Universidade Federal de Santa Catarina Centro de Ciências Físicas e Matemáticas Curso de Pós-Graduação em Física

ESTUDO POR ESPECTROSCOPIA MÖSSBAUER E ÓTICÃ DÁ FORMAÇÃO DE CAMADAS DE NITRETOS DE FERRO EM PÓS-DESCARGA

Dissertação. Submetida à Universidade Federal de Santa Catarina como parte dos requisitos para a obtenção do grau de Mestre em Ciências.

Argemiro Soares da Silva Sobrinho

Florianópolis - Santa Catarina - Brasil Marco 1994. Esta dissertação foi julgada adequada para a obtenção do título de "Mestre em Ciências"

Especialidade em Física, opção Física de Plasma e Física do Estado Sólido em sua forma final pelo programa de Pós-Graduação.

Prof. Valderes Drago, Dr

Prof. Valderes Drago, Dr. (Orienetador

Prof. Wagner Figueiredo, Dr. Coordenador

Banca Examinadora:

UFSC

Valderes Drago, Dr.

Antonio Rogério de Souza, Dr. Prof.

rthur Bianchini Bilac, Dr. Rrof.

UNICAMP

Aos meus pais.

AGRADECIMENTOS:

Ao Professor Valderes Drago, pela sua prestimosa orientação sempre com muita paciência e dedicação.

Ao professor Antonio Rogério de Souza, pelas valiosas discussões sobre Física de Plasma.

Aos Professores e funcionários do departamento de Física e Química, que contribuiram para o desenvolvimento deste trabalho.

Aos amigos que, com a sua solidariedade, ajudaram-me a vencer as etapas dificeis encontradas durante a realização deste trabalho.

Aos orgãos CNPq, CAPES e FINEP, que contribuiram financeiramente para o desenvolvimento do projeto.

ÍNDICE

1 - INTRODUÇÃO	1
2 - PARTE EXPERIMENTAL	3
2.1 - INTRODUÇÃO	3
2.2 - REATOR DE NITRETAÇÃO EM PÓS-DESCARGA	3
2.3 - PRODUÇÃO E MEDIDA DO NITROGÊNIO ATÔMICO	6
2.4 - DETERMINAÇÃO DA CONSTANTE DE CALIBRAÇÃO	
DO SISTEMA	7
2.5 - O EQUIPAMENTO E A TÉCNICA DE ESPECTROSCOPIA	
MÖSSBAUER DE RETROESPALHAMENTO	
2.5.1 - INTRODUÇÃO	11
2.5.2 - ESPECTROSCOPIA MÖSSBAUER DE ELÉTRONS	
DE CONVERSÃO (CEMS)	12
2.5.3 - ESPECTROSCOPIA MÖSSBAUER DE RAIO-X DE	
CONVERSÃO (CXMS)	14
2.5.4 - DETECTOR PARA ESPECTROSCOPIA DE	
RETROESPALHAMENTO	15
2.6 - DIFRATOGRAMA DE RAIO-X	17
2.7 - PREPARAÇÃO DAS AMOSTRAS	
3 - NITRETOS DE FERRO	19
3.1 - DIAGRAMA DE FASE FERRO-NITROGÊNIO	19
$3.2 - A FASE \gamma'-Fe_4N$	20
3.3 - Α FASE ε-Fe _x N	22
3.4 - Α FASE ζ-Fe ₂ N	31
3.5 - A MUDANÇA DE FASE $\varepsilon \rightarrow \xi$	33
3.6 - OUTRAS FASES	35

4 - RESULTADOS E DISCUSSÕES	38
4.1 - ESTUDO DA CONCENTRAÇÃO DE NITROGÊNIO	
ATÔMICO [N] NA PÓS-DESCARGA	38
4.1.1 - VARIAÇÃO DA CONCENTRAÇÃO DE	
NITROGÊNIO ATÔMICO [N] EM FUNÇÃO DA	
POTÊNCIA, PRESSÃO E FLUXO DE NITROGÊNIO	38
4.1.2 - VARIAÇÃO DA CONCENTRAÇÃO DE	
NITROGÊNIO ATÔMICO [N] EM FUNÇÃO DA $[H_2]$	
E [CH₄] NA DESCARGA	42
4.2 - ANÁLISE DAS CAMADAS	45
4.2.1 - NITRETAÇÃO EM PÓS-DESCARGA DE	
NITROGÊNIO PURO	46
- N ₂ PURO - 400 C	47
-N2 PURO EM FUNÇÃO DA TEMPERATURA	51
4.2.2 - NITRETAÇÃO EM ATMOSFERA DE N ₂ - 1 % H ₂	58
4.2.3 - NITRETAÇÃO EM ATMOSFERA DE N ₂ - CH ₄	66
- MISTURA N ₂ + 0.1 % CH ₄	66
- N_2 + TRAÇOS DE CH ₄	74
4.2.4 - ANÁLISE COMPARATIVA DAS CAMADAS	81
4.3 - TRATAMENTO TÉRMICO	82
5 - CONCLUSÃO	89
BIBLIOGRAFIA	93

RESUMO

Neste trabalho apresentamos um estudo sobre a formação e evolução das camadas de nitretos de ferro sobre substrato de aço 1020 (ferro + 0.2 % em peso de carbono) em processo de pós-descarga na faixa de temperaturas entre 400 C e 550 C e tempos de tratamento entre 3 min. e 60 min. As atmosferas de trabalho foram nitrogênio puro, e misturas deste com impurezas de hidrogênio ou metano, mantidas sempre em pressões de 4 Torr, sob fluxo. Foi feito também um estudo comparativo da dissociação do nitrogênio na pós-descarga de nitrogênio puro com aquelas contendo nitrogênio mais impurezas de hidrogênio ou metano.

As camadas de nitretos formadas foram analisadas através da espectroscopia Mössbauer de elétrons de conversão (CEMS) e de raios-X de conversão (CXMS) e também por difração de raios-X. Estas análises mostraram que os nitretos começam a se formar com fases metaestáveis ricas em nitrogênio, as quais não constam no diagrama Fe-N, e com o tempo e/ou temperatura estas fases evoluem para as fases mais estáveis já conhecidas, ξ -Fe₂N, ε -Fe₂₋₃N e γ '-Fe₄N, as quais são mais pobres em nitrogênio. A absorção do nitrogênio pelo substrato se dá pela formação de aglomerados, e as fases no seu estágio final se apresentam em multicamadas.

A introdução das impurezas produz um acréscimo significativo na concentração de nitrogênio atômico ([N]) à temperatura ambiente, e apenas razoável nas temperaturas de nitretação (400 - 550 C). Não foi possível relacionar a [N] com o rendimento das camadas nas três atmosferas, porque o hidrogênio introduzido como impureza (seja sob a forma de H_2 ou CH_4) joga um importante papel redutor diminuindo o rendimento das camadas formadas.

A estabilidade térmica das camadas de nitretos formadas pelo método é significativamente maior do aquelas reportadas na literatura produzidas por outros métodos. Isto é atribuído ao fato de que na pós-descarga a formação de defeitos de rede ser bem menor, o que dificulta a efusão do nitrogênio.

VΠ

ABSTRACT

In this work we present a study about the iron nitrides layers formed over SAE 1020 steel (iron + 0.2 wt % carbon) substrate by post-discharge process at temperatures between 400 and 550 C and treatments times between 3 and 60 minutes. The used atmosphere was pure nitrogen and nitrogen plus impurities of hydrogen or methane at pressure of 4.0 Torr in flux. A comparative study of the nitrogen dissociation in post-discharge zone for the three tested atmosphere is also presented.

The nitrides layers were analyzed by Conversion Electrons and X-ray Mössbauer Spectroscopy (CEMS) and (CXMS), and by X-ray diffraction too. The up-take of the nitrogen atoms by the substrate cames trough the formation of the rich nitrogen metastable clusters FeN and Fe_{1+x}N that gradually evolves with temperature/time through the well-known ξ -Fe₂N, ε -Fe₂₋₃N and γ '-Fe₄N phases.

The impurities produces a significant increasing in the nitrogen dissociation at room temperature, but not too much at the working nitriding temperatures (400-450 C).

It was not possible to establish a direct relationship between the atomic nitrogen concetration [N] and the yield of nitrides layers in the tested atmosphere, because the hydrogen introduced as impurities (both H_2 and CH_4) plays an important role of chemical reduction of the phases with a consequent decreasing in the thickness of the formed layers.

The thermal stability of formed phases by the post-discharge method is significantly higher than that produced by other methods listed in the literature. This is a strong evidence that the post-discharge method introduce much more less lattice defects in the substrate.

CAPÍTULO 1

INTRODUÇÃO

Descargas em nitrogênio puro ou em misturas deste com CH_4 , H_2 e etc. apresentam uma larga aplicabilidade na indústria metalúrgica, principalmente em processos de endurecimento de superficies, fazendo com que tenhamos uma melhora significativa das propriedades tribológicas e de corrosão dessas superficies. Tais descargas apresentam um grande número de radicais e ions (N, N⁺, NH, NH⁺, CN, CH, NH₂ e etc.) que podem interagir com superficies metálicas, formando camadas superficiais com propriedades totalmente diferentes daquelas do material original. Nos processos usuais de descarga D.C. (conhecido como nitretação iônica) a peça a ser tratada sofre um bombardeamento superficial com ions que leva a pulverização dos átomos do substrato com a conseqüente formação de uma alta concentração de vacâncias na sua rede, o que modifica substancialmente a cinética de formação dos nitretos. Do ponto de vista tecnológico a descarga D.C. também pode produzir fenômenos de catodo ôco, que são altamente prejudiciais principalmente para peças de maior fragilidade.

Uma técnica recente bastante promissora para estes casos é a nitretação em pósdescarga. Tal processo consiste em formar através de um plasma os mesmos radicais e ions formados no caso da descarga D.C., porém estes são transportados com o auxílio de uma bomba de vácuo a uma zona de reação relativamente distante, de maneira que apenas as espécies de grande tempo de vida ($\tau > 1s$) estejam presentes. Um sistema assim constituído é denominado de Pós-descarga em fluxo [1]. Como os ions possuem um tempo de vida muito inferior ao tempo necessário para atingir a amostra, não teremos bombardeamento iônico nem a criação de vacâncias na superfície a ser nitretada. Através deste processo

1

apenas temos o conhecimento de quanto nitrogênio é difundido através dos contornos de grãos da superficie da amostra.

Esta técnica também é de grande interesse para estudar a cinética de formação dos nitretos, pois podemos ter um melhor acompanhamento de algumas etapas da formação das fases de nitretos que não podem ser vistas na nitretação iônica devido ao bombardeamento de ions na superficie.

Neste trabalho estudamos a cinética de formação dos nitretos de ferro em pósdescarga de nitrogênio puro, nitrogênio mais hidrogênio e nitrogênio mais metano, através da espectroscopia Mössbauer de retroespalhamento e difração de raios-X.

No capítulo 2 apresentamos os procedimentos experimentais utilizados para a produção de nitretos de ferro em pós-descarga. Apresentamos uma análise a nível do plasma dos mecanismos químicos envolvidos na formação e determinação do nitrogênio atômico, uma vez que este elemento é o principal agente nitretante nesta técnica. Também fazemos uma breve introdução de espectroscopia Mössbauer de retroespalhamento de elétrons e de raios-X de conversão, bem como dos detectores utilizados nestes dois casos.

No capítulo 3 apresentamos uma revisão bibliográfica das principais fases dos nitretos de ferro e suas estabilidades, alguns pontos sobre a estrutura eletrônica destes nitretos e também os valores dos parâmetros Mössbauer típicos encontrados para cada uma das fases.

No capítulo 4 são apresentados os resultados experimentais obtidos tanto no plasma quanto nas camadas de depósitos. Nele discutimos a influência das impurezas introduzidas na corrente de nitrogênio e a formação e evolução das camadas de nitretos de ferro formados nas diferentes atmosferas estudadas.

Por fim no capítulo 5, apresentamos as conclusões deste trabalho.

CAPÍTULO 2

PARTE EXPERIMENTAL

2.1 - INTRODUÇÃO

Neste capítulo apresentamos um descrição dos equipamentos e dos procedimentos utilizado para a geração e controle da nitretação em pós-descarga, bem como dos métodos de análise por espectroscopia Mössbauer e difração de raio-X.

2.2 - REATOR DE NITRETAÇÃO EM PÓS-DESCARGA

Um diagrama do reator utilizado para o tratamento de aços metálicos em pósdescarga é mostrado na fig. 1. O plasma é formado em um tubo de pirex de 8 mm de espessura utilizando-se de uma cavidade tipo "Surfatron" [2], que opera em 1 GHz. Tal dispositivo gera um plasma por ondas de superficies cujas características são bem definidas nas referências [3,4].

As amostras de aço 1020 (0.2 % C em peso) a serem nitretadas são aquecidas através de um forno resistivo acoplado externamente ao reator que possui um comprimento de 50 cm. As amostras são posicionadas na região central do forno, afim de assegurar uma melhor homogeneidade na temperatura. O controle da temperatura é feito por dois termopares sendo que um fica ancorado no porta-amostras, e o outro externamente sobre a parede do tubo. A junção do segundo termopar foi colocada entre a parte interna do forno e a parte externa do tubo de pirex que compõem o corpo do reator. O objetivo deste segundo termopar, era detectar a possibilidade de desacoplamento do primeiro termopar durante a introdução da amostra no reator. Assim,

a concordância das duas leituras nos garantia a homogeneidade térmica e a temperatura real da amostra. A temperatura neste reator ficou limitada em 600 C, pois acima desta o tubo de pirex começa a se tornar viscoso.

Figura 1 - Reator para nitretação em pós-descarga.

Na construção do forno utilizamos um tubo de alumina com 6 cm de diâmetro, sobre o qual foi enrolado uma resistência de niquel-cromo número 19. Este enrolamento consiste de uma espira dupla fazendo com que a corrente elétrica entre por uma espira e retorne pela outra de maneira que o campo magnético por elas formado se anulem, evitando assim a magnetização das amostras. Externamente ao tubo com as resistências foi colocada uma camada de um material refratário (CIPOREX) para fazer o isolamento térmico.

Para medidas e controle do fluxo dos gazes NO, H_2 , CH_4 foram utilizados controladores de fluxo de massa modelo 825 Datametrics, enquanto o fluxo do nitrogênio

(medido em cm³/s CNTP) foi medido através de um fluxímetro Setaram, cuja curva de calibração é mostrada na fig. 2.

O bombeamento do reator, foi feito através de um sistema Roots de 400 m³/min. A pressão no reator foi obtida utilizando-se um medidor absoluto MKS Baratron que fornece uma boa precisão no intervalo 10⁻² - 10 Torr. A fim de permitir mudanças na pressão, independente do fluxo, uma válvula manual foi adaptada entre o reator e o sistema de bombeamento, fornecendo assim uma maior dinâmica para o sistema.

A análise da composição química da pós-descarga foi monitorada através de um espectrômetro Jobin-Yvon munido de uma rede de difração de 1200 linhas por milímetro. Os espectros de emissão foram obtidos posicionando o monocromador na posição de interesse (banda 11-7, ver proximas secções), sendo detectados por uma fotomultiplicadora Hamamatzu R928 e convenientemente tratados e estocados por um sistema constituido de um Spectralink (Jobin-Yvon) e um microcomputador tipo PC.

2.3 - PRODUÇÃO E MEDIDA DO NITROGÊNIO ATÔMICO

Átomos de nitrogênio são formados na região luminescente da descarga, conforme mostra a fig. 1. O processo é acompanhado pela emissão de um pico amarelo característico da recombinação do nitrogênio atômico. Os átomos de nitrogênio no seu estado fundamental (4S) tem um tempo de vida relativamente longo, embora estejam envolvidos em uma colisão de recombinação a três corpos na superficie do reator.

$$N(4S) + N(4S) + M \xrightarrow{K_1} N_2^* \longrightarrow N_2 + h\nu \text{ (Amarelo)}$$
(1)

onde segundo a ref. [5], $K_1 = 8.27 \times 10^{-34} e^{500/T} \text{ Cm}^{6/s}$.

As moléculas de N₂^{*} então formadas estão no estado excitado ($B^3\Pi_g$) e decaem ao estado ($A^3\Sigma_u^-$) emitindo um conjunto de bandas denominado primeiro sistema positivo do nitrogênio. Tal processo ocorre preferencialmente no nível (B, v = 11), de modo que em nossas análises fixaremos o monocromador sobre a posição desta banda.

A densidade de nitrogênio atômico (nitrogênio ativo) pode ser determinada por sua reação rápida com o radical NO no sistema em fluxo, que é conhecido como titulação com NO, conforme fig. 1. Quando a taxa de NO é aumentada, a cor da descarga muda sucessivamente de amarelo para púrpura, azul, escuro(quando a concentração de N é igual a concentração de NO) e finalmente amarelo-esverdeado. O NO reage muito rapidamente com o N(4S) e em igual proporção, destruindo toda a emissão visível:

$$N(4S) + NO \xrightarrow{K_2} N_2 + O(^{3}P)$$
(2)

O valor de K₂ medido por vários pesquisadores possui valores que compreende entre 4.2×10^{-11} cm³/s e 1.60×10^{-10} cm³/s [6].

Com insuficiente quantidade de NO os átomos de oxigênio então formados, reagem com os átomos de nitrogênio em excesso para produzir as moléculas de NO excitadas, que emitem as bandas azuis β e γ do NO.

$$N(4S) + O(^{3}P) \xrightarrow{K_{3}} NO^{*} \longrightarrow NO + hv (Azul)$$
 (3)

onde, $K_3 = 9.1 \times 10^{-33} \text{ cm}^{6/8}$ [7].

Isto, junto com a emissão do pico amarelo da reação (1), produz uma coloração púrpura, embora próximo do ponto negro (quando a concentração de N é igual a concentração de NO) o azul predominará.

Com um excesso de NO todos os átomos de N são rapidamente eliminados pela reação (2) e o O(^{3}P) reage com o excesso de NO para formar moléculas de NO₂^{*} que emitem um amarelo-esverdeado:

NO + O(³P)
$$\xrightarrow{k_4}$$
 NO₂^{*} \longrightarrow NO₂ + hu (Amarelo-Esverdeado) (4)

O valor da constante de ração K_4 segundo a ref. [8] vale, 6.4×10^{-17} cm³/s. Esta segunda reação é normalmente utilizada para calibrar o sistema de detecção de oxigênio atômico [9,10].

