UNIVERSIDADE FEDERAL DE SANTA CATARINA CURSO DE PÓS-GRADUAÇÃO EM FÍSICO-QUÍMICA

"PONTO TRICRÍTICO NA TRANSIÇÃO DE FASE COLESTÉRICO-ESMÉTICO-A"

Dissertação submetida à Universidade Federal de Santa Catarina para a obtenção do grau de Mestre em Ciências.

PEDRO RODRIGUES JUNIOR

DEZEMBRO - 1984 i

BANCA EXAMINADORA

Ésta Dissertação foi julgada adequada para a obtenção do título

de "MESTRE EM CIÊNCIAS"

Especialidade em Físico-Química, opção Física Molecular e aprova da em sua forma final pelo programa de Pós-Graduação.

Javarama

Prof^o Subramania Jayaraman, Ph.D.

Orientador

my June

Prof^o Rosendo Augusto Yunes, Ph.D.

Coordenador

De bujaraman

Prof? Subramania Jayaraman, Ph.D.

Prof[°] Ted Ray faylor, Ph.D.

Prof? Hédio José Müller, Ph.D.

AGRADECIMENTOS

Ao Conselho Nacional de Desenvolvimento Científico e Tecnológico,

CNPq.

À Universidade Federal de Santa Catarina.

À Fundação Faculdade de Educação Ciências e Letras de Cascavel.-Ao Prof? Subramania Jayaraman.

Ao Prof? Ted Ray Taylor.

Ao Prof. Hugo Alejandro Gallardo.

Aos colegas de Curso.

Aos Funcionários do Curso de Pós-Graduação em Físico-Química.

INDICE

PAG.

CAPÍTULO 1	
1.1 - Cristais Líquidos	01
1.2 - Objetivo do Trabalho	04
CAPÍTULO 2	
2.1 - Parâmetro de Ordem	10
2.2 - Transição de Fase	11
2.3 - Parâmetro de Ordem da Mesofase Esmético-A	12
2.4 - Resultados Numéricos da Teoria de Mcmillan	17
CAPÍTULO 3	
3.1 - Parte Experimental	23
3.2 - Processos de Purificação e Preparo das Amostras	23
3.3 - Processos de Medidas	24
CAPÍTULO 4	
4.1 - Análise e Discussão dos Resultados	41
CAPÍTULO 5	
5.1 - Conclusão	51
Bibliografia	53

RESUMO

No presente trabalho foi investigado o comportamento da transição de fase Colestérico-Esmético-A para a mistura binária de cristais líquidos nonanoato de colesterila - caproato de cole<u>s</u> terila.

Foi observado que quando a concentração de caproato de colesterila é maior que 35% em peso na mistura, o calor latente de transição desaparece, indicando ser este um ponto tricrítico.

Os resultados aqui obtidos são comparados com a Teoria de Mcmillan e com outros trabalhos publicados.

ABSTRACT

In the present work, the behavior of the cholestiric -Smectic-A phase transition was investigated for a linary mixture of liquid crystals cholesteric nanoanete and cholesteric caproate.

It was observed that, when the concentration of the choorded lesteric caproate was greater than 35% by weightin the mixture , the latent heat of the transition disappeared, indicating a possible tricritical point.

The results obtained in this study are compared with Mcmillan's molecular theory of smectic-A and other experimental works published in the literature.

vi

CAPÍTULO 1

1.1 - CRISTAIS LÍQUIDOS

No estado sólido cristalino, os átomos e moléculas apresentam alto grau de ordenamento na posição do centro de massa das unidades constituintes, bem como na orientação das moléculas , existindo assim ordem a longo alcance. No estado líquido isotrópico, as moléculas apresentam alto grau de desordem, tanto na posição dos centros de massa como na orientação, não existindo nenhuma ordem a longo alcance. As transições de fase entre estes dois estados ocorrem em temperaturas bem definidas e são de primeira ordem, isto é, envolvem calor latente de fusão e mudanças bruscas na densidade do material.

Em fins do século passado¹, foi descoberto que várias substâncias e compostos apresentam estados intermediários entreos estados sólidos e líquido ocorrendo uma perda gradual de ordem. Chamou-se a este estado intermediário de "cristal líquido". Os cristais líquidos apresentam fases intermediárias denominadas m<u>e</u> sofases. Estas mesofases apresentam um parcial ordenamento das m<u>o</u> léculas, esse ordenamento pode ser translacional, orientacional ou ambos.

As mesofases correspondem a situação de equilíbrio te<u>r</u> modinâmico em regiões bem definidas de temperatura. As transições entre uma mesofase e as fases sólida e líquida são de primeira o<u>r</u> dem, porém as transições entre mesofases podem ser de segunda o<u>r</u> dem, isto é, não envolvendo calor latente nem variações de dens<u>i</u> dade, mas com variações bruscas no calor específico.

Dois tipos de cristais líquidos podem ser diferencia

 dos^2 , os termotrópicos e os liotrópicos. Os cristais líquidos ter motrópicos apresentam como principal parâmetro a temperatura, is to é, a temperatura é um parâmetro decisivo no processo. Estimase³ que 10% dos compostos orgânicos formem cristais líquidos ter motrópicos. Os cristais líquidos liotrópicos tem como parâmetro principal a concentração, isto é, são cristais líquidos obtidos através da mistura de uma substância com um solvente. Exemplos tí picos são sais de ácidos graxos em água e fosfolípideos em água.

A geometria das moléculas nos cristais líquidos foi $e_{\underline{s}}$ tudade por Gray⁴. As características estruturais mais comuns $e_{\underline{n}}$ contradas nos cristais líquidos são:

- as moléculas alongadas
- a parte rígida central que contém uma ligação dupla ou tripla define o eixo maior da molécula
- a existência de fortes dipolos
- os grupos ligados às extremidades da parte central da molécula são flexíveis.

Com a distinção entre cristais líquidos termotrópicos e liotrópicos, pode-se proceder a classificação das suas mesofases usando um esquema baseado principalmente na simetria. Esta clas sificação foi primeiramente proposta por Friedel⁵ em 1922, onde são identificadas três mesofases: mesofase nemática, mesofase co lestérica e mesofase esmética.

MESOFASE NEMÁTICA - é caracterizada por uma ordem orien tacional de longo alcance, isto é, os eixos longos das moléculas tendem a se alinhar em uma direção preferencial. Os centros de massa das moléculas estão distribuídos ao acaso no espaço. Esta mesofase é opticamente uniaxial, geralmente apresenta baixa visco sidade e flue como um líquido.

MESOFASE COLESTÉRICA - esta mesofase é assim denominada porque é observada nos derivados de colesteróis. É considerada co mo uma mesofase nemática especial na qual a estrutura se encontra torcida em relação a um eixo perpendicular à direção preferencial. A mesofase colestérica é termodinâmicamente semelhante a mesofase nemática. De acordo com Mcmillan⁸, seu modelo teórico pode ser tanto aplicado para a transição esmético A-nemático (sc).

MESOFASE ESMÉTICA - nesta mesofase as moléculas estão dispostas em camadas e apresentam correlações nas posições de seus centros de massa, além da ordem orientacional. Foram identifica dos um certo número (-9) de esméticos através de estudos óticos, de raio-X e de miscibilidade⁶. Na mesofase esmético-A as molécu las estão alinhadas paralelas à direção preferencial e seus cen tros de massa estão situados em camadas perpendiculares à direção preferencial, não possuem ordem de longo alcance dentro das cama das e estas podem deslizar umas sobre as outras, a viscosidade é geralmente baixa e a distância entre as camadas é da ordem de com primento das moléculas. Esta mesofase é opticamente uniaxial.

