UNIVERSIDADE FEDERAL DE SANTA CATARINA PROGRAMA DE POS-GRADUAÇÃO EM ENĜENHARIA MECÂNICA

PROPRIEDADES SECCIONAIS DE PERFIS DE PAREDES FINAS INCLUINDO O EFEITO DA FLAMBAGEM LOCAL

DISSERTAÇÃO SUBMETIDA À UNIVERSIDADE FEDERAL DE SANTA CATARINA PARA OBTENÇÃO DO GRAU DE MESTRE EM ENGENHARIA

CARLSON ANTONIO MENDES VERÇOSA

FLORIANOPOLIS, DEZEMBRO DE 1981

PROPRIEDADES SECCIONAIS DE PERFIS DE PAREDES FINAS INCLUINDO O EFEITO DA FLAMBAGEM LOCAL

CARLSON ANTONIO MENDES VERÇOSA

ESTA DISSERTAÇÃO FOI JULGADA ADEQUADA PARA A OBTENÇÃO DO TÍTULO DE

"MESTRE EM ENGENHARIA"

ESPECIALIDADE: ENGENHARIA MECÂNICA, ÁREA DE CONCENTRAÇÃO PROJE-TO, E, APROVADA EM SUA FORMA FINAL PELO PROGRAMA DE PÓS-GRADUAÇÃO.

PROF. EDISON DA ROSA, M.Sc.
ORIENTADOR

PROF. ARNO BLASS, Ph.D.
COORDENADOR

BANCA EXAMINADORA:

PROF. NELSON BACK, Ph.D.

PROF. EDISON DA ROSA, M.Sc.

PROF. LUIZ TEIXEIRA 100 VALE PEREIRA, M.Sc.

A Helena e Carla.

Aos meus pais.

AGRADECIMENTOS

- Ao Professor Arno Blass, na figura de coordenador do curso de Pós-Graduação em Engenharia Mecânica, pela oportunidade;
- Em especial ao Professor Edison da Rosa pela orientação técnica e pessoal;
- Ao engenheiro Vilson Wronscki Ricardo pela ajuda na parte computacional;
- Aos funcionários do NPD da UFSC, em especial aos amigos Luiz Carlos Pereira, Edson Luiz da Silva e Vilton Wronscki, pelo atendimento;
- Aos amigos Altamir Dias, João Pedro Quirino e Maurice Boulos Halal, pelo interesse;
- A Roberto José Dias pela excelente qualidade dos desenhos;
- A Josemar Maso pelo excelente trabalho de datilografia;
- À Comissão Nacional de Energia Nuclear (CNEN) e a Universida de Federal de Pernambuco (UFPE), pelo apoio financeiro.

AGRADECIMENTO ESPECIAL

Ao caríssimo Professor Domingos Boechat Alves, minha gratidão. É uma honra tê-lo como mestre e amigo. Admirápor sua simplicidade, por seu espírito de luta, dedicação e por seu magnifico trabalho em prol do desenvolvimento científico do país.

E finalmente pela proposição do presente tema de dissertação, sugestões e interesse.

SUMÁRIO

SIMBOLOGIA	viii
RESUMO	хi
CAPÍTULO 1 - INTRODUÇÃO	1
CAPÍTULO 2 - REVISÃO BIBLIOGRÁFICA	3
2.1 - Introdução	3
2.2 - Estabilidade de placas delgadas	7 7 9
2.3 - Resistência pós-flambagem	19
2.4 - Largura efetiva	2 2
paralelas à direção da tensão	22
tensão de compressão	32
2.5 - Membros em compressão axial	41
CAPÍTULO 3 - PROCESSO NUMÉRICO COMPUTACIONAL	47
3.1 - Introdução	47
3.2 - Configuração geométrica do i-ésimo elemento	49
3.3 - Propriedades geométricas do i-ésimo elemento 3.3.1 - Elemento retilineo	51 51 52
 3.4 - Propriedades seccionais	5 5 5 6 5 8
3.5 - Programa condificado em FORTRAN	73
CAPÍTULO 4 - EXEMPLOS E COMPARAÇÕES	74
CAPÍTULO 5 - CONCLUSÃO	86
REFERÊNCIAS BIBLIOGRÁFICAS	88
APÊNDICE A	91

APÊNDICE B - MANUAL DO USUÁRIO	93
B.1 - Introdução	93
B.2 - Modelagem da seção transversal	93
B 3 - Entrada de dados	102
APÊNDICE C	118
APÊNDICE D	122
APÊNDICE E	124

SIMBOLOGIA

LISTA BÁSICA DE SÍMBOLOS

```
A, A_{\text{ef}} - Área e Área efetiva da seção transversal, respectivamente (L^2);
```

a, b, t - Dimensões da placa (comprimento, largura e espessura, respectivamente (L));

a/b - Relação de aspecto;

b_e - Largura efetiva (L);

b'_e - Largura efetiva para sub-elemento (L);

C - Centróide da seção transversal

- Coeficiente de flambagem para coluna

- Coeficiente de proporcionalidade;

D - Rigidez flexional;

E - Módulo de elasticidade;

f(y) - Função deslocamento na direção transversal ao car regamento, para elemento apoiado nos lados x=0, x=a e y=0 e livre no lado y=b;

 I_{ξ} , I_{η} , $I_{\xi\eta}$ - Momentos e Produto de inércia de **á**rea - seção ple na (L4);

$$I_{x_g(ef)}, I_{y_g(ef)},$$

 $I_{x_g y_g}(ef)$ - Momentos e Produtos de inércia de área - seção efetiva (L');

K - Coeficiente de flambagem;

L - Comprimento de flambagem (L);

 $\mathbf{M}_{\mathbf{X}}$, $\mathbf{M}_{\mathbf{y}}$ - Momento fletor segundo os eixos x e y, respectivamente (FL);

 ${\rm M_1}$, ${\rm M_2}$ - Momento fletor máximo obtido com o módulo de resistência para seção plena e para seção reduzida respectivamente (FL);

M_t - Momento fletor médio máximo na falha (experimental) (FL);

```
M_{x}, M_{y}
              - Momento fletor em relação aos eixos x e y, respec
                tivamente (FL);
N_{x}, N_{y}, N_{xy} - Tensões resultantes de membrana;
              - número de elementos da seção transversal;
n
N_{x}
              - Tensão crítica de flambagem (força por unidade de
                comprimento - F/L);
              - Força de compressão (F);
Р
              - Fator de forma ou de coluna, isto é,
                                                             fator
                                                                      de
Q
                área ou fator de tensão;
              - Raio de giração (L);
R_{\xi}, R_{\eta}
R_{\xi p}, R_{\eta p}
              - Raio de giração mínimo e máximo (L);
S_{\xi}, S_{\eta}
              - Modulo de resistência - seção plena (L³);
S<sub>ξ(ef)</sub>,
              - Módulo de resistência - seção efetiva (L³);
S<sub>n(ef)</sub>
              - Força cisalhante (FL);
V_{y}
              - Deflexão de um ponto da superfície de referência
                da placa;
              - Eixos coordenados do sistema de referência global;
х, у
              - Coordenadas do centróide da seção;
x_C, y_C
              - Coordenadas do centro de cisalhamento;
x_S, y_S
              - Eixos coordenados com centro no centróide C e pa-
ξ, η
                ralelos aos eixos x e y;
              - Eixos principais de inércia;
\xi_{p}, \eta_{p}
              - Coeficiente de Poisson;
              - Tensão de trabalho;
σ
              - Tensão básica ou de projeto;
\sigma_{\rm h}
              - Tensão calculada pelas expressões (2.54) e (2.55);
\sigma_{cc}
              - Tensão de flambagem obtida de testes;
\sigma_{ct}
              - Tensão crítica de flambagem;
\sigma_{\rm cr}
              - Tensão admissível reduzida;
σca
```

- Tensão de escoamento;

 $\boldsymbol{\sigma}_{m}$ — Limite de resistência obtido dos testes;

omáx - Tensão máxima de borda;

(Unidade de Tensão - FL⁻²)

Demais símbolos - Descritos no Texto.

RESUMO

Este trabalho tem por objetivo desenvolver um processo numérico computacional e um programa codificado em FORTRAN, para se obter as propriedades seccionais plenas e efetivas de membros estruturais de paredes delgadas. As propriedades efetivas são de correntes de uma redução na área da seção transversal, como consequência da flambagem local.

O programa está fundamentalmente baseado nas especificações para o projeto de membros estruturais leves, AISI (American Iron and Steel Institute) e NB-143 (Norma Brasileira - ABNT) e tem por suporte o programa computacional SEDEL.

São apresentados alguns resultados obtidos com o referido processo.

ABSTRACT

This work presents the development of a numerical procedure and the implementation of a computer program for the determination of the cross-sectional properties of thin wall members when local buckling is taken into account.

The numerical procedure complies with the Specification for the Design of Light Gage Cold-Formed Steel Structural Members (AISI), the Brazilian Norm NB-143 (ABNT) and has the support of the computational program SEDEL.

Several examples are presented and compared with known results.

CAPÍTULO 1

INTRODUÇÃO

A resistência pos-flambagem apresentada à complessão por elementos delgados, é vista como o principal aspecto no cam po de projeto de estruturas leves. Ela, quando considerada, pro porciona um melhor aproveitamento na capacidade de carga do ele mento e consequente economia de material.

Paralelamente, o efeito da flambagem local é de fundamental importância em projetos que envolvem membros estruturais de paredes delgadas, uma vez que seu efeito é refletido através de uma redução nas propriedades seccionais plenas. Esta redução se torna mais aparente quando os elementos componentes do perfil possuem suas respectivas razões largura-espessura elevadas e, notadamente, quando sujeitos a níveis elevados de tensão.

Evidentemente, o conhecimento das propriedades seccionais considerando a seção plena e a efetiva (reduzida), é imprescindível a todo e qualquer projeto de estruturas que envolva tais membros.

Com o propósito de se obter as propriedades seccionais plenas e efetivas, desenvolve-se um procedimento numérico computacional e programa codificado em FORTRAN. Os perfis são obtidos por conformação a frio a partir de chapas finas de aço ou de outros materiais.

O processo numérico, aqui elaborado, baseia-se nas especificações para projeto de membros estruturais leves, NB-143 (Norma Brasileira - ABNT) [17] e AISI (American Iron and Steel Institute) [4], e tem como suporte o programa computacional SE-DEL [22]. A hipótese fundamental para a elaboração deste proces so, é que os elementos de parede das seções transversais possam ser discretizados em tantos elementos quantos necessários, de tal modo que a seção venha a ser modelada por um conjunto de nós interligados por elementos retilíneos e/ou circulares.

No apêndice B é apresentado um manual do usuário. Nele encontra-se as informações necessárias para a utilização do programa PEPAD. Estas consistem de procedimentos básicos referentes a modelagem da seção transversal, bem como da entrada de da dos.

Para verificar a validade da formulação desenvolvida e apresentada no capítulo 3, são determinadas as propriedades ple nas e efetivas para uma variedade de seções transversais de uso corrente. Para efeito comparativo, os resultados são apresentados no capítulo 4, em tabelas, simultaneamente com resultados conhecidos.

No apêndice E são apresentadas tabelas contendo propriedades plenas e efetivas de perfis estruturais, de aço, conformados a frio e, amplamente utilizados em estruturas. As dimensões dos perfis estão em acordo com a Norma Brasileira Registrada - NBR 6355 [24].

CAPITULO 2

REVISÃO BIBLIOGRÁFICA

2.1 - INTRODUÇÃO

O problema da estabilidade de placas delgadas sob com pressão tem sido extremamente investigado por muitos pesquisadores. Historicamente, a primeira solução deste problema data de 1891, quando Bryan [9] apresentou a análise para uma placa retangular simplesmente apoiada em todas as bordas, e sujeita a uma carga compressiva uniformemente distribuída no plano de referência, atuando em dois lados opostos. A solução apresentada provém da equação diferencial de equilíbrio estático da placa, a qual relaciona as forças de contorno com o deslocamento normal da placa.

A contribuição de Timoshenko [2] neste campo foi valiosa, uma vez que ele obteve resultados simples para a maioria dos casos que são importantes na engenharia. Outra análise deste problema e vista por Marguerre [15] para várias condições de carregamento e apoio das placas.

Em estruturas aeronáuticas, entretanto, chapas delgadas são frequentemente utilizadas além do limite de estabilidade, e a carga que pode ser suportada pela estrutura é determinada pelo limite de resistência à compressão. A resistência apresentada por esses elementos para valores de tensão acima da tensão crítica, ou tensão de Bryan, foi estudada inicialmente por Von Karman [3] em 1928. Contudo, a complexidade das equações governantes levou-o a introduzir a hipótese de largura efetiva.

Os primeiros testes com finalidade de determinar-se experimentalmente o limite de resistência de placas delgadas, foram realizados por Shuman e Back [11]. Eles observaram que, para placas largas e delgadas, o limite de resistência chegava a ser cerca de trinta vezes maior que a carga crítica de Bryan, e que para placas espessas e estreitas, a carga máxima não excedia a de Bryan. Além disso, foi observado que para placas largas e delga-

das, a carga máxima torna-se praticamente independente da largura da placa.

A questão da resistência máxima de uma placa delgada, particularmente de placas com reforços na direção da carga, foi nesta época de vital importância para a engenharia aeronáutica. Métodos empíricos [12] foram, então, propostos, até que Von Karman [3] desenvolveu uma fórmula semi-empírica para a determinação da capacidade plena de uma placa simplesmente apoiada. Sua formulação é simplificativa e está baseada na hipótese de que na falha, duas tiras adjacentes às bordas enrijecidas estão sujeitas a tensões de compressão uniformemente distribuídas e iguais a tensão de escoamento do material; a região central da placa mais energicamente distorcida, pode ser considerada livre de tensão.

Adicionalmente, numerosos testes foram realizados espressões desenvolvidas para a engenharia aeronáutica, não cobriam outras faixas de interesse. De principal interesse pa ra a engenharia naval, foram os extensivos testes conduzidos atra vés de U. S. Experimental Model Basin, com a finalidade de se determinar o limite de resistência de placas retangulares sob compressão. Os testes apresentados na referência [13]realizados sob vários aspectos e os resultados criteriosamente analisados. Convém ressaltar que numa série destes testes foi mantida constante a espessura de 2,77mm, e a largura variou 127 e 762mm, inclusive. Jã em outro grupo era a espessura riar, numa faixa entre 1,27 e 2,77mm, inclusive. Os resultados fo ram incisivos para a utilização da formulação proposta Karman [3] uma vez que ela era compatível com os ensaios mentais, mais explicitamente para placas cuja largura 254mm. Para razões largura-espessura maiores que 100, a capacidade máxima de carga era pouco afetada pela largura da placa. placas com largura em torno de 762mm apresentam uma resistência insignificante, com relação às de 254mm de largura.

O caminho experimental era evidente, tendo em vista a complexidade matemática da equação diferencial de equilibrio para placas no campo de grandes deflexões. Esta teoria foi desenvolvida por Kirchhoff [18]. A forma final das equações foi dada por Von Karman. A partir daí ficou conhecida como equação diferencial

de Von Karman. Algumas soluções aproximadas desta equação para os casos mais simples, isto é, placas retangulares e circulares uniformemente comprimidas, podem ser encontradas em [19].

Obviamente, a grande variedade de formas existentes e soluções altamente complicadas, levaram Winter e outros a rem relações simples para o problema. Uma nova verificação da hipótese apresentada em [3], foi levada a efeito por Sechler [8] Winter [1,6,7]. A diferença entre os testes realizados por Winter e os apresentados em [8,11], é que os últimos trabalharam com pla cas isoladas, enquanto que o primeiro, com flanges, como parte in tegrante de um elemento estrutural, como por exemplo os de uma viga I. Por outro lado, Winter não se limitou a tensões da ordem de escoamento, mas considerou também tensões na faixa elástica. A expressão proposta em [3] foi mais uma vez mas um coeficiente variavel função da geometria e integridade carregamento pareceu em melhor concordância com os resultados experimentais. A expressão proposta em [3] superestima o valor largura efetiva para pequenos e médios valores da razão espessura. Ficou, portanto, desenvolvida uma expressão simples coerente com as evidências experimentais, para a determinação da largura efetiva.

Por outro lado, para placas com uma borda livre paralela à direção da tensão, e outra oposta simplesmente apoiada, in
teressava de perto o seu comportamento. Uma vez observado [1] que
esses elementos diferiam frontalmente dos enrijecidos em ambas as
bordas paralelas à direção da tensão, expressões foram desenvolvi
das para o projeto destes elementos. Efetivamente, o projeto destes elementos se baseia em tensões admissíveis reduzidas em função da relação largura-espessura do elemento, conforme é visto
nas especificações de projeto [4,17].

Como resultado do comportamento de pós-flambagem as propriedades geométricas da seção mudam com o aumento de carga. A área da seção transversal é então reduzida e na forma de satisfazer a condição de que a força através da seção transversal é zero, o eixo neutro muda correspondentemente de posição. Em consequência, momentos de inércia, módulos de resistência e outras propriedades ligadas direta ou indiretamente à área, tem seus valo-

res plenos reduzidos.

Pretende-se, então, desenvolver um processo numérico computacional e programa em FORTRAN, para calcular estas propriedades para os diversos tipos de seções. Uma visão sumária deste procedimento é apresentada em [23].

Inúmeros são os programas computacionais encontrados na literatura para determinação de propriedades seccionais plenas. Por exemplo, o apresentado por Kollbrunner e Basler [20] baseado em diferenças finitas, porém limitado a seções abertas. um programa mais geral que o anterior, denominado PROSEC [21], determina as propriedades requeridas na flexão, torção uniforme ou não uniforme de seções de paredes delgadas. Este programa, por sua vez, é limitado às seções abertas constituídas por elementos retilíneos em que no máximo, concorrem quatro elementos a um único nó. Aplica-se também, para seções com apenas uma cavidade tubular.

Outro programa mais abrangente é o SEDEL [22]. Com ele determina-se as mesmas propriedades de [21]. Contudo, este programa supera limitações comuns à maioria dos trabalhos citados anteriormente e encontrados na literatura. Dentre estas limitações pode-se citar, entre outras, a forma da seção transversal, o número de ramificações a partir de um único nó e o número de cavidades tubulares.

Perfis de paredes delgadas, quando sob ação de forças compressivas, devida a flexão ou compressão axial, podem vir a so frer uma redução nas suas propriedades seccionais plenas. Neste caso, a redução é reflexo da flambagem local verificada em alguns elementos que constituem o membro estrutural.

Apesar da importância de se conhecer as propriedades efetivas, nenhum dos processos mencionados considera a flambagem local. Este é, pois, o objetivo desta dissertação.

O programa que ora se desenvolve tem por base o programa SEDEL [22], devido a sua generalidade e, ainda, as recomendações das normas para o projeto de membros estruturais leves, AISI [4] e NB-143 [17].

2.2 - ESTABILIDADE DE PLACAS DELGADAS

2.2.1 - INTRODUÇÃO

Flanges, almas e outros elementos planos de membros estruturais apresentam boa resistência quando sob tração. Contrariamente, quando sujeitos a cargas de compressão além de um valor determinado (crítico), diminuem em muito sua resistência, e apresentam uma configuração ondulada caracterizando o que se denomina de flambagem local.

As placas possuem a propriedade, talvez única dentre os componentes estruturais, de suportarem cargas bem maiores que a carga inicial de flambagem local, sem no entanto afetar o desempenho do componente estrutural.

As investigações sobre a estabilidade de placas del gadas, sujeitas a tensões resultantes de membrana em seu plano de referência, figura 2.1, estão baseadas na seguinte questão: considerando que a distribuição de tensões resultantes de membrana $N_{\rm X}$, $N_{\rm y}$, $N_{\rm xy}$, na configuração de equilibrio de flambagem incipiente são mantidas invariáveis, existirá uma configuração de equilibrio alternativa admitindo flexão, que satisfaça as equações de equilibrio, isto é:

$$\frac{\partial N_{X}}{\partial x} + \frac{\partial N_{YX}}{\partial y} = 0 \tag{2.1}$$

$$\frac{\partial N_{xy}}{\partial x} + \frac{\partial N_{y}}{\partial y} = 0 \tag{2.2}$$

$$D \left(\frac{\partial^4 w}{\partial x^4} + 2 \frac{\partial^4 w}{\partial x^2 \partial y^2} + \frac{\partial^4 w}{\partial y^4}\right) + \left(N_X \frac{\partial^2 w}{\partial x^2} + 2N_{XY} \frac{\partial^2 w}{\partial x \partial y} + N_Y \frac{\partial^2 w}{\partial y^2}\right) = 0$$

(2.3)

onde:

D é a rigidez flexional da placa definida por

$$D = \frac{Et^3}{12(1-v^2)}$$
 (2.4)

E - Módulo de elasticidade.