2.4 - DETERMINAÇÃO DA CONSTANTE DE CALIBRAÇÃO DO SISTEMA

A intensidade da banda 11-7 do primeiro sistema positivo do nitrogênio, fig. 3, permite determinar qualitativamente a concentração atômica de nitrogênio, porém, em nossas análises é importante ter uma idéia quantitativa a fim de melhor compreender o processo de formação das camadas de nitretos. Desta forma através do processo de titulação com NO podemos determinar uma constante de calibração para o sistema, que servirá para determinarmos a quantidade de nitrogênio atômico em diferentes condições de descarga.

A intensidade da emissão do $N_2(B,v = 11)$ pode ser escrita como:

$$I_{1} = K_{1}'[N_{2}(B, v = 11)]$$
(5)

onde, K_{λ}' é a constante de calibração do sistema, que depende das características do sistema e também da probabilidade de emissão da transição $N_2(B,v' - B,v'')$.

A taxa de formação de $[N_2(B, v = 11)]$ é dada por:

$$\frac{d[N_2(B, v = 11)]}{dt} = K(T)[N][N] - \frac{[N(B, v = 11)]}{\tau}$$

(6)

onde τ é o tempo de vida media do estado $N_2(B, v = 11)$.

Em regime estacionário,
$$\frac{d[N_2(B, v = 11)]}{dt} = 0$$
, logo

$$[N_2(B, v = 11)] = \tau K_1(T)[N_2][N^2]$$
⁽⁷⁾

mas, em uma determinada posição z do reator, todo NO é destruído pela reação (2), portanto nesta posição a concentração de nitrogênio atômico é dada por $[N] = [N_o]$ -[NO], sendo $[N_o]$ a concentração inicial de nitrogênio atômico. Desta maneira podemos escrever;

$$[N_2(B, v = 11)] = \tau K_1(T)[N_2][(N_0 - NO)^2]$$
(8)

$$I_{\lambda} = K_{\lambda}' \tau K_{1}(T) [N_{2}] [N_{0} - NO]^{2}$$
⁽⁹⁾

Na ausência de NO temos, [No]= [N], logo

$$I_{\lambda} = K_{\lambda}' \tau K_{1}(T) [N_{2}] [N]^{2}$$
(10)

De modo que, simplificadamente temos:

$$I_{\lambda} = K_{\lambda}(T)[N]^2 \tag{11}$$

onde K_{λ} engloba K_{λ} ', τ , $[N_2] \in K_1(T)$.

Como o método de titulação com NO não funciona para altas temperaturas, devemos então encontrar uma constante de calibração do sistema para a temperatura ambiente, aproximadamente 300 K, e através da relação obtida atraves da referência [5]:

$$\frac{K_{\lambda}(T)}{K_{\lambda}(300)} = \frac{K_0 \exp(500/T)}{K_0 \exp(5/3)} \implies K_{\lambda}(T) = K_{\lambda}(300)\exp(500/T - 5/3)$$
(12)

obtemos o valor de $K_{\lambda}(T)$, para valores de T maiores que a temperatura ambiente.

Experimentalmente o valor de $K_{\lambda}(300)$ é determinado medindo-se a intensidade da emissão de recombinação do nitrogênio atômico no momento da titulação e plotando a \sqrt{I} versus [NO] para intensidades decrescente, que vai desde o momento onde não temos nenhuma adição de NO até o ponto onde [N] = [NO]. A partir deste ponto, plotamos [NO] versus intensidade.

Este gráficos apresenta duas retas conforme fig. 4 e a constante $K_{\lambda}(300)$ é dada pela inclinação da reta descendente.

$$\mathbf{K}_{\lambda}(300) = \frac{\Delta\sqrt{\mathbf{I}}}{\Delta[\mathrm{NO}]} \tag{13}$$

Os valores obtidos para a constante de calibração $K_{\lambda}(300)$ em três diferentes pressões são apresentados na tabela I, que nos fornece um valor médio de 5,39X10⁻¹³ cm⁶/s para esta constante.

Fig. 4 - Titulação com NO

Pressão (Torr)	$K_{\lambda}(300) \text{ (cm}^{6/s)}$
1	5.56x10-13
3	5.00x10 ⁻¹³
5	5.61x10 ⁻¹³

Tabela I - Valores experimental da constante de calibração do sistema

Desta maneira para uma temperatura T, a concentração de nitrogênio atômico é dada por:

$$[N] = \sqrt{\frac{L_{a}}{K_{a}(T)}} = 1.36 \times 10^{6} \sqrt{I_{a} \cdot \exp(-\frac{500}{T} + \frac{5}{3})}$$
(14)

2.5 - O EQUIPAMENTO E A TÉCNICA DE ESPECTROSCOPIA MÖSSBAUER DE RETROESPALHAMENTO

2.5.1 - INTRODUÇÃO

A espectroscopia Mössbauer do ⁵⁷Fe na geometria de retroespalhamento tem sido muito aplicada no estudo de camadas ou filmes finos formados sobre substratos ferrosos [18].

Através desta técnica é possível obter informações a respeito da estrutura e da natureza química do átomo Mössbauer, do seu estado de oxidação, do seu número de coordenação e da sua simetria pontual, bem como da natureza e cristalinidade das fases presentes.

Esta secção mostra como se dá a formação dos elétrons e dos raios-X de conversão, sem entrar em maiores detalhes sobre a física e a matemática envolvida, pois este assunto é amplamente discutido em vários livros textos [13-21].

2.5.2 - ESPECTROSCOPIA MÖSSBAUER DE ELÉTRONS DE CONVERSÃO (CEMS)

Quando um átomo Mössbauer absorve um raio gama, ele pode decair tanto pela reemissão de um fóton de energia comparável, quanto pela emissão de elétrons de conversão. Um esquema desta desexcitação bem como a probabilidade de cada evento podem ser vistos na fig. 5 e tabela II.

Figura 5 - Desexcitação do átomo de ferro.

Somente aproximadamente 10 % dos eventos de decaimento ocorrem pela emissão de um fóton gama de 14.4 Kev. O evento predominante é aquele de conversão interna com subseqüente emissão de elétrons Auger e fotons de raio-X. A conversão também ocorre nas camadas mais externas L e M, mas com probabilidade bastante reduzida.

	Energia (Kev)	N° (por 100) de absorção de eventos	Faixa Máxima de Profundidade em Sólidos Típicos
foton y	14,4	9	
raio-X(k)	6,3	27	15x10 ³ nm
elétron de conversão K	7,3	81	250 nm
elétron de conversão L	13,6	9	900 nm
elétron de conversão M	14,3	1	
elétron Auger KLL	5,4	63	
elétron Auger KMM	0,53		

Tabela II - Resumo dos maiores eventos durante o decaimento do estado excitado de spin 3/2 do ⁵⁷Fe. Reproduzida de [18].

Em decorrência destes fenômenos, os espectros Mössbauer podem ser obtidos através da geometria de retroespalhamento, onde podemos detectar fotons ou elétrons retroespalhados, conforme mostra a fig. 6.

No nosso caso temos amostras espessas e desejamos analisar uma camada fina da sua superficie. Teremos então que usar a geometria de retroespalhamento, e faremos isto detectando elétrons e/ou raio-X de conversão.

Como os elétrons de conversão se atenuam rapidamente na matéria, somente aqueles elétrons produzidos em regiões muito próxima da superficie do sólido conseguem escapar da mesma. Através de experimentos ficou estabelecido [21] que a profundidade obtida em CEMS é de aproximadamente 250 nm, e que 66% dos elétrons detectados em contadores utilizando He/CH₄ são proveniente de camadas com profundidades de até 54 nm. O método apresenta uma boa sensibilidade, sendo possível perceber camadas com apenas 10 nm de espessura [23].

Figura 6 - Geometria para Espectroscopia Mössbauer de retroespalhamento. 1 - Elétrons retroespalhados

2- Fotons de raio-X e raio-y retroespalhados

2.5.3 - ESPECTROSCOPIA MÖSSBAUER DE RAIO-X DE CONVERSÃO (CXMS)

Se estivermos interessados em obter informações referentes a camadas mais espessas podemos pela simples troca da mistura gasosa de detecção para Ar-CH₄ detectar os raios-X de conversão de 6.3 Kev, proveniente da desexcitação do núcleo absorvedor. Como os raios-X interagem menos com a matéria do que os elétrons, a sua detecção nos permite observações de camadas da ordem de 10 µm de profundidade.

2.5.4 - DETECTOR PARA ESPECTROSCOPIA DE RETROESPALHAMENTO

O detector utilizado para fazer CEMS e CXMS é de construção própria, com todas as suas paredes internas em acrílico, o que minimiza a formação de elétrons secundários e por isso apresenta uma boa eficiência. Seu esquema pode ser visto na fig. 7. Para maiores detalhes de sua construção, ver referência [24].

Figura 7 - Corte perpendicular do detector.

Os raios- γ provenientes da fonte radioativa passam através de uma parede fina de acrílico que faz parte do corpo do contador proporcional e que também auxilia na absorção dos raio-X emitidos pela fonte. A radiação retroespalhada é então detectada pelo contador, e a distinção entre a detecção de elétrons e raio-X, é feita pelo gás que passa pelo dispositivo. Utilizando uma mistura gasosa de 90 % de argônio contendo 10 % de metano, em fluxo à pressão atmosférica, teremos a ionização do argônio que produz um foto-elétron de 6 Kev. Esta ionização ocorre porque o argônio possui uma grande secção de choque para estes raio-X. Caso o preenchimento do contador seja feito fluxando uma mistura de 90 % de hélio mais 10 % de metano, o hélio absorverá os elétrons de aproximadamente 7.3 Kev se ionizando, pois o hélio é um gás transparente para os raios-X e bastante sensível aos elétrons. Tanto os elétrons proveniente da ionização do argônio quanto a ionização do hélio são coletado por dois fios finos de tungstênio, onde se aplica tensões da ordem de +1.000 V para a mistura He-CH₄ e de

15

+1.300 V para a mistura Ar-CH₄. Utilizamos um pré-amplificador de corrente, também de construção local, para elevar do nível de sinal captado. Um vez pré-amplificado o sinal passa por um amplificador discriminador e por uma placa ACE MCS EG & G ORTEC acoplada a um microcomputador PC, onde eles são armazenados, fig. 8.

Figura 8 - Diagrama de bloco do equipamento Mössbauer.

Como precisamos abrir o detector a cada troca de amostra, é necessário deixar o gás fluxar durante alguns minutos antes de fazer o ajuste da tensão de trabalho do mesmo. Este ajuste deve ser feito com o auxilio de um osciloscópio para se evitar uma sobre tensão nos fios coletores de elétrons, o que pode ocasionar micro arcos entre os fios e a amostra fazendo com que o detector seja danificado. Como a eficiência destes detectores é da ordem de apenas 20%, torna-se extremamente importante um bom ajuste da sua tensão de trabalho, para aproveitarmos o máximo de seu rendimento. O fluxo de gás no detector é de aproximadamente uma bolha por segundo que é controlado através de um regulador de pressão e um borbulhador contendo H_2SO_4 para evitar a retrodifusão tanto de oxigênio quanto de vapor de água.

2.6 - DIFRATOGRAMA DE RAIO-X

Os difratogramas de raio-X de algumas amostras foram realizadas no Instituto de Física da Universidade Federal do Rio Grande do Sul, utilizando-se um difratômetro modelo D500 da Siemens, utilizando a radiação K_{α} do Cu.

Os difratogramas foram realizados utilizando um feixe incidente 'de raio-X fazendo um ângulo de 5 graus com a superficie da amostra. Com este ângulo de incidência é possível obter informações de camadas da ordem de 1 µm de espessura, ou seja, da ordem de grandeza das camadas de nitreto formadas. A varredura angular 20 utilizada para a detecção do feixe difratado foi de 20 a 80 graus, que é a faixa de ocorrência dos picos mais intensos das fases de nitreto de ferro.

2.7 - PREPARAÇÃO DAS AMOSTRAS

Para o estudo da formação de nitretos de ferro em pós-descarga foram utilizadas amostras de aço SAE 1020 (aproximadamente 0.2 % em peso de carbono) na forma de discos de 22 mm de diâmetro e de 3 mm de espessura.

As amostras foram previamente polidas, numa sequência de lixamento utilizando lixas de granulação 100, 220, 400 e 600, seguido de polimento em pasta de diamante de granulação 3 µm e em solução de alumina granulação 1µm.

Uma vez polidas as amostras foram imediatamente secas utilizando etanol absoluto e mantidas em dessecador até o momento do tratamento, para evitar oxidações superficiais. As amostra a serem nitretadas eram então colocadas no reator quando o mesmo ainda se encontrava a temperatura ambiente. Somente após uma limpeza do reator que consistia em evacua-lo a médio vácuo (~ 10^{-2} Torr) durante 30 minutos juntamente com três lavagem com nitrogênio é que se iniciava o seu aquecimento.

A descarga era inicializada após a amostra ter atingido a temperatura de nitretação pré-estabelecida. Um fluxo de 8 cm³/s de nitrogênio era mantido durante todo o tempo de aquecimento, o qual levava aproximadamente um hora, para ajudar na limpeza do reator devido a degaseificação das paredes do mesmo, evitando a oxidação das amostras antes mesmo de iniciar o tratamento.

Quando tinhamos problemas com fugas no reator as amostram apresentavam óxidos superficiais, portantanto eram descartadas.

Todas as amostras nitretadas foram resfriadas sob fluxo de 8 cm³/s de nitrogênio, levando entre 60 e 70 min. para atingir a temperatura ambiente. Somente após atingir esta temperatura é que eram retiradas do reator para serem analisadas.

CAPÍTULO 3

NITRETOS DE FERRO

3.1 - DIAGRAMA DE FASE FERRO-NITROGÊNIO

O diagrama de fase ferro-nitrogênio é apresentado na fig. 9. Todos os nitretos mostrados no diagrama são metaestáveis no sentido termodinâmico, e o diagrama representa as fases em equilíbrio a uma pressão de 1 atm de nitrogênio.

As soluções sólida de carbono e nitrogênio no ferro são: γ -austenita fcc, α -ferrita bcc e a fase s. O ferro-s hcp esta em alta pressão alotrópica e a fase-s, uma solução de até 4.8 % em peso de carbono no ferro-s hcp, é produzido somente por resfriamento muito rápido a partir da fusão [25].

Em todos os nitretos de ferro os átomos de ferro se rearranjam de maneira a formar interstícios tetraédricos e octaédricos e os átomos de nitrogênio sempre ocupam os interstícios octaédricos em todas as estruturas metálicas dos nitretos, nunca nos interstícios tetraédricos. As estruturas fcc e hcp apresentam octaedros regulares, enquanto que na estrutura bcc os octaedros são destorcidos [25]. A inserção de um nitrogênio intersticial recupera a regularidade do ambiente do átomo metálico, mas produz uma grande tensão anisotrópica nas vizinhanças da matriz, logo a solubilidade dos átomos intersticial no α -Fe é muito pequena.

Uma característica marcante das fases do sistema ferro-nitrogênio é a ordem de ocupação dos átomos intersticiais. Tendo como exceção a fase y, onde os átomos de nitrogênio ocupam os interstícios de uma maneira completamente aleatória.

Figura 9 - Diagrama de fase Fe-N. Reproduzido de [26].

3.2 - A FASE γ'-Fe₄N

A fase γ' -Fe₄N possui uma faixa estequiométrica entre 5.7 e 6.1 % em peso de N (19.52 à 20.63 % atômico de N) que inclui a estequiometria Fe₄N (5,90 % em peso de N). É a fase mais estável do diagrama ferro-nitrogênio apresentando uma boa estabilidade até 640 C [27]. O arranjo dos átomos metálicos é fee como na nitroaustenita. Seu parâmetro de rede a varia entre 3.787 Å e 3.803 Å, dependendo da concentração de nitrogênio apresentada. A célula unitária apresenta os átomos de ferro em 000, $\frac{1}{22}$, $\frac{1}{2}$, $\frac{1$

Figura 10 - Célula Unitária da fase γ'-Fe₄N. Reproduzida de [29]

O espectro Mössbauer desta fase apresenta três subspectros referentes aos sítios de ferro, identificados como Fe-I, Fe-II-A e Fe-II-B, ver fig. 11. O acoplamento é do tipo ferromagnético. Os momentos magnéticos calculados para esta fase usando o potencial de campo auto consistente é de 3.09 μ_B para o sítio Fe-I e 2.11 μ_B para o sítio Fe-II-A e Fe-II-B [30]. A temperatura de Curie apresentada para a composição estequiométrica Fe₄N é de 490 C. [25]. Na sua faixa estequiométrica que compreende entre Fe₄N_{0.97} e Fe₄N_{1.04} a temperatura de Curie varia de 481 à 508 C [31]. J. Foct [36] mostrou que o sítio Fe-II é desdobrado em dois ambiente Fe-II-A e Fe-II-B, cujos campos hiperfinos e os deslocamentos isoméricos são praticamente idênticos. Os parâmetros hiperfinos Mõssbauer para a fase γ' encontrados por Kuhnen et al [30] são mostrados na tabela III, abaixo.

Figura 11 - Espectro Mössbauer da Fase y'-Fe₄N. Reproduzido de [69].

SÍTIO	Hi (KOe)	IS(mm/s)	QS(mm/s)
Fe-I	341	0.250	0.00
Fe-II-A	217	0.329	0.116
Fe-II-B	217	0.329	-0.240

Tabela III - Parâmetros hiperfino para a fase γ '-Fe₄N. O deslocamento isomérico IS esta normalizado para o α -Fe. Valores reproduzidos de [30].

3.3 - A FASE ε-Fe_xN

A existência desta fase foi determinada por G. Hägg [33] e por H. Osawa e Iwaisumi [34]. Uma investigação completa e detalhada da solução ε -Fe_xN foi realizada por K. H. Jack [35] para a faixa x = 2,01 à 4,0.

O limite superior para a concentração de nitrogênio na fase ε (32.89 % atômico) é levemente menor do que o requerido para a fase ξ -Fe₂N. Já seu limite inferior varia

amplamente com a temperatura, e à 700 C podemos ter uma concentração de nitrogênio que é inferior a concentração necessária para formar a fase γ' -Fe₄N.