Na mesofase esmético-C as camadas não são perpendiculares ao eixo preferencial, as moléculas estão inclinadas em rela ção ao eixo preferencial.

A mesofase esmético-B apresenta uma correlação entre os centros de massa das moléculas no plano das camadas.

ÉSTERES DE COLESTEROL - os compostos derivados do coles terol que apresentam propriedades colestéricas são: haletos e és

teres de colesterila que subdividem-se em n-alcanoatos, ω -fenil alcanoatos, O-alquil carbonatos de colesterila e α , ω -polimetileno carbonato di-colesterila. No presente trabalho serão utiliza dos dois compostos da série homóloga dos n-alcanoatos de colest<u>e</u> rila; caproato de colesterila e nonanoato de colesterila.

O caproato apresenta apenas a mesofase colestérica, ao passo que o nonanoato apresenta enantiotropia na mesofase colesté rica e monotropia na mesofase esmético-A. Na figura l estão repre sentadas de forma esquemática as mesofases acima discutidas, e na figura 2 estão representadas as estruturas dos compostos caproato e nonanoato de colesterila.

-1.2 - OBJETIVO DO TRABALHO

Recentemente muitos pesquisadores vem demonstrando in teresse em estudar o ponto tricrítico. O ponto tricrítico segundo Alben⁷, é um ponto no diagrama de fases onde uma linha de transi ção de fase muda seu comportamento de primeira para segunda ordem, quando se faz variar alguma grandeza termodinâmica relevante a concentração em mistura binárias de cristais líquidos. Nagigura 3 é mostrado o ponto tricrítico em um diagrama de fases.

Em analogia com misturas de He³ e He⁴, Alben⁷ sugeriu ser possível encontrar um ponto tricrítico pela variação de con centração das misturas binárias em cristais líquidos na transição esmético-A nemático. Segundo a teoria de Mcmillan⁸, é possível en contrar uma transição de fase de segunda prdem esmético A-nemático em uma série homóloga, quando o comprimento da cadeia alquil é reduzido, de modo que a temperatura reduzida de transição T_{sn}/T_{ni}

FIGURA 1 - ESTRUTURAS DE MESOFASES TERMOTRÓPICAS

- (a) Mesofase nemática
- (b) mesofase colestérica
- (c) mesofases esmética A e C

2.A

FIGURA 2 - ESTRUTURA MOLECULAR DOS COMPOSTOS

2.a - estrutura molecular do nonanoato de colesterila2.b - estrutura molecular do caproato de colesterila

é menor que 0.87, onde T_{ni} e T_{sn} são respectivamente as temperat<u>u</u> ras de transição nemática-isotrópico e esmético A-nemático. Não é possível variar continuamente o comprimento da cadeia alquil em uma série homóloga, mas o comprimento médio da cadeia alquil pode ser variada continuamente, variando a concentração nas misturas binárias, D.L. Johnson⁹ observou um ponto tricrítico na transição esmético A-nemático nas misturas C₂₄H₃₃NO (4,n-octiloxi 4' n-propil anilina OBPA) e C₁₈H₂₁NO (4-etiloxi benzilideno 4 n-propil nilina-EBPA) em aproximadamente 70 moles do composto $C_{24}^{H}_{33}NO$, fazendo medidas de calor latente da transição esmético A-nemático com um calorímetro diferencial de varredura (DSC). Mais recente mente, J.R. Fernandes¹⁰ e outros determinaram um ponto tricrítico na transição esmético A-nemático em mistura da série homóloga n-OMPC(trans-p-n-alquoxi - <-metil-p'-cianofenil cinanto) quando a temperatura reduzida $T_{sn}/T_{ni} = 0.94 \pm 0.005$.

Neste estudo, será investigado o ponto tricrítico na transição esmético-A colestérico em misturas binárias de cristais líquidos colestéricos da série homóloga dos n-alcanoatos de coles terila. Palangana¹¹ estudou misturas de nonanoato de colesterila com outros compostos de sua série homóloga com comprimento da ca deia alquil mais curto, e observou que a transição esmético A-colestérico torna-se de segunda ordem quando se aumenta a concentra ção de caproato de colesterila na mistura.

Neste trabalho, será estudado experimentalmente a mistu ra nonanoato de colesterila com caproato de colesterila a fim de se encontrar o ponto tricrítico na transição monotrópica de coles térico-esmético A, usando um calorímetro diferencial de varredura (DSC-2). Nestas misturas foram variadas as concentrações dos com postos e, observou-se que, quando a concentração de caproato é

FIGURA 3 - DIAGRAMA DE FASE DE UMA MISTURA DE CRISTAL LÍQUIDO

 x_1 é a concentração da substância l

A linha de transição de fase de sugunda ordem é repre sentada pela linha tracejada e a linha de transição de fase de primeira ordem pela linha contínua.

TCP representa o ponto tricrítico.

maior que 35% em peso o calor latente de transição colestérico-es mético A desaparece. A transição que foi de primeira ordem tornase de segunda ordem, o que indica ser este um ponto tricrítico na transição colestérico-esmético A. Os resultados obtidos são compa rados com os resultados da teoria de Mcmillan⁸ e com outros traba lhos publicados.

CAPÍTULO 2

2.1 - PARÂMETRO DE ORDEM

Foi visto que um cristal líquido apresenta mesofases (nemática, esmética e colestérica) e que estas mesofases diferem entre si pelo arranjo molecular, isto é, pela correlação entre elas, foi observado também, que num líquido isotrópico a distri buição das moléculas é aleatória, ou seja, estão distribuídas ao acaso.

A partir destas diferenças entre mesofases, torna-se n<u>e</u> cessário definir um "parâmetro de ordem"¹², que na fase líquido isotrópico seja zero (desordem total) e que nas mesofases seja d<u>i</u> ferente de zero:

Particularizando para a mesofase nemática, considerando as moléculas como barras rígidas e cilíndricas, sabe-se que elas tenham a se alinhar em uma direção preferencial (diretor n̂) e des ta forma um único parâmetro de ordem é necessário para descrever a estrutura da mesofase nemática. Fixando-se um sistema retangular de coordenadas X,Y,Z com o diretor n̂ ao longo do eixo Z, a orientação de uma molécula poderá ser descrita com auxílio dos ân gulos de Euler e devido a simetria cilíndrica, todos os valores dos ângulos, rotação em torno do eixo molecular e rotação na dire ção azimutal são igualmente prováveis.

O parâmetro de ordem para a mesofase nemática foi pro posto por Tsvetkov¹³ e é dado por;

 $< P_2 (\cos \theta) >_f$

onde: $P_2 = \frac{1}{2}(3\cos^2\theta - 1)$ é o polinômio de Legendre de ordem 2

é o ângulo que a molécula forma com o dir<u>e</u> tor ñ

> representa uma média estatística feita so bre a função distribuição das moléculas

Será visto adiante que $\langle P_2(COS\Theta) \rangle$ recebe o símbolo n. Os valores de variam entre 0 e 1, descrevendo graus de ordem in termediários, entre o líquido isotrópico (desordem total) e o es tado completamente ordenado. Assim para a mesofase nemática 0 < n > 1.

No caso da mesofase esmético A, devido a sua estrutura é necessário, introduzir um parâmetro de ordem adicional.

