + 6h_{11} (\mu_{b} y) \right] + C_{3n} \left[h_{19} (\mu_{b} y) + 6h_{11} (\mu_{b} y) \right] + C_{3n} \left[h_{19} (\mu_{b} y) + 6h_{11} (\mu_{b} y) \right] + C_{3n} \left[h_{19} (\mu_{b} y) + 6h_{11} (\mu_{b} y) \right] + C_{3n} \left[h_{19} (\mu_{b} y) + 6h_{11} (\mu_{b} y) \right] + C_{3n} \left[h_{19} (\mu_{b} y) + 6h_{11} (\mu_{b} y) \right] + C_{3n} \left[h_{19} (\mu_{b} y) + 6h_{11} (\mu_{b} y) \right] + C_{3n} \left[h_{19} (\mu_{b} y) + 6h_{11} (\mu_{b} y) \right] + C_{3n} \left[h_{19} (\mu_{b} y) + 6h_{11} (\mu_{b} y) \right] + C_{3n} \left[h_{19} (\mu_{b} y) + 6h_{11} (\mu_{b} y) \right] + C_{3n} \left[h_{19} (\mu_{b} y) + 6h_{11} (\mu_{b} y) \right] + C_{3n} \left[h_{19} (\mu_{b} y) + 6h_{11} (\mu_{b} y) \right] + C_{3n} \left[h_{19} (\mu_{b} y) \right] + C_{3n} \left[h_{$$

+
$$z_{4n} \left[h_{20}(\mu_{b}y) + 6h_{12}(\mu_{b}y) \right] + \frac{\lambda_{n} J_{1}(\lambda_{n}y)}{y} \left(\frac{4\lambda_{n}^{2}}{\mu_{b}^{4} tg\alpha} - 6\nu\nu_{4} \right)$$

$$-\frac{J_{2}(\lambda_{n}y)}{y^{2}}\left[\frac{8\lambda_{n}^{2}}{\mu_{b}^{4}tg\alpha}+12\nu_{4}(1-\nu)\right]\left|\leq1\right.$$
(243b)

Da mesma forma, substituindo (231c) em (242c), obtém-se:

$$\left|\frac{E}{\sigma_{w}}\sum_{n=1}^{\infty}\sum_{k=1}^{N-1}\beta_{k}E_{n,k}\left\{Z_{1n}\left[h_{13}(\mu_{b}\gamma)+6h_{5}(\mu_{b}\gamma)\right]+Z_{2n}\left[h_{14}(\mu_{b}\gamma)+\frac{4}{2}+6h_{6}(\mu_{b}\gamma)\right]\right]+Z_{2n}\left[h_{14}(\mu_{b}\gamma)+\frac{4}{2}+6h_{6}(\mu_{b}\gamma)\right]+Z_{4n}\left[h_{16}(\mu_{b}\gamma)+\frac{4}{2}+6h_{8}(\mu_{b}\gamma)\right]+\frac{J_{2}(\lambda_{n}\gamma)}{\gamma^{2}}\left[\frac{8}{\mu_{b}}\frac{\lambda_{n}^{2}}{4}+12\nu_{4}(1-\nu)\right]-\frac{6\nu_{4}(\lambda_{n})J_{1}(\lambda_{n}\gamma)}{\gamma}\right]\left|\leq 1$$
(243c)
Estas equações são as restrições às tensões na superfície externa da região cônica. As da superfície interna serão obtidas a seguir.

Substituindo-se (232c, d) em (242d) vem:

La den en la

$$\frac{E}{\sigma_{w}} \sum_{n=1}^{\infty} \sum_{k=1}^{N-1} \beta_{k} E_{n,k} \{ Z_{1n} [h_{17}(\mu_{b}\gamma) - 6h_{9}(\mu_{b}\gamma) - h_{13}(\mu_{b}\gamma) + 6h_{13}(\mu_{b}\gamma) + 6h_{10}(\mu_{b}\gamma) - h_{14}(\mu_{b}\gamma) + 6h_{10}(\mu_{b}\gamma) - h_{14}(\mu_{b}\gamma) + 6h_{10}(\mu_{b}\gamma) - h_{15}(\mu_{b}\gamma) + 6h_{11}(\mu_{b}\gamma) - h_{15}(\mu_{b}\gamma) + 6h_{12}(\mu_{b}\gamma) - h_{16}(\mu_{b}\gamma) + 6h_{16}(\mu_{b}\gamma) + 6h_{12}(\mu_{b}\gamma) - h_{16}(\mu_{b}\gamma) + 6h_{16}(\mu_{b}\gamma) + 6h_{16}(\mu_{b}\gamma) - 6h_{12}(\mu_{b}\gamma) - h_{16}(\mu_{b}\gamma) + 6h_{16}(\mu_{b}\gamma) + 6h_{16}(\mu_{b}\gamma) - 6h_{16}(\mu_{b}\gamma) - 6h_{16}(\mu_{b}\gamma) + 6h_{16}(\mu_{b}\gamma) - 6h_{16}(\mu_{b}\gamma) - 6h_{16}(\mu_{b}\gamma) - 6h_{16}(\mu_{b}\gamma) + 6h_{16}(\mu_{b}\gamma) - 6h_{16}(\mu_{b$$

$$-2\frac{J_{2}(\lambda_{n}y)}{y^{2}}\left[\frac{8\lambda_{n}^{2}}{\mu_{b}^{4}tg\alpha}-12\nu_{4}(1-\nu)\right]\}| \leq 1$$
(243d)

Agora, substituindo primeiramente a equação de σ_2^i /E da (232d) em (242e) e depois σ_1^i /E da (232c) em (242f), obtém-se as duas outras equações de restrição para a face interna da região cônica, que ficam assim:

$$\frac{E}{\sigma_{w}} \sum_{n=1}^{\infty} \sum_{k=1}^{N-1} \beta_{k} E_{n,k} \{ Z_{1n} \left[h_{17}(\mu_{b}\gamma) - 6h_{9}(\mu_{b}\gamma) \right] + Z_{2n} \left[h_{18}(\mu_{b}\gamma) - 6h_{10}(\mu_{b}\gamma) \right] + Z_{3n} \left[h_{19}(\mu_{b}\gamma) - 6h_{11}(\mu_{b}\gamma) \right] + Z_{4n} \left[h_{20}(\mu_{b}\gamma) - 6h_{12}(\mu_{b}\gamma) \right] + \frac{\lambda_{n} J_{1}(\lambda_{n}\gamma)}{\gamma} \left[\frac{4 \lambda_{n}^{2}}{\mu_{b}^{4} tg\alpha} + 6\nu\nu_{4} \right] - \frac{J_{2}(\lambda_{n}\gamma)}{\gamma^{2}} \left[\frac{8 \lambda_{n}^{2}}{\mu_{b}^{4} tg\alpha} - 12 \nu_{4}(1-\nu) \right] \} | \leq 1 , \qquad (243e)$$

$$\frac{E}{\sigma_{w}} \sum_{n=1}^{\infty} \sum_{k=1}^{N-1} \beta_{k} E_{n,k} \{ Z_{1n} [h_{13}(\mu_{b}\gamma) - 6h_{5}(\mu_{b}\gamma)] + z_{2n} [h_{14}(\mu_{b}\gamma) - 6h_{6}(\mu_{b}\gamma)] + z_{3n} [h_{15}(\mu_{b}\gamma) - 6h_{7}(\mu_{b}\gamma)] + z_{4n} [h_{16}(\mu_{b}\gamma) - 6h_{8}(\mu_{b}\gamma)] + \frac{J_{2}(\lambda_{n}\gamma)}{\gamma^{2}} [\frac{8 \lambda_{n}^{2}}{\mu_{b}^{4} tg\alpha} - \frac{12 \nu_{4}(1 - \nu)] + 6 \nu_{4} \frac{\lambda_{n} J_{1}(\lambda_{n}\gamma)}{\gamma} \} | \leq 1$$
(243f)

9.2.2. EQUAÇÕES DE RESTRIÇÕES PARA A REGIÃO CILÍNDRICA A.

As equações de restrição para esta região são obtidas pelas
substituições das equações das tensões adimensionalizadas para a região cilíndrica A, encontradas em (233a, b) e (234a, b) na superfície de restrição descrita por (242a, f).

Assim se tem para a face externa as seguintes restrições:

$$\begin{split} & \left| \frac{E}{\sigma_{w}} \sum_{n=1}^{\infty} \sum_{k=1}^{N-1} \beta_{k} E_{n,k} \left\{ \left(Z_{2n} \left[P_{5} \left(u_{a}\xi \right) - 6 p_{3} \left(u_{a}\xi \right) \left(1 - v \right) \right] + \right. \right. \right. \\ & \left. \left\{ \frac{8}{\sigma_{w}} \sum_{h=1}^{2} \left(\frac{R_{c}}{R_{a}} \right) \left[P_{6} \left(u_{a}\xi \right) - 6 p_{4} \left(u_{a}\xi \right) \left(1 - v \right) \right] + J_{2} \left(\lambda_{n} \sqrt{R_{a}/R_{c}} \right) \right] \right. \\ & \left. \left\{ \frac{8}{\mu_{b}} \frac{\lambda_{n}^{2}}{\tau_{a}^{2}} \left(\frac{R_{c}}{R_{a}} \right) \left[P_{6} \left(u_{a}\xi \right) - 6 p_{4} \left(u_{a}\xi \right) \left(1 - v \right) \right] - 2 v v_{3} \sqrt{R_{c}/R_{a}} \right] \right] \right. \\ & \left. \left[\frac{P_{5} \left(u_{a}\xi \right) - 6 p_{3} \left(u_{a}\xi \right) - 6 p_{4} \left(u_{a}\xi \right) \left(1 - v \right) \right] - v_{3} J_{2}^{\prime} \left(\lambda_{n} \sqrt{R_{a}/R_{c}} \right) \right] \right] \right| \leq 1 ; \\ & \left(244a \right) \end{split} \\ & \left| \frac{E}{\sigma_{w}} \sum_{n=1}^{\infty} \sum_{k=1}^{N-1} \beta_{k} E_{n,k} \left\{ \left(Z_{2n} \left[P_{5} \left(u_{a}\xi \right) + 6 v p_{3} \left(u_{a}\xi \right) \right] + \right. \\ & \left(244a \right) \right] \right\} \\ & \left(\frac{R_{c}}{R_{a}} \right) \left[P_{6} \left(u_{a}\xi \right) + 6 v p_{4} \left(u_{a}\xi \right) \right] + J_{2} \left(\lambda_{n} \sqrt{R_{a}/R_{c}} \right) \left\{ \frac{8}{\mu_{b}^{2}} \frac{\lambda_{n}^{2}}{\tau_{a}^{2}} \right] \\ & \left(\frac{R_{c}}{R_{a}} \right) \left[P_{6} \left(u_{a}\xi \right) + 6 v p_{4} \left(u_{a}\xi \right) \right] - 2 v v_{3} \sqrt{R_{c}/R_{a}} \left[P_{5} \left(u_{a}\xi \right) + \left. \right] \right] \\ & \left(\frac{R_{c}}{R_{a}} \right) \left[P_{6} \left(u_{a}\xi \right) + 6 v p_{4} \left(u_{a}\xi \right) \right] - 2 v v_{3} \sqrt{R_{c}/R_{a}} \left[P_{5} \left(u_{a}\xi \right) + \left. \right] \\ & \left(\frac{244a}{\tau_{a}^{2}} \right) \\ & \left(\frac{R_{c}}{R_{a}} \right) \left[P_{6} \left(u_{a}\xi \right) + \left(\frac{R_{c}}{\tau_{a}^{2}} \right) \left[P_{5} \left(u_{a}\xi \right) + \left. \right] \\ & \left(\frac{244a}{\tau_{a}^{2}} \right) \\ & \left(\frac{R_{c}}{\tau_{a}^{2}} \right) \left[\frac{R_{c}}{\tau_{a}^{2}} \right] \\ & \left(\frac{R_{c}}{\tau_{a}^{2}} \right] \\ & \left(\frac{R_{c}}{\tau_{a}^{2}} \right) \left[\frac{R_{c}}{\tau_{a}^{2}} \right] \\ & \left(\frac{R_{c}}{\tau_{a}^{2}} \right) \left[\frac{R_{c}}{\tau_{a}^{2}} \right] \\ & \left(\frac{R_{c}}{\tau_{a}^{2}} \right] \\ & \left(\frac{R_{c}}{\tau_{a}^{2}} \right) \left[\frac{R_{c}}{\tau_{a}^{2}} \right] \\ & \left(\frac{R_{c}}{\tau_{a}^{2}} \right) \left[\frac{R_{c}}{\tau_{a}^{2}} \right] \\ & \left(\frac{R_{c}}{\tau_{a}^{2}} \right] \\ & \left(\frac{R_{c}}{\tau_{a}^{2}} \right] \\ & \left(\frac{R_{c}}{\tau_{a}^{2}} \right) \left[\frac{R_{c}}{\tau_{a}^{2}} \right] \\ & \left(\frac{R_{c}}{\tau_{a}^{2}} \right] \\ & \left(\frac{R_{c}}{\tau_{a}^{2}} \right) \left[\frac{R_{c}}{\tau_{a}^{2}} \right] \\ & \left(\frac{R_$$