O arranjo dos átomos metálicos na célula unitária do nitreto de ferro s é hcp, e os intersticios octaédricos desta estrutura são distribuídos em camadas perpendiculares ao eixo c, com espaçamento c/2 e com um empacotamento bidimensional compacto dentro de cada camada de interstício, fig. 12. Os interstícios de uma camada estão diretamente acima

Figura 12 - Célula unitária da fase 6-Fe₃N. Reproduzido de [35]

dos interstícios da camada de baixo, e juntos eles podem ser imaginados como ocupando pontos de uma rede hexagonal simples de dimensões a' = a e c' = c, onde a e c são as dimensões da rede hexagonal compacta, formada pelos átomos de ferro. Para a estequiometria Fe₃N resultados de [35] mostram que um terço dos interstícios em cada camada são ocupados de maneira que os interstícios que circundam um átomo de nitrogênio no seu próprio plano e nos planos diretamente acima e abaixo deste, permaneçam desocupados, dando uma sequência ABAB para os planos formados pelos átomos de nitrogênio, fig. 13.

Ocupado nos planos B para E-Fe-N

Figura 13 - Camadas de planos de interstícios octaedrais para os nitretos 5-Fe₃N e 5-Fe₂N. Reproduzido de [35].

A estequiometria ɛ-Fe₂N é formada pela adição de um átomo de nitrogênio na fase de concentração ɛ-Fe₃N, o qual entra somente em planos alternados, dando uma sequência AB'AB' para os planos intersticiais, conforme fig. 13. Os planos pares (A) da fase ɛ-Fe₂N são idênticos aos planos (A) da fase ɛ-Fe₃N, e os planos impares (B) são dois terços preenchidos. Os interstícios que são preenchidos com átomos de nitrogênio nos planos impares são vazios nos planos pares e vice-versa, de maneira que cada átomo de nitrogênio ainda possui um interstício desocupado nos planos adjacentes acima e abaixo dele.

Através de estudos de raio-X para os nitretos s com estequiometria próxima de s-Fe₃N, K. H. Jack [35], encontrou uma rede hexagonal formada pelos átomos de nitrogênio, cuja célula unitária apresentou parâmetros, $a^{"} = a\sqrt{3}$ e $c^{"} = c$.

A estrutura cristalina da fase s no seu limite estequiométrico superior é similar a estrutura da fase s com estequiometria s-Fe₃N, mas a concentração intersticial é levemente menor do que a concentração necessária para formar a fase s-Fe₂N. Exatamente antes da concentração de nitrogênio ser suficiente para formar a estrutura

ideal ortorrombica ξ -Fe₂N, é que ocorre uma mudança de fase $\epsilon \rightarrow \xi$, com isto então, se obtém uma composição limite de 32.89 % atômico de nitrogênio para o nitreto ϵ .

Para estequiometria próxima de 5-Fe₄N e entre 5-Fe₃N e 5-Fe₅N, [35] evidenciou uma rede hexagonal para os átomos de nitrogênio, cujos parâmetros são: $a^{m} = 2a\sqrt{3}$ e $c^{m} = c$, apresentando um elevado grau de ordem na distribuição dos átomos de nitrogênio, igualmente observado nas fases γ' , α'' , α'' [32]. O único arranjo simples para os átomos de nitrogênio que fornece as reflexões e estes parâmetros de rede obtidos por [35] através de raio-X de amostras de nitreto de ferro com estequiometria intermediária entre s-Fe₃N e s-Fe₂N, ou seja, com uma estequiometria s-Fe2.4N, é mostrado na fig. 14. Este arranjo também fornece uma sequência ABAB para os planos dos átomos de nitrogênio, onde os planos pares (A) são idênticos aos planos pares (A) das fases ɛ-Fe₃N e ɛ-Fe₂N. Nos planos

Figura 14 - Arranjo para os átomos de nitrogênio para o nitreto 6-Fe2 4N.

Reproduzido de [35]

impares (B) os interstícios diretamente acima e abaixo do átomo de nitrogênio adjacente do plano (A) permanecem desocupados. A estrutura cristalina apresentada para esta estequiometria é a mesma da fase ɛ-Fe₂N, onde, de cada oito átomos de nitrogênio dos planos impares dois foram removidos de uma maneira perfeitamente ordenada. Os átomos de nitrogênio que permanecem nestes planos são arranjados em anéis de seis átomos. Estes anéis são circundados em seu próprio plano por interstícios vazios, e cada anel possui um interstício vazio no seu centro. Removendo-se dois átomos adicionais de nitrogênio desta célula unitária, obtém a estrutura ɛ-Fe₃N, desde que ocorra uma difusão de alguns átomos intersticiais remanescentes para os interstícios vizinhos que estejam desocupados.

Em toda a faixa estequiométrica-da fase s, a maior aproximação dos átomos de nitrogênio ocorre na direção c e é-igual a $c^{m} = c$. Nos planos pares formados pelos átomos de nitrogênio a aproximação na direção a é sempre $a^{n} = a\sqrt{3}$. Nos planos impares, o empacotamento dos átomos de nitrogênio se torna mais denso na direção a, a medida que a concentração de nitrogênio aumenta. Na estequiometria s-Fe₄N cada átomo de nitrogênio em um plano impar possui três átomos-de nitrogênio como vizinho a uma distância de 2a. Para a estequiometria s-Fe₃N, o correspondente átomo de nitrogênio, possui seis átomos de nitrogênio vizinhos no seu próprio plano a uma distancia igual à $a\sqrt{3}$, enquanto que em s-Fe_{2.4}N o mesmo átomo de nitrogênio, possui dois átomos de nitrogênio como vizinhos a uma-distancia a de cada um. Finalmente para a estequiometria s-Fe₂N, cada átomo de nitrogênio nos planos impares é circundado por três átomos de nitrogênio com uma distância a de cada um. Finalmente

a concentração intersticial aumenta a aproximação destes átomos se torna maior na direção α do que na direção_c, causando uma expansão da rede formada pelos átomos de ferro em uma direção preferencial. Este aumento diferenciado dos parâmetros α e c faz com que haja um decréscimo na razão c/ α (c/ α = 1.65 para x = 4 e 1.60 para x = 2), conforme mostra a fig. 15.

Fig. 15 - Variação das dimensões das fases ε e ζ em função da concentração de nitrogênio. Reproduzida de [35].

Trabalhos em espectroscopia Mössbauer permitiram confirmar a ocupação dos sítios octaédricos e colocar em evidência os vários ambientes intersticiais dos átomos de ferro, especialmente utilizando amostras s formadas em temperaturas da ordem de 700 C, onde se consegue uma maior variação na estequiometria desta fase. No caso da fase s-Fe₄N, J. Foct e A. Mastoraks [37], encontraram somente átomos de ferro com um ou dois vizinhos em igual abundância, o que significa um caráter repulsivo importante para a interação N - N.

Shirane, Takei e Ruby [54] sugeriram pela primeira vez que as diferentes configurações intersticial de nitrogênio primeiros vizinhos dos átomos de ferro poderiam causar diferentes espectros Mössbauer para estes átomos de ferro no nitreto γ' -Fe₄N. Este conceito tem sido aplicado por vários autores para estudar os nitretos de ferro ε , nas mais variadas composições e maneira de prepara-los. A tabela IV mostra os valores de campo hiperfino (Hi) e deslocamento isomérico (IS) obtidos por vários pesquisadores. Na maioria dos casos é atribuído um valor nulo ao desdobramento quadrupolar (QS) sendo que em apenas alguns casos são atribuídos valores muito pequenos (da ordem de 10⁻² mm/s) e portanto foram omitidos na tabela. As notações Fe-0, Fe-I, Fe-II e Fe-III na tabela IV se

	Componente Magnética						Paramag-		ref.		
								nética			
FASE	Fe	- 0	Fe - I		Fe - II		Fe - III				
	IS	Hi	IS	Hi	IS	Hi	IS	Hi	IS	QS	
s-Fe ₂ N									0.40	0.26	40
8-Fe _{2.02} N									0.40	0.36	41
6-Fe _{2.05} N									0.42	0.28	42
s-Fe _{2.09} N									0.40	0.26	43
s-Fe _{2.2} N	· ·								0.42	0.29	42
8-Fe ₂₄ N					0.35	186	0.41	84			42
6-Fe _{2 47} N					0.32	211	0.40	110	0.31	0.86	41
ε-Fe ₂ N			0.49	250	0.49	150					44
s-Fe ₂₆ N					0.35	212	0.60	141	0.30	0.70	41
8-Fe _{2.66} N					0.34	220	0.41	112	0.49	0.66	41
6-Fe _{2.67} N			0.26	2 73	0.34	205	0.40	99.5			42
s-Fe ₃ N	0.23	298			0.31	238					45
s-Fe ₃ N #			0.21	285.7	0.33	218.3		70			46
8-Fe ₃ N ##					0.329	242.9					46
s-Fe ₃ N				284		2 27		130			51
8-Fe _{12N}			0.24	298	0.33	238					47
s-Fe ₃₂ N			0.24	298	0.33	238					48
s-Fe _{44N}	0.2	345									49
s-Fe _c N ·	0.20	363	0.26	320	0.31	231		[50
s-Fe-N **	0.15	350	0.26	317	0.34	234					50

Tabela IV - Parâmetros hiperfinos relativos ao espectro do α-Fe dos diferentes

núcleos nos nitretos de ferro, através de espectroscopia Mössbauer.

* amostra recém preparada e ** após tratamento term. por 3 horas à 165 C.

amostra recém preparada e ## após tratamento térm. por 48 horas à 180 C.
referem aos átomos de ferro com zero, um, dois e três vizinhos nitrogênio intersticial, respectivamente. Da tabela, é possível observar que os sítios Fe-I e Fe-II são quase sempre encontrados, mas o sítio Fe-O aparece apenas nas amostras que apresentam baixos teores de nitrogênio.

O valor de IS para os átomos de ferro nas fases paramagnética, tabela IV, parecem não ser influenciados pelo conteúdo de átomos intersticiais, enquanto os valores de QS apresentam um decréscimo com o conteúdo atômico intersticial. Isto pode ser atribuido a uma distribuição de carga progressivamente mais regular ao redor do núcleo do ferro. Estas configurações paramagnéticas, se tornam predominantes quando a soma de átomos intersticiais N ou C aumentam. O valor limite de 0.26 mm/s para QS, corresponde ao valor medido para a fase s-Fe₂N por Bainbridge [40] e Chabanel [43]. Mas, a variação da concentração de N intersticial não nos mostra evidências claras nos valores de IS e QS. Pelo menos para os valores pertencentes aos nitretos s não temos um conjunto de valores de IS e QS que possam ser referenciados especificamente a uma ou outra estequiometria [41].

DeCristofaro e Kaplow [51] mediram os valores do campo hiperfino sentido pelo Fe-II no nitreto s, para concentrações entre 17.1 % e 25.5 % atômico de nitrogênio, e os seus resultados são apresentados fig. 16, juntamente com alguns valores para o Fe-II e Fe-III obtidos por outro autores.

Estudos magnéticos detalhados para nitretos e carbo-nitretos de ferro com $x \le 3$ foram realizados por R. Bridelle [39]. Destes estudos ficou evidenciado o caráter ferromagnético da solução solida e-Fe_xN. Para x aproximadamente 2.1, esta fase apresenta uma temperatura de Curie de -170 C, e um momento magnético de 1.1 μ_B . Para valores de x entre 2.3 e 3.0 o momento magnético é de 1.9 μ_B e a temperatura de Curie atinge 294 C. Este baixo valor do momento magnético apresentado por esta fase tem sido tomado como uma prova de que o nitrogênio age como um doador de elétrons. A mesma conclusão pode ser tirada através de dados estruturais, onde levando-se em conta um raio atômico de 1.26 Å para o átomo de ferro, o valor encontrado para o átomo de nitrogênio é de 0.66 Å que é

Figura 16 - Variação do campo hiperfino em função da concentração de nitrogenio. Reproduzido de [41].

consideravelmente menor do que o raio do nitrogênio neutro, utilizado como sendo 0.77 À [38]. Como o conteúdo de nitrogênio esta relacionado com as dimensões da rede, pode-se então, representar o momento magnético e a temperatura de Curie como função dessas dimensões. A variação da temperatura de Curie em função da concentração de nitrogênio, estudada por vários autores pode ser vista na fig. 17. Esta fase apresenta estabilidade até 420 C, e para temperaturas superiores os parâmetros de rede a e c decrescem favorecendo a formação do nitreto γ' -Fe₄N [29].

at.% N

Figura 17 - Temperatura de Curie em função da concentração de nitrogênio. Reproduzida de [54]

3.4 - A FASE ξ-Fe₂N

Esta fase descoberta por Hägg [33], possui uma faixa estequiométrica bastante estreita, de 11 à 11.35 % em peso de nitrogênio (32.74 à 33.33 % atômico de N) [52]. Apresenta uma estrutura cristalina ortorrombica e sua célula unitária pode ser observada na fig. 18. Para 11.1 % em peso de nitrogênio a fase possui uma célula unitária ortorrombica com dimensões a = 2.763 Å, b = 4.827 Å e c = 4.424 Å.

Metade dos intersticios octaédricos em cada plano é ocupado de maneira que cada nitrogênio tem um interstício desocupado acima e abaixo dos seus planos adjacentes. Isto dá uma sequência de átomos de nitrogênio em camadas ABAB... conforme mostrado na fig. 13. Cada átomo de nitrogênio é cercado por seis átomos de ferro, dois em distâncias de 1.953 Å e quatro em 1.944 Å, dando uma distância média de 1.947 Å [29].

Fig. 18 - Célula unitária da fase E-Fe2N. Reproduzida de [35].

Apesar de P. Pascal [27] ter afirmado que a fase ξ -Fe₂N é ferromagnética com uma temperatura de Curie igual a -203 C, através de estudos Mössbauer, Bainbridge [40] demonstrou experimentalmente que ainda a -269 C, a fase ξ -Fe₂N se apresenta paramagnética.

Nesta fase todos os sítios de ferro encontram-se com três primeiros vizinhos de nitrogênio e sendo assim seu espectro Mössbauer apresenta um único dubleto paramagnético que caracteriza a fase.

O espectro Mössbauer da fase ξ -Fe₂N apresenta o maior deslocamento isomérico (IS) de todas as fases de nitreto de ferro contidas no diagrama de fases, 0.445 mm/s (ref. ao α -Fe) [24], indicando uma maior troca de carga entre o ferro e o nitrogênio. Na fig. 19 apresentamos os valores do deslocamento isomérico da fase ξ -Fe₂N em função da concentração de nitrogênio juntamente com os valores para as fases s-Fe_xN e γ' -Fe₄N. Para comparação, o valor de IS para o γ -Fe também é mostrado. A fase ξ também apresenta o maior desdobramento quadrupolar (QS) dos nitretos do diagrama de fase, 0.29 mm/s, o que reflete a menor simetria do átomos de ferro nesta fase [24].

Fig. 19 - Deslocamento Isomérico (IS) como função da concentração de nitrogênio, x em FeN_x. Reproduzido de [53].

Para uma amostra de nitreto ξ contendo 11 % em peso de nitrogênio, utilizando um calorimetro diferencial de varredura [24] mostrou que ela é estável até aproximadamente 453 C, mas à 417 C já se observa o início da transformação $\xi \rightarrow \epsilon$, indicando que o processo depende da velocidade de varredura térmica.

3.5 - A MUDANÇA DE FASE $\varepsilon \rightarrow \xi$

A marca estrutural da descontinuidade é dada quando a concentração atômica intersticial da fase s aumenta de 33.02 para 33.24 %. Os átomos de ferro retém as mesmas posições relativas, mas existe uma pequena anisotropia na rede da fase s, a qual passa a ter a simetria da estrutura da fase 5, que é ortorrombica. Esta distorção da rede

¢

consiste de uma expansão desproporcionalmente grande, paralela ao eixo b, e é causada devido a um arranjo dos átomos de nitrogênio, que na fase ξ são empacotados mais densamente na direção b [29], conforme mostra a fig. 20.

A outra única transformação estrutural conhecida, onde a transição é feita passando de um arranjo intersticial ordenado para um outro arranjo intersticial também ordenado, ocorre no sistema cobalto-nitrogênio [31], onde o nitreto de cobalto γ -Co₃N com uma

estrutura cristalina semelhante ao nitreto ε -Fe_xN (x ligeiramente maior que 2) se transforma para a fase δ -Co₂N, análoga a fase ξ -Fe₂N, cujo empacotamento é mais denso em uma direção. Entretanto, a concentração de nitrogênio no limite superior da fase γ -Co₃N é muito menor do que no limite inferior da fase δ -Co₂N, tal que o aumento da concentração atômica intersticial pode ser um fator decisivo. No sistema Fe-N a transformação $\varepsilon \rightarrow \xi$ é acompanhada por uma mudança na concentração intersticial nunca maior do que 0.5 % atômico, que parece ser insuficiente para influenciar o tamanho ou a densidade de empacotamento dos átomos, que são os fatores usualmente levados em conta quando ocorre mudanças estrutural de ligas.

A mudança de um arranjo ordenado dos átomos de nitrogênio para um outro, provavelmente ocorre mais facilmente pelo movimento de um particular átomo de nitrogênio para um interstício diretamente acima ou abaixo dele que estava desocupado inicialmente. Estes interstícios são sempre vacâncias e estão na menor distância do átomo de nitrogênio que efetuará a mudança. Baseado em dados de raio-x de amostras em estágios de transformação $\varepsilon \rightarrow \xi$, [35] propôs um mecanismo de transição de fase, que pode ser apreciado na fig. 21. De cada seis átomos de nitrogênio, três permanecem estacionários, dois se movem de planos impares para planos pares adjacente e um se move de um plano par para um plano impar. Em cada cristal o estado de completeza da transição não será o mesmo em todos os pontos. Possivelmente devido a concentração de nitrogênio ser pequena e localizada, pode existir regiões onde os átomos de nitrogênio ainda possuam empacotamento hexagonal da fase s e outras regiões onde o movimento dos átomos de nitrogênio já tenham resultado em um empacotamento ortorrombico da fase ξ . Entre as estruturas das fases s e ξ , provavelmente existe regiões onde os átomos de nitrogênio que se movem estejam em vários estágios da transição, mas como metade do número de átomos de nitrogênio não se movem, a continuidade cristalina é mantida.

3.6 - OUTRAS FASES

No sistema Fe-N existe outras fases metaestáveis que possuem importantes características sob o ponto de vista científico e tecnológico, por isso alguma delas tem sido amplamente estudadas.