2.2 - TRANSIÇÕES DE FASE

θ

< >_f

As transições de fase de um sistema podem ser classificadas com auxílio de uma função termodinâmica de estado do siste ma. Será usada a energia livre de Helmholtz F

$$F = U - TS$$

onde; U = energia interna

T = temperatura

S = entropia

As transições de fase que podem ocorrer são de primeira

ou de segunda ordem, esta classificação pode ser feita sabendo-se que, na temperatura de transição, a função energia livre F é co<u>n</u> tínua com a temperatura.

Transições de 1ª Ordem

Sendo uma transição de fase de primeira ordem, a função F é contínua na temperatura de transição T_c , porém sua derivada primeira em relação à temperatura a volume constante é descontí nua na temperatura de transição T_c , isto é, $(\partial F/\partial T)_v = S$. Nesta transição, o parâmetro de ordem apresenta uma descontinuidade na temperatura de transição T_c .

Transições <u>de</u> 29 Ordem

Quando a transição de fase é de segunda ordem a função F e sua derivada primeira $(\partial F/\partial T)_v$ são contínuas na temperatura T_c mas, a sua derivada segunda a volume constante $(\partial^2 F/\partial T^2)_v$, que é proporcional ao calor específico do material a volume constante, é descontínua na temperatura de transição T_c . O parâmetro de or dem neste tipo de transição diminui continuamente até zero quando se aproxima da temperatura de transição T_c . Na figura 4 está re presentado o comportamento do parâmetro de ordem em função da tem peratura para as transições de primeira e segunda ordem.

2.3 - PARÂMETRO DE ORDEM DA MESOFASE ESMÉTICO - A

Foi visto que, na mesofase esmético A, as moléculas ten

dem a se alinhar segundo uma direção preferencial (diretor \hat{n})e os centros de massa das moléculas tendem a se localizar em camadas perpendiculares à direção preferencial. A mesofase esmético A apre senta simetria uniaxial e uma periodicidade unidimensional na di reção preferencial.

Maier e Saupe¹⁴ partindo do hamilroniano que descreve a interação dipolo induzido - dipolo induzido entre moléculas, ded<u>u</u> ziram o parâmetro de ordem orientacional da mesofase nemática.

A função distribuição orientacional das moléculas na m<u>e</u> sofase nemática, foi descrita por Priestley¹⁵ em termos de uma e<u>x</u> pansão em série de polinômios de Legendre e é dada por:

$$f(\cos \theta) = \Sigma \frac{2L+1}{2} < P_1(\cos \theta) > P_1(\cos \theta)$$
(1)
l=par

O parâmetro de ordem da mesofase nemática aparece no primeiro termo não trivial da expansão. Os termos sucessivos $P_1(\cos \theta)$ contém valores médios dos polinômios de Legendre de mai or ordem e podem ser pensados como parâmetros de ordem mais elava da.

No caso da mesofase esmético A, deve-se propor um par<u>a</u> metro de ordem que descreve a tendência das moléculas em se orie<u>n</u> tar na direção preferencial e que também descreve a tendência dos centros de massa das moléculas estarem dispostos em camadas pe<u>r</u> pendiculares à direção preferencial. Wojtowicz¹⁶ desenvolveu um trabalho para escrever a função distribuição da mesofase esmético A.

Pelo exposto acima, conclue-se que esta função distri buição para a mesofase esmético A deve ser uma função de cos O

FIGURA 4 - COMPORTAMENTO DO PARÂMETRO DE ORDEM

- (a) parâmetro de ordem em função da temperatura para uma transição de fase de primeira ordem.
- (b) parâmetro de ordem em função da temperatura para uma transição de fase de segunda ordem.

14

(orientacional) e de Z (translacional). Esta função distribuição pode ser expandida em uma série dupla de cosenos, devido a sime tria que apresenta a mesofase esmético A.

$$f(\cos \theta, Z) = \Sigma \Sigma A_{LN} P_{L}(\cos \theta) \cos(\frac{2\pi NZ}{d})$$
(2)
L=0 N=0
par

onde: d = distância entre as camadas

A dependência angular de f em (Θ) descreve a tendência das moléculas alinharem-se na direção preferencial.

A dependência de f em (Z) descreve a tendência dos ce<u>n</u> tros de massa das moléculas formarem camadas perpendiculares à direção preferencial.

A dunção distribuição deve satisfazer a condição de nor malização.

$$\int \int f(\cos \Theta, Z) dZ d(\cos \Theta) = 1$$
(3)
-1 0

Os coeficientes A_{LN} são obtidos quando multiplicamos am bos os lados da equação (2) por $P_k(\cos \theta) \cos(\frac{2\pi M Z}{d})$ e integramos empregando a ortogonalidade dos polinômios de Legendre.

 $A_{LN} = \frac{2L+1}{2d} \int_{-1}^{1} \int_{0}^{d} P_{L}(\cos \theta) \cos(\frac{2\pi NZ}{d}) f(\cos \theta, Z) dZ d(\cos \theta)$

ou usa-se a definição do valor médio de uma função em relação a uma certa função distribuição:

 $\langle b \rangle = \int b(x) p(x) dx$

que pode ser reconhecida na integral, fazendo;

$$b(x) = P_L(\cos \Theta) \cos(\frac{2\pi NZ}{d})$$

 $p(x) dx = f(\cos \Theta, Z) dZ d(\cos \Theta)$

Assim temos;

$$\begin{split} A_{OO} &= \frac{1}{2d} \\ A_{ON} &= \frac{1}{d} < \cos{(\frac{2\pi NZ}{D})} > N \neq 0 \\ A_{LO} &= \frac{2L+1}{2d} < P_{L}(\cos{\theta}) > L \neq 0 \\ A_{LN} &= \frac{2L+1}{2d} < P_{L}(\cos{\theta}) \cos{(\frac{2\pi NZ}{d})} > L \neq 0 \quad N \neq 0 \\ \end{split}$$
Nas equações acima pode se fazer as identificações
 $< P_{L}(\cos{\theta}) >$ parâmetro de ordem orientacional
 $< \cos{(\frac{2\pi NZ}{d})} >$ parâmetro de ordem translacional
 $< P_{L}(\cos{\theta}) \cos{(\frac{2\pi NZ}{d})} >$ parâmetro de ordem misto, que des creve a correlação ou acoplamento entre os graus de ordem orientacio_ nal e translacional.

Estes três parâmetros de ordem, aparecem em todas as teorias publicadas sobre a mesofase esmético A, e por este motivo

são dados por símbolos particulares.

$$M = \langle P_2(\cos \theta) \rangle$$

$$\int = \langle \cos\left(\frac{2\pi NZ}{d}\right) \rangle$$

$$\int = \langle P_2(\cos \theta) \cos(\frac{2\pi NZ}{d}) \rangle$$

Assim temos que;

- no líquido isotrópico, $\eta = \tau = \sigma = 0$ ou desordem total - na mesofase nemático, $\eta \neq \tau = \sigma = 0$ ou ordem orientaci<u>o</u>

nal - na mesofase esmético A, $\neq 0 \neq 0 \neq 0$ ou ordem orientacional e

translacional

Para uma ordem perfeita todos os parâmetros tendem à unidade.