$$\frac{E}{\sigma_{w}} \sum_{n=1}^{\infty} \sum_{k=1}^{N-1} \beta_{k} E_{n,k} \{\{Z_{2n} \ 6p_{3}(\mu_{a}\xi) + Z_{4n} \left[6p_{4}(\mu_{a}\xi) - sen\alpha\right] + J_{2}(\lambda_{n} \sqrt{R_{a}/R_{c}}) \{\frac{8 \lambda_{n}^{2}}{\mu_{b}^{4} tg^{2}\alpha} (\frac{R_{c}}{R_{a}}) \left[6p_{4}(\mu_{a}\xi) - sen\alpha\right] - 12\nu\nu_{3} \}$$

$$\cdot \sqrt{R_{c}/R_{a}} p_{3}(\mu_{a}\xi) \} - 6\nu_{3} J_{2}'(\lambda_{n} \sqrt{R_{a}/R_{c}}) p_{3}(\mu_{a}\xi) \} | \leq 1$$

$$(244c)$$

e para a face interna

$$\begin{split} & \left| \frac{E}{\sigma_{w}} \sum_{n=1}^{\infty} \sum_{k=1}^{N-1} \beta_{k} E_{n,k} \left\{ \left(Z_{2n} \left[p_{5} \left(\mu_{a}\xi \right) + 6p_{3} \left(\mu_{a}\xi \right) \left(1 - \nu \right) \right] + \right. \right. \right. \\ & \left. \left(\frac{B}{\sigma_{w}} \sum_{k=1}^{n} \left(\frac{P_{6}}{\sigma_{w}} \right) + 6p_{4} \left(\mu_{a}\xi \right) \left(1 - \nu \right) \right] + J_{2} \left(\lambda_{n} \sqrt{R_{a}/R_{c}} \right) \right. \\ & \left. \left(\frac{B}{\mu_{b}^{4} t g^{2} \alpha} \left(\frac{R_{c}}{R_{a}} \right) \left[p_{6} \left(\mu_{a}\xi \right) + 6p_{4} \left(\mu_{a}\xi \right) \left(1 - \nu \right) \right] - 2\nu\nu_{3} \sqrt{R_{c}/R_{a}} \right. \\ & \left. \left[p_{5} \left(\mu_{a}\xi \right) + 6p_{3} \left(\mu_{a}\xi \right) \left(1 - \nu \right) \right] \right\} - \nu_{3} J_{2}^{1} \left(\lambda_{n} \sqrt{R_{a}/R_{c}} \right) \left[p_{5} \left(\mu_{a}\xi \right) + 6p_{3} \left(\mu_{a}\xi \right) \left(1 - \nu \right) \right] \right\} \\ & \left. + 6p_{3} \left(\mu_{a}\xi \right) \left(1 - \nu \right) \right] \right\} \right] \leq 1 \quad ; \quad (244d) \\ & \left| \frac{E}{\sigma_{w}} \sum_{n=1}^{\infty} \sum_{k=1}^{N-1} \beta_{k} E_{n,k} \left\{ \left\{ Z_{2n} \left[p_{5} \left(\mu_{a}\xi \right) - 6\nu p_{3} \left(\mu_{a}\xi \right) \right] + Z_{4n} \right. \\ & \left. \left(p_{6} \left(\mu_{a}\xi \right) - 6\nu p_{4} \left(\mu_{a}\xi \right) \right] + J_{2} \left(\lambda_{n} \sqrt{R_{a}/R_{c}} \right) \left\{ \frac{8}{\mu_{b}^{2} t g^{2} \alpha} \right. \end{split} \right] \right\}$$

$$\left[p_{6}(\mu_{a}\xi) - 6\nu p_{4}(\mu_{a}\xi) \right] - 2\nu v_{3} \sqrt{R_{c}/R_{a}} \left[p_{5}(\mu_{a}\xi) - 6\nu p_{3}(\mu_{a}\xi) \right] + \nu_{3} J_{2}^{1}(\lambda_{n} \sqrt{R_{a}/R_{c}}) \left[p_{5}(\mu_{a}\xi) - 6\nu p_{3}(\mu_{a}\xi) \right] + \nu_{3} J_{2}^{1}(\lambda_{n} \sqrt{R_{a}/R_{c}}) \left[p_{5}(\mu_{a}\xi) - 6\nu p_{3}(\mu_{a}\xi) \right] + (244e)$$

$$\frac{E}{\sigma_{w}} \sum_{n=1}^{\infty} \sum_{k=1}^{N-1} \beta_{k} E_{n,k} \left\{ \left\{ -Z_{2n} 6p_{3}(\mu_{a}\xi) - Z_{4n} \left[6p_{4}(\mu_{a}\xi) + sen\alpha \right] \right\} \right\} - J_{2}(\lambda_{n} \sqrt{R_{a}/R_{c}}) \left\{ \frac{8 \lambda_{n}^{2}}{\mu_{b}^{4} t g^{2} \alpha} \cdot \left[6p_{4}(\mu_{a}\xi) + sen\alpha \right] - 12\nu v_{3} \sqrt{R_{c}/R_{a}} \right]$$

$$+ p_{3}(\mu_{a}\xi) + 6v_{3} J_{2}^{1}(\lambda_{n} \sqrt{R_{a}/R_{c}}) p_{3}(\mu_{a}\xi) + \left\{ -1 \right\} \left\{ -244f \right\}$$

9.2.3. EQUAÇÕES DE RESTRIÇÕES PARA A REGIÃO CILÍNDRICA C.

1...

Estas equações foram obtidas como anteriormente, apenas que na superfície de restrição (242) são substituídas as correspondentes equações das tensões adimensionalizadas da região C dadas por (235a, b) e (236a, b). En tão, na face externa se tem:

$$\frac{|\underline{E}_{\sigma_{w}} \sum_{n=1}^{\infty} \sum_{k=1}^{N-1} \beta_{k} \underline{E}_{n,k} \{ Z_{1n} [q_{5}(\mu_{c}\xi) - 6q_{3}(\mu_{c}\xi)(1 - \nu)] + z_{3n} [q_{6}(\mu_{c}\xi) - 6q_{4}(\mu_{c}\xi)(1 - \nu) + sen\alpha] - \nu_{4} J_{2}'(\lambda_{n}) .$$

$$\cdot [q_{5}(\mu_{c}\xi) - 6q_{3}(\mu_{c}\xi)(1 - \nu)] \}| \leq 1 \qquad (245a)$$

$$\left|\frac{E}{\sigma_{w}}\sum_{n=1}^{\infty}\sum_{k=1}^{N-1}\beta_{k}E_{n,k}\left(Z_{1n}\left[q_{5}\left(\mu_{c}\xi\right)+6\nu q_{3}\left(\mu_{c}\xi\right)\right]+Z_{3n}\right]\right)$$

$$\left[q_{6}\left(\mu_{c}\xi\right)+6\nu q_{4}\left(\mu_{c}\xi\right)\right]-\nu_{4}J_{2}^{\prime}\left(\lambda_{n}\right)\left[q_{5}\left(\mu_{c}\xi\right)+4\nu q_{5}\left(\mu_{c}\xi\right)\right]\right]$$

$$\left|\frac{E}{\sigma_{w}}\sum_{n=1}^{\infty}\sum_{k=1}^{N-1}\beta_{k}E_{n,k}\left(Z_{1n}6q_{3}\left(\mu_{c}\xi\right)+Z_{3n}\left[6q_{4}\left(\mu_{c}\xi\right)-sen\alpha\right]-\nu_{4}J_{2}^{\prime}\left(\lambda_{n}\right)6q_{3}\left(\mu_{c}\xi\right)\right]\right]\right] \leq 1$$

$$\left|\frac{E}{\sigma_{w}}\sum_{n=1}^{\infty}\sum_{k=1}^{N-1}\beta_{k}E_{n,k}\left(Z_{1n}6q_{3}\left(\mu_{c}\xi\right)+Z_{3n}\left[6q_{4}\left(\mu_{c}\xi\right)-sen\alpha\right]-\nu_{4}J_{2}^{\prime}\left(\lambda_{n}\right)6q_{3}\left(\mu_{c}\xi\right)\right]\right]\right| \leq 1$$

$$\left(245c\right)$$

$$\left|\frac{E}{2}\sum_{n=1}^{\infty}\sum_{k=1}^{N-1}\beta_{k}E_{n}\left(Z_{n}\left[q\left(\mu,\xi\right)+6q\left(\mu,\xi\right)\right)\left(1-\mu_{c}\right)\right]+Z$$