ν - Coeficiente de Poisson.

w - Deflexão de um ponto na superfície média da placa.

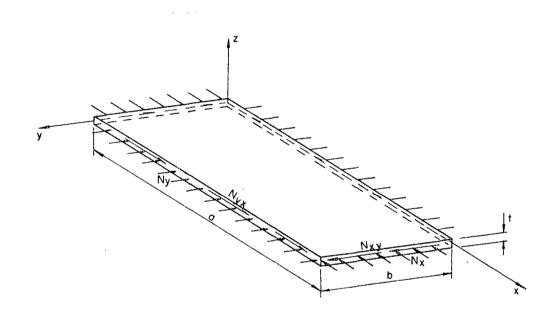


Figura 2.1 - Placa retangular plana carregada no plano médio.

A equação (2.3) relaciona as forças de contorno com o deslocamento normal da placa. Desta forma, pode-se determinar o menor valor da carga que permite a existência de duas configurações, isto é, uma plana e uma flambada. Assume-se que as tensões N_x e N_y nas equações (2.1), (2.2) e (2.3) são compressivas, conforme é ilustrado na figura 2.1.

Nos itens que se seguem, são apresentados duas aplicações da equação diferencial de equilibrio, equação (2.3); intimamente ligada ao comportamento de flanges de membros estruturais de paredes delgadas, sujeitos a carregamento compressivo.

2.2.2 - FLAMBAGEM DE UMA PLACA RETANGULAR SIMPLESMENTE APOIADA

- CASO I

Considerar a placa retangular, simplesmente apoiada em todos os lados e sujeita a um carregamento compressivo, uniformemente distribuído ao longo dos lados x=0 e x=a, atuando no seu plano de referência conforme é visto através da figura 2.2.

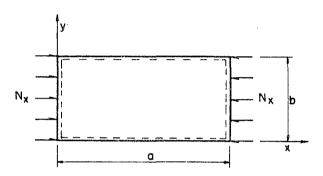


Figura 2.2 - Placa retangular uniformemente comprimida.

Então, para a condição de carregamento da placa, $f\underline{i}$ gura 2.2, resulta:

$$N_y = N_{xy} = 0$$
 (2.5)

Considerar que a tensão resultante N_{x} seja incrementada gradativamente até a configuração de flambagem incipiente. Neste estágio, denota-se N_{x} por \tilde{N}_{x} , e a equação diferencial governante (2.3), tendo em vista que $N_{x} = \tilde{N}_{x}$, torna-se:

$$D \left(\frac{\partial^4 w}{\partial x^4} + 2 \frac{\partial^4 w}{\partial x^2 \partial y^2} + \frac{\partial^4 w}{\partial y^4}\right) + \tilde{N}_{x} \frac{\partial^2 w}{\partial x^2} = 0$$
 (2.6)

A configuração da placa pode ser expressa pela seguinte função deslocamento:

$$w(x,y) = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} A_{mn} \operatorname{sen} \frac{m\pi}{a} x \operatorname{sen} \frac{n\pi}{b} y$$
 (2.7)

que além de satisfazer a equação diferencial (2.6), satisfaz também as condições de contorno para a placa simplesmente apoia da, isto é:

Em
$$x=0$$
 $w(0,y)=0$ e $M_X(0,y)=0$ (2.8)

$$y=0$$
 $w(x,0)=0$ e $M_{y}(x,0)=0$ (2.9)

$$x=a$$
 $w(a,y)=0$ e $M_{\chi}(a,y)=0$ (2.10)

$$y=b \quad w(x,b)=0 \quad e \quad M_y(x,b)=0$$
 (2.11)

Substituindo a função deslocamento, w(x,y), na equação diferencial (2.6) resulta:

$$D \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} A_{mn} \left[\left(\frac{m\pi}{a} \right)^{4} + 2 \left(\frac{m\pi}{a} \right)^{2} + \left(\frac{n\pi}{b} \right)^{4} - \frac{\tilde{N}_{x}}{D} \left(\frac{m\pi}{a} \right)^{2} \right]$$

$$\times \operatorname{sen} \frac{m\pi}{a} \times \operatorname{sen} \frac{n\pi}{b} y = 0$$
(2.12)

que para uma solução não trivial, requer

$$\left(\frac{m\pi}{a}\right)^{4} + 2\left(\frac{m\pi}{a}\right)^{2} \left(\frac{n\pi}{b}\right)^{2} + \left(\frac{n\pi}{b}\right)^{4} - \frac{\tilde{N}_{x}}{D}\left(\frac{m\pi}{a}\right)^{2} = 0$$
 (2.13)

de onde se obtém

$$\tilde{N}_{x} = \frac{\pi^{2} D}{b^{2}} \left[m(\frac{b}{a}) + \frac{n^{2}}{m} (\frac{a}{b}) \right]^{2}$$
 (2.14)

ou, tendo em vista a relação (2.4), resulta

$$\tilde{N}_{X} = \frac{\pi^{2}Et^{3}}{12(1-\nu^{2})b^{2}} \left[m(\frac{b}{a}) + \frac{n^{2}(\frac{a}{b})}{mb} \right]^{2} = K \frac{\pi^{2}Et^{3}}{12(1-\nu^{2})b^{2}}$$
(2.15)

onde K, conhecido como coeficiente de flambagem, depende das condições de contorno, da relação de aspecto a/b, e dos inteiros m e n. A equação (2.15), através do coeficiente K, expressa a relação entre a carga crítica de flambagem para as várias pos sibilidades dos inteiros m e n, conforme é visto através da figura 2.3.

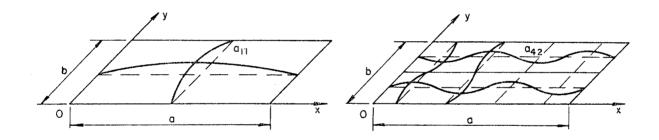


Figura 2.3 - Forma da superfície defletida da placa para os termos a_{11} e a_{42} da função-des locamento.

A equação (2.15) é satisfeita para um número infinito de valores de \tilde{N}_{χ} . Contudo, interessa apenas o menor destes valores para o qual a forma defletida existe. Evidentemente que o menor valor dos inteiros m e n fornece o menor valor de \tilde{N}_{χ} ,

que é de interesse prático. Por simples inspeção na equação (2.15), é aparente que o valor de n que produz o menor valor de \tilde{N}_{χ} é 1. Uma análise para o inteiro m é dada através da figura 2.5. Por conseguinte, o coeficiente K, na equação (2.15), fica

$$K = \left[m\left(\frac{b}{a}\right) + \frac{1}{m}\left(\frac{a}{b}\right) \right]^{2} \tag{2.16}$$

Assim, a equação (2.15), com K dado por (2.16), representa a carga crítica mínima de flambagem para a qual a placa flamba em meia onda senoidal através da largura da placa, conforme é visto na figura 2.4.

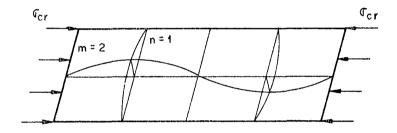


Figura 2.4 - Flambagem local para $\sigma_{\rm cr}$ mínima.

Dividindo-se ambos os membros da relação (2.15) por t, obtém-se a tensão crítica de flambagem ou tensão de Bryan, portanto

$$\frac{\tilde{N}_{X}}{t} = \sigma_{Cr} = K \frac{\pi^{2}E}{12(1-\nu^{2})(b/t)^{2}}$$
 (2.17)

O coeficiente de flambagem K indica a dependência da tensão crítica com a relação de aspecto. Na figura 2.5 estão representadas curvas dos valores de K para os diversos valores de m (m=1, 2, 3, ...) e n=1.

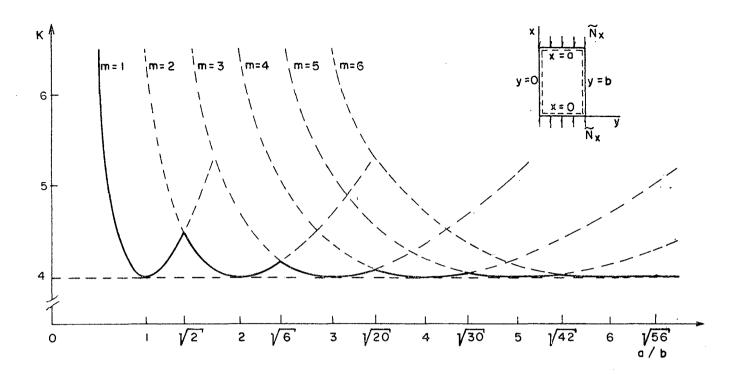


Figura 2.5 - Coeficiente de flambagem para a tensão crítica mínima em função da relação de aspecto.

Observa-se, através da figura 2.5, que para cada n $\underline{\tilde{u}}$ mero de meias ondas senoidais na direção do carregamento, existe uma relação de aspecto a/b, para a qual K, e portanto $\sigma_{\rm Cr}$, assume um valor mínimo.

Derivando-se a expressão (2.16) com respeito a relação de aspecto, o valor minimizante $\vec{\rm e}$ então determinado pela relação

$$\frac{dK}{d(\frac{a}{b})} = 0 = 2 \left[m(\frac{a}{b})^{-1} + \frac{1}{m}(\frac{a}{b}) \right] \left[-m(\frac{a}{b})^{-2} + \frac{1}{m} \right]$$
 (2.18)

resultando $\frac{a}{b} = m$

Assim, $\sigma_{\rm cr}$ assume o valor mínimo para a relação de aspecto igual a um número inteiro positivo, e o valor correspon

dente de K é 4. Observa-se também que K tende para o valor mínimo mencionado, à medida que a relação de aspecto cresce e paralelamente aumenta o número de meias ondas na direção do carregamento. As relações a/b correspondentes aos pontos de transição, em que a configuração passa de m para m+l ondas, é obtida considerando-se que K(m)=K(m+1). Então, utilizando a relação (2.16), pode-se escrever:

$$\frac{b}{a} + \frac{1}{m} \frac{a}{b} = (m+1)\frac{b}{a} + \frac{1}{(m+1)} \frac{a}{b}$$
(2.19)

Desta equação resulta

$$\frac{a}{b} = \left[m(m+1)\right]^{1/2} \tag{2.20}$$

Substituindo m por 1, 2, 3, 4, 5 obtém-se, para a/b, respectiva mente, os valores $\sqrt{2}$, $\sqrt{6}$, $\sqrt{12}$, $\sqrt{20}$, $\sqrt{30}$ conforme é indicado na figura 2.5. Para placas longas, m é um número grande e usando a relação (2.20) pode-se escrever:

$$\frac{a}{b} = m \tag{2.21}$$

isto é, uma placa muito longa flamba em meias ondas longitudinais de comprimentos aproximadamente iguais a largura da placa. Assim, a placa fica aproximadamente subdividida em quadrados.

Dentro da faixa elástica, a configuração flambada existe para um valor bem definido dado pela equação (2.17). Este é o valor da tensão crítica mínima de flambagem. Acima do limite de proporcionalidade, a expressão (2.17) fornece valores exagerados para $\sigma_{\rm cr}$. Para a sua utilização nesta faixa é necessário substituir E por $E_{\rm t}$, dado pela tangente à curva do diagrama compressivo tensão-deformação [2,10].

Considerar a placa carregada em seu plano de referência conforme \tilde{e} visto na figura 2.6, onde os lados x=0, x=a e y=0 são simplesmente apoiados, enquanto o lado y=b \tilde{e} livre.

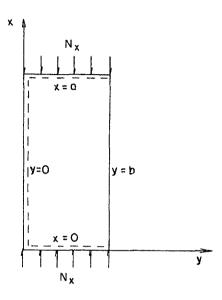


Figura 2.6 - Placa simplesmente apoiada nos lados x=0, x=a e y=0 e livre no lado y=b.

Para este caso, sob a ação da carga compressiva, a placa flamba em meias ondas senoidais na direção do carregamento |2,10,14|, e a função deslocamento é dada pela expressão

$$w(x,y) = f(y) \sum_{m=1}^{\infty} \operatorname{sen} \frac{m\pi}{a} x$$
 (2.22)

que satisfaz automaticamente as condições de contorno.

Em
$$x=0$$
 $w(0,y)=0$ e $M_X(0,y)=0$ (2.23)

$$x=a$$
 $w(a,y)=0$ e $M_{X}(a,y)=0$ (2.24)

Substituindo (2.22) na equação diferencial de equilibrio (2.6), resulta na seguinte equação diferencial ordinária:

$$\frac{d^{4}f(y)}{dy^{4}} - 2\left(\frac{m\pi}{a}\right)^{2} \frac{d^{2}f(y)}{dy^{2}} + \left[\left(\frac{m\pi}{a}\right)^{2} - \frac{N_{x}}{D}\left(\frac{m\pi}{a}\right)^{2}\right] f(y) = 0 \quad (2.25)$$

cuja solução é

$$f(y) = C_1 \cosh (\alpha y) + C_2 \sinh (\alpha y) + C_3 \cos (\beta y) + C_4 \sin (\beta y)$$

 \dots (2.26)

onde

$$\alpha = \left[\left(\frac{m\pi}{a} \right)^2 + \left(\frac{m\pi}{a} \right)^2 + \left(\frac{N}{D} \right)^{1/2} \right]^{1/2}$$

e
$$\beta = \left[-\left(\frac{m\pi}{a}\right)^2 + \left(\frac{m\pi}{a}\right)^2 + \left(\frac{N}{x}\right)^{1/2} \right]^{1/2}$$
 (2.27)

Levando a equação (2.26) na relação (2.22) obtém-se

$$w(x,y) = \left[C_1 \cosh (\alpha y) + C_2 \sinh (\alpha y) + C_3 \cos (\beta y)\right]$$

+
$$C_4 \operatorname{sen} (\beta y) \int \operatorname{sen} \frac{m\pi}{a} x$$
 (2.28)

Para as faces y=0 e y=b pode-se escrever as seguintes condições de contorno

Em
$$y = 0$$
 $w(x,0) = 0$ $e M_y(x,0) = 0$ (2.29)

$$y = b M_{y}(x,b) = 0 e V_{y}(x,b) = 0$$
 (2.30)

As condições de contorno dadas em (2.29), juntamente com a equação (2.28) fornecem

$$C_1 = C_3 = 0$$
 (2.31)

e a equação (2.28) reduz-se a

$$w(x,y) = \left[C_2 \text{ senh } (\alpha y) + C_4 \text{ sen } (\beta y)\right] \text{ sen } \frac{m\pi}{a} x \quad (2.32)$$

Das condições de contorno dadas em (2.30) vem:

$$C_{2} \left[\alpha^{2} - \nu \left(\frac{m\pi}{a}\right)^{2}\right] \operatorname{senh} (\alpha b) - C_{4} \left[\beta^{2} + \nu \left(\frac{m\pi}{a}\right)^{2}\right] \operatorname{sen} (\beta b) = 0$$
... (2.33)

$$C_{2}\alpha \left[\alpha^{2} - (2-\nu)\left(\frac{m\pi}{a}\right)^{2}\right] \cosh (\alpha b) - C_{4}\beta \left[\beta^{2} + (2-\nu)\left(\frac{m\pi}{a}\right)^{2}\right]$$

$$\times \cos (\beta b) = 0 \qquad (2.34)$$

Para uma solução não trivial das equações (2.33) e (2.34) é requerido que seu determinante seja nulo, resultando na equação transcendental

$$\beta(\alpha^2 - \nu \frac{m^2 \pi^2}{a^2}) \ tgh (\alpha b) - \alpha(\beta^2 + \nu \frac{m^2 \pi^2}{a^2}) \ tgh (\beta b) = 0$$
 (2.35)

Usando as relações dadas em (2.27), em conjunto com a equação (2.35), determina-se o valor mínimo de N_χ , denotado por \tilde{N}_χ , para cada m. Os cálculos mostram que o menor valor de \tilde{N}_χ é obtido quando m=1. Portanto, a placa flamba em meia onda na direção do carregamento.

Timoshenko [2] apresenta, para placas longas, a seguinte expressão empírica para o coeficiente de flambagem:

$$K = 0,456 + \left(\frac{b}{a}\right)^2 \tag{2.36}$$

que traçado em função da relação de aspecto fornece o gráfico da figura 2.7.

O gráfico da figura 2.7 revela que uma placa com uma borda livre paralela ao carregamento e com as outras simplesmente apoiadas, flamba em meia onda senoidal independentemente da relação de aspecto a/b.

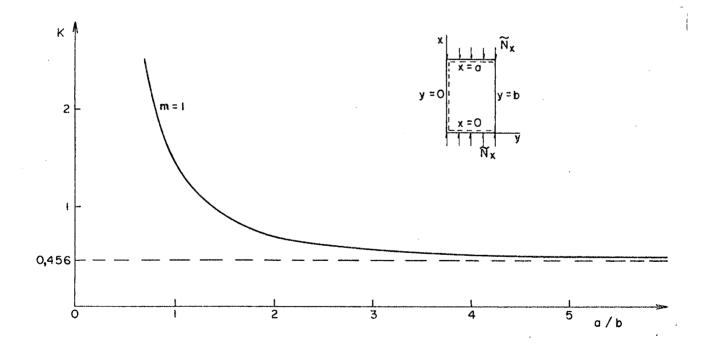


Figura 2.7 - Coeficiente de flambagem para a tensão crítica mínima em função da relação de aspecto.

2.3 - RESISTÊNCIA PÓS-FLAMBAGEM

A teoria clássica de pequena deflexão [2,9,10,19], estabelece que uma placa retangular, sujeita a tensões resultantes de membrana compressivas ou cisalhantes, flamba para uma tensão dada pela equação (2.17), onde o coeficiente de flambagem K depende das condições de contorno e da relação de aspecto a/b. Esta equação é inteiramente análoga à equação de Euler para flambagem de coluna, dada por

$$\sigma_{\rm cr} = C \frac{\pi^2 E}{(L/r)^2}$$
 (2.37)

onde o coeficiente C depende do carregamento e das condições de fixação das extremidades.

Contudo, a analogia entre a flambagem de colunas placas acaba aqui. Experiências com placas comprimidas revelaram uma diferença fundamental entre o significado prático da tensão crítica de Euler para colunas, equação (2.37), e a são de Bryan para placas dada pela equação (2.17). Colunas longas falham para a tensão de Euler, ou um valor levemente abaixo dela. Entretanto, para uma placa enrijecida ao longo das bordas paralelas à direção da tensão, aparece uma leve e gradual ondulação quando o valor da tensão dada pela equação (2.17) é alcan çado, conforme é visto através da figura 2.8. Isto, absolutamen te, não implica a falha da placa. Ela continua a suportar aumen to de carga, algumas vezes um múltiplo grande [11] daquela causou o aparecimento da primeira onda, escassamente perceptivel, notadamente quando a razão largura-espessura (b/t) da placa é grande. Esta capacidade de suportar cargas adicionais após a flambagem local é denominada de resistência pós-flambagem.

O comportamento de placas planas na faixa da pósflambagem é explicado através do modelo de grade, uma vez que é difícil visualizar o desempenho de um elemento bidimensional. A placa é substituída, então, pelo modelo que é mostrado na figura 2.9. Este consiste de uma grade onde o material da placa é discretizado em barras longitudinais e transversais. A placa es tá uniformemente comprimida com uma carga P, portanto cada barra longitudinal representa uma coluna carregada com uma carga P/5.

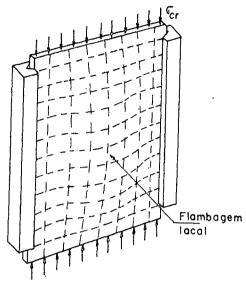


Figura 2.8 - Elemento capaz de suportar carga adicional.