2.4 - RES ULTADOS TEÓRICOS DA TEORIA DE MCMILLAN

Em seu modelo teórico, Mcmillan obteve a equação (6) para o potencial médio de cada molécula, dentro da aproximação do campo médio. A equação é dada por:

$$V_{1}(\cos \theta) = -V_{2}\left[\left[\alpha \tau \cos\left(\frac{2\pi z}{d}\right)\right] + \left[\left(m + \alpha \tau \cos\left(\frac{2z}{d}\right)\right) P_{2}\cos\theta\right]\right]$$
(6)

onde: $\alpha = 2 \exp \left(\frac{\pi r_0}{d}\right)^2$ (7)

(5)

- r_o é da ordem do comprimento da seção rígida central da mol<u>é</u> cula e determina o alcance da interação
- V_{O} e δ são constantes que caracterizam as intensidades das partes da interação.

Empregando este potencial pode-se calcular as propried<u>a</u> des termodinâmicas da função potencial de uma única molécula.

Os parâmetros de ordem \mathcal{N} , \mathcal{T} e \mathcal{G} que aparecem na equa ção (6) são indeterminados. Pode-se realizar a determinação autoconsistente dos parâmetros de ordem e suas dependências com a te<u>m</u> peratura, obtendo-se:

$$\mathcal{T} = \int_{0}^{1} \int_{0}^{d} \cos\left(\frac{2\pi Z}{d}\right) f_{1} (\cos \Theta, Z) dZ d(\cos \Theta)$$
(8)

$$\int_{0}^{1} = \int_{0}^{1} \int_{0}^{d} P_2(\cos \theta) \cos(\frac{2\pi z}{d}) f_1(\cos \theta, z) dz d(\cos \theta)$$

Partindo dos resultados obtidos em seu modelo teórico , Mcmillan calculou os parâmetros de ordem orientacional (η) e mis to (\mathbf{O}) dados pela equação (8), assim como a entropia como fun ção da temperatura para diversos valores de α (equação 7). Estes resultados são apresentados nos diagramas de fase da figura 5, ex traído do trabalho de Mcmillan⁸. Observa-se que a temperatura de transição esmético A-nemático (ou colestérico) é uma função cres cente de α e a curva T_{sn} (temperatura de transição esmética A-nemático) tende à curva T_{ni} (temperatura de transição nemático-isotrópico) em $\alpha = 0,98$.

A transição de fase emético A-nemático é de segunda or dem para 0.70 e de primeira ordem para 0.70 < α > 0.98. Na figura 6, igualmente extraída do trabalho de Wojtowicz¹⁷ está mostrado os parâmetros de ordem orientacional e misto em função da temperatura para três valores de α . Para α = 1.1 (comprimento da cadeia alquil longo) 🔨 e 🗸 variam descontinuamente na mesma temperatura, desparecendo simultâneamente as ordens orientacional e translacio nal. Há então uma transição de fase de primeira ordem da mesofase esmética A diretamente para o líquido isotrópico. Para α = 0.850s parâmetros de ordem orientacional e misto apresentam uma desconti nuidade na temperatura de transição esmético A-nemático (T_{sn}) mas somente $\[mu]$ desaparece, $\[mu]$ desaparece descontinuamente na temperatu ra de transição nemático-isotrópico (T_{ni}). O sistema apresenta uma transição de fase de primeira ordem esmético A-nemático, seguida de outra transição de fase de primeira ordem nemático-isotrópico. Para $\alpha = 0.60$ (pequeno comprimento da cadeia alquil), σ desapare ce continuamente na temperatura de transição esmético A-nemático (T_{sn}) . O parâmetro de ordem orientacional (\mathcal{M}) mostra uma descon tinuidade em inclinação nesta temperatura e em seguida desparece continuamente em uma temperatura maior. Há então uma transição de fase de segunda ordem esmético A-nemático, seguida pela transição de fase de primeira ordem nemático-isotrópico.

O modelo teórico prevê uma transição de fase de segunda ordem esmético A-nemático para o quociente $T_{sn}/T_{ni} \leq 0.87$, onde a entropia de transição da fase (ΔS_n) é igual a zero e prevê uma transição de fase de primeira ordem, onde a entropia de transição não é zero, para valores de $T_{sn}/T_{ni} > 0.87$.

Baseados nos resultados de Mcmillan, diversos trabalhos 10,17 vêm sendo publicados com o objetivo de medir os parâmetros de ordem do modelo teórico para as diversas séries homólogas. No presente trabalho esta sendo medido o calor latente da transição colestérico-esmético A, para a mistura nonanoato-caproato de co lesterila com o objetivo de determinar o ponto tricrítico, fazen do variar a concentração dos compostos, pois segundo Alben⁷, a concentração das misturas binárias é uma relevante variável termo dinâmica no estudo da transição em questão.

FIGURA 5 - Temperatura de Transição em unidades de $0.220V_{O}/K$

DE TRANSIÇÃO (0.2202 Vo/K)

TEMPERATURA

função de parâmetro α e também a entropia de transição ΔS em unidades de R_o = 1.986 cal/Kmol em função de α, onde R_o é a constante dos gases ideais. T_{ni} , T_{sn} e T_{si} são as temperaturas da transição nemático-isotrópico , esmético A-nemático e esmético A-isotrópico respectiva mente.

 ΔS_{ni} , $\Delta S_{sn} \in \Delta S_{si}$ são as entropias de transição nemáti co-isotrópico, esmético A-nemático e esmético A-isotró pico, sendo que ΔS_{sn} se anula para $\alpha = 0.7$.

21

em

ENTROPIA

FIGURA 6 - Variação dos parâmetros de ordem orientacional (η) e misto (τ) com a temperatura reduzida KT/0.2202 $V_0 = T_{sn}/T_{ni}$ para três valores de α do modelo teórico de Mcmillan.

CAPÍTULO 3

3.1 - PARTE EXPERIMENTAL

A parte experimental do presente trabalho, foi realiza da em duas etapas; na primeira etapa os compostos foram submeti dos a processos de purificação seguidos do processo de preparodas amostras, e, em seguida, uma segunda etapa, foram efetuadas medi das de calor latente e temperatura de transição das amostras pr<u>e</u> paradas. Neste capítulo são apresentados os resultados obtidos que são objetos de posterior discussão.

3.2 - PROCESSO DE PURIFICAÇÃO E PREPARO DAS AMOSTRAS

Os compostos utilizados neste trabalho (nonanoato e ca proato de colesterila) foram sintetizados pelo laboratório Aldrich.

O processo de purificação dos compostos consiste en di<u>s</u> solvê-los em um solvente adequado mediante aquecimento, filtrar a solução, deixála em repouso em média 8 horas para a recristalização. Recristalizada a solução, é filtrada a vácuo e os cristais são colocados em um recipiente contendo sílica-gel onde se faz v<u>á</u> cuo durante um período de aproximadamente 12 horas, afim de que toda a unidade retida pelos cristais seja eliminada. Este processo teve ser repetido tantas vezes quantas se fizerem necessárias, até que seja obtida estabilidade na temperatura de fusão. O solvente utilizado neste processo foi o acetato de etila produzido pelo l<u>a</u> boratório Merck; repetiu-se o processo de purificação três vezes pra cada composto, obtendo-se assim estabilidade nas temperaturas de fusão dos compostos.

Foram preparadas 18 amostras de misturas binárias de no nanoato com caproato de colesterila, nas quais a proporção em peso dos compostos foi variada desde 100% de nonanoato (composto puro) até 55% de nonanoato + 45% de caproato em peso. Os pesos nas devi das proporções para as diversas amostras foram calculados e poste riormente pesados em uma balança analítica Mettler H51.