Na

e

$$\frac{E}{\sigma_{w}} \sum_{n=1}^{\infty} \sum_{k=1}^{N-1} \beta_{k} E_{n,k} \{ Z_{1n} \left[q_{5}(\mu_{c}\xi) + 6q_{3}(\mu_{c}\xi)(1-\nu) \right] + Z_{3n} \\ \cdot \left[q_{6}(\mu_{c}\xi) + 6q_{4}(\mu_{c}\xi)(1-\nu) + sen\alpha \right] - \nu_{4} J_{2}^{1}(\lambda_{n}) .$$

$$\left[q_{5}(\mu_{c}\xi) + 6q_{3}(\mu_{c}\xi)(1-\nu)\right] \right\} \leq 1 ; \qquad (245d)$$

$$\left|\frac{E}{\sigma_{w}}\sum_{n=1}^{\infty}\sum_{k=1}^{N-1}\beta_{k}E_{n,k}\left\{Z_{1n}\left[q_{5}\left(\mu_{c}\xi\right)-6\nu q_{3}\left(\mu_{c}\xi\right)\right]+Z_{3n}\right.\right.$$

$$\left[q_{6}\left(\mu_{c}\xi\right)-6\nu q_{4}\left(\mu_{c}\xi\right)\right]-\nu_{4}J_{2}^{\prime}\left(\lambda_{n}\right)\left[q_{5}\left(\mu_{c}\xi\right)-6\nu q_{3}\left(\mu_{c}\xi\right)\right]\right]$$

$$\left|-6\nu q_{3}\left(\mu_{c}\xi\right)\right]\right\}\left|\leq1$$

$$(245e)$$

$$\frac{1}{5} \sum_{k=1}^{\infty} \sum_{k=1}^{N-1} \beta_k E_{n,k} \{ - Z_{1n} 6q_3(\mu_c \xi) - Z_{3n} [6q_4(\mu_c \xi) + sen\alpha] +$$

$$\frac{+\nu_{4}J_{2}^{1}(\lambda_{n})}{n} \frac{6q_{3}(\mu_{\xi})}{c} \leq 1$$
 (245f)

As equações expressas em (243), (244) e (245) quando aplicadas através da estrutura fornecem as restrições do espaço de tensões para a programação linear.

9.3. APLICAÇÃO DA PROGRAMAÇÃO LINEAR.

-

A distribuição ótima do parâmetro $\psi(\xi)$ é obtida, maximizando-se sua diferença entre as junções com as regiões cilíndricas A e C,

$$\Delta \psi = \psi_{c} - \psi_{a} \tag{246}$$

Esta otimização, todavia, está sujeita às restrições expressas pelas equações (243a, f), (244a, f) e (245a, f). Pode-se observar que todas estas equações são lineares nas variáveis

as quais se deseja determinar através da técnica de programação linear.

A utilização de tal técnica requer que as variáveis sejam to das positivas. Como se trabalha com a derivada do parâmetro, isto é, $\frac{d\psi}{d\xi}$, não é razoável impor tais condições por acarretarem o restringimento do espaço de soluções. Com isto, as atuais variáveis não possuem restrições de sinais. A fim de transformar o problema num que possui variáveis positivas, adota-se o seguinte desdobramento:

$$\beta_{k} = \beta_{k}^{i} - \beta_{k}^{i}, \text{ com } \beta_{k}^{i} \ge 0$$

$$K = 1, 2 \dots N - 1 \quad (247)$$

Para manter as tensões através da estrutura dentro da superfície de tensão admissível, aplica-se as equações de restrições em um grande número de pontos. Cada ponto fornece seis equações.

Nas regiões cilíndricas, devido às características da estr<u>u</u> tura e de seu carregamento, sabe-se que as maiores tensões ocorrem nas vizinhanças de suas junções com a região cônica. Assim, aplica-se aquelas equações somente nestes pontos.

Na região cônica, o maior número de pontos deve ser restringido, a fim de se ter certeza que as tensões estejam dentro dos limites admissiveis. Na prática, é interessante que a função $\psi(\xi)$ seja monõto-

na. Para isto, insere-se no problema as seguintes restrições:

 $\sum_{k=1}^{3} \beta_{k} \geq 0$ (248)

i = 1, 2 N - 1

Neste trabalho, utiliza-se o programa da IBM LP - MOSS para solução de exemplos práticos. Este programa é de fácil utilização.Esta,con<u>s</u> ta de um manual específico da IBM¹¹. Ressalva-se a facilidade que possui para a entrada de restrições do tipo

a <u>< x </u>< b

(249)

as quais são feitas através dos comandos

1						L.
R	н	S	r	S		
R	Α	N	G	£	S	

tornando desnecessário o desdobramento de uma equação do tipo (249) em duas , do tipo

x <u><</u> b

o que se adequa ao problema em consideração.

∴x <u>></u> a ,

e i

9.4. DETERMINAÇÃO DO PARÂMETRO $\frac{E}{\sigma_{W}}\psi(\xi)$.

A distribuição do parâmetro $\frac{E}{\sigma_w} \psi(\xi)$ ao longo do comprimento da junta cônica é realizada apôs a determinação dos β_k , k = 1 ... N - 1 pelo LP - MOSS. Isto é determinado pela resolução da equação diferencial obtida das equações (90) e (91):

$$\frac{d}{d\xi} \left[\alpha(\xi) - T(\xi) \right] = \sum_{k=1}^{N-1} \beta_k H(\xi - \xi_k)$$
(250)

Aplicando a transformada de Laplace, a solução é obtida e se apresenta como

$$\psi(\xi) = \psi_a + \sum_{k=1}^{N-1} \beta_k (\xi - \xi_k),$$
 (251)

ou ainda expressando na forma em que as restrições são escritas:

$$\frac{E}{\sigma_{w}} \left[\psi(\xi) - \psi_{a} \right] = \sum_{k=1}^{N-1} \frac{E}{\sigma_{w}} \beta_{k} (\xi - \xi_{k})$$

(252)

CAPÍTULO 10 - RESULTADOS

Pode-se observar, na formulação, que as quantidades geométricas aparecem sempre como relações adimensionais, e sendo as seguintes: R_a/h ; R_c/h ; L/h . Assim, Δψ fica dependente destas relações.

Neste trabalho, resolve-se dois exemplos, considerando duas geometrias de juntas.

O primeiro exemplo tem as seguintes características:

- a) relações geométricas
- $\frac{R_c/h}{c} = 200$ $R_a/h = 80$ L/h = 100 ;
- b) constantes do material
 - v = 0.3

v - (módulo de Poisson).

Para segundo exemplo, toma-se

- a) relações geométricas
 - $R_{c}/h = 200$ $R_{a}/h = 60$

L/h = 100;

b) constantes do material

v = 0.3 .

Estes exemplos são resolvidos em duas etapas:

....

1a.) obtenção dos coeficientes das variáveis β_k ;

2a.) otimização de $\Delta \psi$ através de programação linear.

A obtenção dos coeficientes das equações de restrições é realizada, como já foi dito, através de programação própria usando o sistema IBM 1130, configuração 16K. Devido ao programa elaborado necessitar de aproximadamente aquela capacidade, uma declaração LOCAL foi empregada, tornando o processamento possível. Por outro lado, a otimização através de programação linear, utiliza o programa IBM LP - MOSS que pode ser rodado com aquela configuração.

No primeiro exemplo, aplica-se as equações de restrições em pontos conforme mostra a figura 19, considerando-se a expansão da função $\frac{d\psi}{d\xi}$ na seguinte série de Heaviside:

$$\frac{d\psi}{d\xi} = \sum_{k=1}^{10} \beta_k H(\xi - \xi_k)$$

isto é, as funções de Heaviside estão sendo separadas em incrementos de 0.06 . Com isto, obtém-se os coeficientes β_k , k = 1, ... 10, mostrados no quadro 1 que é o próprio relatório de saída emitido pelo LP - MOSS . As variáveis β_k são designadas na programação linear de: BETA1, BETA1L, BETA2, BETA2L etc. 0 valor de β_k , considerando-se (247) é assim obtido:

 $\beta_1 = BETA1 - BETA1L$

 $\beta_2 = BETA2 - BETA2L$

 $\beta_{L} = BETAK - BETAKL$

A Interpretação do relatório é feita assim: sob a coluna "VARIABLE", encon-

 Δ - Ponto de Aplicação de Carregamento β_k

tram-se os nomes das variáveis que se deseja. Os seus valores estão sob a coluna "SOLUTION ACTIVITY". Os limites das restrições estão sob as colunas "LOWER BOUND " e "UPPER BOUND ", que mostram os valores dos limites inferiores e superiores, respectivamente. A coluna "CURRENT COST ", contém os coeficientes das variáveis da função objetivo. Sob a coluna "TYPE " e "ENTRIES " estão respectivamente o tipo da variável:

B^{*} - valor Intermediário

LL - valor inferior

UL - valor superior ;

e o número de vezes que a variável entrou no problema.

Com os valores das variáveis β_k e, considerando-se a equação (252), pode-se traçar o gráfico do perfil de $\frac{E}{\sigma_w} \left[\psi(\xi) - \psi_a \right]$, mostrado na figura 20.

A fim de detalhar este problema, aplica-se as equações de restrições em novos pontos que por conveniência possuem abcissas, ξ , coincidentes com as separações das funções de Heaviside. Os resultados numéricos es tão no quadro 2, e o perfil do parâmetro está traçado no gráfico apresentado na figura 21. Continuando, resolve-se este mesmo problema, porém, consideran do desta vez a seguinte expansão:

$$\frac{d\psi}{d\xi} = \sum_{k=1}^{5} \beta_{k} H(\xi - \xi_{k})$$

Logo, as funções de Heaviside ficam espaçadas de 0.12 uma das outras. Coincidentes com estes espaçamentos, aplica-se as restrições, como mostra a figura 22 . Os resultados numéricos estão no quadro 3 e a distribuição do parâmetro $\frac{E}{\sigma_{ul}} \left[\psi(\xi) - \psi_{a} \right]$, ao longo da estrutura, está apresentada na figura23.

Fig. 20 - Distribuição do Parâmetro $\psi(\xi)$. Primeiro exemplo.

R R B C CONFORCE GEDITICS

 Δ – Pontos de Superposições de Carregamentos β_k

- Pontos de Aplicações das Restrições

O segundo exemplo é resolvido considerando-se primeiramente as funções de Heaviside separadas umas das outras de 0.07, isto é, considera-se a superposição de dez funções enquanto que as restrições foram aplicadas somente em cinco pontos da estrutura, como se pode observar na figura 24. Os resultados constam do quadro 4 e o perfil do parâmetro $\frac{E}{\sigma_w} \left[\psi(\xi) - \psi_a \right]$, para este caso, está na figura 25.

Da mesma forma que no primeiro exemplo, resolve-se este mes mo problema considerando-se a expansão da função $\frac{d\psi}{d\xi}$ através de cinco funções de Heaviside, tomando como pontos de aplicação das restrições os anteriores . Os valores obtidos são apresentados no quadro 5 e a distribuição $\frac{E}{\sigma_{W}} \left[\psi(\xi) - \psi_{a} \right]$ está na figura 26 .