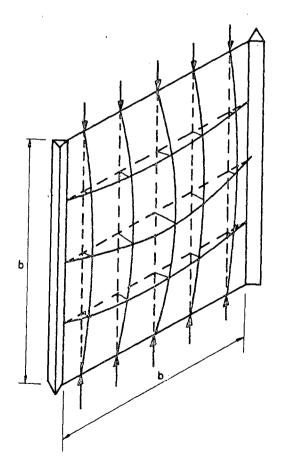


Figura 2.9 - Modelo de grade para placas na faixa de pos-flambagem.

Com o aumento gradual da carga, a tensão de compressão em cada uma das colunas ou barras alcança a tensão crítica de flambagem dada pela equação (2.37) e, portanto, todas as cinco colunas flambam simultaneamente. Porém, tal fato não ocorre no modelo de grade da placa. As barras transversais restringem as deflexões das barras longitudinais. Em consequência, não ocorre a falha das barras longitudinais e elas defletem em quantidades diferentes. O efeito das barras transversais é mais efetivo para aquelas colunas (porções da placa) próximas às bordas enrijecidas. Na região central da placa, as deflexões são bem acentuadas. Por essa razão é que a placa é capaz de suportar cargas adicionais após ter alcançado a carga crítica de flambagem local.

A placa não pode suportar cargas adicionais, e falha apenas quando a parte mais solicitada (região adjacente às bordas) alcança o limite de resistência do material.

O modelo da figura 2.9 representa eficazmente o comportamento de elementos planos enrijecidos ao longo das bordas longitudinais (paralelas à direção da tensão), como por exemplo, o flange da figura 2.10.

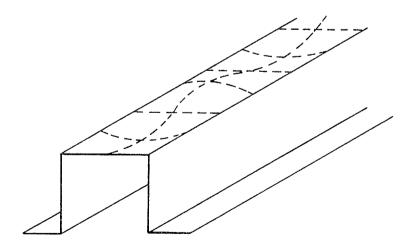


Figura 2.10 - Flambagem do flange em compressão de uma viga de seção cartola.

2.4 - LARGURA EFETIVA

2.4.1 - ELEMENTOS ENRIJECIDOS EM AMBAS AS BORDAS PARALELAS À DIREÇÃO DA TENSÃO

O conceito de largura efetiva para o projeto de pla cas em compressão foi introduzido por Von Karman [3], em 1932. A medida em que a tensão compressiva é gradualmente aumentada, além da tensão crítica de Bryan, a distribuição uniforme de tensão dá lugar a uma distribuição não uniforme, conforme é visto através da figura 2.11.

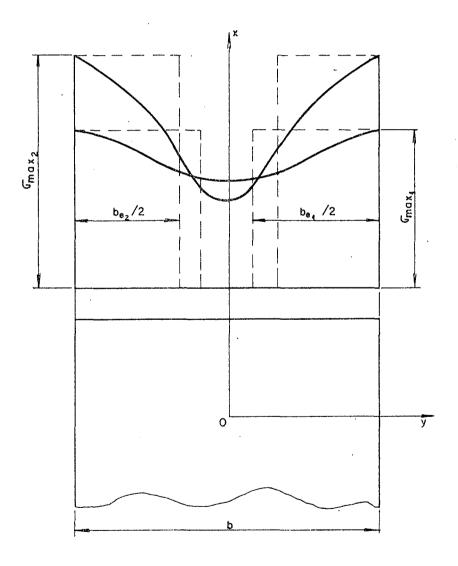


Figura 2.11 - Distribuição de tensão e largura efetiva no campo da pós-flambagem.

A distribuição não uniforme de tensão através da largura da placa é substituída por uma outra, equivalente, que é uniforme sobre uma porção da placa denominada largura efetiva be, de intensidade σ_{max} . A figura 2.11 mostra que a largura efetiva diminui com o aumento da tensão na borda, σ_{max} .

Assim, com apenas duas tiras efetivas de largura $b_e/2$ cada, a placa de largura geométrica b, é equivalente a uma placa estreita totalmente efetiva, de largura equivalente b_e .

A expressão analítica derivada por Von Karman para a largura efetiva é:

$$b_e = 1.9t \sqrt{E/\sigma_e}$$
 (2.38)

ou
$$b_e = Ct \sqrt{E/\sigma_e}$$
 (2.39)

Com este conceito, a parte central da placa, em compressão, $\,$ é imaginada como removida e a tensão uniforme age através da largura efetiva $\,$ b $_{\rm e}$.

Sechler [8], através de experimentos, tentou verificar o coeficiente 1,9 da equação (2.38) e concluiu que em vez de fixar o valor de 1,9 dever-se-ia considerar um coeficiente, que de acordo com seus testes seria função de $\sqrt{E/\sigma_e}$ (t/b).

A figura 2.12 apresenta os resultados dos experimentos realizados por Sechler, onde o coeficiente C é traçado em função do parâmetro $\sqrt{E/\sigma_e}$ (t/b). Também representa-se nesta figura a equação (2.38).

Vê-se que a equação (2.38) super-estima o valor da largura efetiva pois, quase em sua totalidade, os pontos experimentais estão abaixo da reta dada pela equação (2.38). Somente para valores muito pequenos de $\sqrt{E/\sigma_e}$ (t/b), o que corresponde a placas extremamente largas e delgadas, C torna-se próximo de 1,9.

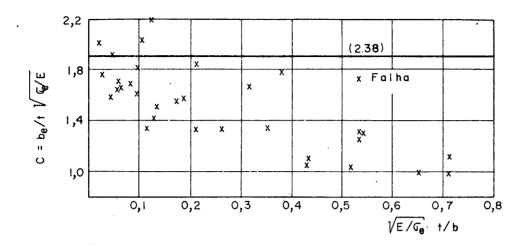


Figura 2.12 - Determinação experimental de largura efetiva.

Winter [1], imbuído do mesmo objetivo que Sechler, realizou uma extensiva série de experiências. Como resultado, mais uma vez, a hipótese de Von Karman se confirmara. Além disso, Winter não se limitou apenas a tensões da ordem da tensão de escoamento, como Karman e Sechler, mas considerou tensões na faixa elástica. A figura 2.13 apresenta os resultados da série A, onde a razão largura espessura variou entre 64 e 170, inclusive.

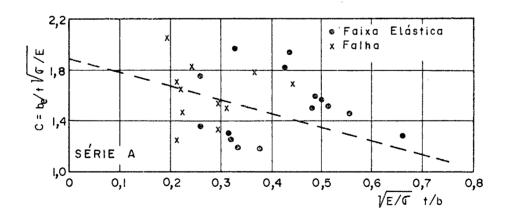


Figura 2.13 - Determinação experimental da largura efetiva.

Os experimentos realizados por Sechler foram feitos com placas individuais e para tensões da ordem de escoamento. Winter, por sua vez, trabalhou com flanges, representando partes de componentes estruturais. Contudo, os resultados são seme lhantes. Além disso, os pontos na figura 2.13 obtidos para tensões baixas, estão localizados de forma geral como aqueles obtidos para tensões da ordem da tensão de escoamento. Assim, a equação (2.39) é usada indiferentemente para ambos os tipos de tensão, e portanto resulta

$$b_e = Ct \sqrt{E/\sigma}$$
 (2.40)

na qual o é a tensão nominal de compressão que atua no flange, limitada ao valor da tensão de escoamento.

Uma vez determinada a relação entre o coeficiente C e o parâmetro $\sqrt{E/\sigma}$ (t/b), ficou estabelecida experimentalmente a expressão para a largura efetiva b_e. Representando os valores médios de ambos os testes, figura 2.12, 2.13, resulta na seguin te equação para C:

$$C = 1.9 - 1.09 \sqrt{E/\sigma} (t/b)$$
 (2.41)

e que substituída em (2.40) resulta na equação de largura equivalente, comumente denominada de efetiva.

$$b_{e} = 1.9t \sqrt{\frac{E}{\sigma}} \left[1 - 0.574 \left(\frac{t}{b} \right) \sqrt{\frac{E}{\sigma}} \right]$$
 (2.42)

Uma representação gráfica da equação (2.42), em ter mos dos parâmetros adimensionais b/t e b_e/b , é mostrada através da figura 2.14, para o valor particular de E/σ = 1000.

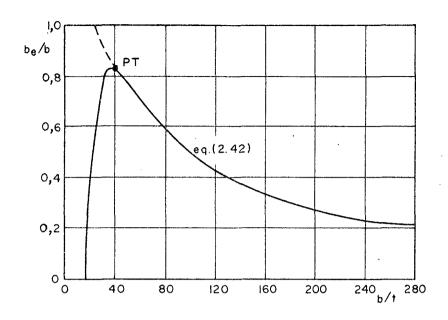


Figura 2.14 - Razão b_e/b em função de b/t.

Observa-se que para médios e altos valores da razão b/t, a relação b_e/b diminui com o aumento de b/t. Entretanto, o inverso ocorre para pequenos valores de b/t, o que é fisicamente impossível. Por conseguinte, a equação (2.42) dá resultados incorretos para pequenos valores da relação largura-espessura. Portanto, seu campo de aplicação está restrito aquela faixa de b/t correspondente aos ensaios. Nestes ensaios, cujos resultados estão representados na figura 2.13, a relação largura-espes sura b/t variou de 64 até 170 [1].

Para investigar o comportamento de flanges em compressão, para pequenos valores de b/t, foi idealizado um novo conjunto de experimentos intitulado série B, onde b/t variou desde 14,3 até 56. Os resultados dos testes (figura 2.15) estão sumariados na referência [1], e são aqui reproduzidos.

b/t	TIPO	(a) Séries B e C LARGURA EFETIVA			Col. 5 Col. 4	(b) Séries B e C MOMENTO MÁXIMO		
		σ (psi)	TESTE	GRĀFICO	CO.1. 4	σ _e	M_1/M_t	M_2/M_t
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
14,3	I-1	26300	14,1t	14,3t	1,01	35700	0,98	0,98
16,3	I-2	27200	16,5t	16,3t	0,99	33100	0,94	0,94
16,4	I-3	26600	16,6t	16,4t	0,99	33100	0,93	0,93
19,2	I-4	27600	19,2t	19,2t	1,00	35100	0,90	0,90
22,0	I~5	27200	21,8t	22,9t	1,05	33100	0,95	0,95
23,6	I-6	26300	23,4t	23,6t	1,01	36200	0,95	0,95
24,0	I-7	29200	22,6t	24,0t	1,06	35100	0,95	0,95
28,9	I-8	27400	27,4t	27,0t	0,98	30200	0,98	0,95
32,0	I-9	27200	31,7t	29,0t	0,91	36200	1,06	0,90
33,5	Ι-14α	•••	• • •	•••	• • •	37900	1,07	1,00
36,0	I-15	•••	• • •	•••	•••	36400	0,84	0,76
38,3	I-10	25600	37,2t	32,5t	0,87	30200	1,02	0,92
42,6	I-11	27400	39,6t	35,0t	0,88	37300	1,14	1,02
45,0	I-12	23500	40,8t	37,0t	0,90	30300	1,04	0,92
49,5	Ι-16α			• • •	•••	37900	1,20	1,04
49,9	I-17	•••	• • •	• • •	• • • •	36400	0,98	0,84
51,6	Ι-18α		• • •	• • •	•••	32200	1,08	0,95
56,0	I-13	28000	48,8t	41,5t	0,85	37300	1,17	0,97
77,7	Ι-19α			• • •	•••	37900	1,55	1,12
86,6	Ι-20α		•••		<u> </u>	32200	1,47	1,10

Figura 2.15 - Resultados dos testes com viga I para pequenos valores de b/t. Séries B e C (α - resultado médio de três ensaios)

Na coluna 4 da tabela da figura 2.15 é visto que flanges com razão largura-espessura na faixa de 14,3 até 30, são praticamente efetivos, isto é, b_e^- b. Para valores crescentes de b/t, a partir de 30, b_e torna-se progressivamente menor que b. Consequentemente, é razoável obter-se uma curva de transição, linha pontilhada na figura 2.16, a partir do ponto de coordenadas (b/t, b_e /b) = (25,1), e tangente à curva representada pela equação (2.42). Como nesta faixa de b/t, a largura efetiva é igual ou muito próxima da largura geométrica b, parece

razoavel [1] representar tal relação por uma reta.

Com esta proposição a abscissa do ponto de tangência T, figura 2.16, é determinada pela expressão

$$\left(\frac{b}{t}\right)_{1} = \frac{1,0906\frac{E}{\sigma} + \sqrt{(1,0906\frac{E}{\sigma})^{2} - 27,265\frac{E}{\sigma}(1,9\sqrt{\frac{E}{\sigma}} - 25)}}{1,9\sqrt{\frac{E}{\sigma}} - 25}$$
... (2.43)

e a correspondente equação da reta é

$$b_{e} = \left[\frac{1,0906}{\left(\frac{b}{t}\right)^{2}} \frac{E}{\sigma} \left(\frac{b}{t} - 25\right) + 25 \right] t$$
 (2.44)

A obtenção das equações (2.43) e (2.44) é mostrada no apêndice C.

Traçando os valores de b_e em termos de b/t, obtém-se a curva mostrada na figura 2.16, a qual é constituída de três segmentos denotados por AB, BT e TS.

Assim, utilizando o gráfico da figura 2.16, pode-se obter diretamente a largura efetiva para um dado valor da relação b/t. Uma outra forma seria utilizar diretamente as equações correspondentes a cada trecho da curva na figura 2.16, ou seja,

$$b_e = b$$
 para $0 < \frac{b}{t} \le 25$ (2.45)

$$b_{e} = \left[\frac{1,0906}{\left(\frac{b}{t}\right)^{2}} \frac{E(b-25)}{\sigma(t)} + 25\right] t \quad para \quad 25 < \frac{b}{t} \le \left(\frac{b}{t}\right) 1$$
... (2.46)

$$b_{e} = 1.9t \sqrt{\frac{E}{\sigma}} \left[1.0 - 0.574 \left(\frac{t}{b} \right) \sqrt{\frac{E}{\sigma}} \right] \quad \text{para} \quad \frac{b}{t} > \left(\frac{b}{t} \right) 1 \quad (2.47)$$

onde $(\frac{b}{t})_1$ é dado pela relação (2.43).

Figura 2.16 - Determinação da largura efetiva.

Mais tarde é apresentado pelo próprio Winter |6|, uma pequena correção para o coeficiente C, dado pela equação (2.41). Desta proposição, resulta para C a expressão

$$C = 1,9 - 0,9025 \sqrt{E/\sigma}$$
 (2.48)

e, consequentemente, para a largura efetiva, a expressão

$$b_{e} = 1.9t \sqrt{\frac{E}{\sigma}} \left[1.0 - 0.475 \left(\frac{t}{b} \right) \sqrt{\frac{E}{\sigma}} \right]$$
 (2.49)

Uma representação da equação (2.49), em termos dos parâmetros adimensionais b/t e b_e/b , é mostrada através da figura 2.17, para o valor particular de E/σ = 1000.

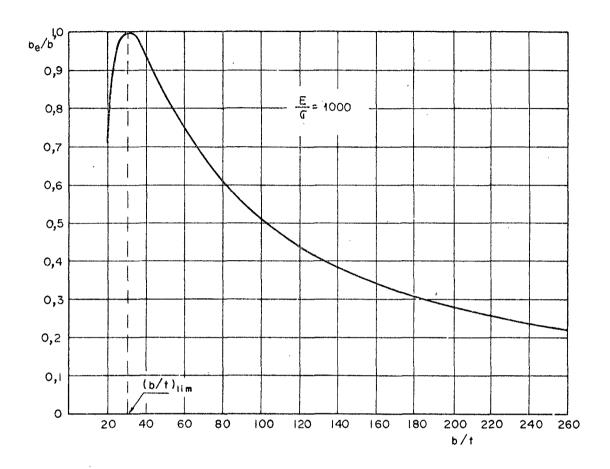


Figura 2.17 - Razão b_e/b em função de b/t.

Vê-se que fica perfeitamente definido um valor b/t, que é função da tensão atuante, abaixo do qual o elemento é totalmente efetivo, isto é, a largura efetiva é igual à largura geométrica. Acima deste valor particular, a largura efetiva tor na-se progressivamente menor que a largura geométrica, e tanto menor quanto maior for b/t. Este valor particular de b/t é deno minado de $(\frac{b}{t})$ lim.

Para se determinar este valor limite de b/t, basta substituir, na relação (2.49), b_e por b e resolver para b. Assim, resulta:

$$\left(\frac{b}{t}\right)_{1\text{im}} = 0,95\sqrt{E/\sigma} \tag{2.50}$$

Desta forma a largura equivalente fica efetivamente determinada em toda a faixa útil de b/t apenas por duas equações

$$b_e = b$$
 para $\frac{b}{t} \leq (\frac{b}{t})_{1im}$ (2.51)

$$b_{e} = 1.9t \sqrt{\frac{E}{\sigma}} \left[1.0 - 0.475 \left(\frac{t}{b} \right) \sqrt{\frac{E}{\sigma}} \right] \quad \text{para} \quad \frac{b}{t} > \left(\frac{b}{t} \right)_{1im} \quad (2.52)$$

Estas expressões são utilizadas nas especificações de projeto estrutural de membros leves AISI e NB-143, edições 1961 e 1967, respectivamente. Nesta última em unidades do Sistema Internacional de Unidades.

Para fins práticos, traça-se b_e em função b/t, que para o caso particular de $E=2,1\times10^5$ MPa e para os níveis de tensão 60, 100, 140 e 210 em MPa, resulta nas curvas A, B, C e D, conforme está indicado na figura 2.18.

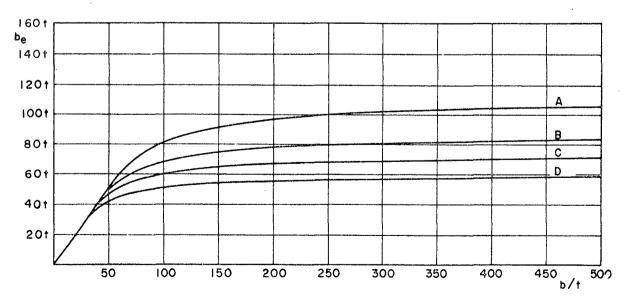


Figura 2.18 - Largura efetiva para vários níveis de tensão em função da relação largura-espessura b/t.

Outras curvas podem ser obtidas, para outros níveis de tensão, de forma similar. Para outros materiais, utilizar o correspondente módulo de elasticidade E.

2.4.2 - ELEMENTOS COM UMA BORDA ENRIJECIDA E OUTRA LIVRE, SEN-DO AMBAS PARALELAS À DIREÇÃO DA TENSÃO DE COMPRESSÃO

- Aspectos Gerais

Elementos deste tipo ocorrem em vigas I, por exemplo, como mostradas através da figura 2.19.

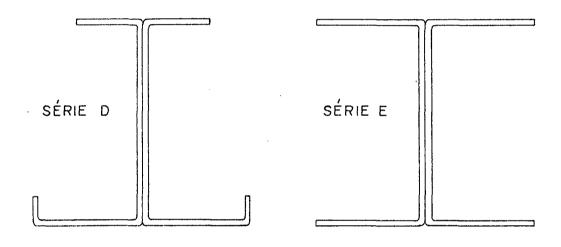


Figura 2.19 - Formas de seção I onde as bordas externas dos flanges em compressão não são enrijecidas.

Quando em compressão, este tipo de elemento desenvolve ondas de flambagem de considerável magnitude, imediatamen te após ter alcançado a tensão crítica de flambagem e mostra pouca resistência pos-flambagem. Assim, seu comportamento difere totalmente daquele apresentado por um elemento em que ambas as bordas longitudinais são enrijecidas. Com o objetivo de investigar este comportamento e traduzí-lo em termos de expressões simples, Winter [1] idealizou duas séries de testes D e E, com vigas de forma geral mostradas na figura 2.19, como o fize-

ra para elementos enrijecidos.