Para conseguir-se a homogeneidade nas misturas binárias, elas devem ser aquecidas lentamente até atingir a fase de líquido isotrópico, durante este procedimento, as amostras são agitadas afim de uniformizar a homogeneidade das misturas e então são de<u>i</u> xadas à temperatura ambiente para a recristalização.

3.3 - PROCESSO DE MEDIDAS

Neste trabalho foram medidos calor latente das transições de fase isotrópico-colestérico e colestérico-emético A, bem como as temperaturas destas transições.

As temperaturas das transições foram obtidas com auxí lio de um sistema constituido por um microscópio de polarização ao qual é acoplado um controlador de temperatura, o qual possibilita a variação e o controle da temperatura. Um esquema deste sis tema é apresentado na figura 7.a. As medidas foram feitas prepa rando-se uma lâmina com amostras que é introduzida no forno, onde através do controlador de temperatura se faz variar a temperatu ra, e atrvés do microscópio é possível observar as transições de fase, que são identificadas pela mudança de textura do cristal , registrando-se assim a temperatura de transição no controlador.

Estas medidas foram feitas em média cinco vezes para cada transição, com isto obtendo-se maior confiabilidade nos dados.

As medidas de calor latente das transições foram feitas utilizando-se um calorímetro diferencial de varredura (DSC 2) . Primeiramente o calorímetro foi calibrado. A calibração do apar<u>e</u> lho¹⁸, consiste em determinar a correção que deve ser feita afim de se obter a real temperatura de transição e a determinação da constante do aparelho. Na correção da temperatura, foram medidas as temperaturas de fusão do índio e do estanho, com uma velocid<u>a</u> de de aquecimento igual a 10[°]C/min, registrou-se uma diferença da ordem de 0.005[°]C na temperatura observada em relação aos valores da literatura.

A equação de correção para as medidas de temperaturas de transição é dada por:

$$T_{v} = T_{o} + C \quad \frac{dT}{dt} + D$$
(9)

onde: $T_v = temperatura real da transição$

 $T_o = temperatura observada$ $\frac{dT}{dt} = velocidade de aquecimento ou resfriamento$ C e D constantes a serem determinadas em função de $\frac{dT}{dt}$ para $\frac{dT}{dt} = 10^{\circ}$ C/min tem-se; C = 0.13 e D = 2.4.

Para a determinação da constante do aparelho, foram us<u>a</u> das duas amostras padrão, o índio e o estanho. Com a primeira amos tra é determinada a constante do aparelho, usando-se para isso o valor teórico do calor latente de fusão do composto. Com a segun da amostra calcula-se o calor latente de fusão através da equação 10 e verifica-se o erro existente entre os dados teóricos sobre a amostra e os obtidos experimentalmente. O valor determinado para a constante do aparelho foi K = 25.17 e o erro relativo foi da or dem de 1.2%.

Calibrando o instrumento, foram feitas as medidas das amostras. Este processo consiste em preparar uma amostra de massa conhecida que é fechada dentro de uma capsúla de alumínio e depo sitada no forno do calorímetro. A amostra é aquecida até atingir o estado de líquido isotrópico, em seguida inicia-se o processode de varredura resfriando-se a amostra até uma temperatura abaixoda temperatura de transição de fase colestérico-esmético A/Este pro cesso de varredura é registrado em um termograma através de um re gistrador acoplado ao calorímetro (figura 7.b). As transições de fase registradas no termograma tem a forma de um pico, isto ē. são variações na linha base. As áreas medidas sob estes picos são proporcionais ao calor latente das transições de fase, podendo-se observar pelas figuras 8 e 9 as variações destas áreas para as а mostras utilizadas. As áreas correspondentes as transições de fa se foram medidas com auxílio de um planímetro. A determinação dos valores do calor latente das transições são obtidos através da equação abaixo¹⁸:

$$H = \frac{K \times A \times R}{W \times S}$$
(10)

onde: K = constante do aparelho

A = ārea sob o pico de transição (unidade arbitrária)

R = sensibilidade do aparelho (mcal/seg)

W = massa da amostra (mg)

S = velocidade do papel no registrador (nm/min)

H = calor latente da transição (cal/g)

Medidas do calor latente da transição colestérico-esmético A, foram feitas usando o calorímetro, resfriando-se e aque cendo-se as amostras. Quandocomparadas, estas medidas apresentam sensíveis diferenças. O calor latente de transição, calculado quan do a amostra é aquecida, registra valores ligeiramente superiores que o calculo quando a amostra é resfriada. O comprimento da va riação da linha base é diferente nos dois casos.

Comparadas estas medidas, constata-se que esta diferença de comportamento torna-se mais evidente a medida em que aumen ta a concentração de caproato na mistura. Quando a concentração de caproato é de 35% na amostra, a linha base varia continuamente sem nenhum pico durante a transição sendo a amostra resfriada, po rém, quando a amostra é aquecida, a linha base apresenta uma des continuidade acompanhada de um pico. O intervalo de tempo de temperatura gasto na transição é diferente nos dois casos. Quando resfriando-se a amostra, a transição ocorre em um intervalo de tempo maior que quando a amostra é resfriada, e, consequentemente o intervalo de temperatura também é maior. Esta diferença torna se maior a medida em que aumenta a concentração de caproato na mistura. Observações feitas com o microscópio, afim de determinar a temperatura da transição de fase apresentaram discordâncias. Quando para o composto puro ou para concentrações de caproato até de ordem de 25%, as temperaturas medidas com auxílio do microscópio coincidem com as temperaturas medidas com auxílio do caloríme tro. Observa-se que a medida em que aumenta a concentração de са proato na mistura, estas mesdidas diferem entre si de maneira ca da vez mais significativas. As temperaturas observadas com 🦈 auxí lio do microscópio são maiores que as registradas no calorímetro,

7.B

FIGURA

7

- DIAGRAMA DOS EQUIPAMENTOS
- 7.a Diagrama de funcionamento do sistema do microscópio de polarização com o controlador de temperatura.
- 7.b Diagrama de funcionamento do calorímetro diferencial de varredura (DSC 2).

esta diferença varia para as diferentes amostras, para a amostra de 65% de nonanoato + 45% de caproato a diferença observada $\stackrel{\circ}{e}$ da ordem de 4⁰c.

Mcmillan¹⁹, fez medidas de intensidade de espalhamento de Bragg que é proporcional a τ^2 em nonanoato de colesterila e mi ristato de colesterila. Ele observou para o nonanoato uma diferen ça nos valores obtidos no entorno da transição de fase colestérico-esmético A quando a amostra era aquecida e resfriada. Quando aquecida, os valores obtidos foram maiores que quando resfriada. Ele observou que esta histerese que o camposto apresenta, depende da velocidade de resfriamento. Observando as curvas dos termogramas, esta diferença entre o aquecimento e o resfriamento das amos tras cresce a medida em que diminui o calor latente de transição. Mcmillan não observou estas diferenças para o miristato de coles terila que apresenta um calor latente de transição colestérico-es mético A maior do que o nonanoato de colesterila. Esta diferença torna-se mais acentuada quando a transição é de segunda ordem.