A fase metaestável mais procurada tem sido a α "-Fe₁₆N₂, por apresentar propriedades magnéticas muito interessantes. A fase α " é composta de oito unidades destorcidas e expandida de uma rede tetragonal de base centrada da estrutura original martensítica, com dimensões: $\alpha = 5.7$ Å, c = 6.29 Å e $c/\alpha = 1.1$, onde as posições dos átomos e os parâmetros de rede foram determinados baseados em uma formula ideal,

2

 Ocupado nos planos pares (A); O-Ocupado nos planos impares (B) ×- Representa o movimento de um atomo de N de um intersticio no plano A para um intersticio diretamente diretamente acima dele no plano B

O-Representa o movimento de um átomo de nitrogênio de um plano B para o plano A diretamente acima dele

Fig. 21 - Mecanismo sugerido por [35] para a transição de fase $\varepsilon \rightarrow \xi$.

Fe₁₆N₂. Os átomos de N ocupam 1/24 dos interstícios octaédricos em uma maneira completamente ordenada, embora mais da metade dos sítios intersticiais podem estar desocupados quando o conteúdo de nitrogênio da fase é menor do que o ideal [55]. É uma fase ferromagnética [56], possui uma forte anisotropia magnética uniaxial e um eixo de fácil magnetização perpendicular ao plano dos discos [57]. Tanto o campo magnético quanto a tensão externa possuem uma influência na direção da precipitação do nitreto durante o seu processo de envelhecimento [58,59]. Outras propriedades magnéticas e metalúrgicas tem sido estuda por vários pesquisadores [55,57-61].

Sua formação se ocorre durante a tempera da nitro-martensita que é diferente da martensita de carbono. Abaixo de 250 C a fase é formada como uma fase intermediária no processo de decomposição. Para envelhecimento acima de 160 C, esta fase se precipita em γ' -Fe₄N, motivo pelo qual o interesse por ela tenha diminuido. Atualmente o interesse tecnológico e científico esta se voltando aos nitretos substituídos [54,,62,63], que apresentam maior coercividade.

Nitretos de ferro ricos em nitrogênio (Fe_xN onde x < 2) são encontrados em diversos processos de nitretação, mas geralmente como precursores da formação superficial de camadas nitretadas. Fase como FeN e Fe₃N₂ são pouco estudadas. Um estudos Mössbauer e de raio-x para fases com a composição Fe_(1.1 - 1.17)N e Fe_{1.53}N formadas através de sputtering rf foram realizados por Nakagawa et al [53]. A fase Fe_(1.1 - 1.17)N foi identificada como tendo uma estrutura do tipo ZnS com parâmetro de rede $\alpha = 0.433$ nm e a fase Fe_{1.53}N com estrutura fcc, porém os detalhes da ocupação dos átomos de nitrogênio não é bem esclarecido.

CAPÍTULO 4

RESULTADOS E DISCUSSÕES

4.1 - ESTUDO DA CONCENTRAÇÃO DE NITROGÊNIO ATÔMICO ([N]) NA PÓS-DESCARGA

Visando relacionar a densidade de nitrogênio atômico na pós-descarga com a camada de nitreto formada, foi feito um estudo do comportamento da densidade de nitrogênio atômico em função dos vários parâmetros da descarga. Na determinação da concentração de nitrogênio atômico foi utilizado a constante de calibração do sistema, cujo procedimento para obte-la, bem como o seu valor obtido, está descrito na secção 2.4.

4.1.1 - VARIAÇÃO DA CONCENTRAÇÃO DE NITROGÊNIO ATÔMICO ([N]) EM FUNÇÃO DA POTÊNCIA, PRESSÃO E FLUXO DE NITROGÊNIO

A variação da concentração de nitrogênio atômico em função da potência R.F. aplicada, da pressão total do sistema e do fluxo gasoso de nitrogênio é mostrado na fig. 22a, 22b e 22c, respectivamente. Da figura podemos observar que as pressões onde obtemos o maior grau de dissociação do nitrogênio tanto em função do fluxo gasoso de nitrogênio como em função da variação da pressão total do sistema esta em torno de 4.0 Torr, e o valor obtido para esta dissociação ([N]/[N₂]) é da ordem de 0.3 %. A saturação da concentração de nitrogênio atômico ([N]) apresentada em função da pressão é devido à vários fatores, tais como temperatura da descarga, recombinação ao longo das paredes do tubo, variação do grau de dissociação com a pressão, etc.

39

Em relação ao fluxo de nitrogênio a densidade de nitrogênio atômico apresenta um comportamento semelhante e sem muita diferença para os três valores de pressão utilizados. Quanto as perdas de nitrogênio atômico, temos três processos reacionais a considerar:

1 - Destruição por "Quenching" com as moléculas metaestáveis $N_2(A^3 \Sigma_u^+)$:

$$N(^{4}S) + N_{2}(A^{3}\Sigma_{u}^{+}) \xrightarrow{K_{q}} N(^{2}D, ^{2}P) + N_{2}(X^{1}\Sigma_{g}^{+}, \mathbf{v})$$
(15)

esta reação é muito eficaz, $K_q = 5 \times 10^{-11} \text{ cm}^{6} \text{s}^{-1}$ [68], mas como $n_N >> n_{N_2(A)}$ na pósdescarga, pouco nitrogênio será destruído por este processo.

2 - Destruição por recombinação atômica a três corpos na fase gasosa.

$$\mathbf{N}(^{4}\mathbf{S}) + \mathbf{N}(^{4}\mathbf{S}) + \mathbf{N}_{2} \xrightarrow{K(T)} \mathbf{N}_{2}^{*} + \mathbf{N}_{2}$$
(16)

a molécula N₂^{*} formada deve se encontrar no estado N₂(B³Π_g, v_h), ou no estado N₂(A³Σ⁺_g, v_h), onde v_h representa os níveis vibracionais elevados. Estes estados estão ligados por transferência colisional pelos níveis v_h elevados. O estado N₂(A³Σ⁺_g) será finalmente populado nos seus níveis vibracionais baixos por cascata radiativa. O coeficiente desta reação varia em função da temperatura da descarga, e usaremos aqui o coeficiente proposto por I. A. Kossy et al [5], K(T) = 8.27x10⁻³⁴exp(500/T) cm⁶s⁻¹.

3 - Perdas devido a reassociação atômica heterogênea nas paredes do reator, que é um processo de primeira ordem na densidade atômica [64].

Parede:
$$N(^4S) \xrightarrow{\tau_r} \frac{1}{2}N_2^*$$
 (17)

cuja taxa pode ser calculada usando a formula proposta por [64];

Capítulo 4 - Resultados e Discussões 41

$$\tau_{\rm T} = \frac{1}{D_a} \left(\frac{R}{2.405}\right)^2 + \frac{2R\left(1 - \frac{\gamma_r}{2}\right)}{\gamma_r \left(\nu_a\right)} \tag{18}$$

onde $\tau_{\rm T}$ representa o tempo característico para a reassociação de N(4S) no N₂ [70]; $\langle v_{\rm a} \rangle$ é a velocidade média destes átomos, e $\gamma_{\rm T}$ é a probabilidade de reassociação na parede, $\gamma_{\rm r} = 3.2 \times 10^{-6}$ para o pirex [65]; Da expressão para $\tau_{\rm r}$ temos uma frequência de reassociação na parede igual a $\frac{1}{\tau_{\rm r}} \cong \frac{\gamma_{\rm r} \langle v_{\rm a} \rangle}{2R}$ quando $\gamma_{\rm r} << 1$ e $\frac{1}{\tau_{\rm r}} \cong D_a (2.405/R)^2$ no limite $\gamma_{\rm r} \rightarrow 1$.

Levando em conta apenas os processos de perdas 2 e 3, podemos derivar uma equação cinética para o nitrogênio atômico como função do tempo, sendo t = z/v, onde $v = \frac{760. \phi.T}{\pi R^2 \cdot P.273}$ é a velocidade do fluxo gasoso de nitrogênio.

$$\frac{d[N]}{dt} = -K(T)[N^2][N_2] - K_{W}[N]$$
(21)

onde, $K_W = \frac{1}{\tau_r}$ é a frequência de reassociação nas paredes. Então teremos a equação:

$$\int_{N_0}^{N} \frac{d[N]}{([N_2][N^2]K(T) + K_{W}[N])} = -\int_0^t dt$$
(22)

cuja solução nos fornece a seguinte expressão para a densidade de nitrogênio atômico.

$$[N] = \frac{K_{W}[N_{0}]e^{-K_{W}\frac{2}{v}}}{K(T)[N_{2}] + K_{W} - K(T)[N_{0}]e^{-K_{W}\frac{2}{v}}}$$
(23)

Utilizando os dados experimentais obtidos e um valor de $N_0 = 4.2 \times 10^{14}$, foi feita uma simulação para o valor de N para uma variação do fluxo de N_2 (ϕ) entre 0.1 e 8.0 cm³/s. A curva que melhor se aproxima dos valores experimentais nos fornece um valor igual a 4.0×10^{-5} para a taxa de recombinação nas paredes, γ_r , que é da ordem de dez vezes maior do que o valor obtido por T. Yamashita [65]. A curva pode ser vista na fig. 22c, juntamente com os valores experimentais. Da figura observamos que o modelo não apresenta um bom acordo com os valores experimentais, sobretudo para grandes valores de fluxo. É importante salientar que com este modelo simplificado não esperaríamos obter uma excelente concordância dos dados, mas apenas obter a ordem de grandeza de alguns parâmetros envolvidos na pós-descarga, uma vez que o objetivo principal deste trabalho é o estudo da formação do nitreto de ferro em pós-descarga e não um estudo da pós-descarga. Para maior esclarecimento dos mecanismos da formação e destruição do nitrogênio atômico é necessário um trabalho bem mais aprofundado obtendo-se maiores informações a nível da descarga, bem como das perdas de átomos ao longo do tubo até a zona de reação. Estes, estudados minuciosamente podem fornecer uma melhor compreensão da formação e destruição do nitrogênio atômico formação e destruição do nitrogênio atômico se para maior esclarecimento dos mecanismos da formação e destruição do nos podem fornecer uma melhor compreensão da formação e destruição do nitrogênio atômico formação e destruição do nitrogênio atômico formação e destruição do nitros formação e destruição do nitres formação e destruição do nitros formação e destruição do nitros formação e destruição do nitros formação e destruição do nitres estas de átomos ao longo do tubo até a zona de reação.

4.1.2 - VARIAÇÃO DA CONCENTRAÇÃO DE NITROGÊNIO ATÔMICO ([N]) EM FUNÇÃO DA [H₂] E [CH₄] NA DESCARGA

A introdução de hidrogênio e de metano na descarga apresenta variações apreciáveis na dissociação do nitrogênio. Como estas variações se refletem na camada de nitreto formada, fizemos uma série de medidas visando mapear o comportamento da pós-descarga em função destas moléculas introduzidas em pequenas quantidades.

Na fig. 23a e 23b apresentamos a variação da concentração de nitrogênio atômico em função do fluxo de hidrogênio e metano, respectivamente. Podemos observar que quando essas impurezas são introduzidas na descarga, temos um acréscimo na concentração de nitrogênio atômico na zona de reação. Da figura observamos que a densidade de átomos de nitrogênio apresenta um pico bem mais acentuado para pequenos fluxos de CH_4 introduzido na descarga quando comparado com a introdução de H_2 . De fato para concentração relativas de 5.0×10^{-4} de CH_4 o rendimento na produção de átomos de nitrogênio já é máximo, enquanto que o máximo no caso do hidrogênio ocorre para concentrações da ordem de dez vezes maior. Além disso, é importante ressaltar que este aumento na dissociação do nitrogênio é bem mais acentuado para a pós-descarga na temperatura ambiente do que para temperaturas mais elevadas. No caso em que a pós-descarga é mantida na temperatura ambiente obtém-se um aumento da ordem de 100 % na dissociação do nitrogênio. (se comparatmos nas curvas das figs. 23a e 23c o ponto de máxima densidade de nitrogênio atômico com o ponto onde temos 100 % de nitrogênio).

O aumento na produção de nitrogênio atômico com a introdução de impurezas na descarga é um problema que ainda não esta completamente resolvido. Vários podem ser os fatores que causam este aumento. Discutiremos alguns sem entrar em maiores detalhes, pois não foi feito medidas suficiente para fornecer uma melhor explicação.

Para pequenas concentração de H_2 observamos um forte aumento no rendimento da produção de nitrogênio atômico. Acreditamos que este aumento ocorre devido ao decréscimo das perdas por recombinação nas paredes do reator, tanto na região da descarga quanto na pós-descarga. Este fenômeno pode ser semelhante ao observado no caso da recombinação do oxigênio que diminui em presença de impurezas. Este decréscimo na recombinação do oxigênio ocorre devido a ocupação dos sítios de recombinação das paredes [9]. Aumentando mais a concentração de H_2 a dissociação do nitrogênio apresenta um decréscimo se tornando coerente com o modelo proposto por Loreiro [66], onde são considerados parâmetros como variação na função de distribuição dos elétrons e excitação vibracional do $N_2(X, v)$. No modelo de Loreiro a dissociação do nitrogênio decresce com o aumento da concentração de H_2 devido a depleção dos estados vibracionais $N_2(X, v > 44)$ pelas colisões V-V e V-T com os átomos de hidrogênio.

Efeito semelhante deve acontecer quando utilizamos o CH₄ como impureza, porém a passivação das paredes do reator neste caso parece ser mais eficiente apenas quando pequenas quantidades de CH₄ é introduzida na descarga. Porém, esta análise não é conclusiva, pois poderemos também ter um aumento da dissociação do nitrogênio devido a outros radicais formados na descarga e que funcionam como precursores da formação de nitrogênio atômico. De fato, foi detectado a presença de picos referente a emissão de cianeto (CN(A-X)), evidenciando que a análise dos mecanismos das espécies dissociadas no plasma se torna ainda mais complexos. Para uma melhor compreensão e comprovação de qual é realmente o papel dos radicais formados na descarga ou de outro fatores sobre a dissociação do nitrogênio é necessário medidas mais refinadas a nível de plasma. Estudos neste sentido devem ser continuados.

4.2 - ANÁLISE DAS CAMADAS

Nas secções subsequentes apresentamos os espectros Mössbauer de retroespalhamento, bem como as tabelas dos correspondentes parâmetros hiperfinos, obtidos a partir do ajuste dos dados em computador. As figuras, assim como as tabelas estão divididas de maneira a mostrar a cinética de formação dos nitretos nas diferentes misturas gasosas utilizadas.

As amostras foram identificadas por um código de nitretação. Deveremos observar o significado de cada sufixo: Um B após o código (ex. A34B) indica uma segunda medição da mesma amostra (A34), porém com velocidade reduzida. Um T seguido de um número (ex. A23T1), indica uma segunda medição da amostra A23 após a mesma ter sido envelhecida termicamente, e finalmente um X como sufixo no código identificador da nitretação indica que a análise Mössbauer foi feita em CXMS e não em CEMS. O deslocamento isomérico (IS) esta relativo ao do α -Fe e é dado em mm/s. QS significa desdobramento quadrupolar medido em mm/s. Hi é o campo hiperfino, e está dado em Tesla (T). Wid representa a largura de linha interna ou linha 1 para os dubletos, seu valor esta em mm/s. Wxy é a razão entre a largura da linha x e a y, portanto adimensional. O Dep representa a percentagem da área de cada subspectro e Dxy é a razão entre a área da linha x e a y, sendo portanto adimensional.

Os ajustes Mössbauer foram feitos em um microcomputador do tipo PC, utilizando um programa chamado NORMOS (programa específico para fazer ajustes de espectros Mössbauer através da soma de Lorentzianas). Este programa permite no máximo nove variáveis livres para o ajuste, as demais variáveis devem ter seus valores pré-fixados. Os valores que ficaram livres para o ajuste durante a última passada pelo NORMOS estão sublinhados nas tabelas.

4.2.1 - NITRETAÇÃO EM PÓS-DESCARGA DE NITROGÊNIO PURO

Dois foram os caminhos utilizados para observar a formação dos nitretos de ferro em pós-descarga de nitrogênio. Primeiramente fixamos a temperatura em 400 C e variamos o tempo de nitretação de 3 a 60 minutos. Por último nitretamos variando a temperatura e o tempo de nitretação.

- N₂ PURO - 400 C

A fig. 24 mostra os espectros CEMS referentes a cinética de formação do nitreto de ferro para diferentes tempos de tratamento à 400 C.

Na fig. 24a é mostrado-o-espectro de uma amostra nitretada por 3 min. Temos como preponderante um dubleto de linhas alargadas com QS = 0.509 mm/s e IS = 0.363 mm/s. Temos também a presença de um dubleto paramagnético referente a fase ξ -Fe₂N, mais três sextetos, sendo dois com campos hiperfino de 21.7 T e um com 34.0 T referentes a fase χ -Fe₄N. Também podemos observar a presença de um sexteto referente ao substrato α -Fe, indicando-que a espessura da camada é inferior a profundidade atingida pela técnica (aproximadamente 250 nm).

Aumentando-se o tempo de tratamento para 6 min., fig. 24b, as <u>fases encontradas</u> permanecem_as_mesmas, ocorrendo apenas um decréscimo_na_área_referente_ao <u>subspectro_do_cc-Fe</u>, indicando_um_pequeno_acréscimo_na_espessura_da_camada. O difratograma de raios-X para esta amostra é dada na fig. 25. Para tratamento de 15 min., fig. 24d, a <u>situação continua praticamente constante com ligeiras modificações nas áreas</u> <u>de cada subspectro</u>. Quando o tempo atingiu os 30 min., fig. 24e, <u>as</u> <u>fases_ainda_</u> <u>permanecem as mesmas</u>. mas tivemos um acréscimo significativo da <u>fáse 5-Fe</u>₂N e um acréscimo do dubleto de linhas alargadas que pode ser confirmado observando os valores das áreas relativas da tabela V e o difratograma de raios-X da fig. 26. Aumentando para 60 min. o tempo de tratamento, fig. 24f, a <u>composição_das</u> fases_ presentes permanecem inalteradas, com_pequenas_variações dos <u>seus</u>_percentuais relativos. Podemos afirmar então que à temperatura de 400 C a difusão-do-nitrogênio na rede do ferro, é insignificante, e que a nitretação ocorre_apenas para camadas de aproximadamente 250 nm com a formação dos nitretos metaestáveis ricos-em nitrogênio.