Os resultados experimentais foram expressos, qualitativamente, nos seguintes termos:

- 1 Flanges com razão largura-espessura menor que 12 falham por escoamento, com pouca ou nenhuma distorção perpendicular ao plano do flange;
- 2 Flanges com razão largura-espessura na faixa de 12 até 30, aproximadamente, permanecem indeformados e resistentes até o momento em que ocorre a flambagem local dos flanges, de forma repentina;
- 3 Flanges com razão largura-espessura maior que 30, apresentam boa resistência pós-flambagem e são capazes de su portarem cargas bem maiores que a carga crítica. Por outro lado, o não enrijecimento da borda externa permite que o flange fique seriamente distorcido. Assim, nesta faixa, eles não podem ser vistos como estruturalmente aplicáveis, exceto se usados sob tensão extremamente baixa.

- Tensão de Flambagem e Tensão Admissível Reduzida

As tensões críticas $\sigma_{\rm cr}$, para as quais a flambagem local foi inicialmente observada [1], foram computadas e traçadas em função da relação largura-espessura b/t, conforme é visto através da figura 2.20. A curva representando a fórmula

$$\sigma_{\rm cr} = 0.5 \frac{\pi^2 E}{12(1-v^2)(b/t)^2}$$
 (2.53)

é mostrada pela linha cheia. A equação (2.53) dá a tensão crítica teórica de flambagem local para uma placa onde uma das bordas paralelas à direção da tensão de compressão é simplesmente apoiada e a outra livre. (Ver figura 2.6).

Observa-se na figura 2.20 que para valores de b/t a partir de 25, de forma crescente, a flambagem local ocorre pa

ra tensões iguais ou maiores que as tensões dadas pela equação (2.53), e que para valores de b/t menores que 25, as tensões de flambagem local são consideravelmente menores que as dadas pela mesma relação.

Para desenvolver um procedimento que determine os valores da tensão crítica de flambagem na faixa onde b/t $\tilde{\rm e}$ pequeno, o valor médio das tensões de escoamento $\tilde{\rm e}$ computado, tabela 4 de [1] aqui reproduzida apenas para referência, figura 2.21. Os elementos com $\sigma_{\rm e}$ =347 MPa foram excluídos para o valor médio, uma vez esta tensão $\tilde{\rm e}$ alta comparada com as demais. O valor médio de $\sigma_{\rm e}$ então obtido $\tilde{\rm e}$ 245 MPa.

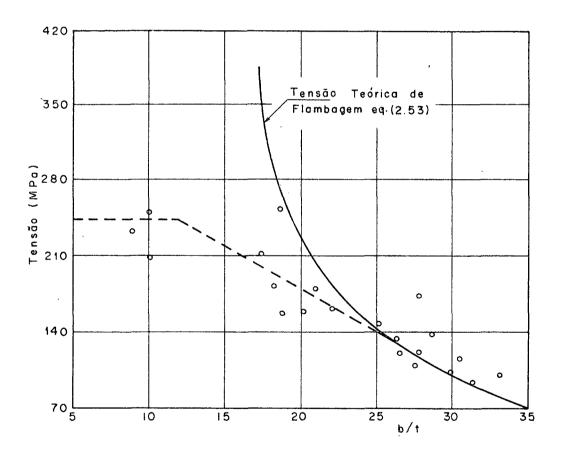


Figura 2.20 - Valores observados da tensão crítica plotados em função de b/t, séries D e E.

Na tabela da figura 2.21 apresentam-se os resultados dos testes para os especímenes com b/t menor que 33,1, que por sua vez flambaram repentinamente. O limite de resistência σ_m , é computado para colunas por $\sigma_m^{=P}_m/A$ e para vigas por $\sigma_m^{=M}_m/s$, onde A e S são, respectivamente, a área e o módulo de resistência da seção plena; σ_{ct} é a tensão de flambagem obtida dos testes, computada de forma similar a σ_m ; e σ_{cc} é a tensão computada das expressões (2.54) e (2.55), conforme o valor de b/t.

Uma vez que flanges com b/t menor que 12 falham por escoamento, parece razoável assumir uma linha reta, iniciando em $\sigma_{\rm e}$ para b/t=12 e terminando com $\sigma_{\rm cr}$ dado pela relação (2.53), para b/t=30, como representando aproximadamente os valores de $\sigma_{\rm cr}$. (Ver figura 2.20).

Então, pode-se escrever:

$$\sigma_{cc} = \sigma_{e}$$
 para $\frac{b}{t} \le 12$ (2.54)

$$\sigma_{cc} = \sigma_{e} - \left(\frac{\sigma_{e} - \sigma_{cr}}{18}\right) \left(\frac{b}{t} - 12\right) \quad para \quad 12 < \frac{b}{t} \le 30$$

 \dots (2.55)

onde σ_{cr} é dada pela equação (2.53).

TIPO	No	b/t		°cc			
1170	11.		σ _e	o _m	σct	°сс	σct
I-S-2	3	9,3	35400	34600	33400	35400	1,06
I-S-3	3	10,1	49400	35800	35800	49400	1,38
I -B - 3	3	10,1	37300	30200	29600	37300	1,26
I - B - 4	3	17,5	36800	40300	30400	30200	0,99
I-S-6	3	18,5	35400	31800	25600	28000	1,09
I-S-7	3	19,0	34500	26100	22800	27000	1,18
I-S-8	3	19,1	49400	38800	35400	36500	1,03
I-B-5	2	20,3	37300	29400	23600	27000	1,14
I-B-6	3	20,8	34000	29200	26100	24700	0,95
I -B-7	3	21,6	32600	28300	23400,	23100	0,99
I-S-9	3	21,6	34000	25500	23900	23700	0,99
I -B-8	3	25,2	38700	30000	21200	21200	1,00
I-S-10	3	27,1	34500	22900	16700	18000	1,08
I-S-11	3	27,8	34000	23900	15600	17200	1,10
I-S-12	3	27,8	34500	29200	23700	17300	0,73
I-S-13	3	28,3	49400	29200	17600	18200	1,03
I-B-9	1	28,9	29200	26200	19700	15900	0,18
I-B-10	3	29,9	32600	24600	15200	15200	1,00
I-B-11	3	30,6	34900	25700	17400	14500	0,83
I-B-12	2	31,2	37300	28300	14200	13800	0,97
I-B-14	3	33,1	34000	23000	15200	12300	0,81

Figura 2.21 - Resultados dos testes com vigas I Séries D e E Tabela 4 da referência [1].

- Largura Efetiva

Conforme é relatado em [1], Miller sob orientação de Winter, computou as larguras efetivas para os flanges das vigas referenciadas nas séries D e E. Por conseguinte, foi apresentada uma expressão similar à equação (2.49) para a largura efetiva b_e , desses flanges. Ela é:

$$b_e = 1,25t \sqrt{\frac{E}{\sigma}} \left[1,0 - 0,333(\frac{t}{b}) \sqrt{\frac{E}{\sigma}} \right]$$
 (2.56)

válida para $\sqrt{E/\sigma}$ (t/b) em torno de 1,55, e que representa com boa precisão os valores médios determinados experimentalmente para b_e. Assim, no dimensionamento de flanges não enrijecidos deve-se tomar b e t, tais que

$$\frac{b}{t} = \frac{1}{1.55} \sqrt{E/\sigma}$$
 (2.57)

Haja visto a considerável dispersão nos resultados experimentais, uma expressão mais conservativa foi desenvolvida, e que com poucas exceções, parece uma boa aproximação para os pequenos valores de b_e obtidos experimentalmente. A expressão é

$$b_e = 0.8t \sqrt{\frac{E}{\sigma}} \left[1 - 0.202 \left(\frac{t}{b} \right) \sqrt{\frac{E}{\sigma}} \right]$$
 (2.58)

válida para $\sqrt{E/\sigma}$ (t/b) em torno de 1,75.

Portanto, como no caso anterior, deve-se tomar b e t, tais que

$$\frac{b}{t} = \frac{1}{1.75} \sqrt{E/\sigma}$$
 (2.59)

É mostrado em [1] que quando as condições (2.57) e (2.59) são observadas, a redução média máxima da largura do flange é somente 6% e 16%, respectivamente. Este fato revela que os cálculos baseados na largura plena do flange são tão precisos quanto podem ser esperados, considerando que:

- l O grau de dispersão dos valores experimentais para as tensões de flambagem local $\sigma_{\rm ct}$, torna a alta precisão de cálculo ilusória;
- 2 Uma redução na largura de 6% ou mesmo 16% resulta numa pequena redução nos valores significantes de A e S, pois o flange representa apenas uma fração muito pequena com respeito à seção transversal como um todo.

Pela discussão anterior, ê-se porque as especifica ções [4,17] de projeto de membros leves, com flanges não enrije cidos, utilizam as propriedades seccionais plenas juntamente com tensões admissíveis reduzidas. As expressões para o cálculo destas tensões são obtidas em conformidade com as curvas a, b, c e d apresentadas na figura 2.22.

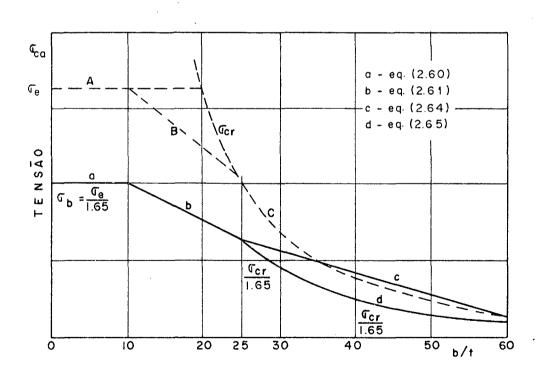


Figura 2.22 - Tensões admissíveis reduzidas σ_{ca} , em função da razão largura espessura b/t.

Assim, na faixa em que b/t varia de 0 a 25, as orde nadas das linhas A e B são divididas por um coeficiente de segu rança. Em ambas as normas, ou seja, AISI e NB-143, o valor prescrito é 1,65. Desta forma resulta nas linhas a e b (ver figura 2.22) e que são representadas pelas equações:

$$\sigma_{ca} = \sigma_{b} \qquad ; \qquad \frac{b}{t} \leq 1.0 \qquad (2.60)$$

$$\sigma_{ca} = (1,667\sigma_{b} - 0,404\sigma_{cr}) - \frac{1}{15}(\sigma_{b} - \frac{\sigma_{cr}}{1,65})\frac{b}{t}$$
; $10 < \frac{b}{t} \le 25$

... (2.61)

onde

$$\sigma_{b} = \frac{\sigma_{e}}{1.65} \tag{2.62}$$

e
$$\sigma_{cr} = 0.5 \frac{\pi^2 E}{12(1-v^2)(25)^2}$$
 (2.63)

Para os valores de b/t na faixa de 25 a 60, são apresentadas duas curvas, ou seja, c e d (ver figura 2.22). A reta denotada por c é dada pela equação:

$$\sigma_{\text{ca}_{\hat{1}}} = \frac{1}{57,75} (\sigma_{\text{cr}/60} - \sigma_{\text{cr}/25}) \frac{b}{t} - \frac{25}{57,75}$$

$$\times (\sigma_{\text{cr}/60} - \sigma_{\text{cr}/25}) + \frac{1}{1.65} \sigma_{\text{cr}/25} \cdots (2.64)$$

onde $\sigma_{\rm cr/25}$ e $\sigma_{\rm cr/60}$ são dadas pela expressão (2.53) com b/t igual a 25 e 60, respectivamente, e a curva denotada por d, representa as tensões de compressão admissíveis para cantoneiras em compressão axial, haja visto que nenhuma resistência posflambagem é verificada em tais membros. Assim, a tensão de com-

pressão admissível reduzida é a própria tensão crítica teórica de flambagem local ou tensão de Bryan, equação (2.53), dividida pelo coeficiente de segurança 1,65, conforme está indicado na figura 2.22. Desta forma resulta a expressão

$$\sigma_{ca} = 0,303 \frac{\pi^2 E}{12(1-v^2)(b/t)^2}$$
; $25 < \frac{b}{t} \le 60$ (2.65)

As expressões correspondentes utilizadas nas espec<u>i</u> ficações de projeto NB-143 [17] e AISI [4] são:

1 - NB-143 (ed. 1967)

a)
$$\sigma_{ca} = \sigma_b$$
 ; $\frac{b}{t} \le 10$ (2.66)

b)
$$\sigma_{ca} = (1,667\sigma_{b} - 600) - \frac{1}{15}(\sigma_{b} - 900)\frac{b}{t}$$
; $10 < \frac{b}{t} \le 25$... (2.67)

c.1) para cantoneiras em compressão axial

$$\sigma_{ca} = \frac{570.000}{(b/t)^2} \qquad ; \qquad 25 < \frac{b}{t} \le 60 \qquad (2.68)$$

c.2) para outras seções em flexão ou compressão e também para cantoneiras em flexão

$$\sigma_{ca} = 1400 - 20(\frac{b}{5})$$
; $25 < \frac{b}{t} \le 60$ (2.69)

onde σ_{Ca} é expressa em kgf/cm².

 \dots (2.71)

2 - AISI (ed. 1961)

a)
$$\sigma_{ca} = \sigma_{b}$$
 ; $\frac{b}{t} \leq 10$ (2.70)

b)
$$\sigma_{ca} = (1,667\sigma_b - 8640) - \frac{1}{15}(\sigma_b - 12950)\frac{b}{t}$$
; $10 < \frac{b}{t} \le 25$

c.1) para cantoneiras em compressão axial

$$\sigma_{ca} = \frac{8.090.000}{(b/t)^2}$$
; $25 < \frac{b}{t} < 60$ (2.72)

c.2) para outras seções em flexão ou compressão e também para cantoneiras em flexão

$$\sigma_{ca} = 20.000 - 282(\frac{b}{t})$$
; $25 < \frac{b}{t} \le 60$ (2.73)

onde σ_{ca} é expressa em psi.

Em ambas as normas, b/t está limitado ao valor 60.

2.5 - MEMBROS EM COMPRESSÃO AXIAL

Como consequência da flambagem local em membros de parede delgada em compressão axial, há uma redução de sua resistência. Esta perda de resistência é considerada através de um fator de forma ou fator coluna Q.

A expressão para o cálculo da tensão, para a qual a coluna carregada axialmente começa a flambar por deflexão lateral, é dada pela equação (2.37). Entretanto, esta equação é

efetivamente representada por outras duas, dependendo do valor do índice de esbeltez L/r. As equações são as que se seguem:

a) para pequenos e médios valores de L/r,

$$\sigma_{\rm cr} = \sigma_{\rm e} - (\frac{\sigma_{\rm e}^2}{4\pi^2 E}) (\frac{L}{r})^2$$
 (2.74)

b) para grandes valores de L/r,

$$\sigma_{\rm cr} = \pi^2 E / \left(\frac{L}{r}\right)^2 \tag{2.75}$$

onde as tensões admissíveis são obtidas dividindo-se $\sigma_{\rm cr}$, dada acima, por um coeficiente de segurança. Em ambas as normas [4,17] o valor prescrito para este coeficiente é 1,95.

Com o objetivo de considerar o efeito da flambagem local em membros de paredes delgadas em compressão axial, o fator de coluna Q é introduzido apenas na equação (2.74). Segundo a referência [5], isto é explicado através do seguinte fato:

"Na faixa de utilização da equação (2.75), isto é, para grandes valores de índices de esbeltez, as colunas flambam para tensões tão baixas que nenhuma flambagem local ocorre".

O fator de coluna Q é definido [4,17] conforme a se ção seja constituída somente de elementos enrijecidos, apenas de elementos não enrijecidos (cantoneiras) ou de ambos os elementos. Desta forma, tem-se a seguinte classificação:

1 - para seções constituídas somente de elementos enrijecidos, o fator Q, também denominado fator de área, é definido por:

$$Q_a = \frac{\text{Area plena} - \text{Area removida}}{\text{Area plena}} = \frac{A_{ef}}{A}$$
 (2.76)

onde A_{ef} é a área efetiva da seção transversal e A é a área plena da seção. O termo área removida é usado para indicar a área hipoteticamente retirada da seção transversal, para se obter a área efetiva.

2 - para seções constituídas apenas de elementos não enrijecidos, o fator Q, também denominado fator de tensão, é definido por:

$$Q_{t} = \frac{\text{Tensão admissivel reduzida}}{\text{Tensão de projeto}} = \frac{\sigma_{ca}}{\sigma_{b}}$$
 (2.77)

onde σ_{ca} é dada pelas equações (2.60), (2.61), (2.64) e (2.65) conforme o valor de b/t.

3 - para seções constituídas de ambos os elementos, ou seja, enrijecidos e não enrijecidos, o fator de coluna Q $\acute{\rm e}$ o produto de Q_a por Q_t, como calculado nos itens 1 e 2, respectivamente. Assim,

$$Q_{m} = Q_{a} Q_{t} \tag{2.78}$$

As expressões apresentadas para o fator de coluna podem ser justificadas da seguinte forma:

Um membro compacto e muito curto, concentricamente comprimido falha por simples escoamento em vez de flambar, para a tensão de escoamento σ_e . Este fato é perfeitamente explicado através da equação (2.74), considerando pequenos valores de L/r. Assim, quando L/r \rightarrow 0 a equação (2.74) fornece

$$\left(\frac{P}{A}\right)_{m\tilde{a}x} = \sigma_{e} \tag{2.79}$$

Para um membro de parede delgada em compressão, a deformação local excessiva de certos elementos componentes, po

de ocorrer para cargas consideravelmente abaixo da máxima carga que o membro como um todo pode suportar. Por essa razão, para tal membro pode-se escrever:

$$\left(\frac{P}{A}\right)_{m\tilde{a}x} = Q \sigma_{e} \tag{2.80}$$

onde Q é um fator igual ou menor que a unidade. Se igual à unidade, então nenhuma flambagem local ocorre. Ele representa, por tanto, uma redução na resistência da coluna devida a flambagem local.

Para elementos estruturais constituídos apenas de elementos enrijecidos, a carga máxima é:

$$P_{max} = A_{ef} \sigma_{e}$$
 (2.81)

onde ${\rm A_{\mbox{ef}}}$ é a área efetiva da seção transversal calculada para a tensão $\sigma_{\mbox{e}}$.