É conveniente observar que após terem sido registradas estas diferenças nas medidas, as mesmas foram desprezadas, e dados aqui apresentados foram todos obtidos quando as amostras eram resfriadas, isto é, após ter atingida a fase de líquido iso trópico, inicia-se o processo de resfriamento das amostras regis trando-se as transições de fase. Convencionou-se desta forma, con siderando que o composto utilizado (nonanoato de colesterila) é monotrópico na mesofase esmético A, ist é, esta mesofase só apare ce quando o composto é resfriado após haver atingido a fase de lí quido isotrópico. O fato de terem sido desprezadas as diferenças observadas, não diminuem seu grau de importância e atenção que elas merecem, fica entendido que, um trabalho futuro para inves

tigar esta histerese que o composto apresenta, é de muita impor tância para a compreenssão destas diferenças.

		1	1 ··· · · · · · · · · · · · · · · · · ·		
AHOSTRA	₩ .(mŋ)	R (mcal/s)	S (mm/mim)	Ve (?C/mim	A (unid,aisis (trárta)
100% NT	3,76 40,24	0,5	80	2,5	6,0 38,60
902HT + 10%CT	4,23 37,49	0,5	80	2,5	6,90
80%NT + 20%CT	5,34 39,99	0,5	80	2,5	8,80 20,90
782NT + 222CT .	4,88 32,89	0,5	80	2,5	7,30 15,70
76%NT + 24%CT	4,67 36,01	0,5	δΟ	2,5	7,40 16,30
75%NT + 25%CT	3,85 37,94	0,5	80	2,5	5,40 17,60
748HT + 26%CT	7,29 38,31	0,5	80	2,5	10,35 14,80
732NT + 272CT	5,36 25,26	0,5	80	2,5	7,85 9,60
72%NT + 28%CT	7,22 32,87	0,5	80	2,5	11,60
718HT + 29%CT	9,04 31,32	0,5	80	2,5	13,50 10,50
70\$NT + 30%CT -	9,93 25,40	0,5	80	2,5	15,57
69%NT + 31%CT	8,12 28,15	0,5 **	80	2,5	12,97 8,90
68%NT + 32%CT	6,55 30,25	0,5	80	2,5	9,57 7,50
67%NT + 33%CT	3,82 29,33	0,5	80	2,5	5,00 6,80
662NT + 342CT	3,80 22,18	0,5	80	2,5	5,20 4,20
65%NT + 35%CT	4,36 32,20	0,5	80	2,5	6,06 -0-
60%NT + 40%CT	6,08 28,16	0,5	80	2.5	9,00 -0
552NT 4 452CT	8,66	0,5	80	2,5	14,22

TABLIA I

obs. Nas colunas W (mg) e A, o valor acima corresponde a transição colestérico-isotrópico e o valor abaixo a transição esmético-A- colest.

AMOSTRA	H _{Tci} (cal/g)	H lsc (cal/g)	τ _{c1} (κ)	т _{сс} (к)	T _{sc} ∕ĭ _{ci}
1002 NT	0.25	0.15	364,0	345,9	0.950
90% NT + 10% CT	0.26	0.11	365,0	342,0	0.939
80% NT + 20% CT	0.26	0.08	365,0	340,1	0.932
782 NT + 222 CT	0.23	0.07	365,0	338,0	0.926
768 NT + 248 CT	0.25	0.07	365,3	337,4	0.924
75% NT + 25% CT	0.22	0.07	366,0	336,8	0.920
74% NT + 26% CT	0.22	0.06	366,0	335,8	0.917
73% NT + 27% CT	0.23	0.05	366,0	336,0	0.918
72% NT + 28% CT	0.25	0.05	366,0	335,4	0.916
712 NT + 292 CT	0.23	0.05	366,0	335,9	0,918
70% NT + 30% CT	025	0.04	366,2	334,4	0.913
69% NT + 31% CT	0.25	0.04	366,3	334,1	0,912
68% NT + 32% CT	0.23	0.03	366,4	334,1	0.912
67% NT + 33% CT	0.21	0.03	366,5	333,9	0.911
66% NT + 34% CT	0.21	0.02	366,5	332,9	0,908
65% NT + 35% CT	0.22	-0-	366,6	332,9	0.908
60% NT + 40% CT	0.23	-0-	367,0	330,3	0.900
55% NT + 45% CT	0.26	-0-	367,4	329,4	0.897

TABELA II

As temperaturas T_{ci} e T_{sc} foram observadas com auxíllo do microscópio. Esta tabela contém dados referentes aos gráficos e diagramas de fase ' apresentados nas figuras, 10, 11, 12, 13 e 14.

FIGURA 8 - TERMOGRAMAS DAS MISTURAS BINÁRIAS EM RESFRIAMENTO
(a) Termograma da amostra 100% NT
(b) Ternograma da amostra 80% NT + 20% CT
(c) Termograma da amostra 70% NT + 30% CT
(d) Termograma da amostra 65+ NT + 35% CT
(e) Termograma da amostra 55% NT + 45% CT

calor latente

۰.

temperatura

8.B

8.C '

8.D

temperatura

8.E

FIGURA 9 - TERMOGRAMAS DAS MISTURAS BINÁRIAS

- a) Termogramas da amostra 100% NT
 - a_l amostra sendo resfriada
 - a₂ amostra sendo aquecida
- b) Termogramas da amostra 80% NT + 20% CT
 - b₁ amostra sendo resfriada
 - b₂ amostra sendo aquecida.
- c) Termogramas da amostra 65% NT + 35% CT
 - c_1 amostra sendo resfriada
 - c₂ amostra sendo aquecida
- d) Termogramas da amostra 55% NT + 45% CT
 - d₁ amostra sendo resfriada
 - d₂ amostra sendo aquecida

temperatura

9 A 1

9 ^ ₂

temperatura

calor latente

temperatura

9 ⁸2

			1 .	1	1	1	•	1 .	1		1	1	1		
	1	1	1	1.	1	1	1	1	1	1	1	ł	1	1	1
	1	4	1	1	1				1		1	1	1	1	
÷ .	1	1		1	1	i	1	1			1	1	1	i i	1
				1	1	- C	1.5	1	-	1				ł	1
	1	1	1	1	7	1	10		· · · · · · ·				·		•
	1 -		1			1	1	1	-	1	j	[1		
		1	1	}	1	1	i	1	(·	1					1
	1	1	1	1 .	1		1	1	•	I.			1 .	{	:
			1	ł	1	1	1	1	[1		1		1
	1	1.		1	1						1				1
	1 .	1 .	1	1 .		1	[1		}			1		ł
	1.	1	1 .	}	1	(·	{			1			1 1	1	
	1	1	1	-	1 .	1 .		· ·	•••		1 1		1 1	í .	1
	1	1	1		1	0				i i	1				t
		1		7		ùi	165-1								
	1		1. "		1.1	1				and the second of	in the second		Cardina Caracitada		
	1.	1	1		1 .	-					(1				
]		1	-	in the second second								[]	1	
CALL COMPANY		AN ALL ADD.	1	1	i -						1 1				
		1	1	1											
		1							•		11				
		I. C		1	1-	[]								1	
			1											1	
-	1				1	10	0								
			1				S					• ···· •			
	- / .	1				- Y	~ }								
		1									l · _ }	1			
			1								i		1		
					[]		• • • 1								
													I		
				• • • • • • • •	(~- 1		· · · · · · · · · · · · · · · · · · ·							
		1			[]	• -	i						1		
	· ·	[·	· · · · · · · ·		· · ·				· [. 1			
							A · · ·						1		
'		•				~ ~ ~ ~	••••••	•	1		i 1		,	1	
					1	empe	erati	Jra –							
						· · · P ·									