O dubleto com IS variando de 0.313 mm/s a 0.363 mm/s e QS de 0.480 mm/s a 0.791 mm/s, não pode ser atribuído a nenhuma das fases de nitreto de ferro

Figura 24 - Nitretação em pós-descarga de nitrogênio: (a) A35, 3 min/400 C;
(b) A18, 6 min/400 C; (c) A27, 6 min/416 C; (d) A30, 15 min/400 C;
(e) A26, 30 min/400 C e (f) A15, 60 min/402 C.

48

Figura 25 - Difratograma de raios-X da amostra A18, nitretada à 400 C/6 min.

Nu	Tem	T	Fases	IS	QS	Hi (T)	Wid	W21/	W23	Dep	D21/	D23
m	ро				-			W13		(%)	D13	
A35	3	400	a-Fe	0.000	0.000	33.0	0.30	1.40	1.20	<u>31.0</u>	2.65	3.17
			Dubleto	<u>0.363</u>	0.509	***	0.36	1.00	***	28.4	0.72	***
			γ'-Fe ₄ N	0.224	0.000	34.0	0.30	1.40	1.20	<u>6.8</u>	2.65	3.17
				0.269	0.140	21.8	0.30	1.40	1.20	13.5	2.65	3.17
				<u>0.269</u>	<u>-0.280</u>	<u>21.8</u>	0.30	1.40	1.20	6.8	2.65	3.17
	L'	<u> </u>	ξ-Fe ₂ N	0.404	0.279	***	0.30	1.00	***	<u>13.5</u>	0.95	***
A18	6	400	a-Fe	0.000	0.000	33.0	0.28	1.20	1.07	<u>16.3</u>	2.65	3.17
			Dubleto	0.370	0.543	***	0.49	1.00	***	<u>36.0</u>	0.82	***
		· · · · · · · · · · · · · · · · · · ·	γ'-Fe ₄ N	0.224	0.000	34.0	0.28	1.12	1.06	8.0	2.65	3.17
			l '	0.292	0.168	22.4	0.30	1.08	1.05	<u>16.0</u>	2.65	3.17
				<u>0.292</u>	<u>-0.336</u>	<u>22.4</u>	0.30	1.08	1.05	8.0	2.65	3.17
		<u> </u>	ξ-Fe ₂ N	0.404	0.279	***	0.32	1.00	***	<u>15.7</u>	0.98	***
A27	6	416	α- Fe	0.000	0.000	33.0	0.32	1.40	1.20	<u>15.0</u>	2.65	3.17
			ξ-Fe ₂ N	<u>0.404</u>	0.360	***	0.36	1.00	***	37.0	0.85	***
			E-Fe _x N	<u>0.340</u>	-0.028	23.3	0.32	1.40	1.20	<u>48.0</u>	1.16	1.32
A30	15	40	α-Fe	0.000	0.000	33.0	0.28	1.40	1.20	<u>21.9</u>	2.65	3.17
			Dubieto	0.344	0.685	***	0.58	1.00	***	37.0	0.80	***
			γ-Fe ₄ N	0.244	0.000	34.0	0.30	1.40	1.20	7.0	2.65	3.17
				0.290	0.120	21.7	0.30	1.40	1.20	13.9	2.65	3.17
				0.290	-0.240	21.7	0.30	1.40	1.20	<u>7.0</u>	2.65	3.17
			ξ-Fe ₂ N	0.404	0.279	***	0.30	1.00	***	<u>13.2</u>	0.98	***
A26	30	400	α-Fe	0.000	0.000	33.0	0.30	1.40	1.20	<u>43.6</u>	2.71	3.02
			Dubleto	0.359	<u>0.791</u>	***	0.50	1.00	***	<u>37.4</u>	0.68	***
			γ'-Fe ₄ N	0.224	0.000	34.0	0.30	1.40	1.20	3.5	2.65	3.17
				0.290	0.120	21.7	0.30	1.40	1.20	<u>7.0</u>	2.65	3.17
				0.290	-0.240	21.7	0.30	1.40	1.20	3.5	2.65	3.17
			ξ-Fe ₂ N	0.404	0.279	***	0.30	1.00	***	5.0	0.98	***
A15	60	400	a-Fe	0.000	0.000	33.0	0.32	1.20	1.07	<u>21.3</u>	2.65	3.17
			Dubleto	<u>0.337</u>	-0.480	***	0.53	1.00	***	<u>46.3</u>	0.98	0.48
			γ'-Fe ₄ N	0.224	0.000	34.0	0.32	1.40	1.20	5.2	2.65	3.17
				0.290	0.120	21.7	0.32	1.40	1.20	<u>10.4</u>	2.65	3.17
				0.290	-0.240	21.7	0.32	1.40	1.20	5.2	2.65	3.17
		<u> </u>	ξ-Fe ₂ N	0.404	0.279	***	0.32	1.00	***	<u>11.6</u>	0.98	***

Capitulo 4 - Resultados e Discussões 50

Tabela V - Relação das amostras nitretadas em pós-descarga de nitrogênio puro à400 C com os seus parâmetros Mössbauer.

conhecidas na literatura. O alto valor de seu IS indica corresponder a uma fase rica em nitrogênio, e a variação pronunciada em QS junto com os grandes valores de suas larguras de linha indicam variações pronunciadas no ambiente de coordenação do átomo de ferro, o que sugere se tratar de uma fase de baixa cristalinidade. Medidas de difração de raios-X das amostras A35 e A26 referentes as figs. 24a e 24e apenas confirmam a presença das demais fases detectadas por CEMS, mas como estamos analisando camadas de espessuras menores do que 250 nm a análise Mössbauer é bem mais sensível nesta faixa. Um dubleto com parâmetros Mössbauer semelhante, foi detectado por [53] em camadas de nitretos obtidas por RF Spputering. Através de EXAFS [53] determinou a distância entre os átomos de ferro e nitrogênio atribuindo ao dubleto como pertencente a uma fase fcc, com estequiometria no entorno de Fe_{1.6}N. Por associação o dubleto encontrado no nosso caso será atribuído a uma fase metaestável de aglomerados Fe_{1+x}N (x < 1). Este dubleto não mais aparece nas nitretações á 450 C (ver próxima secção) indicativo de que sua evolução ocorre na faixa de 400 C a 450 C.

-N₂ PURO EM FUNÇÃO DA TEMPERATURA

A fig. 27 apresenta a cinética de formação do nitreto de ferro em pós-descarga de nitrogênio, para amostras nitretadas em temperaturas que variaram de 400 C a 545 C, para tempos de tratamento entre 15 min. e 60 min.

Na fig. 27a apresentamos o espectro CEMS de uma amostra nitretada por 30 min. a 400 C. O espectro apresenta uma mistura de várias fases (ver Tab. 6) tendo como fase preponderante um dubleto de linhas bastante alargadas, Wid = 0.50 mm/s, e valores de IS = 0.359 mm/s e QS = 0.791 mm/s. <u>O espectro apresenta também um</u> subsbspectro referente ao α -Fe. indicando que a espessura da camada de nitreto formada é inferior a 250 nm. Este dubleto é atribuído a uma fase metaestável rica em nitrogênio (ver subsecção anterior) e é uma fase precursora da fase ξ -Fe₂N que é obtida preponderantemente quando nitretamos a <u>460</u> C por 30 mim., conforme mostra o espectro da fig. 27b. Este espectro consiste basicamente da fase ξ -Fe₂N com a presença de uma pequena fração de α -Fe. Na fig. 28 apresentamos este espectro com velocidade redužida mostrando em detalhes a forma do dubleto, onde podemos observar um ligeiro alargamento da base do dubleto, o que indica que a camada também apresenta traços de uma fase magnética mal cristalizada.

Elevando-se a temperatura para 502 C e nitretando por 15 mim., a camada de nitreto formada apresenta basicamente a coexistência das fase s com 28 % e γ' com 71 %, e apenas traços da fase ξ , fig. 27c.

Elevando-se ainda mais a temperatura para 545 C e nitretando por 30 mim. temos a presença das mesmas fases apenas com modificações nas áreas relativas de cada uma, fig. 27d. A presença destas fases é confirmada pelo difratograma de raios-X mostrado na fig. 30. A percentagem das áreas relativas agora é de 68 % para a fase s e de 28 % para a fase γ' . Portanto concluímos que a fase ξ apresenta-se estável até 460 C, a partir desta temperatura esta fase é desestabilizada e passa-se a ter a estabilização das fases s e γ' .

Finalmente na temperatura de 540 C e aumentando o tempo de nitretação para 60 mim. temos apenas a presença das fases ε com 83 % e γ' com 17 % conforme mostra o espectro CEMS da fig. 27e e o difratograma de raios-X da fig. 31.

A fase y' não apresentou o sítio Fe-I, cujo campo hiperfino é de 34.0 T. Já a fase s apresenta-se bem cristalina com largura de linhas Wid = 0.30 mm/s e possui apenas um sítio cristalográfico Fe-II, o que evidencia uma ocupação ordenada dos interstícios octaédricos pelos átomos de nitrogênio.

Os parâmetros de rede para a fase s obtidos na amostra A53, fig. 27e, a partir dos dados de raios-X são: $\alpha = 2.71$ Å e c = 4.37 Å, dando uma razão $c/\alpha = 1.60$. Utilizando a correlação entre os parâmetros de rede e a quantidade de nitrogênio na amostra descrito por Jack [35], fig. 15, encontramos a estequiometria s-Fe_{2.85}N para esta fase. A fig. 29 mostra o espectro CXMS para esta amostra. Pela razão das áreas, tabela VI, podemos estabelecer a razão $\varepsilon/\gamma' = 4.9$ no espectro de CEMS (fig. 27e) e $\varepsilon/\gamma' = 2.41$ no espectro de CXMS (fig. 29). Como a técnica CEMS, tem um alcance mais superficial (~ 250 nm), concluímos que as fases s e γ' estão dispostas em camadas, com a fase s na superficie

(d) A20,545 C/30 min e (e) A53, 540 C/60 min.

Capítulo 4 - Resultados e Discussões

Figura 28 - Espectro Mössbauer com velocidade reduzida da amostra A28.

Figura 29 - Espectro Mössbauer de raios-X de conversão da amostra A53.

Capítulo 4 - Resultados e Discussões 55

Figura 30 - Difratograma de raios-X da amostra A20.

Figura 31 - Difratograma de raios-X da amostra A53.

-

Num	Tem	Т	Fases	IS	QS	Hi(T)	Wid	W21/	W23	Dep	D21/	D23
	ро							W13		(%)	D13	
A29	30	460	a-Fe	0.000	0.000	33.0	0.32	1.40	1.20	16.0	1.63	1.49
			ξ-Fe ₂ N	0.376	0.271	***	0.28	1.00	***	84.0	<u>1.53</u>	***
A29B	30	460	α-Fe	0.290	1.676	***	<u>0.52</u>	1.00	***	14.2	1.00	***
			ξ-Fe ₂ N	<u>0.314</u>	0.279	***	0.28	1.00	***	<u>85.8</u>	<u>1.11</u>	***
A37	15	502	E-FexN	0.586	-0.325	<u>22.3</u>	0.32	1.40	1.20	27.7	0.94	1.12
			Y'-Fe4N	0.224	0.000	34.0	0.32	1.40	1.20	<u>17.8</u>	0.22	0.92
				0.296	0.120	21.7	0.32	1.40	1.20	35.6	0.26	1.47
				0.296	-0.240	21.7	0.32	1.40	1.20	17.8	1.20	1.16
			ξ-Fe ₂ N	0.404	0.279	***	0.32	1.00	***	1.1	0.98	***
A20	30	545	ε-Fe _x N	0.348	<u>-0.019</u>	<u>24.6</u>	0.32	1.40	1.20	<u>68.2</u>	1.53	1.61
			γ-Fe ₄ N	0.224	0.000	34.0	0.32	1.40	1.20		2.65	3.17
				0.290	0.120	21.7	0.32	1.40	1.20	14.0	2.65	3.17
				0.290	-0.240	21.7	0.32	1.40	1.20	7.0	2.65	3.17
			ξ-Fe ₂ N	0.404	0.279	***	0.30	1.00	***	3.8	0.98	***
A53	60	540	E-FexN	0.330	-0.022	<u>23.9</u>	0.30	1.40	1.20	<u>83.4</u>	1.79	1.27
			Y-Fe4N	0.292	0.120	21.7	0.30	1.40	1.20	11.1	2.65	3.17
				0.292	-0.240	21.7	0.30	1.40	1.20	5.5	2.65	3.17
A53X	60	540	α-Fe	0.000	0.000	33.0	0.31	1.45	1.19	<u>25.0</u>	2.36	2.10
			ε-Fe _x N	0.328	-0.044	23.8	0.30	1.40	1.20	<u>52.7</u>	2.08	1.74
			Y-Fe4N	0.224	0.000	34.0	0.30	1.40	1.20	5.5	2.65	3.17
				0.315	0.122	<u>21.8</u>	0.30	1.40	1.20	11.2	2.65	3.17
				0.315	-0.240	<u>21.8</u>	0.30	1.40	1.20	5.6	2.65	3.17

Capítulo 4 - Resultados e Discussões

Tabela - VI - Relação das amostras com seus respectivos parâmetros Mössbauer para nitretação em nitrogênio puro em função da temperatura.

externa. Através do perfil de absorção com a profundidade dos raios-X de conversão calculado em [24], foi possível estimar a espessura da camada de nitreto formada em 700 nm.

56

A cinética de formação do nitreto de ferro em pos-descarga de nitrogênio puro pode ser representada resumidamente no seguinte diagrama.

400 C / 30 mim. Dubleto Metaestável - 37 % α-Fe - 44 % ζ+γ'-14% U 460 C / 30 min. ξ-Fe₂N - 84 % α-Fe - 16 % U 502 C / 15 mim. ε-Fe_N -28 % γ'-Fe₄N - 71 % ξ-Fe₂N - Traços Fases mal formadas-traços U 545 C / 30 mim. ε-Fe_xN -68 % γ'-Fe₄N - 28 % ζ-Fe₂N - Traços Fases com razoável cristalinidade U 540 C / 60 mim. ε-Fe_N -83 % γ'-Fe₄N - 17 % Fases bem cristalinas

4.2.2 - NITRETAÇÃO EM ATMOSFERA DE N2 - 1 % H2

Na fig. 32 apresentamos a cinética de formação dos nitretos de ferro em pósdescarga para uma mistura gasosa de nitrogênio com 1 % de hidrogênio.

O espectros CEMS para uma amostra nitretada a 407 C por 15 min. é mostrado na fig. 32a. O espectro apresenta a coexistência das fases ξ com 30 %, γ' com 22 %, traços da fase ε e um singleto com Wid = 0.24 mm/s e IS = 0.047 mm/s, que pode ser melhor observado na fig. 33, onde temos um espectro em velocidade reduzida detalhando a parte central do espectro. O difratograma de raios-X para esta amostra é dado na fig. 36 e apresenta uma linha com d = 2.49 Å que pode ser referente ao singleto. No momento deixaremos em aberto a interpretação deste singleto, voltando a falar sobre ele na secção 4.3.2. Observamos também a presença do substrato α -Fe.

A presença de uma quantidade significativa da fase γ' (22 %) nesta temperatura. pode ser devido ao papel redutor do hidrogênio fazendo com que a fase singleto que deve possuir um estrutura cúbica ao perder nitrogênio se transforme na fase γ' que também possui estrutura cúbica.

Subindo a temperatura para 446 C e nitretando por 20 mim. observamos a formação preponderante com 44 % da fase ξ bem cristalina, com largura de linha 0.28 mm/s, juntamente com 36 % da fase ε e 20 % do substrato α -Fe, como pode ser visto na fig. 32b e com maiores detalhes na fig. 34.

A fig. 32c mostra o espectro para uma amostra nitretada à 502 C por 15 min. Neste espectro temos como preponderante a fase ε com 64 %, apresentando apenas um sítio cristalográfico com Hi = 23.8 T, IS = 0.342 mm/s mais a presença de 32 % da fase γ' . A espessura da camada é da ordem de 250 nm, pois ainda temos uma pequena quantidade de α -Fe presente, conforme pode ser visto na tabela VII.

Figura 32 - Nitretação em pós-descarga de N₂ + 1 % H₂. (a) A34,
407 C/15 min.; (b) A19, 446 C/20 min.; (c) A28, 502 C/15 min.;
(d) A22, 552 C/15 min. e (e) A52, 545 C/60 mim.

Figura 33 - Espectro CEMS com velocidade reduzida da amostra A34.

Figura 34 - Espectro CEMS com velocidade reduzida da amostra A19.

Figura 35 - Espectro CXMS da amostra A52.

Figura 36 - Difratograma de raios-X da amostra A34.

61

Figura 37 - Difratograma de raios-X da amostra A22.

Figura 38 - Difratograma de raios-X da amostra A52.