Dividindo-se ambos os membros da equação (2.81) pela área plena da seção transversal resulta:

$$\left(\frac{P}{A}\right)_{\text{max}} = \frac{A_{\text{ef}}}{A} \sigma_{\text{e}}$$
 (2.82)

Por simples comparação desta última equação com a equação (2.79), resulta que para tais membros

$$Q_a = \frac{A_{ef}}{A} \tag{2.83}$$

É evidente que para um membro constituído inteiramente de elementos não enrijecidos, como por exemplo uma cantoneira, a carga máxima é:

$$P_{max} = A \sigma_{ct}$$
 (2.84)

onde A é a área plena da seção transversal e σ_{ct} é a tensão critica de flambagem local, correspondente ao elemento da seção com maior razão largura-espessura, dada pelas curvas A, B e C da figura 2.22, conforme o valor de b/t. Contudo, σ_{ct} =1,65 σ_{ca} e σ_{e} =1,65 σ_{b} . Portanto, tem-se:

$$\left(\frac{P}{A}\right)_{max} = \sigma_{ct} = \left(\frac{\sigma_{ct}}{\sigma_{e}}\right)\sigma_{e} = \left(\frac{1,65\sigma_{ca}}{1,65\sigma_{b}}\right)\sigma_{e} = \left(\frac{\sigma_{ca}}{\sigma_{b}}\right)\sigma_{e}$$
(2.85)

Por simples comparação das equações (2.85) e (2.79) pode-se escrever:

$$Q_{t} = \frac{\sigma_{ca}}{\sigma_{b}}$$
 (2.36)

Como último caso, apresenta-se um elemento estrutural constituí do de ambos os elementos, isto é, elementos enrijecidos e não enrijecidos (ver figura B.1, exemplos a e b). Neste caso, o limite de resistência é alcançado quando o elemento não enrijecido flamba para a tensão $\sigma_{\rm Ct}$, dada pelas curvas A, B e C, conforme explicado anteriormente. Para esta tensão, a área efetiva da seção transversal consiste das áreas plenas de todos os elementos não enrijecidos e das áreas efetivas de todos os elementos enrijecidos. Esta última parcela é calculada para a tensão de flambagem governante, ou seja, $\sigma_{\rm ct}$. Assim, para uma seção mista, no que diz respeito a elementos constituintes, a máxima carga é dada por

$$P_{m\tilde{a}x} = A_{ef} \sigma_{ct}$$
 (2.87)

De forma similar aos dois casos precedentes, pode-se escrever:

$$\left(\frac{P}{A}\right)_{\text{max}} = \left(\frac{A_{\text{ef}}}{A}\right) \left(\frac{\sigma_{\text{ca}}}{\sigma_{\text{b}}}\right) \sigma_{\text{e}}$$
 (2.88)

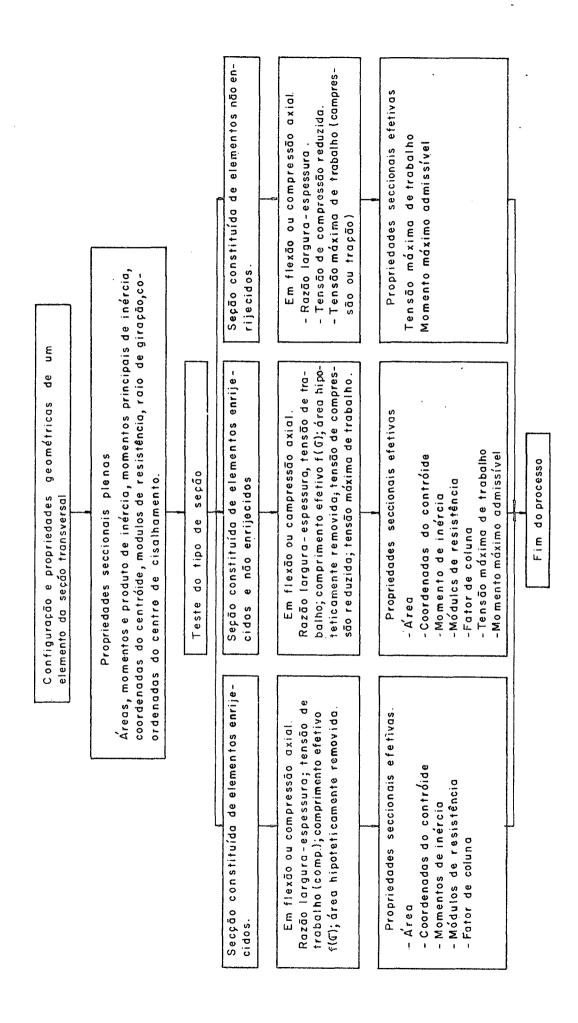
Comparando a equação (2.88) com a equação (2.79) resulta imedia tamente

$$Q_{m} = \left(\frac{A_{ef}}{A}\right) \left(\frac{\sigma_{ca}}{\sigma_{b}}\right)$$
 (2.89)

ou,
$$Q_{m} = Q_{a} Q_{t}$$
 (2.90)

CAPÍTULO 3

PROCESSO NUMERICO COMPUTACIONAL


3.1 - INTRODUÇÃO

A importância e o grau de dificuldade existente na determinação das propriedades plenas de membros estruturais de paredes delgadas, levaram ao desenvolvimento de processos numéricos computacionais tais como os apresentados em |21,22|, com o objetivo de se obter estas propriedades.

Um fenômeno comum em membros estruturais de paredes delgadas é a flambagem local de certas partes da seção de tais membros. Ela, por sua vez, não significa a falha do membro, mas induz uma redução na área plena daquele membro que flambou localmente. Em consequência, há uma redução nas propriedades seccionais plenas, sendo estas agora denominadas de propriedades seccionais efetivas ou equivalentes.

O programa SEDEL |22| foi desenvolvido para calcular as propriedades seccionais plenas requeridas na análise da flexão, da torção uniforme e não uniforme de membros de paredes delgadas, abertas, fechadas ou mistas. O programa PEDAD, por sua vez, considera o efeito da flambagem local em membros estruturais, e utiliza o SEDEL como uma subrotina. Com o PEDAD determina-se propriedades seccionais plenas e efetivas. Pode-se citar entre outras, as seguintes propriedades:

- a) Momentos e produto de inércia de área, momentos de inércia efetivos;
- b) Posição da linha neutra para a seção plena e para a seção reduzida;
- c) Momentos principais de inércia plenos e efetivos;
- d) Coordenadas do centro de cisalhamento;
- e) Tensões admissíveis e fatores de coluna.

desenvolvimento do processo numérico computacional. Fluxo de ī 3.1 Figura

Um fluxo de desenvolvimento do referido processo é mostrado na figura 3.1.

O processo é utilizado para seções transversais sujeitas às seguintes hipóteses:

- 1 Cada seção transversal é modelada por um conjunto de nós interconectados por elementos retilíneos e/ou circulares, definidos pela ordem de seus nos origem e término;
- 2 Os nos origem e termino para cada elemento são formados sobre a linha média da seção transversal e a espessura da parede, entre estes dois nos é considerada constante;
- 3 Elementos circulares devem ter arcos, no máximo, correspondentes a 180°. Para arcos maiores, subdividí-lo de tal forma que cada novo elemento satisfaça a restrição anterior;
- 4 Áreas concentradas são consideradas como elementos retilíneos de espessura nula e cujos nós origem e término têm as mesmas coordenadas;
- 5 As seções fechadas são tratadas como se fossem abertas. Isto é conseguido através de cortes hipotéticos e, em ca da corte, formam-se dois nos de mesmas coordenadas.

3.2 - CONFIGURAÇÃO GEOMÉTRICA DO I-ÉSIMO ELEMENTO

A configuração geométrica do i-ésimo elemento é apresentada na figura 3.2, onde:

- A_i , B_i nos origem e término, respectivamente, do elemento. O sentido origem-término é definido de A_i para B_i .
- C; Centroide do elemento.
- M; Ponto médio entre A; e B;.
- D. Centro de curvatura (raio de curvatura denotada por R_i).
- C Centróide da seção.
- O Origem do sistema de referência global.

 x_i' , y_i' - Eixos paralelos aos eixos x, y e com origem em C_i' . x_i'' , y_i'' - Eixos paralelos aos eixos x, y e com origem em D_i .

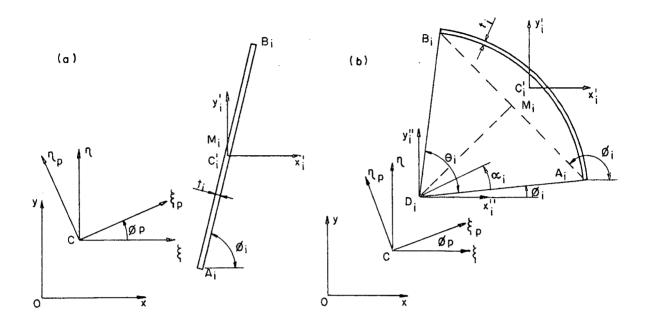


Figura 3.2 - Elementos: (a) retilíneo, (b) circular.

 ξ , η - Eixos paralelos aos eixos x, y e com origem no centróide da seção C.

 ξ_p , η_p - Eixos principais de inércia.

φ_p - Direção dos eixos principais de inércia.

 $\boldsymbol{\varphi}_{i}$ - Ângulo que o segmento de reta orientado $\overline{\boldsymbol{A}_{i}\boldsymbol{B}}_{i}$ faz com o eixo x.

 $\phi_i^{'}$ - Ângulo que o segmento de reta orientado $\overline{\mathrm{D}_i\mathrm{A}}_i$ faz com o eixo x.

 θ_i - Ângulo subtendido pelo arco de circunferência $\widehat{A_iB_i}$.

t_i - Espessura do elemento.

3.3 - PROPRIEDADES GEOMÉTRICAS DO I-ÉSIMO ELEMENTO

3.3.1 - ELEMENTO RETILÍNEO

l - Distância entre os nos A_i e B_i ou comprimento do elemento.

$$d_i = b_i = ((y_{B_i} - y_{A_i})^2 + (x_{B_i} - x_{A_i})^2)^{1/2}$$
 (3.1)

2 - Área do elemento.

$$Ar_{i} = b_{i} t_{i}$$
 (3.2)

Em elementos de áreas concentradas Ar; é dado.

3 - Inclinação do segmento de reta $\overline{A_iB}_i$

$$sen \phi_{i} = (y_{B_{i}} - y_{A_{i}})/d_{i}$$
 (3.3)

$$\cos \phi_{i} = (x_{B_{i}} - x_{A_{i}})/d_{i}$$
 (3.4)

4 - Coordenadas do ponto médio M_i ou centróide C_i .

$$x_{M_{i}} = (x_{A_{i}} + x_{B_{i}})/2$$
 (3.5)

$$y_{M_{i}} = (y_{A_{i}} + y_{B_{i}})/2$$
 (3.6)

5 - Momentos de inércia e produto de inércia em relação aos eixos x_i e y_i .

$$I_{X_{i}}' = Ar_{i}(t_{i}^{2} cos^{2} \phi_{i} + b_{i}^{2} sen^{2} \phi_{i})/12$$
 (3.7)

$$I_{y_{i}}' = Ar_{i}(t_{i}^{2} sen^{2} \phi_{i} + b_{i}^{2} cos^{2} \phi_{i})/12$$
 (3.8)

$$I_{x_{i}y_{i}}' = Ar_{i}(b_{i}^{2} - t_{i}^{2}) \operatorname{sen} \phi_{i} \cos \phi_{i}/12$$
 (3.9)

Em elementos de áreas concentradas.

$$I_{x_{i}}' = I_{y_{i}}' = I_{x_{i}y_{i}}' = 0$$
 (3.10)

3.3.2 - ELEMENTO CIRCULAR

Nas expressões apresentadas a seguir, adota-se a seguinte convenção:

"Quando o sentido origem-término no i-ésimo elemento é anti-horário, em relação a D_i , toma-se R_i com sinal positivo e caso contrário, negativo".

1 - Distância entre os nos A_i e B_i

$$d_{i} = \left((y_{B_{i}} - y_{A_{i}})^{2} + (x_{B_{i}} - x_{A_{i}})^{2} \right)^{1/2}$$
 (3.11)

2 - Distância entre os pontos D_i e M_i

$$h_{i} = \left(R_{i}^{2} - (d_{i}/2)^{2}\right)^{1/2}$$
 (3.12)

3 - Coordenadas do ponto M_{i}

$$x_{M_{i}} = (x_{B_{i}} + x_{A_{i}})/2$$
 (3.13)

$$y_{M_i} = (y_{B_i} + y_{A_i})/2$$
 (3.14)

4 - Ângulo do arco $\widehat{A_i B_i}$

$$\Theta_{i} = 2 \text{ tg}^{-1} \quad (d_{i}/2h_{i}) \quad ; \quad 0 < \Theta_{i} < \pi$$
 (3.15)

5 - Inclinação do segmento de reta $\overline{A_iB}_i$

$$sen \phi_{i} = (y_{B_{i}} - y_{A_{i}})/d_{i}$$
 (3.16)

$$\cos \phi_{i} = (x_{B_{i}} - x_{A_{i}})/d_{i}$$
 (3.17)

6 - Coordenadas do centro de curvatura

$$x_{D_{i}} = x_{M_{i}} - R_{i} \operatorname{sen} \phi_{i} \operatorname{cos} (\Theta_{i}/2)$$
 (3.18)

$$y_{D_{i}} = y_{M_{i}} + R_{i} \cos \phi_{i} \cos (\theta_{i}/2)$$
 (3.19)

7 - Inclinação do segmento de reta $\overline{\mathrm{D_iA}}_{\mathrm{i}}$

sen
$$\phi_{i}' = (y_{A_{i}} - y_{D_{i}}) / |R_{i}|$$
 (3.20)

$$\cos \phi_{i}' = (x_{A_{i}} - x_{D_{i}}) / |R_{i}|$$
 (3.21)

8 - Comprimento do elemento

$$b_{i} = |R_{i}| \Theta_{i} \tag{3.22}$$

9 - Área do elemento

$$Ar_{i} = b_{i} t_{i}$$
 (3.23)

Em elementos de áreas concentradas Ar_i é dado.

10 - Momentos de inércia e produto de inércia em relação aos eixos $x_i^{''}$, $y_i^{''}$

$$I_{x_{i}^{"}} = Ar_{i} R_{i}^{2} \left(1 + sen \Theta_{i}^{"}(cos^{2} \phi_{i} - sen^{2} \phi_{i})/\Theta_{i}\right)/2$$
... (3.24)

$$I_{y_{i}^{"}} = Ar_{i} R_{i}^{2} \left(1 - \operatorname{sen} \Theta_{i} (\cos^{2} \phi_{i} - \operatorname{sen}^{2} \phi_{i}) / \Theta_{i}\right) / 2$$
... (3.25)

$$I_{x_{i}y_{i}}^{"} = -Ar_{i} R_{i}^{2} \operatorname{sen} \Theta_{i} \operatorname{sen} \phi_{i} \operatorname{cos} \phi_{i}/\Theta_{i}$$
 (3.26)

11 - Raios interno e externo

$$RI_{i} = R_{i} - t_{i}/2$$
 (3.27)

$$RE_{i} = R_{i} + t_{i}/2$$
 (3.28)

12 - Coordenadas do centróide

$$x_{i} = x_{D_{i}} + \frac{4}{3} \left(\frac{RE_{i}^{3} - RI_{i}^{3}}{RE_{i}^{2} - RI_{i}^{2}} \right) \operatorname{sen} (\Theta_{i}/2) \operatorname{sen} \phi_{i}/\Theta_{i}$$
 (3.29)

$$y_{i} = y_{D_{i}} - \frac{4}{3} \left(\frac{RE_{i}^{3} - RI_{i}^{3}}{RE_{i}^{2} - RI_{i}^{2}} \right) \operatorname{sen} (\Theta_{i}/2) \cos \phi_{i}/\Theta_{i}$$
 (3.30)

13 - Momentos de inércia e produto de inércia em relação aos eixos $x_i^{'}$, $y_i^{'}$

$$I_{x_{i}}' = I_{x_{i}}'' - Ar_{i} (y_{i} - y_{D_{i}})^{2}$$
 (3.31)

$$I_{y_{i}'} = I_{y_{i}''} - Ar_{i} (x_{i} - x_{D_{i}})^{2}$$
 (3.32)

$$I_{x_{i}y_{i}}' = I_{x_{i}y_{i}}'' - Ar_{i} (y_{i} - y_{D_{i}})(x_{i} - x_{D_{i}})$$
 (3.33)

3.4 - PROPRIEDADES SECCIONAIS

Em se tratando de seções transversais de paredes delgadas, constituídas por n elementos binodais, resulta nas se guintes expressões para a determinação das correspondentes propriedades geométricas:

3.4.1 - PROPRIEDADES SECCIONAIS - SEÇÃO PLENA

1 - Área da seção transversal

$$AREA = \sum_{i=1}^{n} Ar_{i}$$
 (3.34)

2 - Centróide da seção

$$x_{C} = \left(\sum_{i=1}^{n} Ar_{i} x_{i}\right) / AREA$$
 (3.35)

$$y_{C} = \left(\sum_{i=1}^{n} Ar_{i} y_{i}\right) / AREA$$
 (3.36)

3 - Momentos de inércia e produto de inércia em relação aos eixos do centróide $\xi,\ \eta$

$$I_{\xi} = \sum_{i=1}^{n} (I_{x_{i}}' + Ar_{i} y_{i}^{2} - Ar_{i} y_{i} y_{C})$$
 (3.37)

$$I_{\eta} = \sum_{i=1}^{n} (I_{y_i}' + Ar_i y_i^2 - Ar_i x_i x_C)$$
 (3.38)

$$I_{\xi\eta} = \sum_{i=1}^{n} (I_{x_i'y_i'} + Ar_i x_i y_i) - AREA x_C y_C$$
 (3.39)

4 - Direção dos eixos principais

$$\phi_{\rm p} = 0.5 \text{ tg}^{-1} \left(2 I_{\xi\eta} / (I_{\eta} - I_{\xi}) \right)$$
 (3.40)

. 5 - Momentos principais de inércia

$$I_{\xi p} = I_{\xi} \cos^{2} \phi_{p} + I_{\eta} \sin^{2} \phi_{p} - 2 I_{\xi \eta} \sin \phi_{p} \cos \phi_{p}$$

$$\dots (3.41)$$

$$I_{\eta p} = I_{\xi} \operatorname{sen^2} \phi_p + I_{\eta} \cos^2 \phi_p + 2 I_{\xi \eta} \operatorname{sen} \phi_p \cos \phi_p$$
... (3.42)

6 - Módulos de resistência (seção plena)

$$S_{\xi} = I_{\xi}/D_{\xi} \tag{3.43}$$

$$S_{\eta} = I_{\eta}/D_{\eta} \tag{3.44}$$

onde \textbf{D}_{ξ} - distância da linha neutra à fibra mais afastada com respeito ao eixo ξ .

 D_{η} - distância da linha neutra à fibra mais afastada com respeito ao eixo η .

7 - Raios de giração com respeito aos eixos ξ e η

$$R_{\xi} = (I_{\xi}/AREA)^{1/2}$$
 (3.45)

$$R_n = (I_n/AREA)^{1/2}$$
 (3.46)

8 - Raios de giração com respeito aos eixos principais

$$R_{\xi p} = (I_{\xi p}/AREA)^{1/2}$$
 (3.47)

$$R_{\eta p} = (I_{\eta p}/AREA)^{1/2}$$
 (3.48)

3.4.2 - PROPRIEDADES SECCIONAIS-SEÇÃO REDUZIDA

Os elementos que constituem um membro estrutural le ve, obtido por conformação a frio, são denominados, do ponto de vista de projeto, de elementos enrijecidos e não enrijecidos. A partir de tais conceitos, são instituídos procedimentos básicos para o projeto de tais elementos, quando em compressão, conforme está explícito no capítulo 2.

Para seções onde os elementos em compressão, e portanto sujeitos a flambarem localmente, são enrijecidos, determinam-se propriedades tais como momento de inércia efetivo, módulo de resistência efetivo e nova posição da linha neutra, entre outras. Estas estão baseadas unicamente numa redução de área da seção plena. Para seções onde os elementos em compressão, e portanto sujeitos a flambarem localmente, não são enrijecidos, determinam-se tensões de compressão admissíveis e momentos máximos admissíveis [1]. Estes, ao contrário de seções constituídas de elementos enrijecidos, estão baseados na área plena da seção.

- Elementos Enrijecidos em Compressão

1 - Tensão básica de projeto ou máxima tensão de trabalho

Esta atuará na fibra mais afastada da linha neutra, podendo ser de compressão ou de tração. Segundo as especifica-ções de projeto AISI [4] e NB-143 [17], esta tensão corresponde ao limite de escoamento mínimo especificado para o material dividido por 1,65.

$$\sigma_{b} = Z GMA = Z GMAE/1,65$$
 (3.49)

onde ZGMAE corresponde ao limite de escoamento mínimo especificado.

2 - Tensão de compressão no elemento mais distante da linha neutra e sujeito a flambar localmente

O cálculo desta tensão de compressão envolve os seguintes elementos:

- a) Posição da linha neutra;
- b) Distância da linha neutra ao elemento comprimido, passível de flambar, mais distante (DI);
- c) Metade da altura da seção transversal (HS2);
- d) Distância da linha neutra às fibras mais afastadas dela (ALT2, ALT1).

Assim, dependendo de comparações entre os fatores citados em a), b), c) e d) resulta as seguintes expressões:

a.1)
$$TCMAX = ZGMA D1/ALT1$$
 (3.50)

se ALT2 > D1 e ALT2 < HS2

a.2)
$$TCMAX = ZGMA D1/ALT2$$
 (3.51)

se ALT2 > D1 e ALT2 > HS2

a.3)
$$TCMAX = ZGMA ALT2/ALT1$$
 (3.52)

se ALT2 = D1 e ALT2 < HS2

$$a.4) TCMAX = ZGMA (3.53)$$

se ALT2 = D1 e ALT2 > HS2

A figura 3.3, (a.1), (a.2), (a.3) e (a.4), descreve claramente a situação.