9 C 1

calor latente

temperatura

9 C₂

D,

calor latente

1	1		•	1.	1	[•	ł	1		1	1	
1	1	ļ	1 .			1	1	1	ł			1	
	1	1	1	1		ſ	ł		ł				
	1	1	}		ł		1	1	ł	ĺ		i l	
	1			2	0	0	1	1	1		!	1	
					1 3	14						{ ·	
	1	}		1			1	1	ţ.	-	· ·		
	1		۰.	1		•		1	ł	•••	1		
			1	1		i i		1	i	1	1	1	
	1	1	1 .	1.	1 .	1		1	ł		ł	1	
]						· · ·		ł -				
	· ·			1 .			1	1	1		1		
	1			}	1	1	í '	1				1	
	1	··· ·	· ·	1	1			1	1		1		
	[{	1 0	0		1)	i		1
	1				6	1 vo	-						
	1		1	1	1						ł	1	i
	1			1		and the second second		1				t I	
			-						1			1	
			-	-									
													-
			-			· · · · · · ·		 	1147 (11) (14)				-
						· · · · · · ·		· ·	•••••				-
	 	***		· · · · · · · · · · · · · · · · · · ·		· · · · ·		· · ·					-
													-
								· · ·					
					- C4	C		· · · ·			· · · · ·		-
					C 4	ę.)	 						-
					C 4	e)		· · · · · · · · · · · · · · · · · · ·			·		
					C 4								
						ę.)							-
						ę.)					· · · · · · · · · · · · · · · · · · ·		-
					C 4								

CAPÍTULO 4

4.1 - ANÁLISE E DISCUSSÃO DOS RESULTADOS

O diagrama de fases apresentado na figura 10 mostra que, a temperatura de transição colestérico-esmético A descreve a medi da em que a concentração de caproato aumenta na mistura, ao passo que na transição isotrópico-colestérico ocorre o inverso, a tempe ratura aumenta, porém de forma menos acentuada. Este comportamento das temperaturas de transição de fases pode ser explicado con siderando que; podemos atribuir ao caproato e característica de impureza agindo sobre o nonanoato, ocasionando variações nas tem peraturas de transição para as diferentes proporções das misturas, pode-se ainda considerar que o caproato quanto misturado com o no nanoato provoca uma redução no comprimento do tamanho médio da ca deia alquil, o que ocasiona a elevação da temperatura na transi ção isotrópico e a diminuição na temperatura de transição colesté rico-esmético A. A experiência tem demonstrado que as impurezas influem nas temperaturas de transição, fazendo-as variar ou até mesmo deixando de existir. O comprimento do diagrama de fases aqui apresentado tem boa concordância com outros trabalhos publica dos^{19,20}.

A figura 12 mostra que, quando a temperatura reduzida $T_{sc}/T_{ci} = 0.90$, há uma mudança de transição de fase de primeira para segunda ordem, ao passo que o modelo teórico prevê esta mu dança para $T_{sc}/T_{ci} = 0.87$. A figura 13 mostra que para $T_{sc}/T_{ci} =$ 0,90 a mistura correspondente é 65% NT + 35+ CT, e este é o ponto central das discussões deste trabalho.

Analisando os termogramas das amostras, apresentados na

FIGURA 11 - Diagrama representando a concentração das misturas em função do calor latente da transição colestérico-esmé tico A.

figura 8, observa-se que; em (a) e (b) apresentam áreas bem defi nidas abaixo das curvas das transições, o que confirma uma contri buição para o calor latente, indicando serem estas transições de primeira ordem. Em (c) determina-se uma área abaixo da curva đe transição, há porém uma fraca descontinuidade na linha base o que revela haver tendência para uma transição de segunda ordem, embo ra seja uma transição de primeira ordem. Em (d) e (e) são evidenciadas variações nas linhas base, não foi possível obter área al guma nestas transições que constribuíssem com o calor latente. Es tas características que são de uma transição de segunda ordem, in duz a conclusão de que estas são transições de fase de segunda or dem.

Os resultados obtidos são agora comparados com os resul tados teoricos obtidos por Mcmillan⁸ em seu trabalho. Inicialmente foram calculadas as entropias das transições colestérico-esmético A para as miscuras.

A figura 15 apresenta uma comparação entre as entropias das transições experimentais e teóricas. A curva (a) representaos resultados obtidos por Mcmillan. A curva (c) refere-se aos dados obtidos para as diversas misturas no presente trabalho. Observase que o comportamento da curva experimental corresponde aos r<u>e</u> sultados do modelo teórico, embora a entropia da transição exper<u>i</u> mental decresça mais rapidamente com o decréscimo da razão T_{sc}/T_{ci} do que na entropia da transição teórica.

Este trabalho difere do resultado teórico, que é menor que o experimental obtido. Diversos trabalhos, tem apresentado d<u>i</u> ferenças maiores ou menores que esta aqui observada, citando - se entre trabalhos publicados alguns como; J. R. Fernandes e S. Ven<u>u</u> gopalan¹⁰ que encontraram $T_{sc}/T_{ci} = 0,94$ para a série homóloga do

FIGURA 13 - Gráfico da concentração em função da temperatura reduzida T_{sc}/T_{ci} .

Figura 14 - Diagrama de fases da mistura nonanoato-caproato de co lesterila - Temperatura reduzida T_{sc}/T_{ci} em função da temperatura de transição.

Figura 15 - Gráfico da entropia de transição colestérico-esmético A em função da temperatura reduzida T_{sc}/_{ci}. curva (a) representa o modelo teórico curva (b) extraída da teoria de Lee e colaboradores curva (c) representa os dados obtidos experimentalmen te para as misturas dos compostos colestéricos.

n-OMCPC, johnson e outros⁹ obtiveram $T_{sc}/T_{ci} = 0.96$ para outra sé rie homóloga, M. F. Achard¹⁷ trabalhando com misturas binárias en controu $T_{sc}/T_{ci} = 0.90$, Daniels e Keyes²¹ obtivêram $T_{sc}/T_{ci} = 0.88$ correspondente à uma pressão de 2.66 Kbar, em óleo carbonato <u>co</u> lestérico e Palangana¹¹ trabalhando com a série dos n-alcanoatos de colesterila obteve $T_{sc}/T_{ci} = 0.91$.

Procurando justificar as diferenças existentes entre os experimentos realizados com as diferentes séries homólogas J. R. Fernandes¹⁰ atribui estas diferenças às variações entre o tamanho da parte central rígida das moléculas mesogênicas que influenciam na determinação do ponto tricrítico observado em cada série. Por outro lado, as diferenças observadas nas curvas experimentais e teóricas representadas na figura 15, podem ser explicadas basea das nas limitações impostas pelo modelo teórico, bem como pelas aproximações feitas. Ressaltam-se as seguintes considerações fe<u>i</u> tas por Mcmillan:

a - as moléculas são rígidas, implicando assim que os que os movimentos internos não afetam a transição de fase.

b - somente as forças anisotrópicas contribuem para a
 estabilidade da mesofase esmético A.

c - o potencial intermolecular pode ser tratado dentro
 da aproximação do campo mêdio não considerando interações de cur
 to alcance e efeitos de flutuações do parâmetro de ordem.

d - o aumento do tamanho da cadeia alquil não interfere na interação usada no modelo mas apenas implica em um maior espa çamento entre as moléculas e conseqüentemente em um aumento no va lor do parâmetro α .