Num	Tem po	T	Fascs	IS	QS	Hi (T)	Wid	W21/ W13	W23	Dep (%)	D21/ D13	D23
A34	15	407	α-Fe	0.000	0.000	33.0	0.32	1.40	1.20	<u>30,5</u>	2.48	2.44
			E-Fe _x N	0.330	-0.016	23.7	0.32	1.40	1.20	0.5	2.20	1.56
			γ-Fe₄N	0.224	0.000	34.0	0.32	1.40	1.20	5.4	2.20	1.56
				0.290	0.120	21.7	0.32	1.40	1.20	10.8	2.48	2.44
				0.290	-0.240	21.7	0.32	1.40	1.20	<u> 5.4</u>	2.48	2.44
			ξ-Fe ₂ N	0.423	0.300	***	0.28	1.00	***	<u>29.5</u>	0.95	***
			Singleto	0.047	***	***	0.25	***	***	<u>17.9</u>	***	***
A34B	15	407	α-Fe	0.000	1.676	***	0.32	1.00	***	<u>11.7</u>	1.00	***
			ξ-Fe ₂ N	<u>0.404</u>	0.279	***	0.32	1.00	***	<u>51.2</u>	0.98	***
			Singleto	<u>0.047</u>	***	***	0.24	***	***	<u>37.1</u>	***	***
A19	20	446	α-Fe	0.000	0.000	33.0	0.32	1.40	1.20	<u>20.1</u>	0.44	0.59
			E-FerN	<u>0.313</u>	0.087	<u>20.9</u>	0.32	1.40	1.20	<u>36.4</u>	1.19	1.35
			ξ-Fe ₂ N	0.404	0.279	***	0.28	1.00	***	<u>43.6</u>	0.98	***
A19B	20	446	α-Fe	0.000	1.676	***	0.28	1.00	***	6.5	1.00	***
			ξ-Fe ₂ N	0.404	0.279	***	0.28	1.00	***	<u>93.5</u>	0.98	***
A28	15	502	α-Fe	0.000	0.000	33.0	0.32	1.40	1.20	<u>4.4</u>	1.63	1.49
			E-Fe _x N	<u>0,341</u>	<u>-0.047</u>	<u>23.8</u>	0.36	1.40	1.20	<u>63.6</u>	1.24	1.20
			γ'-Fe₄N	0.224	0.000	34.0	0.34	1.40	1.20	8.0	2.40	3.17
				0.292	0.120	21.7	0.32	1.40	1.20	<u>16.0</u>	2.40	3.17
				0.292	-0.240	21.7	0.32	1.40	1.20	8.0	2.40	3.17
A22	15	550	ε-Fe _x N	<u>0.340</u>	<u>-0.028</u>	<u>24.3</u>	0.32	1.40	1.20	<u>62.0</u>	1.56	1.71
			γ-Fe ₄ N	0.224	0.000	34.0	0.32	1.40	1.20	<u>9.5</u>	2.65	3.17
			-	0.290	0.120	21.7	0.32	1.40	1.20	<u>19.0</u>	2.65	3.17
				0.290	-0.240	21.7	0.32	1.40	1.20	<u>9.5</u>	2.65	3.17
A52	60	545	E-FexN	<u>0.334</u>	<u>-0.035</u>	<u>23,8</u>	0.30	1.40	1.20	<u>62.5</u>	1.79	1.27
			γ-Fe ₄ N	0.224	0.000	34.0	0.30	1.40	1.20	<u>9.4</u>	2.65	3.17
				0.292	0.120	21.7	0.30	1.40	1.20	<u>18.7</u>	2.65	3.17
				0.292	-0.240	21.7	0.30	1.40	1.20	<u>9.4</u>	2.65	3.17
A52X	60	545	a-F e	0.000	0.000	33.0	0.30	1.40	1.20	<u>22.5</u>	1.63	1.49
			E-FerN	<u>0.340</u>	<u>-0.020</u>	24.1	0.30	1.40	1.20	<u>40.7</u>	1.79	1.27
			γ'-Fe ₄ N	0.224	0.000	34.1	0.30	1.40	1.20	<u>9.2</u>	2.65	3.17
				<u>0.292</u>	<u>0.120</u>	<u>21.7</u>	0.30	1.40	1.20	<u>18.4</u>	2.65	3.17
				<u>0.292</u>	-0.240	<u>21.7</u>	0.30	1.40	1.20	<u>9.2</u>	2.65	3.17

Capítulo 4 - Resultados e Discussões 63

Tabela VII - Relação das amostras nitretadas em mistura gasosa de $\rm N_2$ + 1% $\rm H_2$

ł.,

com os seus respectivos parâmetros Mössbauer.

Para tratamento de 15 mim. à 552 C, fig. 32d, a camada já ultrapassa 250 nm. As áreas relativas e as fases formadas permanecem as mesmas, mas podemos notar uma melhora

na qualidade do espectro, que indica uma maior cristalinidade da fase. A presença destas fases é confirmada pelo difratograma de raios-X, fig. 37. Em outra amostra tratada em 545 C /60 min. observamos a presença das fases ε e γ' , fig. 32d, e a razão ε/γ' fornecida por CEMS é de 1.70.

Através dos dados de CXMS, fig. 35, e tabela VII, a razão s/ γ' vale 1.08, portanto temos uma maior quantidade da fase s na superficie da camada de nitreto formada. Observamos uma melhora significativa do espectro que apresenta agora linhas mais finas devido a boa cristalinidade apresentada pelas fases formadas. A espessura da camada estimada por CXMS foi de 0.65 µm. Com o auxílio do difratograma de raios-X, fig. 38, obtivemos os parâmetros de rede, ($\alpha = 2.73$ Å, c = 4.35 Å e a razão $c/\alpha = 1.60$. Consequentemente através da correlação entre a quantidade de átomos de ferro e nitrogênio encontrada por [35] obtivemos a estequiometria Fe_{2.85}N para a fase s, que é a mesma estequiometria encontrada para a amostra A53 da secção 4.2.1. Da mesma forma os espectros Mössbauer mostram apenas um sexteto hiperfino, indicando se tratar novamente de uma fase ordenada.
Sumarizando, a cinética de formação do nitreto de ferro em pós descarga de nitrogênio e hidrogênio pode ser representada pelo diagrama.

407 C / 15 min. FeN - 18 % ζ-Fe₂N - 30 % γ'-Fe₄N - 21 % U 446 C / 20 min. ζ-Fe₂N - 44 % **є-Fe_xN - 37 %** α-Fe - 19 % 1 502 C / 15 min. s-Fe₁N - 64 % γ'-Fe₄N - 32 % α-Fe - 4 % Fases mal cristalizadas IJ 552 C / 15 min. ε-Fe_xN - 62 % γ'-Fe₄N - 38 % Fases melhor cristalizadas IJ 545 C / 60 min. ε-Fe₁N - 63 % γ'-Fe₄N - 37 % Fases bem cristalizadas

4.2.3 - NITRETAÇÃO EM ATMOSFERA DE N2 - CH4

Como foi mostrado na secção 4.1.2, a presença de traços de CH_4 na descarga provoca grandes variações na dissociação do nitrogênio, sobretudo para descarga a temperatura ambiente. A dissociação do nitrogênio apresenta um máximo quando colocamos traços de metano na descarga. Quando a quantidade de metano atinge um valor da ordem de 0.1 % observa-se que a densidade de nitrogênio atômico é menor do aquela produzida sem metano. Por isso, para o estudo da formação dos nitretos de ferro em descarga contendo CH_4 , utilizamos duas atmosfera nitretante. Uma contendo apenas traços de CH_4 que corresponde valores entre 40 e 180 ppm e outra contendo 0.1 % (~ 1000 ppm) de metano.

- MISTURA N₂ + 0.1 % CH₄

A fig. 39 mostra a evolução da formação da camada de nitreto de ferro em pósdescarga para uma atmosfera gasosa de $N_2 + 0.1$ % CH₄.

A fig. 39a é referente a uma amostra nitretada a 400 C por 15 min. onde temos a presença preponderante do substrato α -Fe com a coexistência das fases s, γ' e ξ em uma camada muito fina que não foram detectadas por raio-X, cujo difratograma apresentado na fig. 41 nos mostra apenas a presença de α -Fe.

As figs. 39b e 39c são referentes a amostras tratadas à 450 C por 15 min. e 70 min., respectivamente. Com tratamento de 15 min. a camada apresenta a fase ξ -Fe₂N como preponderante, juntamente comas fases ε -Fe_xN e γ '-Fe₄N em menor quantidade. O difratograma de raios-X da fig. 42 confirma a presença destas fases. A fase ξ -Fe₂N apresenta as linhas um pouco alargadas e com QS = 0.298 mm/s e IS = 0.340 mm/s, indicando que a fase esta mal cristalizada. Isto pode ser melhor visto na fig. 40 onde apresentamos o espectro CEMS com velocidade reduzida. Para a amostra tratada por 70

÷

min/450 C observa-se as mesmas fases, porém existe uma mudança nas áreas relativas das fases no sentido de favorecer a fase s e γ' . Apesar do tempo ter sido aumentado por um fator 4, o crescimento da camada ainda é bastante lento para esta temperatura. A espessura da camada é da ordem de 250 nm.

Para tratamento à 503 C por 15 min., amostra A23, a camada de nitreto formada apresenta as fases s e γ' conforme mostra o espectro da fig. 39d e o correspondente diffatograma de raios-X da fig. 43. A espessura desta camada ultrapassa os 250 nm. A fase s apresenta apenas um sítio cristalográfico com Hi = 23.7 T indicando que a fase se encontra perfeitamente ordenada. Dos dados de raios-X da fig. 43, obtivemos os seguintes parâmetros de rede para esta fase: $\alpha = 2.73$ Å e c = 4.37 Å e a razão $c/\alpha =$ 1.60 Utilizando a relação entre o numero de átomos de ferro e nitrogênio com os parâmetros de rede dada em [35], encontramos a estequiometria Fe_{2.3}N para esta fase.

Mantendo a temperatura em 502 C e aumentando para 30 min. o tempo de nitretação, as fases $\varepsilon e \gamma'$ são mantidas, porém ocorrendo mudanças vistveis no espectro CEMS da fig. 39e e no difratograma de raios-X da fig. 44, no sentido de favorecer a fase γ' . Entretanto, o rendimento apresentado é menor do que aquele apresentado para o tratamento de 15 min. Um decréscimo bem mais acentuado no rendimento pode ser verificado no espectro da fig. 39f e no difratograma da fig. 45 que são referentes a uma amostra tratada por 15 min à 545 C, onde temos uma grande presença do substrato α -Fe indicando que a camada de nitreto apresentou uma redução. Neste caso temos uma redução no rendimento da camada da ordem de 50 % em relação a amostra nitretada a 503 C por 15 min., fig. 39d. Dois são os fatores que podem causar esta redução do rendimento da camada de nitreto formada para altas temperaturas nesta atmosfera gasosa. Primeiramente, conforme podemos observar na fig. 23b que a quantidade de nitregênio atômico formada para temperatura dessa ordem apresenta

Figura 39 - Nitretação em pós-descarga de $N_2 + 0.1$ % CH₄. (a) A33, 400 C/15 min.; (b) A31, 450 C/15 min.; (c) A39, 453 C/70 min.; (d) A23, 503 C/15 min.; (e) A40, 502 C/30 min. e (f) A25, 545 C/15 min.

Capítulo 4 - Resultados e Discussões

Figura 40 - Espectro CEMS com velocidade reduzida da amostra A31.

Figura 41 - Difratograma de raios-X da amostra A33.

Figura 42 - Difratograma de raios-X da amostra A31.

Figura 43 - Difratograma de raios-X da amostra A23.

Figura 44 - Difratograma de raios-X da amostra A40.

Figura 45 - Difratograma de raios-X da amostra A25.

Num.	Tem	T	Fases	IS	QS	Hi	Wid	W21/	W23	Dep	D21/	D23
	po	(C)				<u>(T)</u>		W 13		(%)	D13	
A33	15	400	a-Fe	0.000	0.000	33.0	0.32	1.40	1.20	48.3	3.49	3.60
			Dubleto	0.142	0.210	***	0.21	1.00	***	_2.8	0.98	***
			E-Fe _x N	<u>0.125</u>	0.788	<u>14.0</u>	0.32	1.40	1.20	12.3	2.63	3.12
			γ-Fe ₄ N	0.224	0.000	34.1	0.32	1.40	1.20	8.0	2.62	4.12
				0.290	0.120	21.7	0.32	1.40	1.20	<u>16.0</u>	0.40	2.29
				0.290	-0.240	21.7	0.32	1.40	1.20	8.0	3.94	1.90
			ξ-Fe ₂ N	0.404	0.279	***	0.30	1.00	***	4.6	0.98	***
A31	15	450	a-Fe	0.000	0.000	33.0	0.32	1.40	1.20	<u>38.0</u>	2.48	2.44
			E-Fe _x N	<u>0.145</u>	<u>-0.085</u>	<u>19.9</u>	0.32	1.40	1.20	<u>29.0</u>	0.81	1.59
			ξ-Fe ₂ N	0.298	0.298	***	0.32	1.00	***	<u>33.0</u>	0.76	***
A21B	15	450	a -Fe	0.000	1.676	***	0.24	1.00	***	20.7	1.00	***
			ξ-Fe ₂ N	0.380	0.290	***	0.30	0.92	***	79.3	0.62	***
A39	70	453	Dubleto	0.122	0.356	***	0.30	1.00	***	12.8	0.60	***
			E-Fe _x N	0.346	-0.343	14.7	0.32	1.40	1.20	23.4	2.42	5.15
				0.122	0.000	30.3	0.32	1.40	1.20	3.0	2.75	5.12
			Y-Fe4N	0.224	0.000	34.0	0.32	1.40	1.20	12.1	1.15	2.12
				0.290	0.120	21.7	0.32	1.40	1.20	24.3	1.83	4.13
				0.290	-0.240	21.7	0.32	1.40	1.20	<u>12.1</u>	4.55	2.18
		<u> </u>	ξ-Fe ₂ N	0.404	0.279	***	0.32	1.00	***	<u>12.3</u>	0.95	***
A23	15	503	E-Fe _x N	<u>0.336</u>	-0.021	24.2	0.31	1.40	1.20	<u>68.0</u>	1.66	1.37
			γ-Fe ₄ N	0.224	0.000	34.0	0.31	1.40	1.20	8.0	2.65	3.17
			j I	0.290	0.120	21.7	0.31	1.40	1.20	<u>16.0</u>	2.65	3.17
				0.290	-0.240	21.7	0.31	1.40	1.20	8.0	2.65	3.17
A40	30	502	a-Fe	0.000	0.000	33.0	0.30	1.40	1.20	<u>11.3</u>	1.74	1.00
			E-FexN	<u>0.329</u>	<u>-0.022</u>	<u>24.3</u>	0.30	1.40	1.20	<u>57.6</u>	2.27	1.28
			γ'-Fe ₄ N	0.224	0.000	34.0	0.30	1.40	1.20	7.6	2.35	3.17
				0.290	0.120	21.7	0.30	1.40	1.20	<u>15.2</u>	2.65	3.17
			<u> </u>	0.290	-0.240	21.7	0.30	1.40	1.20	7.6	2.65	3.17
			ξ-Fe ₂ N	0.404	0.279	***	0.30	1.00	***	0.7	1.00	***
A25	15	545	α-Fe	0.000	0.000	33.0	0.32	1.40	1.20	<u>55.5</u>	2.34	1.86
			E-Fe _x N	0.288	-0.042	22.7	0.32	1.40	1.20	<u>17.2</u>	5.20	2.83
			Y-Fe4N	0.224	0.000	34.0	0.32	1.40	1.20	6.8	2.65	3.17
				0.290	0.120	21.7	0.32	1.40	1.20	<u>13.7</u>	2.65	3.17
			l 1	0.290	-0.240	21.7	0.32	1.40	1.20	6.8	2.65	3.17

Capitulo 4 - Resultados e Discussões 72

Tabela VIII - Relação das amostras nitretadas em mistura gasosa de $N_2 + 0.1$ % CH₄ com os seus respectivos parâmetros Mössbauer.

um decréscimo, e com isto esperaríamos um decréscimo no rendimento da camada de nitreto formada. A segunda causa, talvez a mais importante, seria devido ao papel redutor do hidrogênio, conforme [24] observou, quando utilizava grandes quantidades de hidrogênio na descarga. No nosso caso, com concentrações de 0.1 % de CH_4 acreditamos ter uma quantidade apreciável de hidrogênio devido a dissociação do CH_4 .

Esquematizando a cinética de formação dos nitretos de ferro nesta atmosfera nitretante temos:

400 C / 15 min. ξ-Fe₂N - 5% + s-Fe_xN - 12 % + γ'-Fe₄N - 32 % α-Fe - 48 % + Metaestáveis - traços U 450 C / 15 min. ξ -Fe₂N - 33 % (mal cristalizada) +ε-Fe₋N - 29 % α-Fe - 38 % IJ 453 C / 70 min. ξ-Fe₂N - 12 % + ε-Fe₁N - 26 % + γ'-Fe₄N - 49 % + Metaestáveis - 13 % 1 503 C / 15 min. ε-Fe_.N - 68 % + γ'-Fe₄N - 32 % + Fases mal formadas 1L 502 C / 30 min. ε-Fe_xN - 58 % $+\gamma'$ -Fe₄N - 30% α -Fe - 11 % IJ,

Ų.

545 C / 15 min. s-Fe_xN - 17 % + γ '-Fe₄N - 37 % + Substrato - 56 % Efeitos de redução [N] e redução química da camada pelo H

- N₂ + TRAÇOS DE CH₄

A cinemática de formação das fases de nitreto de ferro em pós-descarga para uma atmosfera contendo traços de metano, que corresponde a valores entre 40 e 180 ppms, pode ser vista na fig. 46.

A figura 46a mostra o espectro CEMS da amostra A44 nitretada à 400 C por 15 min. O espectro apresenta α -Fe e um singleto com largura de linha muito fina Wid = 0.24 mm/s e IS = 0.047 mm/s que são os mesmos parâmetros do singleto apresentado na amostra nitretada à 407 C por 15 min. em atmosfera de N₂ + 1 % H₂, mostrado na fig. 32a. A reflexão (111) do difratograma de raios-X para este singleto forneceu um d = 2.49 Å, o que considerando um sistema cúbico fornece um parâmetro de rede α = 4.33 Å.

Tanto o valor de IS quanto o paraâmetro de rede deste singleto concordam com os valores de IS, fig. 19, e o parametro de rede apresentado por [53] para uma fase Fe_xN com $x \cong 1$, cuja estrutura proposta por [53] é cúbica do tipo ZnS, onde os átomos de nitrogênio aparecem em coordenação tetraédrica.

Para tratamento à 454 C e tempos de 15 min., fig. 46b, encontramos a fase ξ -Fe₂N como preponderante, mais uma pequena parcela da fase s-Fe_xN. O espectro também apresentou um subspectro referente ao α -Fe. A fase ξ -Fe₂N formada apresenta-se bem cristalizada com Wid = 0.28 mm/s, e com valores de QS = 0.271 mm/s e IS = 0.402 mm/s, bem típicos e seu espectro pode ser visto em detalhes na fig. 47.

Aumentando a temperatura para 503 C para tempo de tratamento de 15 min., a camada de nitreto formada apresenta o espectro mostrado na fig. 46c. Este espectro foi

interpretado como sendo a soma de uma fase ferromagnética $Fe_x N \operatorname{com} x > 3$, mais a fase ξ -Fe₂N deficiente em nitrogênio.

Na fig. 46d apresentamos o espectro de uma amostra nitretada à 530 C por 15 min. O espectro nos mostra a presença de um mistura das fases ε -Fe_xN com 41 % e γ '-Fe₄N com 53 %. Temos ainda a presença de uma pequena quantidade do substrato α -Fe, indicando que a camada formada tem espessura ligeiramente inferior à 250 nm.