3 - Tensão de compressão

Uma vez conhecida a tensão de compressão básica, item anterior, pode-se obter as tensões de compressão nos de-

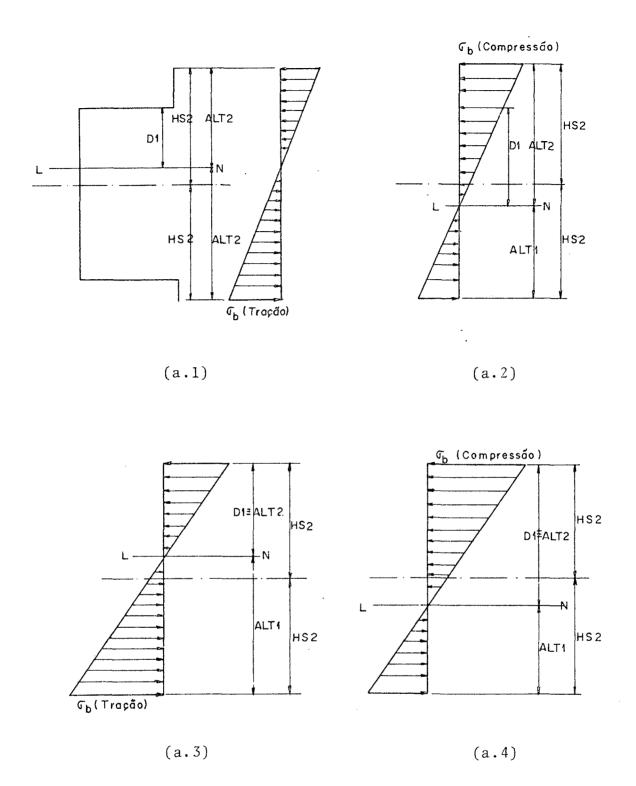


Figura 3.3 - Configurações para o cálculo da tensão compressiva máxima no elemento passível de flambar.

mais elementos passíveis de flambarem (caso existam) pela relação:

$$ZG_{i} = TCMAX (|y_{CE_{i}} - y_{G}| + TES_{i}/2)/D1 ; i = 1, NEFX$$
... (3.54)

e para o elemento determinado no item anterior, tem-se:

$$2G_{i} = TCMAX$$
 (3.55)

onde i - número de ordem do elemento passível de flambar.

 y_{CE}_{i} - ordenada do centróide do elemento de número de orden i.

 ${\sf TES}_{i}$ - espessura do elemento de número de ordem i.

4 - Razão largura-espessura e razão largura-espessura limite

A razão largura-espessura do elemento é determinada pela expressão:

$$BST_{i} = COMP_{i}/TES_{i}$$
 (3.56)

onde COMP_i - comprimento do elemento de número de ordem i.

A razão largura-espessura limite é determinada em função de tensão (compressão) atuante, em conformidade com a equação (2.50), e que resulta nas expressões:

a) para o cálculo das deformações

BSTLF_i = 0,95
$$(E/ZG_i)^{1/2}$$
 (3.57)

b) para o cálculo da resistência

$$BSTLS_{i} = 0,7396 (E/ZG_{i})^{1/2}$$
 (3.58)

5 - Largura efetiva ou largura útil

De conformidade com as equações (2.51) e (2.52) resulta nas seguintes expressões para a largura efetiva do i-ésimo elemento passível de flambar:

a) para o cálculo das deformações

BE =
$$COMP_i$$
 quando $BST_i \leq BSTLF_i$ (3.59)

e BE = 1,9
$$\left(\frac{E}{ZG_{i}}\right)^{1/2} \left[1 - 0,475\left(\frac{E}{ZG_{i}}\right)^{1/2} \frac{1}{BST_{i}}\right]$$
 TES_i quando BST_i > BSTLF_i ... (3.60)

b) para o cálculo da resistência

$$BE = COMP_{i}$$
 quando $BST_{i} \leq BSTLS_{i}$ (3.61)

e BE = 1,479
$$\left(\frac{E}{ZG_{i}}\right)^{1/2} \left[1 - 0,3698\left(\frac{E}{ZG_{i}}\right)^{1/2} \frac{1}{BST_{i}}\right]$$
 TES_i quando BST_i > BSTLS_i ... (3.62)

6 - Comprimento descontado

$$B_{i} = COMP_{i} - BE \tag{3.63}$$

7 - Área hipoteticamente removida

$$BB_{i} = B_{i} \cdot TES_{i} \tag{3.64}$$

8 - Momentos de inércia das áreas consideradas removidas, em relação aos eixos centroidais x_i , y_i

$$I_{x_{i}}' = B_{i} (TES_{i})^{3}/12$$
 (3.65)

$$I_{y_{i}} = B_{i}^{3} (TES_{i})/12$$
 (3.66)

$$I_{x_{i}y_{i}}' = 0$$
 (3.67)

9 - Primeira parcela de correção para o tensor de inércia (ver apêndice D)

$$\overline{I}_{0} = \sum_{i=1}^{NEFX} I_{X_{i}}'$$
(3.68)

$$\overline{I}_{0}_{y} = \sum_{i=1}^{NEFX} I_{y'_{i}}$$
 (3.69)

10 - Área total hipoteticamente removida

$$AREAD = \sum_{i=1}^{NEFX} BB_{i}$$
 (3.70)

11 - Parcela correspondente a transferência de eixos (Teorema de Stein)

$$\bar{I}_{x_i} = BB_i (y_{CE_i} - y_C)^2$$
 (3.71)

$$\overline{I}_{y_i'} = BB_i (x_{CE_i} - x_C)^2$$
 (3.72)

$$\overline{I}_{x_{i}y_{i}}' = BB_{i} (y_{CE_{i}} - y_{C}) (x_{CE_{i}} - x_{C})$$
 (3.73)

12 - Segunda parcela de correção para o tensor de inércia (ver apêndice D)

$$\overline{I}_{X} = \sum_{i=1}^{NEFX} \overline{I}_{X_{i}}$$
 (3.74)

$$\overline{I}_{y} = \sum_{i=1}^{NEFX} \overline{I}_{y_{i}}$$
 (3.75)

$$\overline{I}_{xy} = \sum_{i=1}^{NEFX} \overline{I}_{x_i y_i}$$
 (3.76)

13 - Tensor de inércia corrigido, todavia, relativo aos eixos baricêntricos da seção plena

$$I_{x_C} = I_{\xi} - (\overline{I}_{o_X} + \overline{I}_X)$$
 (3.77)

$$I_{y_C} = I_{\eta} - (\overline{I}_{o_y} + \overline{I}_y)$$
 (3.78)

$$I_{x_C y_C} = I_{\xi \eta} - \overline{I}_{xy}$$
 (3.79)

14 - Área efetiva ou área equivalente da seção

$$AREF = AREA - AREAD (3.80)$$

15 - Deslocamento do eixo neutro em relação a sua posição or<u>i</u> ginal, isto é, correspondente a seção plena

$$x_1 = Q_y / AREF \qquad (3.81)$$

$$y_1 = Q_X / AREF \qquad (3.82)$$

onde $\mathbf{Q}_{\mathbf{X}}$ e $\mathbf{Q}_{\mathbf{y}}$ são os momentos de primeira ordem, calculados como segue:

a) para elementos passíveis de flambarem localmente

$$Q_{x} = \sum_{i=1}^{NEFX} (COMP_{i} TES_{i} - BB_{i})(y_{CE_{i}} - y_{G})$$
 (3.83)

$$Q_{y} = \sum_{i=1}^{NEFX} (COMP_{i} TES_{i} - BB_{i})(x_{CE_{i}} - x_{G})$$
 (3.84)

onde x_G e y_G são as coordenadas do centróide da seção.

b) para elementos que não sofrem redução de área

$$Q_{x} = \sum_{i=1}^{N-NEFX} (COMP_{i} TES_{i}) (y_{CE_{i}} - y_{G})$$
 (3.85)

$$Q_{y} = \sum_{i=1}^{N-NEFX} (COMP_{i} TES_{i})(x_{CE_{i}} - x_{G})$$
 (3.86)

16 - Nova posição da linha neutra com respeito ao sistema de referência global x-y

$$y_{G_1} = y_{G} + y_{1}$$
 (3.87)

$$x_{G_1} = x_{G} + x_{1}$$
 (3.88)

17 - Tensor de inércia corrigido, relativo á nova posição dos eixos baricêntricos (seção efetiva)

$$I_{x_g(ef)} = I_{x_C} - AREF (y_C - y_{G_1})^2$$
 (3.89)

$$I_{y_g(ef)} = I_{y_C} - AREF (x_C - x_{G_1})^2$$
 (3.90)

$$I_{x_g y_g (ef)} = I_{x_C y_C} - AREF (x_C - x_{G_1}) (y_C - y_{G_1})$$
... (3.91)

18 - Direção dos eixos principais de inércia

$$\psi_{p} = 0.5 \text{ tg}^{-1} \left[2 I_{x_{g}} y_{g}(ef) / (I_{y_{g}}(ef) - I_{x_{g}}(ef)) \right]$$
... (3.92)

19 - Momentos principais de inércia (seção efetiva)

$$I_{\xi p(ef)} = I_{x_g(ef)} \cos^2 \psi_p + I_{y_g(ef)} \sin^2 \psi_p$$
.

$$-2 I_{x_g y_g(ef)} sen \psi_p cos \psi_p$$
 (3.93)

$$I_{\eta p(ef)} = I_{x_g(ef)} sen^2 \psi_p + I_{y_g(ef)} cos^2 \psi_p$$

+ 2
$$I_{x_g y_g (ef)}$$
 sen ψ_p cos ψ_p (3.94)

20 - Para a obtenção do módulo de resistência efetivo, o procedimento desde o item 3.4.2 (1) até 3.4.2 (17) é repetido, uma vez que agora a expressão que dá o comprimento efetivo é a (3.62) e não a (3.60) e o módulo de resistência é dado pela expressão

$$S_{x(ef)} = I_{x_g(ef)}/ALT1$$
 (3.95)

onde ALT1 é a distância desde a nova posição do eixo neutro até a fibra mais afastada.

A determinação das propriedades efetivas, quando os elementos em compressão são paralelos ao eixo dos y, é feita de forma inteiramente análoga a descrita nos itens 3.4.2 (1) a 3.4.2 (20). Desta maneira, para a reutilização do processo na direção y, é requerido uma inversão de eixos. Portanto, o que se referia ao eixo x, passa agora a se referir ao eixo dos y.

Em se tratando de seções com reforços intermediários, a largura efetiva ou comprimento efetivo é determinado com as expressões usuais, isto é, com as equações (3.59), (3.60), (3.61) e (3.62), conforme a razão largura-espessura do sub-elemento, quando comparada com a razão largura-espessura limite (função da tensão), equação (3.57) ou (3.58). Porém, quando a razão largura-espessura de um sub-elemento é maior que 60,

o comprimento efetivo é determinado através da relação

$$BE' = BE - 0,10 (BST_i - 60)$$
 (3.96)

onde BST; - razão largura-espessura do sub-elemento.

BE - comprimento efetivo determinado com as equações (3.59), (3.60), (3.61) e (3.62) conforme for o caso.

Para membros de paredes delgadas em compressão axial, o efeito da flambagem local é considerado através do fator de coluna Q. Sua obtenção é efetivada através dos seguintes itens:

Para o i-ésimo elemento passível de flambagem local.

1 - Tensão de compressão

$$ZGMA_{i} = ZGMAE/1,65$$
 (3.97)

2 - Razão largura-espessura

$$BST_{i} = COMP_{i}/TES_{i}$$
 (3.98)

3 - Razão largura-espessura limite, em função da tensão atuante ZGMA;

$$BSTQ_{i} = 0,7396 \left(\frac{E}{ZGMA_{i}}\right)^{1/2}$$
 (3.99)

4 - Largura efetiva ou largura útil

a) BE =
$$COMP_i$$
 quando $BST_i \leq BSTQ_i$ (3.100)

b) BE = 1,479
$$\left(\frac{E}{ZGMA_{i}}\right)^{1/2} \left[1 - 0,3698 \left(\frac{E}{ZGMA_{i}}\right)^{1/2} \frac{1}{BST_{i}}\right] TES_{i}$$

quando $BST_{i} > BSTQ_{i}$... (3.101)

c) existindo reforços intermediários, o comprimento efetivo dos sub-elemento é dado por

$$BE' = BE$$
 para $BST_i \le 60$ (3.102)

5 - Comprimento descontado

$$B_{i} = COMP_{i} - BE \qquad (3.104)$$

6 - Area hipoteticamente removida

$$BB_{i} = B_{i} TES_{i}$$
 (3.105)

7 - Área total removida

$$AREAD = \sum_{i=1}^{NTEX+NTEY} BB_{i}$$
 (3.106)

onde NTEX - número de elementos paralelos ao eixo x e passíveis de flambagem local. NTEY - número de elementos paralelos ao eixo y e passíveis de flambagem local.

8 - Área efetiva da seção transversal

$$AREF = AREA - AREAD$$
 (3.107)

9 - Fator de coluna

$$Q = \frac{AREF}{AREA}$$
 (3.108)

- Elementos não Enrijecidos em Compressão

Em se tratando de seções constituídas apenas de ele mentos não enrijecidos, e em função do comportamento apresentado por tais elementos quando em compressão, determinam-se propriedades seccionais plenas, bem como tensões de compressão admissíveis e momento admissível, por razões descritas no item 2.4.2 do capítulo 2.

Propriedades Seccionais

- 1 O procedimento para a obtenção das propriedades seccionais plenas, encontra-se descrito no item 3.4.1 deste ca pítulo.
- 2 Tensões de compressão admissíveis Para cada elemento determina-se a correspondente tensão de compressão admis sível. Esta tensão, que é função da razão largura-espessura, é obtida através das expressões:

a)
$$\sigma_{\text{ca}_{\dot{1}}} = \sigma_{\text{b}}$$
 para $\frac{\text{b}}{\text{t}} \leqslant 10$ (3.109)

b)
$$\sigma_{ca_i} = (1,667\sigma_b - 0,404\sigma_{cr}) - \frac{1}{15}(\sigma_b - \frac{1}{1,65}\sigma_{cr})\frac{b}{t}$$

para
$$10 < \frac{b}{t} \le 25$$
 ... (3.110)

onde

$$\sigma_{\rm b} = \sigma_{\rm e}/1,65$$
 (3.111)

$$\sigma_{\rm cr} = 0.5 \frac{\pi^2 E}{12(1-v^2)(25)^2}$$
 (3.112)

c)
$$\sigma_{\text{ca}_{\dot{1}}} = \frac{1}{57,75} (\sigma_{\text{cr}/60} - \sigma_{\text{cr}/25}) \frac{b}{t} - \frac{25}{57,75}$$

$$\times (\sigma_{\rm cr/60} - \sigma_{\rm cr/25}) + \frac{1}{1,65} \sigma_{\rm cr/25}$$
 (3.113)

onde $\sigma_{\rm cr/25}$ e $\sigma_{\rm cr/60}$ são dadas pela expressão (2.53) com b/t igual a 25 e 60, respectivamente.

Estas expressões podem ser utilizadas para membros em flexão ou compressão axial, com exceção da equação c que não se aplica para cantoneiras em compressão axial. Assim, apresenta-se a seguinte expressão

d)
$$\sigma_{\text{ca}_{\dot{i}}} = 0,303 \frac{\pi^2 E}{12(1-v^2)(b/t)^2}$$
 para 25 $< \frac{b}{t} < 60$... (3.114)

3 - Momento admissível - Sua obtenção é feita com a expressão

$$M_{adm} = S_{pleno} \sigma$$
 (3.115)

- onde σ é a tensão governante, podendo ser de tração σ_b ou compressão σ_{ca}. A tensão σ_{ca} corresponde a do elemento em compressão na flexão.
 - 4 fator de coluna De acordo com as recomendações das Normas AISI e NB-143, ele é a relação entre a tensão de compressão admissível e a tensão básica de projeto, σ_h. Assim,

$$Q_{t} = \sigma_{ca_{i}}/\sigma_{b} \tag{3.116}$$

onde $\sigma_{{
m ca}_i}$ - é a menor das tensões de compressão admissíveis.

- Seções Constituídas de Elementos Enrijecidos e não Enrijecidos dos

Para estas seções, devido a presença de elementos enrijecidos e não enrijecidos, fica implícita a possibilidade de serem determinadas, além das propriedades plenas, propriedades considerando a seção efetiva bem como tensões de compressão admissíveis e momento admissível. Um exemplo esclarecedor desta situação pode ser visto no capítulo 4, exemplos e comparações, para a seção C com flanges não enrijecidos.

Propriedades Seccionais

- 1 O procedimento para a obtenção das propriedades seccionais plenas, encontra-se descrito no item 3.4.1 deste ca pítulo.
- 2 As propriedades seccionais efetivas são obtidas com a formulação apresentada no item 3.4.2 com subtítulo - Ele mentos enrijecidos em compressão.
- 3 Na forma em que se tenha elementos não enrijecidos em compressão, as propriedades seccionais são obtidas con-

forme os procedimentos apresentados no item 3.4.2 com subtitulo - Elementos não enrijecidos em compressão.

4 - Fator de coluna - Em conformidade com a equação (2.90) pode-se escrever:

$$Q_{m} = Q_{a} Q_{t}$$
 (3.117)

onde Q_a e Q_t são dados pelas equações (3.108) e (3.116), respectivamente.

3.5 - PROGRAMA CODIFICADO EM FORTRAN

Para a solução numérica da formulação apresentada neste capítulo, foi codificado um programa em FORTRAN. Um fluxo grama geral é apresentado no apêndice A.

CAPITULO 4

EXEMPLOS E COMPARAÇÕES

A seguir, são apresentados alguns exemplos com a finalidade de demonstrar a flexibilidade e validade da formulação numérica desenvolvida e apresentada no capítulo 3.

As seções transversais selecionadas para as quais as propriedades seccionais plenas e efetivas são calculadas, foram extraídas do manual de especificação para o projeto de membros estruturais leves, AISI [4] com a finalidade exclusiva de comparação de resultados. A razão desta limitação reside no fato de que não se dispõe de outra referência que apresente propriedades seccionais levando em conta o efeito da flambagem local.

Como primeiro exemplo ilustrativo, considera-se uma seção C modelada de acordo com o exposto no apêndice B, e mostra da na figura 4.1.

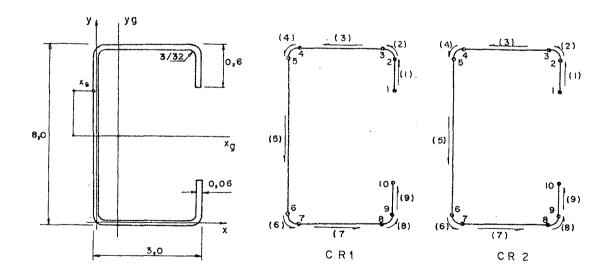


Figura 4.1 - Exemplo de seção ITIPO = 1
Dimensões em polegadas.

Quando em flexão pura em relação ao eixo $\mathbf{x}_{\mathbf{g}}$, dendo do sentido do momento fletor, o elemento de número de dem 3, ou o de número de ordem 7, pode se encontrar sob são, e portanto, dependendo do nível de tensão atuante poderá ha ver uma redução em sua área plena, como consequência da gem local. Este fato, evidencia a existência de duas distintas, com respeito ao mesmo eixo. Aqui, naturalmente, devido a simetria em relação a este eixo, x_g , é necessário rar apenas um sentido para o momento fletor, e determinar então, as propriedades seccionais efetivas. No que diz respeito ao eixo $\mathbf{y}_{\mathbf{g}}$, pode-se ver que, dependendo do sentido do momento tanto o elemento de número de ordem 5 quanto os elementos de número de ordem 1 e 9 podem estar em compressão. Poder-se-ia sar em determinar as propriedades seccionais efetivas para as du as situações distintas, contudo segundo as referências [4,17] os elementos de número 1 e 9 funcionam como reforço, isto é, enri jecedores de borda e portanto são dimensionados de tal forma que mesmo sujeito a maior tensão admissível, isto é, tensão de projeto o_b, não flambam localmente. Assim, é desnecessário analisar esta situação ou similar. Isto significa que as propriedades efetivas, neste caso, são as próprias propriedades plenas. Portanto, deve ser verificada alguma redução nas plenas, com respeito ao eixo \mathbf{y}_{σ} , quando o elemento comprimido for o de número de ordem 5.