Para efeito de comparação da distribuição ótima com alguma outra, toma-se uma distribuição linear para $\psi(\xi)$ na região cônica. Os resultados sempre estão mostrados em linhas mais finas, nos gráficos dos problemas correspondentes.

Deve-se salientar aqui, a significância do parâmetro $\psi(\xi)$ com respeito aos problemas práticos referidos na introdução deste trabalho De fato, no caso de uma transição soldada a temperatura final é uniforme e somente o coeficiente $\alpha(\xi)$ varia. Seja T, a temperatura final. Então

$$T(\xi) = T_a = T_c = \overline{T}$$

$$\psi_{c} - \psi_{a} = (\alpha_{c} - \alpha_{a})(\overline{T} - T_{o})$$

$$\psi(\xi) = \left[\alpha(\xi) - \alpha_{a}\right](\overline{T} - T_{o})$$

Logo, as figuras 20, 21, 23, 25 e 26 mostram como o coeficiente de expansão térmica deve ser distribuído a fim de minimizar as tensões térmicas.Nos outros problemas como o de distribuição de resfriadores ao longo da junta, ou

Pontos de Superposições de Carregamentos β_k

Δ

ainda o de la livio de tensões, e a temperatura que varia e o coeficiente de expansão térmica permanece constante. Se $\overline{\alpha}$ é o coeficiente de expansão tér mica. Então,

$$\alpha(\xi) = \alpha_a = \alpha_c = \overline{\alpha}$$

$$\psi_{c} - \psi_{a} = \overline{\alpha} (T_{c} - T_{a})$$

$$\psi(\xi) = \overline{\alpha} \left[T(\xi) - T_a \right]$$

2. A dur

Logo, aqueles mesmos gráficos apresentam, também, a maneira como a temperatura deve ser controlada para minimizar as mudanças nas tensões térmicas, quando a estrutura é restaurada a uma temperatura uniforme.

CAPÍTULO 11 - DISCUSSÃO DOS RESULTADOS

A distribuição ótima do parâmetro $\psi(\xi)$ na junta cônica, é determinada através da técnica de programação linear.

O critério de otimização atende somente condições estruturais e baseia-se no desejo de se reduzir as tensões térmicas. Na prática, pode haver certas distribuições de uso mais freqUente por razões técnicas ou econômicas. Neste trabalho, estas não foram levadas em consideração.

No cálculo dos coeficientes das variáveis β_k , para a programação linear surgem certas dificuldades computacionais. Para a obtenção das funções de Kelvin de segunda ordem e suas derivadas, usa-se desenvolvimentos assintóticos¹. Esta aproximação pode ser utilizada, devido aos argumentos destas funções serem normalmente maiores do que seis. Na obtenção dos zeros de $J_2(x) = 0$, procede-se da seguinte forma: tira-se de uma tabela, os valores dos cinco primeiros deles. Em seguida, tendo-se em vista que do sexto em diante, dois zeros consecutivos de $J_2(x) = 0$ diferem praticamente de II, gera-se os demais¹.

As funções de Bessel para pequenos argumentos (\leq 10) foram calculados pela subrotina científica da IBM , BESJ; para argumentos maiores que 10, utiliza-se, também, um desenvolvimento assintótico .

As tensões se apresentam expandidas em séries de Bessel e a convergência sempre é lenta, requerendo a retenção de muitos termos. Consequen temente, o programa elaborado para determinar os coeficientes das restrições , <u>tem seu tempo de processamento prolongado</u>. Para se ter ideia, o cálculo dos coeficientes do primeiro exemplo, anteriormente apresentado, isto é, fazendo--se a aproximação de $\psi(\xi)$, através de 10 funções de Heaviside e calculando as restrições em 12 pontos, o processamento leva aproximadamente, 8 horas.

Quanto à precisão dos coeficientes, se deve observar que existem erros provenientes da retenção de um número finito de termos das series e

148

. 15

um acentuado erro de truncamento. Este último, além do extenso tratamento algé brico, é agravado pela natureza das quantidades manipuladas. Nos exemplos resolvidos, as funções de Kelvin ber₂ e bei₂ estão na faixa de 10^5 a 10^{11} enquanto que as funções ker₂ e kei₂, estão entre 10^{-5} e 10^{-11} . Partindo destes valores, chega-se aos coeficientes das tensões que são, todos , da o<u>r</u> dem de centésimos. Nestes casos, o procedimento que se adota é especificar as variáveis em dupla - precisão (16 casas decimais na mantissa, ou mais). Todavia, isto não é possível no computador IBM 1130, que permite somente a especificação de

* EXTENDED PRECISION

(10 algarismos na mantissa). Esta precaução é tomada.

1. 1.1. . 1

Os resultados do primeiro exemplo estão mostrados nas figue 23 . O perfil do parâmetro $\frac{E}{\sigma_{i}} \left[\psi(\xi) - \psi_{a} \right]$, mostra-20 , 21 ras do na figura 20 , apesar de apresentar forma análoga à esperada, apresenta algumas irregularidades. Como neste exemplo tomou-se dez funções de Heaviside e aplica-se as equações de restrições somente em cinco pontos, pode resultar valores irregulares para as variaveis β_k . Verificando este fato, calculou - se as tensões em outros pontos que não os restringidos, empregando a distribuição encontrada para $\frac{E}{\sigma_{u}} \left[\psi(\xi) - \psi_{a} \right]$. Constatou-se que algumas delas estavam ultrapassando o limite admissível. Em seguida, aplicou-se as restrições em todos os pontos em que havia a superposição de uma função de Heaviside. O resultado e mostrado na figura 21 e apresenta ainda pequenas irregularidades, devidas, provavelmente, aos erros de truncamento. Este erro agora, é aumentado pe la técnica de otimização empregada. Basicamente, esta consiste em resolver sis temas de equações lineares pelo método de Gauss - Jordan, sendo a solução ótima encontrada iterativamente. A precisão dos resultados depende, obviamente do tamanho e do tipo do problema. Tendo o exemplo exigido várias iterações seu porte ser relativamente grande, os resultados apresentam erros de truncacamento.

No gráfico da figura 23 está a distribuição do parâmetro $\frac{E}{\sigma_w} \left[\psi(\xi) - \psi_a \right]$ quando se resolveu o mesmo exemplo considerando-se a superposição de cinco funções de Heaviside e cinco pontos de aplicação das restrições. Como se pode observar, a forma da distribuição coincide com a esperada. Observa-se também que o número de iterações é bem reduzido.

Os resultados referentes ao segundo exemplo são análogos, aos do primeiro. Aqui, novamente o perfil de $\frac{E}{\sigma_w} \left[\psi(\xi) - \psi_a \right]$ apresenta algumas irregularidades quando se resolve o exemplo com pequeno número de restri ções, conforme mostra a figura 25. Quando se resolve o problema com igual número de funções de Heaviside e pontos de aplicação, o resultado mostra-se sa tisfatório e está no gráfico da figura 26.

Fisicamente, percebe-se que a forma da distribuição ótima do parâmetro $\psi(\xi)$ deve ser o da figura 27 . Como se impôs restrições de monotocidade da função $\psi(\xi)$, entre outras formas possíveis de função monotônica, as obtidas são umas delas. Para testar o modelo, as restrições de monotocidade são retiradas do problema. Os resultados, ora obtidos, constam do quadro 6, que, como se pode verificar, são exatamente os mesmos quando se resolve com aquelas restrições, ver quadro 2. Assim, conclui-se não ser necessário restringir a função $\psi(\xi)$, isto é, não são necessárias as restrições dadas em (248).

Dos resultados, pode-se observar ainda que, para maximizar a diferença $\Delta \psi$, entre os extremos da junta, cada ponto da estrutura fica tensionado em seu limite, ou próximo dele.

Para uma boa aproximação da função $\psi(\xi)$ a separação das funções de Heaviside deve ser pequena, da ordem de $\xi = \frac{x}{L} = 0.001$, sendo as restrições aplicadas em incrementos da mesma ordem. Só assim, obtém-se a função detalhadamente e tem-se a certeza que as tensões estão dentro da superfí-

cie limite de tensão.

CAPÍTULO 12 - CONCLUSÕES E PROPOSIÇÕES

Este trabalho fornece a distribuição do coeficiente de expansão térmica através de uma junta cônica soldada, minimiza<u>n</u> do as tensões térmicas. A solução é também-diretamente aplicável aos seguintes problemas: a)arranjo de resfriadores ao redor de ju<u>n</u> tas cônicas; b)controle do perfil de temperatura em processo de aiívio de tensões, em juntas cônicas.

Determina-se, no trabalho, todas as expressões das solicitações e deslocamentos da estrutura. No caso de se conhecer uma determinada distribuiçao para $\psi(\xi)$, e se desejar a análisede tensões e deslocamentos, as equações são uma alternativa para a so lução. Para tal, deve-se determinar previamente as variáveis β_k , $k = 1, 2 \dots N - 1$. Do ponto de vista computacional, isto é perfe<u>i</u> tamente possível, bastando se adequar o programa principal. A formulação realizada, permite também a análise de tensões quando somente se tem dados experimentais a respeito da distribuição de ψ (ξ) na região cônica. Para resolver um problema deste tipo, tem--se que primeiramente determinar numericamente as variáveis $\beta_{\rm L}$.

Para a prática, a distribuição ótima de $\psi(\xi)$ serve para avaliar o desempenho de qualquer perfil de solda ou de di<u>s</u> tribuição de temperatura ou do coeficiente de expansão térmica numa junta cônica. A parte computacional foi toda realizada num computador IBM - 1130. Assim, levando-se em consideração:

 a) o tempo de processamento gasto para resolver um problema do porte dos exemplos resolvidos e para problemas maiores; b) a necessidade de unidade de saída para grandes massas de dados,tal como uma unidade de fita magnética, quando da realização de boas aproximações para o parâmetro; c) a falta de recursos para dar maior precisão ao tratamento computacional; d) a limitação do LP -MOSS quanto ao número de restrições, 700, e seu tempo de processamento; conclui-se que este computador é inadequado para solucionar tais problemas.

- Como propósições para trabalhos futuros, sugere-se: a) Realizar um estudo objetivando uma maneira gráfica de se obter as variáveis da estrutura. Para tanto, inicialmente deve-se obter todas as principais funções para diversas geometrias de ju<u>n</u> tas.
- b) Fazer um estudo sobre a influência da geometria da junta na dis tribuição ôtima do parâmetro $\psi(\xi)$.
- c) Com os resultados obtidos em a) e b), realizar um trabalho met<u>a</u> <u>lurgico referente ao controle da distribuição do coeficiente de</u> expansão térmica em juntas cônicas.
- d) Procurar uma solução diferente da apresentada, possiveimente fundamentada em cálculo variacional.
- e) Realizar um trabalho experimental no sentido de verificar a validade da solução. Neste caso, primeiramente deve-se resolver o problema com uma boa aproximação, isto é, utilizando razoável número de funções de Heaviside e de pontos de aplicação das re<u>s</u> trições.
- f) Realizar um estudo da distribuição da espessura através da junta cônica e verificar sua influência no parâmetro controlador das tensões. Em seguida, estudar o comportamento global da junta, estabelecendo-se soluções ótimas para os parâmetros estudados e verificar a estabilidade da solução.