Ao elevarmos a temperatura para 540 C e nitretarmos por 60 min., continuamos a observar a presença das fase $\varepsilon \varepsilon \gamma'$, fig. 46e. A fase ε apresenta-se bem cristalina com largura de linha Wid = 0.30 mm/s e apenas um sítio cristalográfico Fe-II, demonstrando que a fase esta bem ordenada. O seu difratograma de raios-X, apresentado na fig. 49, confirma a presença das fases $\varepsilon \varepsilon \gamma'$. O seu espectro de CXMS é mostrado na fig. 48, donde usando o perfil de profundidade calculado em [24], estimamos uma espessura de 600 nm para a camada de nitreto formada. A razão ε/γ' das áreas relativas obtidas por CEMS e CXMS é de 2.33 e 1.34, respectivamente. Isto indica que temos uma estratificação da camada de nitreto formada, com a fase ε na superficie da camada conforme foi verificado para as amostras A53 nitretada em atmosfera de N₂ puro, apresentada na secção 4.2.1 fig. 27e e amostra A52 nitretada em atmosfera de N₂ + 1 % H₂, secção 4.2.2, fig. 32e.

Através do difratograma de raios-X desta amostra, fig. 49, encontramos os seguintes parâmetros de rede para a fase $\varepsilon = 2.72$ Å, c = 4.37 Å e a_razão c/a = 1.61, que segundo a correlação entre parâmetros de rede e a quantidade de nitrogênio na fase ε fornecida em

Figura 47 - Espectro CEMS com velocidade reduzida da amostra A45.

Figura 48 - Espectro CXMS da amostra A54.

Figura 49 - Difratograma de raios-X da amostra A54.

[35], fig. 15, obtivemos a estequiometria ϵ -Fe_{2.85}N. Portanto para as três atmosferas utilizadas a fase ϵ que se formou em temperaturas no entorno de 545 C apresentam no seu espectro Mössbauer apenas o sexteto do Fe-II, o que é um forte indicativo a nível microscópico de que se trata de uma fase ordenada na ocupação dos interstícios octaédricos pelo nitrogênio. Concordantemente a análise de difração de raios-X forneceu para as três amostras em questão, a mesma estequiometria ϵ -Fe_{2.85}N. Jack [35] estabeleceu que a fase ϵ -Fe₃N é perfeitamente ordenada. Como o conteúdo percentual em ferro destas duas estequiometria difere em menos de 1 %, o qual está no limite de resolução da espectroscopia Mössbauer, podemos dizer que a análise Mössbauer reflete uma fase ordenada (presença de um único sexteto Fe-II) cuja estequiometria esta muito próxima de ϵ -Fe₃N. A pequena discrepância dos dados de difração de raios-X, deve então ser atribuída a erros inevitáveis ao utilizar os dados gráficos da correlação dos parâmetros de rede com o conteúdo de nitrogênio proposta em [35].

Num	Tem	Т	Fases	IS	QS	Hi	Wid	W21/	W23	Dep	D21/	D23
	po					(T)		W13		(%)	D13	
A44	15	400	α-Fe	0.000	0.000	33.0	0.30	1.80	1.30	36.0	2.48	2.44
			Singleto	0.047	***	***	0.25	***	***	64.0	***	***
A44B	15	400	α-Fe	0.000	1.676	***	0.28	0.98	***	87.8	0.95	***
			Singleto	<u>0.047</u>	***	***	<u>0.24</u>	***	***	12.2	***	***
A45	15	454	a-Fe	0.000	0.000	33.0	0.28	1.60	1.30	25.5	3.24	2.65
			E-FexN	0.081	<u>-0.139</u>	<u>19.7</u>	0.30	1.40	1.20	5.2	2.65	3.17
			ξ-Fe ₂ N	0.443	0.278	***	0.29	1.00	***	72.3	1.00	***
A45	15	454	ξ-Fe ₂ N	0.401	0.270	***	0.28	0.86	***	100.0	0.89	***
A46	15	503	E-Fe _x N	<u>0.124</u>	-0.058	32.3	0.32	1.40	1.20	_20.2	1.00	1.20
			Dubleto	0.321	0.329	***	0.32	1.00	***	9.2	0.90	***
			γ'-Fe ₄ N	0.324	0.120	21.8	0.32	1.40	1.20	46.7	1.02	1.06
				0.296	-0.240	21.7	0.32	1.40	1.20	23.3	2.65	2.60
A47	15	530	α-Fe	0.000	0.000	33.0	0.30	1.40	1.20	5.7	0.71	0.81
			E-FexN	0.333	-0.023	23.6	0.30	1.40	1.20	41.4	1.79	0.70
			Y-Fe4N	0.224	0.000	34.1	0.30	1.40	1.20	13.2	2.65	3.17
				0.289	0.154	21.5	0.30	1.40	1.20	_26.5	2.65	3.17
				<u>0.289</u>	<u>-0.308</u>	<u>21.7</u>	0.30	1.40	1.20	13.2	2.65	3.17
A54	60	540	E-FexN	<u>0.337</u>	<u>-0.021</u>	<u>23.9</u>	0.30	1.40	1.20	69.7	1.98	1.48
			γ'-Fe ₄ N	0.224	0.000	34.0	0.30	1.40	1.20		2.65	3.15
				0.292	0.120	21.7	0.30	1.40	1.20	15.2	2.65	3.17
				0.292	-0.240	21.7	0.30	1.40	1.20		2.65	3.17
A53X	60	540	α-Fe	0.000	0.000	33.0	0.30	1.40	1.20	25.5	1.85	1.30
			ε-Fe _x N	0.334	<u>-0.034</u>	23.9	0.30	1.40	1.20	42.5	1.79	1.30
			γ'-Fe ₄ N	0.224	0.000	34.1	0.30	1.40	1.20	8.0	2.65	3.17
				0.306	0.120	<u>21.7</u>	0.30	1.40	1.20	16.0	2.65	3.17
				0.306	-0.240	21.7	0.30	1.40	1.20	8.0	2.65	3.17

Capítulo 4 - Resultados e Discussões 79

Tabela IX - Relação das amostras nitretadas em mistura gasosa de N_2 + traços de CH_4 com os seus respectivos parâmetros Mössbauer.

K. H. Jack [35] também mostrou que em ambiente evacuado a fase ε evolui termodinamicamente para a fase γ' em 420 C. Então podemos concluir que em nossas condições a fase ε é primariamente formada e evolui para a fase γ' , mas devemos observar que a estabilidade termodinâmica da fase ε formada pelo nosso método de pósdescarga é muito diferente daquela estabelecida por Jack, pois suas amostras, além de serem microcristalinas eram resfriadas rapidamente. Acreditamos que a diferença deve ser atribuído ao maior tamanho de grão e menor número de defeitos cristalinos da fase ε formada pelo nosso método, o que dificulta a difusividade do nitrogênio na rede, e mais, no nosso caso, estamos vendo a evolução térmica na própria atmosfera de formação dos nitretos, dai não ser totalmente surpresa a maior estabilidade térmica.

Esta diferença de estabilidade nos motivou a iniciar um estudo da evolução térmica destas amostras, a ser apresentado na secção 4.3.

Podemos resumir a cinética de formação dos nitretos de ferro em pos-descarga de nitrogênio com traços de metano no seguinte esquema.

400 C / 15 min. FeN - 64 % + α-Fe - 34 % 11 454 C / 15 min. ξ-Fe₂N - 72 % + s-Fe_N - 5 % + γ'-Fe₄N - 23 % U 503 C / 15 min. Mistura das fase ξ , $\varepsilon \in \gamma'$ mal cristalizadas 11 530 C / 15 min. 8-Fe_N - 41 % + γ'-Fe₄N - 53 % + α-Fe - 6 % Boa cristalinidade 11 540 C / 60 min. s-Fe_N - 70 % + Y-Fe N - 30 % Fases bem cristalinas

4.2.4 - ANÁLISE COMPARATIVA DAS CAMADAS

Uma comparação entre as amostras A53 (N₂ puro), A52 (N₂ + 1 % H₂) e A54 (N₂ + 0.008 % CH₄) todas nitretadas por 60 minutos em temperaturas no entorno de 545 C pode ser mais facilmente feita observando os dados da tabela X, onde apresentamos os valores das razões ϵ/γ' obtidas por CEMS e CXMS, bem como a espessura total da camada de nitreto obtidas através de CXMS e a densidade de nitrogênio medido na região de pós-descarga.

As concentrações de nitrogênio medidas apresentaram valores de 7.44x10¹⁴ átomos/cm³ para o caso do nitrogênio puro, $8.53x10^{14}$ átomos/cm³ na mistura N₂ + H₂ e 10.0x10¹⁴ átomos/cm³ na mistura N₂ + CH₄. Estes valores apresentam variações que concordam com as variações obtidas para a densidade de nitrogênio atômico mostrada na secção 4.1.2, figura 23. Observando estes valores e os valores obtidos para a espessura e as fases que compõem a camada nos três casos, conforme mostra tabela X, constatamos que não é possível fazer uma relação da densidade de nitrogênio atômico com a espessura da

Mistura gasosa	CEMS	C	XMS	Concentração de nitrogênio atômico
	razão s/y'	razão s/y'	Espessura (µm)	(átomos/cm ³⁾
N ₂ puro	4.88	2.41	0.70	7.44x10 ¹⁴
$N_2 + CH_4$	2.33	1.34	0.60	10.0x10 ¹⁴
$N_2 + H_2$	1.70	1.08	0.65	8.53x10 ¹⁴

Tabela X - Valores da espessura da camada, razão ϵ/γ' e densidade de nitrogênio atômico encontrados para as amostra A53 (N₂ puro), A54 (N₂ + traços CH₄) e A52 (N₂ + 1 % H₂). camada e/ou as fases formadas. Para o N_2 puro a densidade de nitrogênio atômica é a menor dos três casos, porém a espessura da camada formada é a maior, e é também a camada que apresenta a maior quantidade da fase ε . Conclui-se então que a espessura e/ou as fase formadas tem uma dependência maior com o tipo da mistura gasosa utilizada para a nitretação do que com a densidade de nitrogênio atômico.

Nos três casos detectamos a presença das fases ε e γ' , como é esperado pelo diagrama de fase. As fases ε também apresentaram apenas um sítio cristalográfico e a mesma estequiometria para os três amostras.

As razões ε/γ' obtidas tanto para CEMS como por CXMS indicam que as fase ε e γ' estão estratificadas em camadas com a camada da fase ε na superficie externa. Então podemos concluir que a fase ε é primeiramente formada e evolui para a fase γ' . Da tabela, também podemos observar que a espessura das camadas não apresentam diferenças significativas, mas a razão entre a fase ε e a fase γ' apresenta um decréscimo quando passamos da atmosfera de N₂ puro , para N₂ + CH₄ e N₂ + H₂. Como a historia térmica é a mesma para as três amostras, propomos que o hidrogênio (tanto atômico quanto molecular) possui um importante papel no sentido da transformação $\varepsilon \rightarrow \gamma'$.

4.3 - TRATAMENTO TÉRMICO

Nesta secção estudaremos a evolução térmica das fase de nitretos formada para duas amostras, A23 e A44, nitretadas em diferentes condições. O tratamento térmico foi realizado colocando a amostra em uma cápsula de vidro pirex em atmosfera de nitrogênio e sob vácuo de 10⁻¹ Torr, sendo então levada a um forno resistivo e durante um determinado tempo e temperatura que eram pré-estabelecido em função da fase de nitreto que se fazia presente na camada de nitreto.

a - Primeiramente estudaremos a evolução das fases de nitretos formada na amostra A23 que foi nitretada em atmosfera de N₂ + 0.1 % CH₄ por 15 min. à 503 C, cuja camada de nitreto apresentou as fases $\varepsilon \in \gamma'$ conforme descrição feita na secção 4.2.3

Na fig. 50 apresentamos todos os espectros CEMS referentes ao tratamento térmico, e os seus parâmetros Mössbauer são dados na tabela XI.

A fig. 50b é referente a um tratamento térmico por 136 H/200 C. Temos agora a presença de uma fase s com dois sítios cristalográficos com Hi = 23.3 T e 20.6 T. O surgimento de um novo sítio s, indica que os átomos de nitrogênio estão se deslocando para interstícios antes desocupados, no sentido de formar uma fase s desordenada. O desaparecimento da fase γ' pode se interpretado pela transformação térmica $\gamma' - \Delta \rightarrow \alpha$ -Fe + N₂ \neg , que para materiais cristalinos é esperado para T > 550 C, mas se processa a temperaturas bem mais baixas (~ 190 C) para uma granulometria nanocristalina [67].

Aumentando o tempo do tratamento para 496 H/200 C, fig. 50c, observamos agora uma mistura de duas fases ε desordenadas. Uma com dois sítios cristalográficos de campos hiperfino Hi = 23.3 T e 20.6 T tal como na etapa anterior, e a outra fase formada por um dubleto com linhas alargadas Wid = 0.40 mm/s e valores de QS = 0.396 mm/s e IS = 475 mm/s, que pode ser interpretado como pertencente a uma fase ε rica em nitrogênio e mal cristalizada.

Após um tratamento térmico por 496 H/200 C + 136 H/300 C + 72 H/350 C, fig. 50d, a camada apresentou uma mistura de fases com características da fase ε desordenada não sendo possível fazer um ajuste do espectro.

Prosseguindo o tratamento por mais 96 horas agora à 400 C, cujo espectro é mostrado na fig. 50e. Este espectro pode ser interpretado como uma mistura de quatro fases e com diferentes estequiometrias. Uma das fase desordenada possui dois sítios

Figura 50 - Espectro CEMS obtidos no tratamento térmico da amostra A23.

(a) A23, antes do trat.; (b) A23T, 136 H/200 C; (c) A23T3, 496 H/200C;

(d) A23T6, idem (c) + 136 H/300 C + 72 H/350 C e

(e) A23T8, idem (d) + 96 H/400 C.

Amostra Número	Tempo e Temperatura do Tratamento Térmico	Fases	IS mm/s	QS mm/s	Hi	Wid	Dep %
Runnero	do Hatamento remito		lilling	Hill's	(1)	S	70
A23T	136 hrs - 200 C	s-Fe _x N	0.318	0.00	23.3	0.31	54.0
			0.359	0.00	20.6	0.31	46.0
A23T3	496 hrs -200 C	s-Fe_N	0.340	-0.045	23.8	0.34	54.0
			0.185	-0.319	18.7	0.32	21.0
		Dubleto	0.383	0.383	***	0.32	25.0
A23T6	Idem A23T3 + 136 hrs - 300 C + 72 hrs - 350 C	Sem Ajuste					
A23T8	Idem A23T6 + 96 hrs - 400 C	s-Fe _x N	0.413	0.084	29.5	0.34	53.0
			0.445	0.131	22.6	0.31	3.2
			0.335	0.011	12.8	0.31	10.0
			0.481	-0.019	7.9	0.31	27.4
		Dubleto	0.377	0.914	***	0.28	6.4

Capitulo 4 - Resultados e Discussões 85

Tabela XI - Parâmetros Mössbauer obtidos no tratamento térmico da amostra A23.

cristalográficos com Hi = 29.6 T e 22.6 T, que representa átomos de ferro com um e dois átomos de nitrogênio como primeiros vizinhos, respectivamente. Os campos hiperfinos Hi = 18.8 T e 7.9 T apresentados pelas outras fases é um indicativo de que elas possuem uma concentração de nitrogênio um pouco maior do que a anterior, e finalmente a fase representada por um dubleto com largura de linha Wid = 0.28 mm/s e valores de QS = 0.914 mm/s e IS = 0.377 mm/s que são valores típicos de uma fase s rica em nitrogênio.

Portanto do tratamento térmico podemos constatar que os átomos de nitrogênio das fases com menor granulometria se difundem para outros sítios intersticiais octaédricos vagos, formando uma mistura de fases s com diferentes estequiometrias, evidenciando o seu caráter de solução sólida heterogênea ao nível microscópico, cuja composição devido ao grande número de sítios vagos e diversidade de granulometria, pode ser muito complexa. Nota-se também que as fases s formadas através da pósdescarga sempre apresentam uma maior estabilidade térmica do que a reportada na literatura para outros processos.

b - Discutiremos agora a evolução com a temperatura para as fases de nitretos formadas na amostra A44 nitretada à 400 C por 15 min. em atmosfera de nitrogênio mais 180 ppm de CH₄. A camada apresentou um singleto identificado como Fe_xN (x ~ 1) e um pequena quantidade de substrato α -Fe, conforme descrito na secção 4.2.3.

O espectros CEMS da amostra antes do tratamento térmico, bem como aqueles medidos após o tratamento térmico são mostrados na figura 51, e os parâmetros hiperfinos correspondentes são dados na tabela XII.

Na fig. 51b apresentamos o espectro após a amostra ter sofrido um tratamento térmico por 30 H/300 C. Podemos observar que o singleto inicial apresentou uma redução devido ao surgimento de uma nova fase representada por um dubleto com linhas bastante alargadas Wid = 0.60 mm/s e valores de QS = 1.310 mm/s e IS = 1.90 mm/s. Temos também a presença do subspectro referente ao α -Fe que apresentou um leve acréscimo no valor da sua área relativa conforme mostra a tabela XII. Este acréscimo na área relativa do α -Fe é uma evidência de que a camada esta diminuindo e portanto a fase representada pelo singleto está perdendo nitrogênio devido ação da temperatura, e esta perda aponta no sentido de que a nova fase representada pelo singleto. Embora o valor do quadrupolo deste dubleto seja um pouco maior do que aqueles obtidos para os dubletos descritos na secção 4.2.1, o valor do seu deslocamento isomérico esta em boa concordância. Em vista disto, este dubleto será atribuído como pertencente a uma fase Fe_{1+x}N (x < 1) conforme descrito naquela secção.

Para tratamento térmico de 130 H/300 C obtivemos o espectro apresentado na fig. 51c. Da figura podemos observar a presença das mesmas fases, porém a intensidade do dubleto é ainda mais pronunciada. O subspectro referente ao α-Fe também apresenta uma maior área relativa conforme pode ser constatado na tabela XII.

Amostra Número	Tempo e Temperatura do Tratamento Térmico	Fases	IS mm/s	QS mm/s	Wid mm/s	Dep %
A44T	30 hrs - 300 C	α-Fe	0.000	1.676	0.50	15.0
		Singleto	0.045	***	0.26	36.5
		Dubleto	0.270	1.313	0.60	48.5
A44T1	130 hrs - 300 C	α-Fe	0.000	1.676	0.40	17.5
		Singleto	0.043	***	0.27	26.5
		Dubleto	0.307	1.240	0.50	56.0
A44T2	270 Hrs - 300 C	α-Fe	0:000	1.676	0.45	25.6
		Singleto	0.044	***	0.31	21.3
		Dubleto	0.310	1.330	0.45	43.3
		Dubleto	0.310	0.920	0.45	9.8

Capítulo 4 - Resultados e Discussões 88

Tabela XII - Parâmetros Mössbauer obtidos no tratamento térmica da amostra

A44.