Para efeito comparativo apresenta-se uma tabela (ver figura 4.2) demonstrativa dos resultados obtidos para a seção em apreço, correspondendo a aços com tensão de escoamento da ordem de 232 MPa (33000 psi) e 348 MPa (49500 psi).

Nota: Algumas propriedades efetivas não estão disponíveis na referência [4]. Nas tabelas que se seguem, é colocado um traço no local das referidas propriedades.

Uma situação onde as propriedades seccionais plenas são utilizadas em conjunto com tensões de compressão admissíveis, pode ser vista utilizando-se a cantoneira da figura 4.3, modelada conforme os requisitos do apêndice B.

<u> </u>		,253	,253
	xs	0 -1	0 -1
	ус	4,0	4,0
	xc yc xs	0,822	0,822 4,00 -1,253
PROPRIEDADES SECCIONAIS PLENAS	ryg	1,061 0,822 4,00 -1,253	0,458 1,06
CIONAIS	Syg	0,458	1 1
NDES SEC	Iyg	792 2,198 3,152 0,997 0,458	0,997
OPRIEDA	rxg	3,152	3,15
PR	Sxg rxg	2,198	79 2,20 3,15
	Ixg	8,792	8,79
	AREA	PROCESSO 0,885	0,885
		088	
	FONTE	PROCE	REF. [4]

	DEFOR	DEFORMAÇÕES	ES RESISTÊNCIA		PROPRIEDADES DEFORMAÇÕES	ADES SEC AÇÕES	$1 \cap 1$	NAIS EFETIVAS RESISTÊNCIA	DEF.	RESIST.		
	× 60		0 8 9	&		compressão	tração		tração	compressão	FATOR DE COLUNA	JR NA
`		tração	ão		2		yg		3 yg	ļ	4	
	$\sigma = \sigma_{b1}$	$\sigma = \sigma_{b,2}$	σ=σ _{b1}	$\sigma = \sigma_{b2}$	σ=σ _{b1}	$\sigma = \sigma_{b,2}$	σ=σ _{b1}	$\sigma = \sigma_{b2}$	$\sigma = \sigma b 1$	$\sigma = \sigma b 1$	$\sigma = \sigma_{b1}$	σ=σ _{b2}
	Ix	Ixg	Sxg	Sxg	Iyg	Iyg	Syg	Syg	Iyg	Syg	Q	6
PROCESSO	8,702	8,497	2,058	1,956	0,869	0,812	0,421	0,409	0,997	0,458	0,458 0,635	0,565
REF. [4]	ı	1	2,06	1,95	1	1	ı	1	766,0	0,458	0,458 0,635	0,565

Figura 4.2 - Quadro Comparativo $\sigma_{\rm b1} = 20000~{\rm psi};~\sigma_{\rm b2} = 30000~{\rm psi}$

4 e tração em 2) σ - Tensão de trabalho (compressão em 1, 3 e Unidades pol, pol², pol⁴.

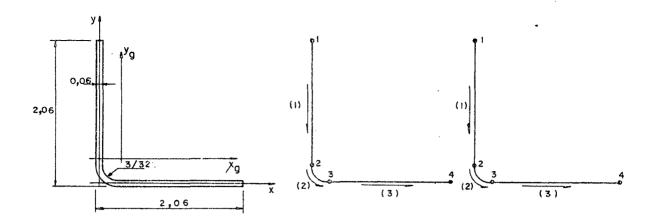


Figura 4.3 - Exemplo de seção ITIPO = 3

Dimensões em polegadas.

Para esta seção, duas situações distintas podem ocor rer com respeito ao mesmo eixo. Tome-se como exemplo o eixo bari cêntrico \mathbf{x}_{σ} . Dependendo do sentido do momento pode-se ter o elemento de número de ordem 1 ou o elemento de ordem 3 em compressão. No primeiro caso tem-se que a tensão de trabalho são) é determinada em conformidade com o gráfico da figura ou com as equações correspondentes aqueles segmentos em da razão largura-espessura b/t. Aqui, no caso, deve-se tomar b/t do elemento de número de ordem 1. O momento máximo admissível é portanto, determinado em função desta tensão de trabalho reduzida. No segundo caso, o momento máximo admissível pode ser diretamente em função da tensão básica de projeto $\sigma_{\mbox{\scriptsize h}}$, atuando na fibra tracionada, ou em função de uma tensão de tração reduzida. Esta última dada por uma relação linear envolvendo a tensão compressão admissível do elemento. Para o caso em questão, tensão corresponde a do elemento de número de ordem 3.

Para efeito comparativo apresenta-se uma tabela (ver figura 4.4) demonstrativa dos resultados obtidos para a seção em apreço, correspondendo a aços com tensão de escoamento da ordem de 232 MPa (33000 psi) e 348 MPa (49500 psi).

Um tratamento similar ao utilizado para a cantoneira, (ver figura 4.3) pode ser usado para a seção mostrada no apêndice B (figura B.1 (c)) onde todos os elementos constituintes são não enrijecidos. Portanto, tem-se para esta seção ITIPO = 3. Pa-

			PRC	PROPRIEDADES SECCIONAIS PLENAS	S SECCIO	NAIS PLE	NAS			
FONTE	ÁREA	$Ix_g = Iy_g Sx_g$	$Sx_g = Sy_g$	$_{3}$ =Syg rxg=ryg xc=yc	x _c =y _c		۲. ۲۲	I U	r	Ixgyg
PROCESSO	0,240 0,104	0,104	0,068	0,657	0,544	0,167	0,834 0,040	0,040	0,408 -0,0636	-0,0636
REF. [4]	0,241 0,104	0,104	0,069	0,658	0,545	ı	1	0,0404 0,409	0,409	I

			PROPRI	EDADES S	SECCIONAL	PRIEDADES SECCIONAIS EFETIVAS	4S			
		RESIS	RESISTÊNCIA			RESI	RESISTÊNCIA		FATOR	OR
	comj	compressão	COU	compressão	соп	compressão	comp	compressão		DE
	Produce ja viit hillings (up the combine de montre de la combine de la c		, po	X	Organica in the second communication of the second communi		X	ρδ Χ	COLUNA	NA
	×	X	P hydronistycyddog c ar		×	X S	Michigan Common Spallers			
	tração	ção 1	tra	tração 2		tração 3	tração	ão 4	5 0	9 0
	σ=σ ca	M	$\sigma = \sigma_{b1}$	M max	σ≔σca	M max	σ=σ _{b2}	M	σ=σ _{ca}	σ=σ ca
PROCESSO	11041	756	20000	1368	11041	756	30000	2053	0,401	0,267
REF. [4]	11040	760	20000	1380	11040	760	30000	2070	0,401	0,267

Figura 4.4 - Quadro comparativo.

 $\sigma_{\rm b1}$ = 20000 psi; $\sigma_{\rm b2}$ = 30000 psi $\sigma_{\rm c}$ - Tensão de trabalho (compressão em 1,3,5 e 6 e tração,2 e 4) Unidades pol, pol², pol³, pol⁴.

			PROPRIE	DADES S	PROPRIEDADES SECCIONAIS PLENAS	IS PLEN	AS		
FONTE	ÁREA	Ix _g Sx _g	Sxg	rxg	Iyg	Syg	ryg	x x	×
PROCESSO	2,102	3,431	1,164	1,278 5,831	5,831	1,452	1,452 1,666 0,00	0,00	1,069
REF. [4]	2,10	3,430	3,430 1,164 1,28	1,28	5,831	1,452	1,452 1,67 0,00	0,00	1,069

			PROPF	(IEDADES	PROPRIEDADES SECCIONAIS EFETIVAS	IS EFETI	VAS			
		RESIS	RESISTÊNCIA			RESI	RESISTÊNCIA			
	compressão	são	compressão	ão	compressão	ssão	compressão	são	FATOR	X X
						,			DE COLUNA	NA
	x g x	× ×			×	×				
	tração	F	tração	2	tração		tração	4	5 0	9 0
	$\sigma = \sigma_{\mathbf{Ca}}$	M max	$\sigma = \sigma_{b1}$	M max	σ=σ ca	Mmax	$\sigma = \sigma_b 2$	Mmax	o=o ca	σ=σ ca
PROCESSO	12287	14306	00007	23287	12287	14306.	30000	34931	0,541	0,360
REF. [4]	12300	14320	20000	23280	12300	14320	30000	34920	0,542	0,361

Figura 4.5 - Quadro comparativo.

5 e 6 e tração em $\sigma_{\rm b1}$ = 20000 psi; $\sigma_{\rm b2}$ = 30000 psi $\sigma_{\rm compressão}$ em 1, 2 e 4).

Unidades pol, pol², pol³, pol⁴.

ra efeito de validação dos resultados, apresentam-se as propriedades seccionais determinadas pelo programa PEPAD em confronto direto com aquelas apresentadas na referência [4]. (ver figura 4.5).

Dando continuidade a esta série exemplo-comparação, apresenta-se agora uma seção constituída de ambos os elementos, isto é, elementos enrijecidos e não enrijecidos, conforme é visto na figura 4.6. Esta seção é a mesma da figura B.1 (b) do apên dice B, aqui reproduzida apenas por comodidade.

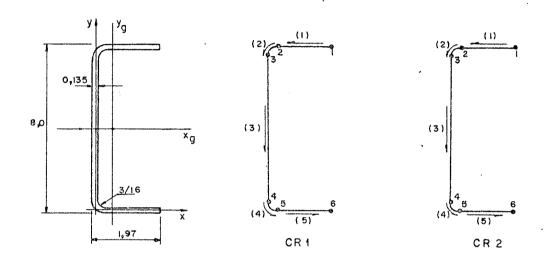


Figura 4.6 - Exemplo de seção ITIPO = 2 ou ITIPO = 1.

Dimensões em polegadas.

Esta seção apresenta uma singularidade no que diz respeito ao eixo y_g . Dependendo do sentido do momento fletor havera um elemento enrijecido ou dois elementos não enrijecidos em compressão.

O programa PEPAD determina as propriedades seccionais efetivas para uma única situação, ou sentido do momento fletor com respeito a um dos eixos, \mathbf{x}_g ou \mathbf{y}_g . Então, para o caso em que se deseja obter as propriedades seccionais efetivas, relativa aos outros sentidos do momento fletor, é necessário apenas, introduzir um outro deck de dados, uma vez que o programa prevê a possibilidade de execução consecutiva. Justamente esta situação se aplica para a seção da figura 4.6, cujos resultados são apresentados nas tabelas da figura 4.7.

			A	PROPRIEDADES		SECCIONAIS PLENAS	S PLENAS				
FONTE	AREA	Ix_{g}	Sxg	rxg	Iyg	Syg	ryg	x	y _c	x	ys
PROCESSO	1,546	1,546 12,954	3,239	2,895	2,895 0,466	0,294 0,549 0,384	0,549	0,384	4,00	4,00 -0,580 4,0075	4,0075
REF. [4]	1,55	12,9	3,24	2,89	0,465	0,465 0,293	0,548 0,383	0,383	4,00	4,00 -0,531 4,00	4,00

		FATOR DE COLUNA	4	8	0,735	0,736
		F CO	-	ð	0,4660,466 0,2940 0,2934 0,817 0,735	0,817 0,736
	RESISTÊNCIA	ompressão	o 3	Syg	0,2934	l
	RESIS			Syg	0,2940	l l
	AÇÕES	tração 🤟	y y	Ιy	5 0,466	-
S	DEFORMAÇÕES			Iyg	0,466	ŧ
SECCIONAIS EFETIVAS	A		- 5	M max	8084	8054
CIONAIS	RESISTÊNCIA	compressão		σ=σ _{ca}	27498	27490
DES SEC	RES	oāgart ~	7 8	Mmax	5575	5555
PROPRIEDADES				σ=σ _{ca}	18964	18960
PRO	RESISTÊNCIA	, ×	9	M	19068	89067
		compressão tração	σ=σ _{ca}	27498	27490	
	RESIS	COM	tra	M max	61425	61430
		× ×		σ=σ _{ca}	18964	18960
					PROCESSO	REF. [4]

Figura 4.7 - Quadro comparativo.

4 e tração em 3). $\sigma_{\rm b1}$ = 20000 psi; $\sigma_{\rm b2}$ = 30000 psi $\sigma_{\rm c}$ - Tensão de trabalho (compressão em 1, Unidades pol, pol², pol³, pol⁴. Os exemplos apresentados até o momento mostram a validade da formulação desenvolvida e também, de forma sucinta, como se deve analisar uma seção para se trabalhar eficazmente com o programa, para a obtenção das propriedades seccionais efetivas. Os exemplos que se seguem são especificamente para efeito comparativo. Assim, os resultados do perfil indicado na figura 4.8 são apresentados na tabela da figura 4.9.

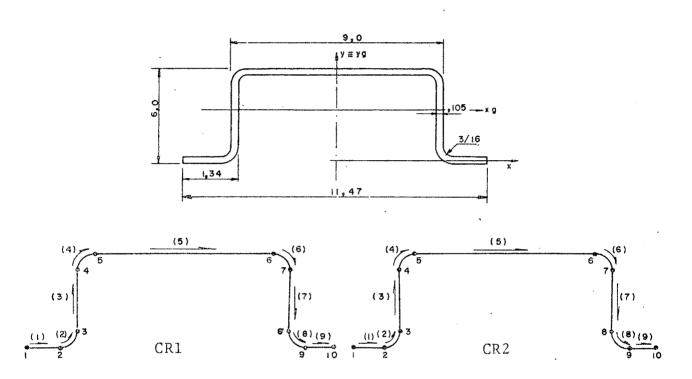
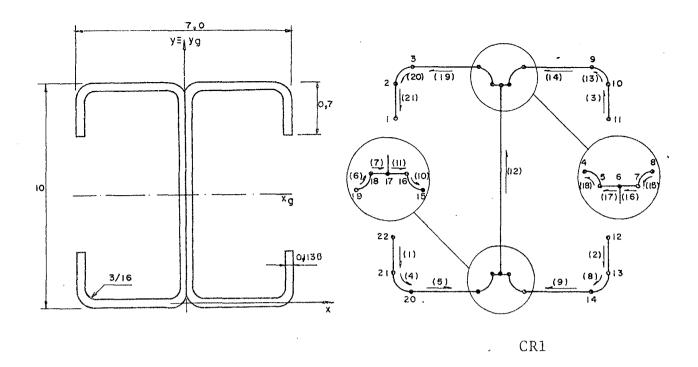
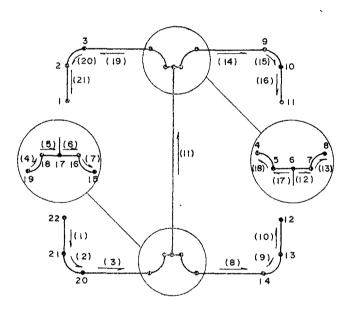


Figura 4.8 - Exemplo de seção ITIPO = 1
Dimensões em polegadas.

Um outro perfil amplamente utilizado em estruturas $ilde{\mathbf{e}}$ indicado na figura 4.10, e os resultados apresentados na figura 4.11

Os exemplos acima apresentados usam as tensões básicas de projeto σ_{b1} =140 MPa(20000 psi) e σ_{b2} =210 MPa (30000 psi), única e exclusivamente para comparação com os resultados existentes na referência [4].


O programa pode ser utilizado para qualquer material com propriedades mecânicas dadas em qualquer sistema coerente de unidade.


				PF	PROPRIEDADES		SECCIONAIS PLENAS	S PLENA	S	-	
FONTE	AREA	Ixg	Sxg	rxg	Iyg	Syg	ryg x _c	×	Ух	×s	ys
PROCESSO 2,399 12,07 3,163 2,243	2,399	12,07	3,163	2,243	36,836	6,423 3,918	3,918	0,00	3,815 0,00	0,00	8,614
REF. [4]	[4] 2,40	12,1	3,16	2,24	36,84	6,42 3,92		0,00	3,82	0,00	ı

Γ	Τ					,			1
		FATOR	DE COLIMA	COINT	4	$\sigma = \sigma_{b2}$	8	0,671	0,671
		AT .	<u> </u>)		$\sigma = \sigma_{b1}$	δ	0,751	0,751
	ENCIA	0]	<u> </u>	ə ı du	COU	$\sigma = \sigma_{b2}$	Sy_g	5,642	ı
	RESISTÊNCIA	h				σ=σ _{b1}	Syg	5,965	1
PROPRIEDADES SECCIONAIS EFETIVAS	AÇÕES	V P			<u> </u>	$\sigma = \sigma_{b2}$	Iyg		1
IONAIS	RESIST. DEFORMAÇÕES		go	. 		σ=σ _{b1}	Iyg	3,163 36,37	1
S SECC	RESIST	compressão	L		10 2	$\sigma = \sigma b I$	Sxg	3,163	3,16
RIEDADE	DEF.	сошр			tração	$\sigma = \sigma b I$	Ixg	12,07	12,1
PROF	ENCIA		×	50	г -	σ=σ _{b2}	Sxg	2,921	2,92
	RESISTÊNCIA	RESISTÊN :essão			, <u>0</u>	$\sigma = \sigma_{b1}$	Sxg	2,99	3,00
	DEFORMAÇÕES	ore	tração	σ=α _{b2}	Ixg	10,68	10,7		
-	DEFORI		×	60		$\sigma = \sigma_{b1}$	Ixg	11,27	11,3
								PROCESSO 11,27	REF. [4]

Figura 4.9 - Quadro comparativo

Unidades pol, pol2, pol3, pol4.

CR2

Figura 4.10 - Exemplo de seção ITIPO = 1

Dimensões em polegadas.

		Ы	PROPRIEDADES	I '	CIONAIS	SECCIONAIS PLENAS			
FONTE	ÁREA	Ixg	Sxg	rx_{g}	Iyg	Syg		ry _g x _c	y
PROCESSO	2,681	81 40,958	8,192	3,908	6,333	3,908 6,333 1,809 1,537 0,00	1,537	0,00	5,00
REF. [4]	2,68	58 41,0	8,2	3,91	6,33	1,81	1,54 0,00	0,00	5,00

						·
		FATOR DE COLUNA	$\sigma = \sigma_{b2}$	8	0,565	0,567
		F Ö	$\sigma = \sigma_{b1}$	0	0,634	0,634
	RESISTÊNCIA		σ=σ _{b2}	Sy_g	1,809	1,81
FETIVAS	RESIS	compressão	$\sigma = \sigma_{b1}$	Sy _g	1,809	1,81
ONAIS EF	DEFORMAÇÕES	ospert	σ=σ _{b2}	Iy _g ,	6,333	6,33
S SECCIO	DEFOR		$\sigma = \sigma_{b1}$	Iyg	6,333	6,33
PROPRIEDADES SECCIONAIS EFETIVAS	RESISTÊNCIA	× 58	$\sigma = \sigma_{b2}$	Sxg	7,428	7,44
PROP	RESIS	compressão tração	$\sigma = \sigma_{b1}$	Sx_g	7,791	7,80
	1AÇOES		$\sigma = \sigma_{b,2}$	Ixg	39,936	ą
	DEFORMAÇÕES	×	$\sigma = \sigma_{b1}$	IX		ı
			,		PROCESSO 40,745	REF. [4]

Figura 4.11 - Quadro comparativo.

 $\sigma_{\rm b1}$ = 20000 psi; $\sigma_{\rm b2}$ = 30000 psi

σ - Tensão de trabalho.

Unidades pol, pol2, pol3, pol4.

CAPÍTULO 5

CONCLUSÃO

O processo numérico computacional e programa codificado em FORTRAN, elaborados neste trabalho, permitem a determinação das propriedades seccionais plenas e efetivas de membros estruturais de paredes delgadas, utilizados como viga ou coluna.