BIBLIOGRAFIA

- ABRAMOWITZ, Milton & STEGUN, Irene A. . Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. New York. Dover Publications, INC. 1965.
- 2) BALTRUKONIS, J. H. . Influence Coefficients for Edge Loaded Short, Thin Conical Frustums. J. Appl. Mech, 26, p. 241, 246. June, 1959.
- 3) DENNERY, Philippe & KRZYWICKI, André. Mathematics for Physicists. Japan./ A Harper International Edition. March, 1967.
- 4) FAUPEL, Joseph H. . Engineering Design. A Synthesis of Stress Analysis and Materials Engineering. U.S.A. John Wiley & Sons, august, 1964.
- 5) FLÜGGE, Wilhelm. Stress in Shells. 3 ed. Berlim. Springer Verlag. 1966.
- 6) FORREST, P. G. . Fatigue of Metals. U.S.A. Addison Wesley Publishing Cô., Inc. . Pergamon Press. 1962.
- 7) GOL'DENVEIZER, A. L. . Theory of Elastic Thin Shells. London. G. Hermann, Columbia University. Pergamon Press. 1961, v. 2. International Series of Monographs in Aeronautics and Astronautics.
- 8) GOLONB & Shanks. Elements of Ordinary Differencial Equations. 2. ed.New York McGraw - Hill Book Company. 1965.
- 9) GOODALL, I. W. & WHITWAN, C. M. . On Optimizing Thermal Stress in Cilindricall Shells. Great Britain. W. Johnson - Pergamon Press. jan. 1973. v. 15. int. J. Mech. Sci.
- 10) HILDEBRAND, Francis B. Advanced Calculus for Applications. U.S.A. Prentice
 Hall, Inc. 1962.
- 11) IBM Program Reference Manual. Mathematical Optimization Subroutine System , 1130 LP - MOSS.

- 12) JUVINAL, Robert C. . Stress, Strain, and Strength. New York. McGraw Hill Book Company. 1967.
- 13) KRAUS, Harry. Thin Elastic Shells. U.S.A. John Willy & Sons, Inc. 1967.
- 14) KREIDER, Donald L.; KULLER, Robert G.; ORSTBERG, Donald R.; PERKINS,
 Fred W. An Introduction to Linear Analysis. Massachussetts, U.S.A.
 Addison Wesley Publishing Company, Inc. 1966.
- 15) NADAI, A. . Theory of Flow and Fracture Solids. 2. ed. New York. McGraw Hill Book Company, Inc. 1950. v. 1.
- 16) NOWAKI, W. . Thermo Elasticity. Poland. Panstwone Wydwnictwo Naukowe. v. 3. 1962. International Series of Monographs in Aeronautics and Astronautics.
- 17) POPE, J. A. . Metal Fatigue. London. William Clowes and Sons, Limited. 1959.
- 18) SOKOLNIKOFF, I. S. . Mathematical Theory of Elasticity. 2. ed. New York. McGraw Hill Book Company. 1956.
- 19) TIMOSHENKO, S. & NOINOWSKY-KRIEGER, S. . Theory of Plates and Shells.
 ed. New York. McGraw Hill Book Company. 1959.

APÊNDICE I

FLUXOGRAMA DO PROGRAMA QUE CALCULA OS COEFICIENTES DAS RESTRIÇÕES

,11

.

SUBROUTINA COEF1

SUBROUTINA COEF2

APÊNDICE 2

.

QUADROS DE RESULTADOS.

4

/ ~.

			· · · ·			· · · · ·	· . ·
	: • • •						•
REDUCED COST							
CURRENT COST	0 • • • 0 • • • 0 • • • 0 • • • •	1 000 000 000 000 000	000 000 100 100 100 100 100 100 100 100	00 9 9 1 0 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0000 0000 1000 1000 1000 1000 1000 100
 LOWER BOUND 	○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○						
UPPER BOUND	******	*******	******	* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *	******
SOLUTION ACTIVITY	23 • 771 65 • 924 0 • 000	161.709 0.000 0.000	57.287 86.315 0.000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 60 0 64 7 8 8 5 4 4 0 6 0 6 0	0.000 71.185 20.127	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
TRIES	ο ο ο ο ο	-1 00 00 -1 00 00	204	ດ ດ ດ ດ ດ 4	5 6 6 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	エンン	005 005
Ш Ц Ц Ц Х	L * * L 00	гг * гг 0	* * J	L * L L 0 L	ل * * ب ل ۵ ۵		
VARIABLE	BETAL DELTAT BETALL	8ETA2 8ETA2 8ETA3 8ETA3	8ETA3L 8ETA4 8ETA4 8ETA4L	BETA5. BETA5L BETA6	BETA6L BETA7 BETA7L	日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日	BETA9L BETA10 Petalo

	· · ·						
	•			•			•
	•••			•			
3*	0	-0.496	1.000	. -1. 000	0.000	0.000	
3*	0	-0.442	1.000	-1.000	0.000	0.000	
3*	. 0	0.053	1.000	-1.000	0.000	0.000	
			•••				
3*	· p	0.229	1.000	-1.000	0.000	0.000	· ·
3×.	0 -	0.015	1.000	-1.000	0.000	0.000	
3*	0	-0.212	1.000	-1.000	0.000	0.000	
						·	· · · ·
3*	0	-0.017	.1.000 .	-1.000	0.000	C.000	
L	0	-1.000	1.000	-1.000	0.000	-4.285	
3*	т., О	-0.97 9	1.000	-1.000	0.000	0.000	
3*	0.	-0.522	1.000	-1.000	0.000	0.000	
3*	0	0.477	1.000	-1.000	0.000	0.000	
JL	်	1.000	1.000	-1.000	0.000	-0.760	
	•					··· · ·	
_ L -	0	-1.000	1.000	-1.000	0.000	-1.922	
3*	́ 0	-0.142	1.000	-1.000	0.000	0.000	
3 *	0 -	0.860	1.000	-1.000	0.000	0.000	
JĽ	0	1.000	1.000	-1.000	0.000	-6.791	
3#	0	0.289	1.000	-1.000	0.000	0.000	
3*	0	-0.713		-1.000	0.000	0.000	· • • •
		•					
₹#	Ó	0.483	1.000	-1:000	0.000	0.000	5 <u>4</u> -
3*	ō	0.401	1.000	-1.000	0.000	0.000	
3*	0	-0.080	1.000	-1.000	0.000	0.000	
	199 2 A. Jing Market on	2 2-24-25-25 -25-25-25-25-25-25-25-25-25-25-25-25-25-		مى مەمەر يەرىپ مۇمىرىدىك يەتەر بەتە بە تەرەپ يەتەركە كەنتىكە تەرەپ يەتەركە تەرەپ يەتەر يەتەر يەتەر يەتەر يەتەر	· ·	······································	
			· · · ·	т., т. с. <u>с</u>			
	•					• •	
		and a second		-		****	
		· *	•				

	•				/					•	. 1			
				X					•		•		1-	
									······		· · ·		· · · · ·	
22	UL	0)	1.000		1.000		-1.000		0.000	·	-8.247		
23	UL	-0		1.000	•	1.000		-1.000		0.000	-	-1.657		
24	3*	0		0.001		1.000		-1.000		0.000		0.000		
				•		• • • •	. *	•					• • • • • •	
25	B* .	0		-0.724		1.000		-1.000		0.000		0.000		, ,
25 57	5* D*	0		0.213		1-000		-1:000		0.000	·	0.000		
	5*						. •	1.000					· · ·	1941. P
						-							· · · ·	
28 .	UL	0		1.000		1.000		-1.000		0.000		-17.554		
29	D¥ D*	0		0.113		1.000		-1.000		0.000				.
, v		0				1.000				0.000			- •	e.,
		0		0.14.00		1 000		-1 000		0 000		0 000		
5⊥ 2⊃'	15* D*	0		-0.820		1.000		-1.000	÷	0.000		0.000	1	. t
33	B* -	ŏ		0.942		1.000		-1.000		0.000	-	0.000		. •
· - · .		-	•	•							•			
24	₽¥.	0	•	0.814		1.000		-1.000		0.000		0,000		· ·
35	B*	õ		-0.184		1.000		-1.000		0.000		0.000	. }	· · ·
36	ĒL	0		-1.000		1.000		-1.000	-	0.000	-	21.611	· · · · ·	1.
x								. •				· · · ·		<u> </u>
L	8*	0	т.,	0.584	· · · ·	1.000		-1.000		0.000		0.000		
2	B*	0		-0.230		1.000		-1.000		0.000		0.000	•	
3	B*	0		-0.918		1.000		-1.000		0.000	•	0.000	ta 	1
							1 A.					· · · ·		
ł	B*	0		-0.658		1.000		-1.000		0.000		-0.000	. ·	1
5	B*	0		0.341	· · · ·	1.000		-1.000		0.000	-	0.000	т. на 1 - 2	
>	UL	0		1.000		1.000		-1.000		0.000		-3.092		
					₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩			an a	×.,					
•			•	. · ·			-	•					•	
	•								2		••			
1.1				N.,					. ^					
		•		•	•			·		•••		· ·	1	1

EQBTIO	EQB79	E Q B T 4 6	E C C B T C C C B T C C C B T C C C B T C C C B T C C C C	т т т 000 т 4 2 2 0 0 4 2 2 0	т т т О С О С Ч Х Х Р
F	* * *	00 00 00 * * *	00 00 00 * * *	លលប * * *	* * *
0	000	000	000	000	. 000
0.000	137•215 66•029 86•155	214 • 510 208 • 715 48 • 667	23.771 185.481 128.194	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	- 000 000 000 000 000 000 000 000 0000
*****	* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *	1.000 000	1 • 000 0 000
0.000					
0 • 0 0					
-0 • 537					