Isto esta de acordo com proposta de perda de nitrogênio pela ação da temperatura descrita anteriormente.

Finalmente para tratamento térmico por 270 H/300 C podemos constatar melhor o acréscimo da fase dubleto conforme mostra o espectro da fig. 51d. Agora temos também a presença de um novo dubleto com largura de linha Wid = 0.45 mm/s e valores de QS = 0.92 mm/s e IS = 0.23 mm/s, indicativo de que as fases estão se desordenando com o tratamento térmico provocando o surgimento de novos sítios cristalográficos formando fases com diferentes estequiometrias.

Portanto deste tratamento térmico podemos concluir que as fases metaestáveis de nitretos de ferro formadas em baixas temperaturas (400 C) apresentando nitretos ricos em nitrogênio evoluem para fase mais pobres em nitrogênio através da perda do nitrogênio por efusão e pela difusão deste na rede do ferro, devido a ação da temperatura. Ou seja, FeN \rightarrow Fe_{1.6}N e para temperaturas maiores estas fases evoluem para as fases ξ , ε e γ' , nesta seqüência, conforme foi mostrado nas cinéticas de formação.

CAPÍTULO 5

CONCLUSÃO

Através do método de pós-descarga constatamos que em baixa temperatura (~400 C) os nitretos de ferro começam a se formar por fases metaestáveis FeN e $Fe_{1.60}N$ as quais não são detectadas na nitretação D. C., onde o bombardeamento iônico na superficie da camada, causa um superaquecimento local da mesma, com a consequente evolução térmica destas fases metaestáveis.

A fase FeN possui estrutura cúbica do tipo ZnS com parâmetro de rede a = 4.33 Å, e seu espectro Mössbauer em temperatura ambiente apresenta apenas um singleto paramagnético de linhas muito finas. Ela apresenta um deslocamento isomérico IS = 0.045 mm/s muito diferente dos demais nitretos de ferro, porque nela o átomo de ferro esta em coordenação tetraédrica com os nitrogênios. A fase com estequiometria próxima de Fe_{1.60}N apresenta um dubleto paramagnético de linhas muito alargadas, evidenciando vários ambientes de coordenação do átomo de ferro. Não foi possível obte-la isoladamente e a sua estrutura não foi determinada. Ela representa um estágio intermediário na evolução térmica da fase FeN para a fase ξ -Fe₂N.

Durante a nitretação à temperatura de 400 C estas fases metaestáveis formadas não evoluem com o tempo, significando que a difusão do nitrogênio na rede do ferro é insignificante. Supondo que a difusão do nitrogênio na rede do ferro evolui com a raiz quadrada do tempo e comparando as amostras nitretada por 3 min. e 60 min. A 400 C descritas na secção 4.2.1, esperariamos obter um aumento de pelo menos 5 vezes na espessura da camada. Porém o rendimento apresentado nestes dois casos foi praticamente o mesmo. Portanto, a formação inicial-dos nitretos de ferro-não-ocorre por simples difusão de nitrogênio seguida de uma saturação e precipitação das fases, mas sim, pela-formação de aglomerados, que são justamente as fases mais ricas em nitrogênio, e estas por evolução térmica fornecem nitrogênio para as camadas internas.

Estas fases metaestáveis são precursoras da fase ξ -Fe₂N que por sua vez evolui para a fase ε -Fe_xN e depois para a fase γ' -Fe₄N. As fases ε e γ' aparecem em multicamadas com a fase ε na superficie externa.

Não foi possível estabelecer uma relação entre a espessura da camada de nitretos de ferro formada com a densidade de nitrogênio atômico através da cinética de formação destes nitretos nas diferentes misturas gasosas utilizadas.

Para as nitretações à 540 C nas três misturas gasosas utilizadas (ver tabela X), a amostra nitretada com nitrogênio puro, cuja concentração de nitrogênio atômico medidos na zona de reação é a menor dos três casos, apresentou a camada de nitreto mais espessa e também com a maior quantidade da fase s. Quanto à maior quantidade da fase s na atmosfera de nitrogênio puro é um indicativo de que esta técnica de nitretação predispõe à formação desta fase. Quando aumentamos a quantidade de CH_4 para 0.1 % na tentativa de aumentar a quantidade de carbono, uma vez que este elemento auxilia na estabilização da fase s, observamos uma redução significativa tanto da fase s quanto da espessura da camada. Isto indica que o carbono não está sendo incorporado à rede do ferro ou a quantidade difundida é muito pequena, pois se isto estivesse acontecendo esperaríamos uma maior quantidade da fase s, inclusive com o uma ligeira desordem de ocupação nas vacâncias octaédricas, resultando mais do que um sexteto hiperfino no seu espectro Mössbauer, o que não foi observado

Este maior rendimento obtido em pós-descarga de nitrogênio puro, ocorre devido ao fato de não existir hidrogênio presente que atua como redutor da camada. Estes fatos evidenciaram que o hidrogênio introduzido com as impurezas (H_2 ou CH_4) reduz competitivamente as fases s e γ' .

O papel redutor do hidrogênio, principalmente o atômico, na transformação $s \rightarrow \gamma' \rightarrow \alpha$ -Fe, pode explicar qualitativamente o aumento na proporção da fase γ' , juntamente com a redução na espessura total da camada nas amostras nitretadas em misturas gasosas onde este elemento se fazia presente.

A fase s formada para tratamento em torno de 540 C é em todos os casos analisados uma fase ordenada, cuja estequiometria determinada através de raio-X é $Fe_{2.85}N$, pois o conteúdo percentual em ferro desta estequiometria difere em menos de 1 % do conteúdo percentual em ferro determinado por Jack [35] para a fase s-Fe₃N completamente ordenada. Este ordenamento desta fase evidencia a seletividade na difusão do nitrogênio, introduzida pelo método de pós-descarga.

A cristalinidade e a estabilidade termodinâmica das fase obtidas em pós-descarga é maior do que as produzidas por outros métodos. Isto é atribuído ao fato de que o nosso método deva introduzir um número comparativamente menor de defeitos na rede do substrato. De fato do tratamento térmico (secção 4.3) observamos que a estabilidade termodinâmica para a fase e difere significativamente das amostras nanocristalinas obtidas por mechanical alloying reportadas por Rochegude e Foct [67], onde sua evolução para a fase y' ocorre em 190 C para tratamentos térmico da ordem de 3 horas. Isto coloca em evidência o papel dos defeitos de rede na efusão do nitrogênio e aponta para a continuidade dos estudos utilizando a nitretação em pós-descarga, porém em alvos finos (~25 µm) que após nitretado poderiam ser analisados através de espectroscopia Mössbauer de transmissão que além de ser mais rápida, também pode ser feita à baixa temperatura fazendo com que o número de informações obtidas a respeito da camada de nitreto que neste caso constitui toda a amostra, fosse muito maior. As complicações experimentais da analise por difração de raios-X neste caso também seriam menores, pois não se trata de um uma análise por raio-X de baixo ângulo, o qual exige equipamento mais sofisticado. Poderia ser feito também estudos utilizando microscopia eletrônica de transmissão a qual nos permite observar a formação de grãos intercrescidos e assim ter um melhor acompanhamento da evolução destes. Análises através de DTA-TGA (Diferential Temperature Analyse - Temperature Gravimetry Analyse) e efusão de gás tornariam mais precisas a análise de perdas e evolução térmica, pois neste caso não teríamos efusão de gazes proveniente do substrato como acontece na caso de amostras espessas.

BIBLIOGRAFIA

- [1] RICARD, A., MALVOS, H. and MICHEL, H.; Rev. Bras. de Aplic. de Vácuo; Vol. 11, Num. 1, 1992, 33-38.
- [2] MOISAN, M., LEPRINCE, P., BEAUDRY, C., BLOYET, E.; IEEE Trans. Plasm.
 Sci.; PS-3 (1975) 55; US Patent; 4,049,940; 1977.
- [3] RICARD, A., OSEGUERA, J., MICHEL, H. and GANTOIS, M.; IEEE Trans. Plasma Sci.; 18(1990); 940.
- [4] RICARD, A., BESNER, A., HUBERT, J. and MOISAN, M.; J. phys. B; At. Mol. Phys.; 21(1988) L579.
- (5) KOSSYI, I. A., KOSTINSKY, A. Y., MATVEYEV, A. A. and SULAKOV, V. P.; Source Sci. Technol.; 1 (1992); 207-200.
- [6] WRITHT, A. N. and NELSON, C. A.; Acad. Press. (1968).
- [7] KRETSCHMER, C. B. and PETERSEN, H. L.; J. Chem. Phys. 39(1963) 1772.
- [8] FONTIJN, A., MEYER, C. B. and SCHIFF, H. I.; J. Chem. Phys. 40(1964) 64.
- [9] SOUZA, A. R., MAHLMANN, C. M., MUZART, J. R. L. and SPELLER, C. V.;
 J. Phys. D. Appl. Phys. 26 (1993) 1-14.
- [10] KIN, C. Y. and BOUDART, M.; J. Phys. D: 26 (1993) 163-176
- [11] JACK, K. H.; Proc. Soc. London 208A (1951) 216.
- [12] RICARD, A., DESCHAMPS, J. and GODARD, J. L.; Materials Science and Engineering; a139(1991); 9-14.
- [13] FRAUENFEUDER, H.; The Mössbauer Effect; New York; Benjamin 1962.
- [14] WERTHEIM, G. K.; Mössbauer Effect; Principles and Applications; New York; Academic Press 1964.
- [15] GOLDANSKII, V. Y., HERBER, R. (eds); Chemical Applications of Mössbauer Spectroscopy; New York; Academic Press 1968.

- [16] MAY, L. (EDS); An Introduction to Mössbauer Spectroscopy; New York; Plenun Press 1971.
- [17] GREENWOOD, N. N., GIBB, T. C.; Mössbauer Spectroscopy; London; Chapman and Hall 1971.
- [18] STEVENS, J. G., SHENOY, G. K.; Mössbauer Spectroscopy and Its Applications; Washington, D. C.; Advanced in Chemistry Series 194; 1981.
- [19] LONG, G. J.; Mössbauer Spectroscopy Applied to Inorganic Chemistry; Vol. I; Plenun Press; 1984.
- [20] GUTLICH, P., LINK, R., TRAUTWEN, A.; Mössbauer Spetroscopy and Transition Metal Chemisty; Springer-Verlag; 1978.
- [21] GIBB, T. C.; Principles of Mössbauer Spectroscopy; Chapman and Hall; 1976.
- [22] SWANSON, K. R., SPIJKERMAN, J. J.; J. Appl. Phys.; 1970; 41, 3155.
- [23] PETREVA, M., GONSER, U., HASMANN, U., KEUNE, W., LAUER, J.; J. Phys (Paris); Colloq. 1976, c6, 295.
- [24] FIGUEIREDO, R. S.; Dissertação de Mestrado; UFSC; 1991.
- ([25] JACK, D. H. and JACK, K.H.; Mat. Sci and Eng. 11(1973) 1-27.
- [26] HANSEN. M.; Metallurgy and Metallurgical Engineering Series. McGraw-Hill Book Company. 1958.
- [27] PASCAL, P.; Noveau Traté de Chimie Minerale; Mason Editeurs: Paris 1963.
- [28] MASTORAKIS, A.; Thèse de doctorat; Lille (1992).
- [29] JACK, R. H.; Proc. Roy. Soc. A, 105, (1948) 34.
- [30] KUHNEN, C. A., FIGUEIREDO, R. S. and DRAGO. V.; J. of Mag. and Mag. Mat. 111(1992) 95-104.
- [31] JUZA, R.; Nitrides of Metals of the First Transition Series in Advances in Inorganic Chemistry and Radiochemistry; Emléus, H. J., Sharp, A. G.; Academic Press; 9; 81-131, 1966.
- [32] JACK, K. H.; Proc. Roy. Soc. A; 193, 34 (1951).

- ¹ [33] HAGG, G.; Acta Reg. Soc. Sci. Upsaliensis; 4, 7(1), 6 (1922).
- [34] OWAWA, H., IWAISUMI, S.; Z. Krystallogr.; 69, 26 (1928).
- [35] JACK, K. H.; Acta Cryst.; 5, 404 (1952).
 - [36] FOCT, J.; Thèse de Docteur ès-Sciences Physiques; Lille (1986).
 - [37] FOCT, J., MASTORAKIS, A.; Proc. "HNS 90 "; Aachen-Germany; 72-77 (1990).
 - [38] ROBBINS, M., WHITE, J. G.; Phys. Chem. Solids; 25, 717 (1964).
 - [39] BRIDELLE, R.; Thèse de Doctorat; Lille (1954).
 - [40] BAINBRIDGE, J., CHANNING, D. A., WHITLER, W. H. and PENDELBURG, R.E.; J. Phys. Chem. Solid; 34, 1579 (1973).
 - [41] FIRRAO, D., ROSSO, M., PRINCIPI, G. FRATTINI, R.; J of Mat. Sci.; 17 (1982) 1773-1788.
 - [42] CHEN, G. M., JAGGI, N. K., BUTT, J. B., YEH, E. B. and SWHARTZ, L. H.; J. Phys. Chem.; 1983, 87, 5326-5332.
 - [43] CHABANEL, M., JANOT, C. and MOTTE, J. P.; C.R. Acad. Sci. Paris, B266 (1968)419.
 - [44] MEGATA, M., YOSHIMURA, H. and TAKAKI, H.; J. Phys. Soc. Japan 33 (1972) 62.
 - [45] VASQUEZ, A., AMARAL, L., BEHAR, M., MAREST, G., RAMOS, S. M. M.,

SANTOS, C. A., SILVA, M. T. X., VICCARO, P. J. e ZAWISLAK, F. C.;

[46] ROCHEGUDE, P. and FOCT, J.; Phys. Stat, Sol. (a); 98, 51, (1986).

[47] EICKEL, K. H. and PITSCH, W.; Phys. Status Solidi; 39 (1970) 121.

- [48] CLAUSER, M. J.; Solid Stat Commun.; 8, 781 (1970).
- [49] FOCT, J.; C.R. Acad. Sci. Paris; C 276 (1973) 21
- [50] ROCHEGUDE, P. and FOCT, J.; Phys. Stat. Sol. (a) 88, 137 (1985).
- [51] DeCRISTOFARO, N. and KAPLOW, R.; Metal. Trans. A, 8A, (1977).
- [52] RON, M.; Iron- Carbon and Iron-Nitrogen Syst. in Appl. of Mössbauer Spect.; Edit.

by R. L. Cohen, N. Y.; Academic Press; Vol. 2, Cap. 7, 1976.

- [53] NAKAGAWA, H., NASU, S., FUJII, H., TAKAHASHI, M. and KANAMARU, F.; Hiperfine Hiterations 69(1991) 455-58.
- [54] SHIRANE, G. TAKEI, W. J. and RUBY, S. L.; Phys. Rev., 126 (1962) 49.
- [55] WATANABE, Y., NOZAKI, H., KATO, M. and SATO, A.; Acta Mettal. Mater. 39(12) 1991.
- [56] KIM, T. K. and TAKAHASHI, M.; Appl. Phys. Letter 20 (1972) 492.
- [57] DABRECK, J.; Acta Phys. Pol. A46 (1974) 65.
- [58] NEUHASER, H. J. and PITSH, W.; Z. Metallk. 62 (1971) 792.
- [59] MEKADA, Y., LESLIE, W. C., CHURAY, T. P. and LI, J. G. M.; Trans. Am. Soc. Metals 60 (1967) 223.
- [60] DRABECK, J. and ZBROSZCYK, J.; J. of Mag. and Mag. Mat. 24 (1981) 29-33.
- [61] KANO, A., KOZAMA, N. S. and FUGIMORI, H.; J. Appl. Phys. 53 (11) 1982.
- [62] ANDRIAMANDROSO, D., FELEILATIEV, L. DEMAZEAU, G., FOURNES, L. and POUCHARD, M.; Mat. Res. Bull.; 19: 1984. 1187-94.
- [63] SIBERCHICOT, B., MATAR, S. F., FOURNES, L., DEMAZEAU, G. and

HAGENMULLER, P.; J. of Solid State Chem. 84: 1990, 10-15.

- [64] ROHLENA, K. and MASEK, K.; Proc. 7 th Int. Symp. on plasma Chem. Eindhoven
 1985. The Netherlands, ed. C. J. Timmermans, p.p. 1377-82. Acta Phys. Slov. 35
 (1985) 141-4.
- [65] YAMASHITA, T.; J. CHEM. PHYS. ; 70 (1979) 4248-53.
- [66] LOUREIRO, J. and RICARD, A.; J. Phys. D 26(1993) 163-176.
- [67] ROCHEGUDE, P and FOCT, J.; C. R. Acad. Sci. Paris. Tome 309, 1545-49. 1989.
- [68] YOUNG, R. A. and JOHN, P. D. St.; J. Chem. Phys. 48(1968) 895-7.
- [69] NOZIK, A. J., WOOD, J. C. Jr. and HAACKE, G.; Solid State Comm. Vol. 7, 1969, 1977-79.
- [70] MORGAN, J. E. and SCHIFF, H. I.; Canad. J. Chem. 42(1964) 2300-2. [71] RUHH, R. C. and COHEN, M.; Trans. AIME 245(1969) 241.

[72] HUDIS, M.; Journal Appl. Physics; 44(4); 1489-96, 1973

[73] TIBBETTS, G. G. ; Journal of Applied Physics; 45(11); 5072-73, 1974.

[74] METIN, E. and INAL, O. T.; Journal of Materials Science; 22; 2783-88, 1987.

[75] CEGORNORA, R.; Thèse Docteur D'État. LPGP-Université Prais-Sud; 1980.

- [76] IMAI, Y., IZUMIYAMA, M., TSUCHIYA, M.; Sci. Rept. Res. Inst. Tohuku Univ.; A17(1965) 173.
- [77] GREENWOOD, N. N. and EARNSHAW, A.; Chemestry of the Elements; Pergamon Press; 1984.

[78] FOCT, J., DUBOIS, J. M. and Le CAER, G.; J. Physique, 35(6) (1974) 493.

[79] GRÖMING, P., NOWAK, S. and SCHLAPBACK, L.; Applied Surface Science;

64(1993); 265-273.