Observou-se uma boa concordância entre a curva experi mental aqui obtida e a curva teórica proposta na teoria de Lee e outros²², embora o seu valor obtido $T_{sc}/T_{ci} = 0.88$ está abaixo do resultado deste trabalho, porém bem próximo do valor obtido por Mcmillan. Lee e outros, propuseram uma teoria baseada na teoria do campo médio, sendo que a termodinâmica do problema foi funda mentada no princípio variacional para a transição esmético A-nemá tico, esta teoria apresenta boa aproximação com os resultados ob tidos neste trabalho em termos das curvas experimentais e teórica. Segundo Wojitowicz²³, esta aproximação pode ser válida devida а consideração da constante característica da parte do potencial de curto alcance, introduzido por Mcmillan em seu segundo trabalho¹⁹ para desacoplar parcialmente os parâmetros de ordem orientacional e translacional. Convém registrar que, no referido trabalho, as entropias e as temperaturas de transição de fase não foram regis tradas por Mcmillan o que impossibilita uma comparação com os re sultados obtidos no presente trabalho.

CAPÍTULO 5

5.1 - CONCLUSÃO

Neste trabalho, foi estudado experimentalmente a mistu ra binária de nonanoato de colesterila com caproato de colesterila, com o propósito de determinar o ponto tricrítico na transição de fase monotrópica colestérico-esmético A usando um calorímetro diferencial de varredura. Os resultados aqui obtidos das medidas de calor latente da transição colestérico-esmético A, foram discu tidos e comparados com a teoria de Mcmillan e com outros traba lhos publicados, e observou-se uma boa concordância entre eles , conforme relatório no capítulo anterior.

Partindo dos dados experimentais, observa-se que, quan do a concentração de caproato é maior que 35% na mistura binária, o calor latente da transição colestérico-esmético A desaparece (fig.11), o que indica ser esta uma transição de fase de segunda ordem. Das discussões, análises e comparações feitas, pode-se pr<u>e</u> ver a existência do ponto tricrítico nas vizinhanças do ponto co<u>r</u> respondente a temperatura reduzida $T_{sc}/T_{ci} = 0.90$ relativo a co<u>n</u> centração de 35% de caproato (figuras 10 e 11).

Deve-se lembrar que os resultados aqui apresentados fo ram todos obtidos quando a amostra era resfriada. Propõe-se que, um trabalho no qual estas medidas sejam consideradas quando a <u>a</u> mostra é aquecida, seja de grande importância para que melhor pos sam ser compreendidas as diferenças observadas neste trabalho, c<u>i</u> tadas no capítulo 3.

Embora tenha sido investigado um grande número de amos tras, com diferentes concentrações, procurando com isto variar continuamente o comprimento médio da cadeia alquil, afim de melhor poder determinar o ponto tricrítico, fica entendido que outros es tudos acerca de parâmetros físicos, sejam de funfamental importân cia para que melhor possa ser compreendida a transição de fase em questão. Estudos sobre medidas de calor específico, expoentes críticos, flutuações nas concentrações e no parâmetro de ordem nas vizinhanças do ponto tricrítico, poderão ser de grande int<u>e</u> resse.

BIBLIOGRAFIA

- 01. PRIESTLEY, E. B. and WOJTOWICZ, P. J. An Introduction to the Science and Technology by Liquid Crystals. <u>R.C.A. Rev.</u>, 35: 79-80, 1974.
- 02. PRIESTLEY, E. B. Liquid Crystals Mesophases. R.C.A. Rev., 35: 81-93, 1974.
- 03. AMARAL, L. Q. <u>Estudo de Cristal Líquido Liotrópico Nemárico</u> (tipo II) à Temperatura Ambiente e da Fase à Baixa Tempe <u>ratura</u>. São Paulo, USP, 1982, Cap. 1/Tese Livre-Docência em Física.
- 04. GRAY, G. W. Molecular Structure and the Properties of Liquid Crystals. Academic Press, 1962.
- 05. KELKER, H. History of Liquid Crystals. Mol. Crys. Liq. Crys. 21: 1-48, 1973.
- 06. SCAKMANN, H. & DEMUS, D. The Problems of Polymorphism in Liquid Crystals. <u>Mol. Crys. Liq. Crys.</u>, <u>21</u>: 239-73, 1973.
- 07. ALBEN, R. Nematic-Smectic Transitions in Mixtures A Liquid Crystals Tricritical Point. <u>Sol. S. Com.</u>, <u>3</u>: 1738-85, 1973.
- 08. MCMILLAN, W. L. Simple Molecular Model for the Smectic A Phase of Liquid Crystals. <u>Phys. Rev. A.</u>, <u>4</u>(3): 1238-46, 1971.

09. JOHNSON, D. L. et alii. Evidence for a Smectic A-Nematic Tri

- critical Pont: Binary Mixtures. Phys. Rev. Lett., 34(18): 1143-6, 1975.
- 10. FERNANDES, J. R. & VENUGOPALAN, S. Orientational Order an Be havior in the trans-alkoxy-p'-exanophenil cinnamete (n-OMCPC) Séries of Liquid Crystals. J. Chem. Phys., 70(1): 519-24, 1979.
- 11. PALANGANA, A. J. <u>Medidas de Calor Latente da Transição de Fa</u> <u>se Esmético A-Colestérico e o Modelo Teórico de Mcmillan</u>. Dissertação de Mestrado, PGFQ, UFSC, 1982.
- 12. WOJTOWICZ, P. J. Introduction to Molecular Theory of Nematic Liquid Crystals. <u>R.C.A. Rev.</u>, <u>35</u>: 105-17, 1974.

13. TSVETKOV, V. Acta Physicochim., 16: 132, 1942.

14. MAIER, W. & SAUPE, A. A Simple Molecular Statical Theory of Nematic Liquid Crystaline Phase. <u>Z. Nat.</u>, <u>A</u> 13: 564-72, 1959.

A 14: 882-9 ,

1959.

A 15: 287-92,

1960.

- 15. PRIESTLEY, E. B. Nematic Order: The Long Range Orientational Distribution Function, R.C.A. Rev., <u>35</u>: 144-56, 1974.
- 16. WOJTOWICZ, P. J. Introduction to the Molecular Theory of Smectic A-Liquid Crystals, <u>R.C.A. Rev.</u>, <u>35</u>: 388-94, 1974.
- 17. ACHARD, M. F. et alii. Orientational Order and Enthalpic Measurements on Binary Mixtures at the N-S_S Transition: Comparison whith Mcmillan's Models, <u>J. Chem. Phys.</u>, <u>65</u>(4): 1387-91, 1976.

18. THE PERKIN-ELMER CORPORATION. Model DSC-2. 1978, (manual)

19. McMILLAN, W. L. X-Ray Scattering form Liquid Crystals. I. Cholesteryl Nonanoate and Myristate. <u>Phys. Rev. A.</u>, <u>6</u>(3): 936-46, 1972. 20. GRAY, G. W. The Mesomorphic Behavoir of the Fatty Acid Esters of Cholesterol, <u>J. Chem. Soc.</u>, 3733-9, 1956.

21. KEYES, P. H. et alii. Tricritical Behavoir in a Liquid-Crystal System. Phys. Rev. Lett., 31: 628, 1973.

22. LEE, F. T. et alii. Phase Diagram for Liquid Crystals.

Phys. Rev. Lett., <u>31</u>(18): 1117-20, 1973.