					·	·			•
								<u>Б</u>	
•					, , , , , , , , , , , , , , , , , , ,	,			•••
			ana ang sang sang sang sang sang sang sa	•	<u>,</u>				
	• 2 • •								
				1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.		•			
		• •	· . ·						
		· · ·	· •	•	· · ·				
					• •	. · ·	• • •		
	0		000		000	000	000	000	
	REDUCEI								•
						- 	•		
	ST 1	• • • • •	+ 2 0 0 + 2 0 0	000 770 777	9 9 9 0 0 9 9 9 0 9 9 9 0	0000 7770 7770 7770	000 900 100 100 100 100 100 100 100 100	• 120	
	CURR	0 1 0							
•		: • • • •	000	000	000		000	000	•
	V E R U N D	O * O O * O ● * ● O * O						000	: منتعص
_	90 1 1	* * * *							
		* * * * *	* * *	* * *	* * *	* * *	* * *	* * *	
	PER DUND	* * * * * * * * * * *	* * * * * * * * *	* * * * * * * * *	* * * * * * * * * * *	× × × × × × × × ×	* * * * * * * * *	* * * * * * * * *	
	τa α	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * *	~~~ * * * * * * * * *	* * * * * * * * * * * *	~~~~~ * * * * * * * *	~ * * * * * * * * * * *	***	
	42	× * *	400 4000	× * *	* * * wooo roo	× * * 0 ∕ 0	0 4 0 0 0 0 4 4 4 4 4 4	× × × × × ×	
		6 4 0 0 4 0 0 4 0	4 4 0 0 0		000 000 00	0000 ••••	73.0	000 000 000 000 000	
	SO AC		· · · · · · · · · · · · · · · · · · ·						
	RIES	605	38	667	5 5 4	200	N N H	100	
	m m 1	യ യ * * പ	, 1* * 1*	യയയ പച×	*	* *		00 00 u 	
	A B L L L L L L L L L L L L L L L L L L	L L L	ມີມີ ເມື່ອ ເບີດເຫ	ωτα Γ Γ Γ	L V V V	с С С С С С	ച പ ല പ ന യ ത	е с с С с П С с П Б С с П Б С с	•
	ARI			SETA.		A A A A A A A A A A A A A A A A A A A		ETA ETA	

E0819	т т т С С С С С С С С С С С С	三日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日	日 日	ញ ល ល ល ព ម ម ម ព ព ព ព ព ព ព ព ព ព ព ព ព ព ព ព	
r	× , ×	* 000 000	* * * * 000	* * * 000	· · · · · · · · · · · · · · · · · · ·
-1.000 C.789	0 H O • • • H O B W O A O O B	- 0.0 -	- 0 - 0 - 0 - 7 + 8 - 9 + 7	0 • • • • • • • • • • • • • • • • • • •	
1.0000		1.0000 1.0000 1.0000	111 ••• 0000 000	+ + + + • • • 0 0 0 0 0 0 0 0	1.000 000
				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
-0.628 0.000		- 7 - 4 0 - 0 - 0 0 - 0 - 4 0 - 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			
9					

0•537 -0•244	1.000	-1.000	0.000	0.000 0.000	
-0.783	1.000	-1.000	0.000	0.000	•
0.693	1.000	-1.000	0.000	0.000	
0.532	1.000	-1.000	0.000	0.000	
-0.467	1.000	-1.000	0.000	0.000	
-1.000	1.000	-1.000	0.000	-5.823	
-0.220	1.000	-1.000	0.000	0.000	
0.765	1.000	-1.000	0.000	0.000	•
0.985	1.000	-1.000	0.000	0.000	•
-1.000	1.000	-1.000	0.000	-0.078	
-0.946	1.000	-1. 000	0.000	0.000	
0.053	1.000	-1.000	0.000	0-000	· · · · · ·
-0.379	1.000	-1.000	0.000	0.000	
-0.422	1.000	-1.000	0.000	0.000	
-0.043	1.000	-1.000	0.000	0.000	
-1.000	1.000	-1.000	0.000	-1.543	
-0.380	1.000	-1.000 · · ·	0.000	0.000	•
0.619	1.000	-1.000	0.000	0.000	
0.295	1.000	-1.000	0.000	0.000	
-02.99	1.000		0.000	10.00.00.00.00.000 - 10.000 - 10.000 - 10.000 - 10.000 - 10.000 - 10.000 - 10.0000 - 10.0000 - 10.0000 - 10.000	ti i e t a a
		an a			
	•				

-0.594	1.000	-1.000	0.000	0.000	
-1.000	1.000	-1.000-1-4	0.000	-1.282	
-0.354	1.000	-1.000	° 0•0C0	0.000	• • • • •
		u	· .	•	
0.645	1.000	-1,000	0.000	0.000	· · · · · · · · · · · · · · · · · · ·
0.219	1.000	-1.000	0.000	0.000	
-0.452	1.000	-1.000	0.000	0.000	
	· · · · · · ·				
-0.672	1.000	1.000	0.000	0.000	
-1.000	1.000	-1.000	0.000	-8.909	
-0.301 /	1.000	-1.000	0.000	0.000	
					4
				and a second	
0.698	1.000	-1.000	0.000	0.000	
0.654	1.000	-1.000	0.000	0.000	
-0.038	1.000	-1.000	0.000	0.000	
and a second	مېرىمومىل مەمەللىمىن بىر يېرىمىرى مىلىرى ئېرىمومىل مەمەللىمىن بىر يېرىمىيە تېرى	The state of the s	and and a second and A second a s		
0.875	1.000 te	-1.000	0.000	0.000	
0.918	1.000	-1.000	0.000	0.000	Regional States and St
0.041	1.000	-1.000	0.000	0.000	a de la companya de l Na companya de la comp
			- And		
-0.774	1.000	-1.000	0.000	0.000	a a sea a
0.088	1.000	-1.000	1 0.000	0.000	
0.862	1.000	-1.000	0.000	0.000	
			an a dha na ar a charaige		
and a second and a second a s Second a second a seco		and the second secon	e en	entre de la participa de la composición de la composición de la composición de la composición de la composición La composición de la c	
			••••••••••••••••••••••••••••••••••••••		
· · · · · · · · · · · · · · · · · · ·		. •			

		· .			*	
		-	• • •	•		,
£* 8* 8*	0 0 -	0.521 0.353 0.876	1.000 1.000 1.000	-1.000 -1.000 -1.000	0.000 0.000 0.000	0.000 0.000 0.000
UL	0	1.000	1.000	-1.000	0.000	-2.238
3*	0	0.056	1.000	-1.000	0.000	C.CCO
8*	0 -	0.944	1.000	-1.000	0.000	C.OOO
B*	0 –	0•345	- 1.000	-1.000	0.000	C•000
B*	0	0•631	- 1.000	-1.000		C•000
6*	0	0•976	1.000	-1.000		O•000
LL	0	1.000	1.000	-1.000	0.000	-2.524
B*		0.152	1.000	-1.000	0.000	0.000
3*		0.845	1.000	-1.000	0.000	0.000
В*	0	0.181	1.000	-1.000	0.000	0.000
В*	0 -	0.656	1.000	-1.000	0.000	0.000
В*	0 -	0.839	1.000	-1.000	0.000	C.000
8* 8* 9*	0 – 0 –	0.047 0.616 0.663	1.000 1.000 1.000	-1.000 -1.000 -1.000	0.000 0.000 0.000	0.000 0.000 0.000
B*	0 3	5.030	************	0.000	0.000	0.000
B*	0 7	7.633		0.000	- 0.000	0.000
B*	0 12	5.781		0.000	0.000	0.000
	. '	• •		•		•

•

	•					: 		·			Ţ
					:.		· ·		مستقرر منتاب الجا		,
<i>i</i>		:	• • •		:		<u>b</u>	, (· · · · ·	2	
				•	ŗ		· ·	- 	·	· .	
	-	•		ан сайтаан сайт Сайтаан сайтаан сайтаан Сайтаан сайтаан			i m j	៣៣៣	ריז ניז ויז '-		
			, a	· · ·			08 1 1	CBTS CBTS F	CBT CBT CBT		
) 		•.	i 	•		ية أو منابع التي	o		0.01+		•
			s e -	<mark>بر ۱۰</mark> ۰		· .	*	* * *	* * *		
	•	•		•	•		· •	000	000		
						• .	•		н. — — — — — — — — — — — — — — — — — — —		
· · ·	1 1	. • • • .	• • •	•			ن بر	6.7	. 128	•	
· .			· · · ·			, ,	• 96	4 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5 1 8 • • 2 8 8 4 6		
		•			· ·	• • •	*	× * * × * *	0 U J * * *		
			•		•		* * *	* * * *	* * * *		
			· · · ·	:			* * *	* * * * * * * * *	* * * * * * * * *		
			т. - М. 				* *	* * *	* * * * * *		
,		·		· •		يو ^ر ور	· · ·	•			
							0	000	000		
		•	• • • •	· ·			- 000				
					<u>}</u>	• .	,				`
				· · · ·				•			
) 1	•		af est Serve Al Serve Al Serve		•	0 • •			· · ·	
	ł						O	000	000		
•	• .					· ·		·	• · · · ·	• • •	
· .							0 •	000			
1			₽ ₽				000			j	;
		,	•					, ,			"·
			(⁽	· · · ·	ł						
										· · · · · · · · · · · · · · · · · · ·	
						· · ·					
· () (

E 0 8 1 0 E 0 8 9 E 0 8 8 E 0 8 8	王王王 王王王 2000 0000 1888 888 2087 7007	E C BETA9 C BETA9 L L C BETA9	8 ET 7 5 E 8 ET 7 7 F 8 ET 7 7 F	8 8 8 8 町円町 〒17 >>> いの 下	BETAI DELTAI BETAIL	VARIAB
858 8578	ىن دى دى دى دى دى * * * * * *	ບັນເທຼາ * * Γ	огг *гг	መር መ ¥ር ¥	г ш ш г * *	
000	000 000	ທີ່ຫ ດີດວັວ	5 5 5 7 7 7 7	ហ ហ ហ ស ឃ ឃ	τυ τυ 404	ENTRIES
1 0 • 3 3 8 1 1 • 0 0 0 • 0 • 3 4 8	-0.773 0.566 0.566 0.566	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.000 0.000 23.797	31.634 0.000 22.725	23 • 6 2 0 27 • 8 3 2 0 • 0 0 0	SCLUTION ACTIVITY
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	1.000 1.000 000 000 000	**************************************	********** ******************	*****	*** **************	C PPER OUND D
- 11 • 0000 - 11 • 0000					***** • *** • • • • • • • • • • • • • •	BOUNER
			-0•360 -0•240 -0•240	000 000 000 000 000	-0.600 -0.600	
-6.000 0.000						
			• •	, , , , , , , , , , , , , , , , , , ,		
			· · · ·	•	· · · · · · · · · · · · · · · · · · ·	

					/				
			•						
•			ander and a second a				-		
0	0.638	1.000	-1.000	0.000	0.000	•	:		
0	0.987	1.000	-1.000	0.000	0.000				
0	0.696	1.000	-1.900	0.000	0.000	-	•		
0	-0.203	1 000	-1.000	0.000	0.000	· · · · ·	•		
0		1.000	-1.000	0.000	. 0.000	•			
0	-0.077	1.000	-1.000	0.000	0.000				
	•		•			• •			
0	0.922	1.000	-1.000	0.000	0.000	<u>.</u> .			
C	1.000	1.000	-1.000	0.000	-3.688				
0	-0.850	1.000	-1.000	0.000	0.000				
	•	•				ſ -			
Ó	-0.465	1.000	-1.000	0.000	0.000				
0	0.383	1.000	-1.000	0.000	0.000				
0	0.289	1.000	÷1.000	0.000	0.000				
	•	•	•.						
0	-0.068	1.000	1.000	0.000	0000				
0	-0.357	1.000	-1.000	0.000	0.000				
0	-0.900	1.000	-1.000	0.000	0.000	t.	• . •		
	• •		· · ·	· .	· .		•		
.0	0.099	1.000	-1.000	0.000	0.000				
0	1.000	1.000	-1.000	0.000	-4.674	, i de			
· 0	0.828	1.000	-1.000	06000	000.00				
: · · · · ·	1		· · · · ·				.÷.,		
· . 0	-0.156	1.000	-1.000	0.000	0.000				
0	-0.985	1.000	-1.000	0.000	0.000				
C	-1.000	1.000	-1.000	0.000	-6.402				
		1973 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 -							
			• • •	•					
		-		·	•				
									13
-----	--------------------------------------	---	--	---	--	--	---------------------------------------	---	----
•									
		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						000000000000000000000000000000000000000	
•									
								0 0 0	
•	000	000	000			000	000	00	
•••			000 ••• • • • • • • • • • • • • • • • •					•	
•		0000	000			C O * O O * O O *	* * *	*	
				e e e		**	* * * * * * * * * * * * * * * * * * *	****	
	-0.122 0.877 C.310	-0.578 -0.888 1.000	0 • 138 0 • 860 • 214	0.659 0.874 0.957	0•149 0•808 0•169		55•254 *	20.897 *	
			•••						
	000	000	000	000	000	000	000	0	
	03 03 03 * * *	۲.** ۲. ۲.۵۰۵	* * * ന ന ന	* * * 0 0 0	* * * ന ന ന	* * * 0 0 0 0	* * * ຒ ៣ ຒ	*	
	Е 0832 Е 0832 Е 0834 В 0834	E 0 B 3 6 E 0 B 3 6 E 0 A 1 E 0 A 1	E 0 4 3 E 0 4 3 E 0 4 3	E C A S E C A S C I S C	с С С С С С С С С С С С С С С С С С С С	E E C C C C C C C C C C C C C C C C C C	E0873 E0875 E08775	E0819	

		~		
			•	
			•	
		· .		
 •	•			-

*		
		1
	• •	

Þ.			•	н 1		•	
	• .					· .	, . .
	· .	·	. a r				4.4**** ¹
	-						
	•			۰	· · · · · · · · · · · · · · · · · · ·		
VARIABL	E E	NTRIES	SOLUTION	UPPER	LOWER	CURRENT	REDUCED
. T	YPE		ACTIVITY	BOUND	BOUND	COST	COST
			•			•	
	•		o/ 070		0.000	0 700	0.000
BETAL	B*	59	34.370	1000 000		0.000	
EQB1 -	8*	0	555•2 2 1	TODOOOOOO		-0.700	0.000
BEIALL	LLį	29	0.000	***	0.000	-0.700	
••							
	• *	5.0	10.292	****	0.000	0.630	0.00
DEJAZ	B*	50	0.000	***	0.000	-0.630	0.003
DETAZL		20	0.000	****	0.000	0-560	0.000
BEIAS	LL	21			0.000	0.00	•
			-				
DETASI	0.8	57	10.821	***	0.003	-0.560	0.003
DEIASE	0*	51	105.943	****	0.004	0.490	0.003
	3× 11	52 66		****	- 000	-0.490	0.000
DEIAAL				· · · · · · · · · · · · · · · · · · ·			
3	-			•		· .	
BETA5	11	55	0.000	*****	.0.000	0.420	C.OCT
BETASI	R#	55	5.911	水水水水水水水水水	0.000	-0.420	0.000
BETAG	11	÷4	0.000	****	0.000	0.350	0.000
					•		
• • • • •		· · ·	•				-
BETAGL	B*	54	51.620	****	0.000	-0.350	0.000
BETA7	LL	53	0.000	****	0.000	0.279	0.003
BETA7L	 В*	53 -	8.783	****	0.000	-0.279	0.000
•	-			-			· · ·
· .	5			·	·		
BETAS	LL	52	F 0.000	****	0.000	0.209	0.002
BETABL	B*	52	4.388	****	0.000	-0.210	0.000
BETA9	B*	50	. 19.852	****	0.000	0.139	C-000_
		• .•	•			۰.	
		-	•			•	
BETA9L	LL	51	0.000	*****	0.000	-0.140	0.001
BETA10	LL	50	0.000	********	0.000	0.070	0.001
BETA10L	B *	· 50	88 •93 4	*******	0.000	-0.070	0.002
. ,			ور د میں اس				

				*		
0 0 0	54•494 -835•355 -151•005	1000.000 1000.000 1000.000	-1000.000 -1000.000 -1000.000	0.000 0.000 0.000	0.000 0.000 0.000	
0 0 0	668.169 819.182 -0.000	1000.000 1000.000 1000.000	-1000.000 -1000.000 -1000.000		0.000 0.000 0.000	
0 0 0	-1000.000 -1000.000 -965.953	1000.000 1000.000 1000.000	-1000.000 -1000.000 -1000.000	0.000 0.000 0.000	-0.000 -0.008 0.000	*
0 0 0	-53.300 912.650 -98.210	1000.000 1000.000 1000.000	-1000.000 -1000.000 -1000.000	-0.000 0.000 0.000	0.000 0.000 0.000	
0000	-1000.000 -901.656 -470.239	1000.000 1000.000 1000.000	-1000.000 -1000.000 -1000.000	0.000 0.000 0.000	-0.004 0.000 0.000	
· ·				*		
0 0	529.735 1000.000 -746.862	1000.000 1000.000 1000.000	-1000.000 -1000.000 -1000.000	0.000 0.000 0.000	0.000 -0.004 0.000	
0 0 0	-29.882 693.065 1000.000	1000.000 1000.000 1000.000	-1000.000 -1000.000 -1000.000	0.000 0.000 0.000	0.000 0.000 -0.004	

.

			· ·			-	
					-		-
	-		-		~		
EQ8 23	в*	0	269.131	. 1000.000	-1000.000	0.000	
EQB24 EQB 25	B* LL	0 0	-730.858 -1000.000	1000.000 1000.000	-1000.000 -1000.000	0.000	0.000 600.0 -
-							
EQB26	B*	0	-38.436	1000.000	-1000,000	0.000	C.000 - C.000 -
EQB28	B*	õ	895.386	1000.000	-1000.000	0.000	0.000
	:			1000 000		0 000	
EQ829	B*	0	12•417 ==882•918	1000.000	-1000.000	0.000	0.000
EQB31	B*	0	-839.854	1000.000	-1000.000	0.000	C.003
EOB32			624.797	1000.000	-1000-000	0.000	6.000
BETA4	LL	1	0.000	****	0.000	0.000	C.000
EGB33	• B *	0	902.178	1000.000	-1000.000	0.000	0.000
50834	D #	0	548,699	1000-000	-1000-000	0.000	-0.000
EQB35	B*	Ö	-451.096	1000.000	-1000.000	0.000	0.000
EQB36	·LL	. 0	-1000.000	1000.000	-1000.000	0.000	-0.013
EGA1	UL	0 ⁻	1000.000	1000.000	-1000.000	0.000	-2.031
EQA2	B*	Ō	172.620	1000.000	-1000.000	0.000	6.000
ÉQA3	8*	0	-827.372	1000.000	-1000.000	0.000	3.003
EQA4	B#	0	-163.366	1000.000	-1000.000	0.000	0.000
EQA5	B*	. 0	671.210	1000.000	-1000,000	0.000	C.800.
EQA6	UL	. 0	1000.000	1000.000	-1000.000	0.000	-0.009
			*				
,							
			•			•	

		•				· :		
								•
	-					•		
					.•			
					5 14	•		
				7	•			
•				*		,		÷.
	000•T-	000+1-	*****	於 安安安尔尔尔尔尔尔	610.67	0	¥۶	DELIAI
	091.0-	00000	000•0	*****	000.00	ō	- 1 1	EQBIIO
						-		· · · · · · · · · · · · · · · · · · ·
					· ` .		_	
		00000	000•0	*****	4 66 •88	0	*8	E0819
				*******	180-69	.0	*8	- 8T803
	000-0	000-0		*******	597°22	U	*8	CTRO3
			•					
	00000	000.0	0000	*****	82.253	0	*8	60816
	00000	000.0	000 • 0	***	EL8•EET	0	¥8	E COLE
	0000	0000	000 • 0	***	48L.6EI	0	*8	E081¢
		·	- 1.	1		÷		
								-
	000-0		000*0	****	178 22	0	*8 	
	000 0	000.0		***********	016046	Ó	*0	FURDI
				*******				640,01
				· . ·	-			
	00000	00000	-1000•000	1000°0001	644.987-	0	*8	EQC6
	00000	00000	-1000*0001-	1000°000T	+28*62-	0	*8	EDCS
•	000-0	000•0	000-0001-	000,000 [E99*267	. 0	*8	EULT
	• •		· · ·	r	•		÷ 1	
	600 •0	000•0	-1000.000	000°000T	151 • 628	0	*8	EOC3
	000.0	000•0	000*0001-	000•000T	<u>90°</u> I6I	0	*8	EOCS
	000.00	000•0	-1000.000	1000°000T	669 889-	- 0	8 *	EOCI
					•			
		· · · · · · · · · · · · · · · · · · ·	· · · ·					
			•					
		,						
			-		•	۰ <u>ـ</u>		
		•						

-1.000 (.000 0.000 0.000 0.000 0.000.000 0000 000 00 00 00 00 0.000 0000 900 • 00 • 0 • 0 0.000 REDUCED COST 000.0 -1.000 0.000.0 0.560 001-0 -0.560 0.420 -0-420 0.260 -0.280 0.140 -0.140 0.00.0 000000 000000 0.00.0 CURRENT COST -1000.000 0.000 0000.00 -1000.000 -1000.000 0000 000000 ****** 0.000.0 0.000.0 -1000.000 -1000.000 -1000.000 -1000.000 -1000.000 LOWER BOUNER 1000.000 1000.000 1000.000 1000.000 1000.000 29-607 ****** ********* 000•0 24.017 ******** ********** 000•0 ***** ***** ************ 1000.0001 1000.000 **** ***** 33 556 ***** 000.0001 1000.000 ULLER BOUND SOLUTION ACTIVITY 0000.0 -813.486 -148.516 -254.296 -1000.000 -199.612 36.343 8.941 88.042 74.532 797.099 648.576 745.703 VARIABLE ENTRIES TYPE 4 5 0 0 0 2 1 2 2 000 54 Ο 0 0 00 0 Ο 0 O O * * ന * 0 1 * 1 0 ۲ ***** Ш * * ന ന ។ មាយ យ * **_ *** ۲ 1 1 * * * നനന BETA5L BETA7 BETA7L DELTAT BETA3L BETA5 BETA9L EQB1 BETA3 **BETA9** E088 E089 E0810 BETAI EQ86 EQ87 E032 E085

÷

i

!

		•	· -				
				· · · · · · · · · · · · · · · · · · ·			
1	B*	0	792.674	: 1000.000	-1000.000	0.000	0.000
2	B*	0	992.287	1000.000	-1000.000	0.000	0.000
3	8*	0	410.642	1000.000	-1000.000	0.000	0.000
4	B *	0	-370.011	1000.000	-1000.000	0.000	0 .000
5	B*	- 0	-780.656	1000.000	-1000.000	0.000	0.000
6.	R *	0	-149.089	1000.000	-1000.000		0.000
7	B*	0	629.270	1000.000	-1000.000	0.000	0.000
8.	8*	0	778•363	1000.000	-1000.000	0.000	0.000
7	با با	0	-1000.000	1000.000	-1000-000		-0.003
0	B*	0 -	-382.014	1000.000	-1000.000	0.000	0.000
1	8*.	0	617.979	1000.000	-1000.000	0.000	0.000
۔ 2 ، ،	B*	· 0	442.925	1000.000	-1000.000	0.000	0.000
3	B*	0	-159.871	1000.000	-1000.000	0.000	0.000
4	B*	0	-602.808	1000.000	-1000.000	0.000	0.000
5	L L	0	-1000.000	- 1000.000	-1000.000		-0.005
	· _	• •		· · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
•	· · ·	-					
5	B**	0.	-74.325	1000.000	-1000.000	0.000	0.000
7	B*	0	925.692	1000.000	-1000.000	0.000	0.000
8	B*	0	5.86 • 395	1000.000	-1000.000	0.000	· 0•000
. .	• •		-221 201	1000 000	-1000.000	0.000	
7 N	2*	0	-917.658	1000.000	-1000.000	0.000	0.000
1		0 -	-1000.000	1000.000	-1000.000	0.000	-0.010
-		Ŧ	-			· · · · · ·	

,

-

. .

٦,

			•				
			• •		•		
		. *					
		*		۰			• • • • • •
E0832	в*	0	-338.085	1000.000	-1000.000	0.000	0.000
EQB33	B*	0	661.889	1000.000	-1000.000	0.000	0.000
EQB34	B*	, O	-13.463	1000.000	-1000.000	0.000	0.000
EQB35	B*	0	-687.018	1000.000	-1000.000	0.000	0.000
EQ336	B* [0	-673.657	1000.000	-1000.000	0.000	0.000
EQA1	UL	0	1000.000	1000.000	-1000.000	0.000	-0.005
·			•				
EQA2	B*	0	174.834	1000.000	-1000.000	0.000	0.000
EGA3	B*	0.	-825.159	1000.000	-1000.000	0.000	0.000
EQA4	B*	0	-159.864	1000.000	-1000.000	0.000	0.000
	• •	*		•		· · ·	·
EQA5	B*	0	671.924	1000.000 -	-1000.000	0.000	0.000
EQA6	B*	0	831.770	1000.000	-1000.000	0.000	0.000
EQC1	B*	<u> </u>	-564.639	1000.000	-1000.000	0.000	0.000
3				•			
EQC2	B*	0	-69.219	1000.000	-1000.000	0.000	0.000
EQC3	8*	0	495.424	1000.000	-1000.000	0.000	0.000
EQC4	<u>B</u> *,	0	124.803	1000.000	-1000.000	0.000	0.000
	•	з.					
EQC5	B*	0	-364.702	1000.000	-1000.000	0.000	0.000
EQC6	В * .	0	-489.485	1000.000	-1000.000	0.000	0.000
EOBT1	B*	0	36.343	****	0.000	0.000	0.000
		۰. ب					· · · ·
EQBT3	B*	0	65 .951	********	0.000	0.000	0.000
EQBT5	B*	0	74.892	*****	0.000	0.000	0.000
EQBT7	B*	0 -	50.875	****	0.000	0.000	0.000 +
			۲		•		•
EQBT9	B*	0	- 17 - 209	****	0.000	0.000	0.000
		•••	· · · ·	· ·			
	.,,						· · ·

		-			rear-allocation countries and the second statements for	4 0 . 	
	·	000•0	0.90 • 0 -	000.00	****	t25•8+	
		000•0	090.0	0.000	*****	000°C	•
		000•0	-0*150	0000	*******	0000	
	•			• .	• . • •		
	•	000•0	021.0	000•0	*****	599•25	
••	•	000•0	6LI.0-	000.0	****	070 · EL	:
•	· · · · · · · · · · · · · · · · · · ·	000.0	621.0	000.0	*****	00000	
	· · · · · · · · · · · · · · · · · · ·			· , · ·	, ⁺ · · ·		
		000.0	/ 0# 7 * 0 -			000.0	
	·. ·	000.0	0+2+0	0000	**********		
		000*0	072 0	000 0	************		
			00000-	000 0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
		· · · · ·	-	. *			
		000•0	002•0	000•0	*****	00000	
		000.0	098•0-	000 • 0 (******	00000	
	· · ·	0000	095•0	000.0	*****	86.678	
		· · · ·		· · · ·	•		
		000•0	0240-	000•0	****	+IG•2+	
-	ن اِ	000.0	024.0	000 • 0	****	000.0	
- •	3	0000	087.0-	000 • 0	****	0.00.0	
	`	•		: •			
×.			00+0	000.0	~~~~~~~~~	/+τ•ο+	
• • •		000-0	0+4+0-	000 0	************	271 87	
		000.0			*****	609•Z+	
· *		000 0		0000			
			•		<u>.</u>	•	
· .	· .	000 • 0	009•0-	000•0	****	00000	
	-	000 •I -	000 •I-	****	****	0LI•07	
		000•0	009.00	0000	*******	020-52	
		.		· · · ·			
	- 	LSOD	LSOD	GNUOS	GNOOB	YTIVITDA	
		<u>BEDUCED</u>	CNKRENT	L OWER	<u>UPPER</u>	NOILAIOS	53
	•	•	× .				
		,	· · · ·				
		•					
•• •	· · · · · · ·	., an _b uunayaa ⊕≸inaatiyi y	- · · · ·		· . . ·		
	٠						

EQ813 E0810 E0916 EQB15 ບ່ ເກ * * ω⊂'ω ***Γ*** ເກ * លល់ល * * * យ៣យ * * * 0000 * * * 000 00 000 000 000 0 000 -0.748 -0.947 -0.246 -0.158 -0-144 886 986 7000 710 710 0.418 0.511 1.000 1.000
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
1 1 1 1 1 1 • • 00000 -1.000 0.000 -7-000 000 • 0 000 • 0 0.000 0.000

						•	•		
			•	-					
9	LL B* B*	0 0 0	-1. -0. C.	000 210 789	1.000 1.000 1.000	-1.000 -1.000 -1.000	0.000 0.000 0.000	-0.628 0.000 0.000	
234	B* 8* B*	-0 0 - 0	0. -0. -0.	537 244 783	1.000 1.000 1.000	-1.000 -1.000 -1.000	0.000 0.000 0.000	0.000 0.000 0.000	~
5 6 7	B* 6* . B*	0 0	C. O. -C.	693 654 038	1.000 1.000 1.000	-1.000 -1.000 -1.000	0.000 0.000 0.000	0 • 0 0 0 0 • 0 0 0 0 • 0 0 0	
8 9 0	B* B* B*	0 C O		875 918 041	1.000 1.000 1.000	-1.000 -1.000 -1.000		C•000 C•000 D•000	
1 2 3	B* B* B*	0 0 0	-0. 0.1 0.1	774 088 36 2	1.000 1.000 1.000	-1.000 -1.000 -1.000	0.000 0.000 0.000	0.000 0.000 0.000	
4 5 6	B* B* B*	0000	0 • ! -0 • : -0 • :	521 353 376	1.000 1.000 1.000	-1.000 -1.000 -1.000	0.000 0.000 0.000	0.000 0.000 0.000	-
	UL B* B*	000	1.0 0.0 -C.9)00)56)44	1.000 1.000 1.000	-1.000 -1.000 -1.000	0.000 0.000 0.000	-2.238 0.000 0.000	•
	· ·								· -

		•			с	**		
			- -	1				· · •
0A4	5×	0	-0.345	1.000	-1.000	0.000	600.0 000.0	-
3A6	B*	õ	0.976	1.000	-1.000	0.000	0.000	
ລ ເ າ	LL	0	-1.000	1.000	-1.000	0.000	-2.524	-
ଘ C2 ଘ C3	B* B*	- 0 0_	-0.152 0.345	1.000	-1.000 -1.000	0.000	0.000 =	
C 4	B*	0	0.181	1.000	-1.000	0.000	0.000	
ଦ ୍ମେ ଜ୍ଲିକ୍ଟି	B* B*	0	-0.656 -0.839	1.000 1.000	-1.000 -1.000	0.000	0.000	
QB 37	 В*	0	0.532	1.000	-1.000	0.000	0.000	-
28 38 08 39	B* LL	0 0 74	-0.467	1.000	-1.000	0.000	-5.823	
و		· · · · · · · · · · · · · · · · · · ·						
08 40	8*	0	-0.220	1.000	-1.000	0.000	0.000	
0841 0842	B* B*	0	C.765 0.985	1.000	-1.000 -1.000	0.000	0.000	:
3843	LL	0	-1.000	1.000	-1.000	0.000	-0.073	•
DB44 DB45	5* B*	0 0	-0.946 C.053	1.000	-1.000 -1.000	0.000 0.000	0.000	
0846	B#	0	-0.379	1.000	-1.000	0.000	0.000	•
0847 0848	8* 8*	0	-0.043	1.000	-1.000 -1.000	0.000 0.000	0.000 0.000	
	•					aan faa magaalaan ay ahaa ahaa ahaa ahaa ahaa ahaa aha		
			· · ·	- *	· · ·			

		•				
		•				
LL	0	-1.000	1.000	-1.000	0.000	-1.543
3*		-0.380	1.000	-1.000	0.000	0.000
8*		0.619	1.000	-1.000	0.000	0.000 =
9)*	0	0.295	1.000	-1.000	0.000	0.000
6,*	0	-0.299	1.000	-1.000	0.000	0.000
6,*	0	-0.594	1.000	-1.000	0.000	0.000
LL	0	-1.000	1.000	-1.000	00000	-1.282
3*	0	-0.354	1.000	-1.000	00000	0.000
9*	0 /	0.645	1.000	-1.000	00000	0.000
B*	0	0.219	1.000	-1.000	0.000	0.000
B*	0	-0.452	1.000	-1.000	0.000	0.000
B*	0	-0.672	1.000	-1.000	0.000	0.000
LL	0	-1.0C0	1.000	-1.000	0.000	-8.909
B*	0	-0.301	-1.000	-1.000	0.000	C.COO
B*	0	0.698	1.000	-1.000	0.000	C.OOO
8*	0	0.047	1.000	-1.000	0.000	0.000
8*	0	-0.616	1.000	-1.000	0.000	0.000
8*	0	-0.663	1.000	-1.000	0.000	0.000
		•	•** .			
1	7					•