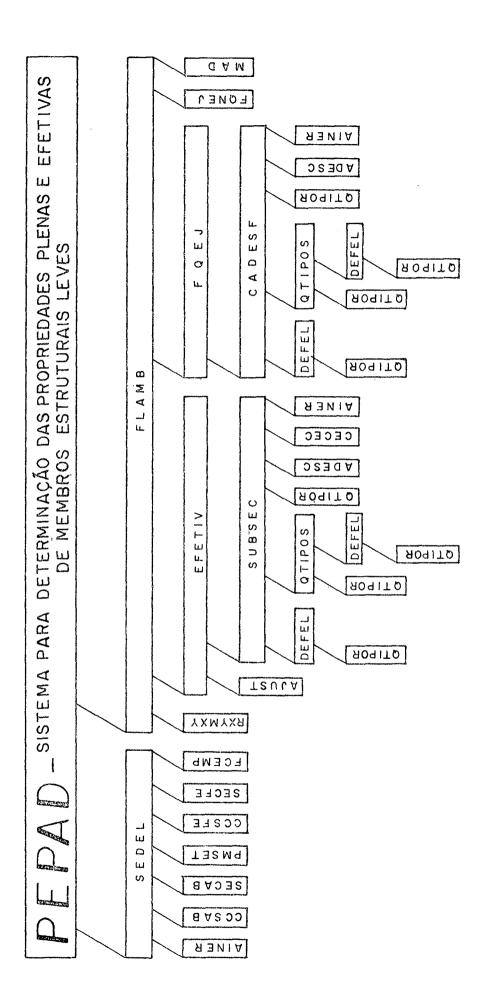
A partir da apresentação e comparação dos resultados, fica demonstrada a concordância entre os valores obtidos e os de referência. Além disso, o programa se apresenta como uma ferramenta de grande utilidade, uma vez que suplanta as formas comuns de cálculo através do uso de tabelas e gráficos em muitos aspectos, tais como:

- 1 Tempo requerido para o cálculo das propriedades plenas e efetivas - Esta é uma consideração muito importante em seções de paredes delgadas, devido as mais variadas formas de seções transversais e principalmente porque para muitas seções, as propriedades efetivas são determinadas através de processo iterativo.
- 2 Largura efetiva Nível de tensão As tabelas e gráficos permitem determinar a largura efetiva em função da razão largura-espessura, somente para níveis discretos de tensão de trabalho, acarretando portanto, para outros níveis, aproximações.
- 3 Obtenção de propriedades seccionais para outros materiais e níveis básicos de tensão Geralmente as propriedades tabeladas são para um material e no máximo para dois níveis básicos de tensão. (ver AISI tabelas). Para outros níveis, as propriedades são obtidas por interpolação e extrapolação, originando portanto, erros.

Uma das aplicações para o programa, de maior interesse prático, é a confecção de tabelas contendo todas as propriedades seccionais plenas e efetivas, para as mais variadas for-

mas de seções transversais e os diversos tipos de materiais usados na fabricação de perfis estruturais. Estas tabelas são de grande valia para o meio industrial. A exemplo, ver tabelas no volume II.

A tendência atual, em estruturas leves, é o uso de vigas conformadas a frio. Uma vez que perfis desta natureza preenchem os dois requisitos básicos de projeto, isto é, economia e segurança, sugere-se, então, desenvolver uma pesquisa com o objetivo único de otimizar ou de apresentar expressões que deter mine com grande precisão a largura equivalente de componentes es truturais em compressão.


REFERÊNCIAS BIBLIOGRÁFICAS

- [1] WINTER, George, "Strenght of Thin Steel Compression Flanges", Trans. ASCE, Vol. 112 p. 527, 1947.
- [2] TIMOSHENKO, S. P. and Gere, J. M., Theory of Elastic Stability. 2nd ed., McGraw-Hill, New York, 1961.
- [3] KARMAN, T. Von, Sechler, E. E., and L. H. Dornell, "The Strenght of Thin Plates in Compression", Trans. ASME, APM, Vol. 54.5, 1932, pp 53-57.
- [4] Light Gage Cold-Formed Steel Design Manual AISI, ed. 1961
- [5] WINTER, George, Light Gage Cold-Formed Steel Design Manual, "Commentary on The 1961 Edition".
- [6] WINTER, George, Performance of Thin Steel Compression Flanges, Prelim. Pub. 3ed Congr. Intern. Assoc. Bridge and Structural Eng., Liège, 1948, p. 137.
- [7] WINTER, George, Cold-Formed Light-Gage Steel Construction Proc. ASCE, J. Struct. Div., Vol. 85, N° ST9, Nov 1959
- [8] SECHLER, E. E., The Ultimate Strenght of Thin Sheets in Compression, Guggenheim Aeronaut. Lab. Pub. 27, California Institute de Technology, Pasadena, 1933.
- [9] BRYAN, G. H., On The Stability of a Plane Plate Under Thrusts in its Own Plane With Application on the "Buckling" of The Sides of a Ship, Proc. London Math Soc., 1891 p. 54.
- [10] BLEICH, F., Buckling Strenght of Metal Structures. McGraw-Hill, 1952.
- [11] SCHUMAN and G BACK, Strenght of Retangular Flat Plates
 Under Edge Compression, NACA Tech. Rept. 356. 1930.

- [12] NEWELL, J. S., Data on the Strenght of Aircraft Materials, Aviation Eng, 1932.
- [13] SWEENEY, R. J., The Strenght of Hull Plating Under Compression, U. S. Experimental Model Basin, Progress Repts. 1 and 2, 1933.
- [14] GAYLORD, E. H. Jr. and Gaylord, C. N., Design of Steel Structures, 2nd ed., McGraw-Hill, Tokyo, 1972.
- [15] MARGUERRE, Karl and Woernle, Hans-Theo, Elastic Plates, Blaisdell Publishing Company 1969.
- [16] DEWOLF, John T., PEOKOZ, Teoman and WINTER, George, "Local and Overall Buckling of Cold-Formed Members", Journal of The Structural Division.
- [17] NB-143 (ABNT Norma Brasileira) ed. 1967.
- [18] KIRCHHOFF, G. R., Mechanik, 2nd ed., p 450, 1877.
- [19] TIMOSHENKO, S. P., and Krieger, S., Theory of Plates and Shells, 2nd ed., pp. 415-428, McGraw-Hill Book Company, Inc., New York, 1959.
- [20] KOLLBRUNNER, C. F., and BASLER, K., Torsion in Structures:

 An Engineering Approach. Spring-Verlag, Berlin/Heidelberg, 1969.
- [21] ALVES, D. B., PROSEC Propriedades Seccionais de Vigas Retas de Paredes Delgadas. Centro Tecnológico da UFSC, 1976.
- [22] ANDERSON, Volnei, "determinação de Propriedades Seccionas na Flexão, na Torção Uniforme e Não Uniforme de Seções de Paredes Delgadas, "Dissertação de Mestrado", CTC-UFSC, 1978.

- [23] VERÇOSA, C. A. M., ROSA, Edison da, ALVES, D. B., Propriedades Seccionais de Perfis de Parede, Fina. Anais do VI Congresso Brasileiro de Engenharia Mecânica COBEM 81, PAPER Nº B-18, pp. 189 198, Dezembro, 1981.
- $\left[24\right]$ NBR 6355 (ABNT Norma Brasileira Registrada) ed. 1980.

..1 - Estrutura do programa PEPAD

LEITURA DECK tituladora, número de elementos da seção transversal, número de nos, número de areas concentradas, sistema de referência alternativa, tipo de torção LEITURA Coordenadas dos nos, topologia dos elementos, elementos de área concentrada CÁLCULO Área da seção transversal, coordenadas do centróide, momentos e produtos de inércia, eixos principais de inércia, módulos de resistência, raios de giração, coordenadas do centro de cisalhamento IMPRESSÃO. Dados de entrada, propriedades seccionais LEITURA Tipo de seção, número de tensões, características mecânicas do material ITIPO: Ø 7 LEITURA Tensão (ões) de escoamento (s), topologia quanto ao aspecto de flambagem local DO Sobre o número de tensão (ões) ITIPO: CALCULO CALCULO CÁLCULO Razão largura-espessu Razão largura-espessura, Razão largura-espessura, tensão de trabalho, comtensão de trabalho, área ra, tensão de compres removida, tensão de comsão reduzida, tensão primento efetivo, ārea efetiva, coordenadas do pressão reduzida, tensão máxima admissível, mo centroide, momentos máxima de trabalho, área mento maximo admissiprodutos de inércia, faefetiva, módulos de resis vel, fator de coluna tor de coluna tência, momentos de inércia, fator de coluna **IMPRESSÃO** Dados de entrada e propriedades efetivas FIM DO ''DO''

A.2 - PEPAD - FLUXOGRAMA GERAL

FIM

APÊNDICE B

B.1 - INTRODUÇÃO

Este apêndice tem por objetivo ilustrar a correta \underline{u} tilização do programa PEPAD. As instruções compreendem duas et \underline{a} pas a saber: modelagem da seção e entrada de dados.

B.2 - MODELAGEM DA SEÇÃO TRANSVERSAL

A seção transversal deve ser modelada por nos, elementos retilíneos e curvilíneos e cavidades tubulares, segundo os seguintes procedimentos:

1 - Em caso de seção fechada ou mista (figura B.1 (e)), cortar as cavidades tubulares de forma que a seção seja con siderada aberta. Os cortes podem ser realizados em quais quer pontos sem, no entanto, subdividir a seção.

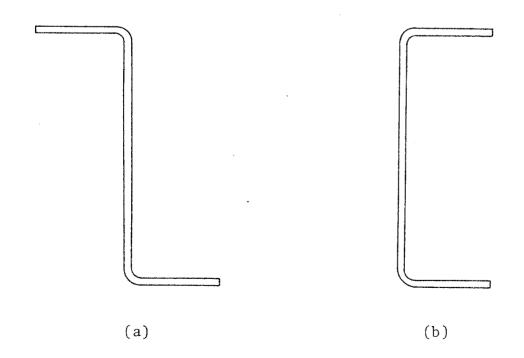
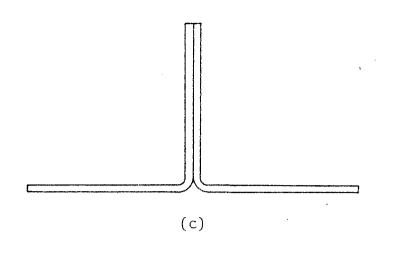
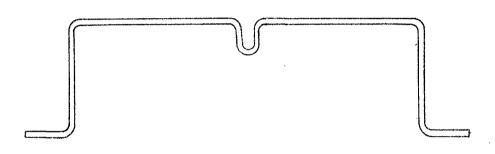




Figura B.1 - Exemplos de seções diversas

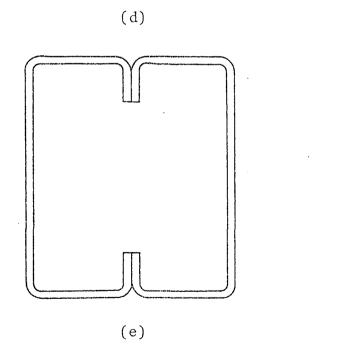
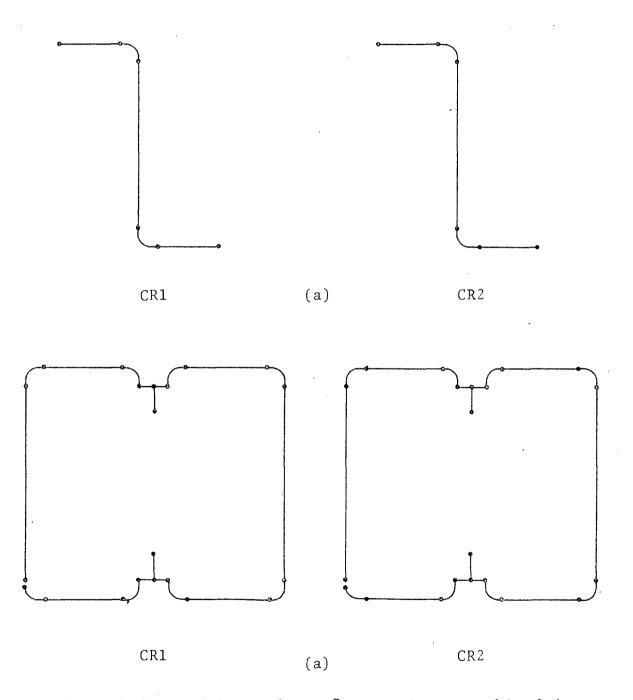
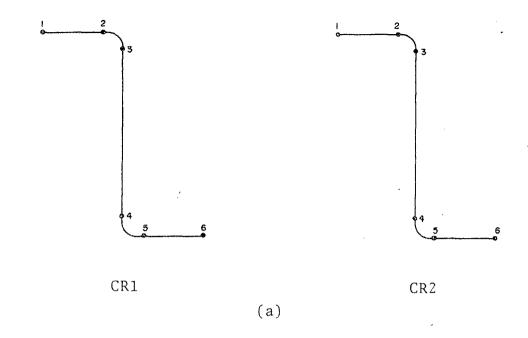


Figura B.1 - Exemplos de seções diversas (continuação)

2 - Desenhar dois croquis da seção, modelada por um conjunto de elementos binodais (linha média da parede): Denominar os croquis por CR1 e CR2, conforme é visto na figura B.2

A modelagem da seção requerida pelo processo numerico é feita considerando a contribuição dos fluxos de cisalhamento e empenamento, ao longo da seção. Tal fato, em geral, implica em duas configurações de fluxos distintas originando, portanto, dois croquis.




Figura B.2 - Modelagem da seção por elementos binodais.

- 3 Áreas concentradas são tratadas como elementos retilineos cujos nós, origem e término, têm as mesmas coordena das.
- 4 Elementos circulares têm seus arcos limitados a 180º.
- 5 Nenhuma cavidade deve estar contida em outra.
- 6 Numerar as cavidades tubulares em CR1 e CR2 de 1 a NCT, onde NCT é o número de cavidades da seção. Figura B.3.
- 7 Numerar os nós em CR1 e CR2 de 1 a NN, onde NN é o número de nós da seção. Figura B.3.
- 8 Em CR1, representar as setas indicativas do sentido origem-término, tomando extremidades livres como origem, exceto no elemento considerado como "último" e assumindo que, de cada nó sai apenas uma seta. Figura B.4.
- 9 Em CR2, representar as setas indicativas do sentido origem-término, tomando extremidades livrès como término, exceto no elemento considerado como "primeiro" e que este não deverá coincidir com o elemento considerado "último" em CR1. As demais setas são representadas assumindo que em cada nó chega apenas uma seta.
- 10 Numerar os elementos da seção de l a N, onde N é o número de elementos em que a seção transversal é discretizada.

Em geral, as numerações dos elementos em CR1 e CR2 não coincidem, com exceção do elemento de número de ordem um (1), que deverá ser o mesmo nos dois croquis. Para numerar os demais elementos, é indiferente recomeçar em CR1 ou CR2.

10.1 - EM CR1

- 1 Numerar em ordem crescente (2, 3, 4, ...) todos os elementos cujos nos origens são extremidades livres, escolhendo-os arbitrariamente.
- 2 O último elemento, isto é, o de número de ordem N é aque le cujo nó término coincide com uma extremidade livre.

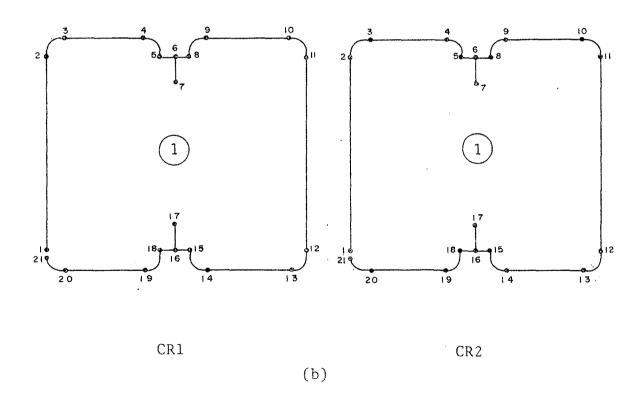
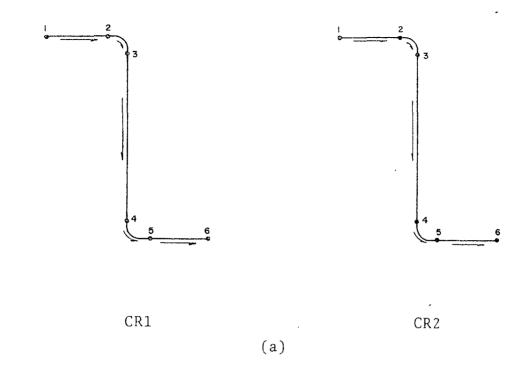



Figura B.3 - Identificação de cavidades e nos.

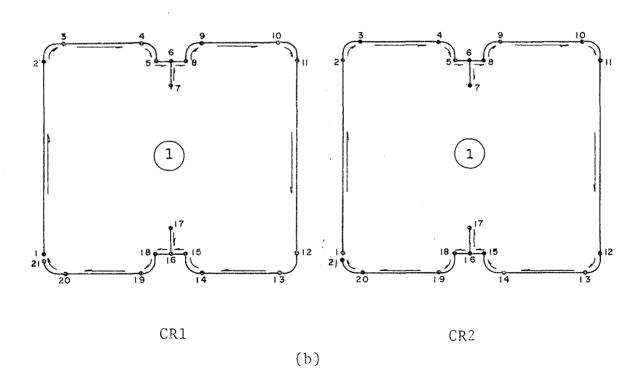


Figura B.4 - Representação das setas indicativas do sentido origem-término.

- 3 Os elementos restantes são numerados como segue:
 - Procurar um nó onde todos os elementos, cujas setas chegam, estão numerados e continuar a numeração no elemento cuja seta tem origem no referido nó.
 - Repetir este procedimento até que todos os elementos da seção estejam numerados. Figura B.5.
- 10.2 Em CR2 a numeração é governada pelo seguinte procedimento:
- 1 O elemento de número de ordem (2) tem como origem o término do elemento de número de ordem (1); o elemento de número de ordem (3) tem como origem o término do elemento de número de ordem (2) e assim sucessivamente para os elementos seguintes até alcançar uma extremidade livre. Caso exista elementos sem número de ordem, reiniciar a sequência a partir de um elemento que se liga a, pelo me nos, um elemento já numerado. Figura B.5.

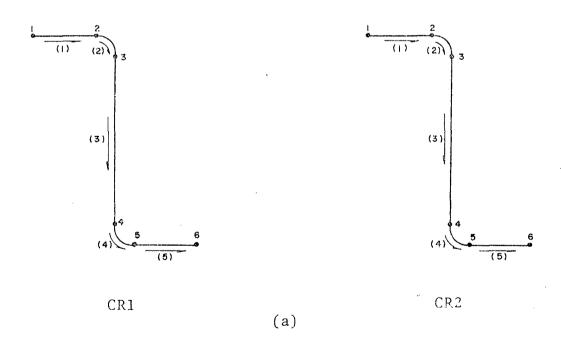
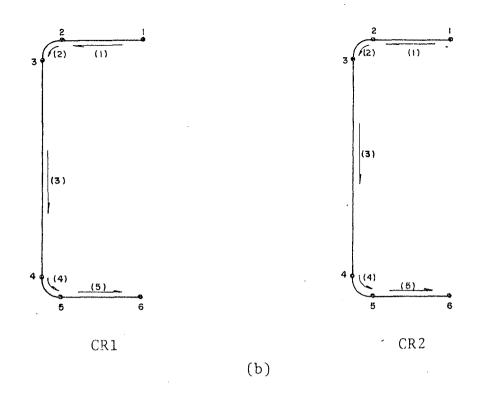



Figura B.5 - Identificação de nós, cavidades e elementos.

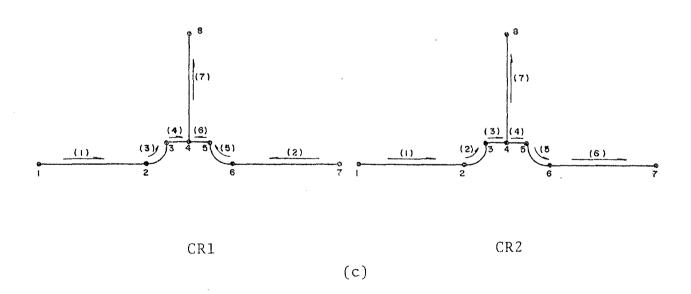


Figura B.5 - Identificação de nos, cavidades e elementos. (continuação)

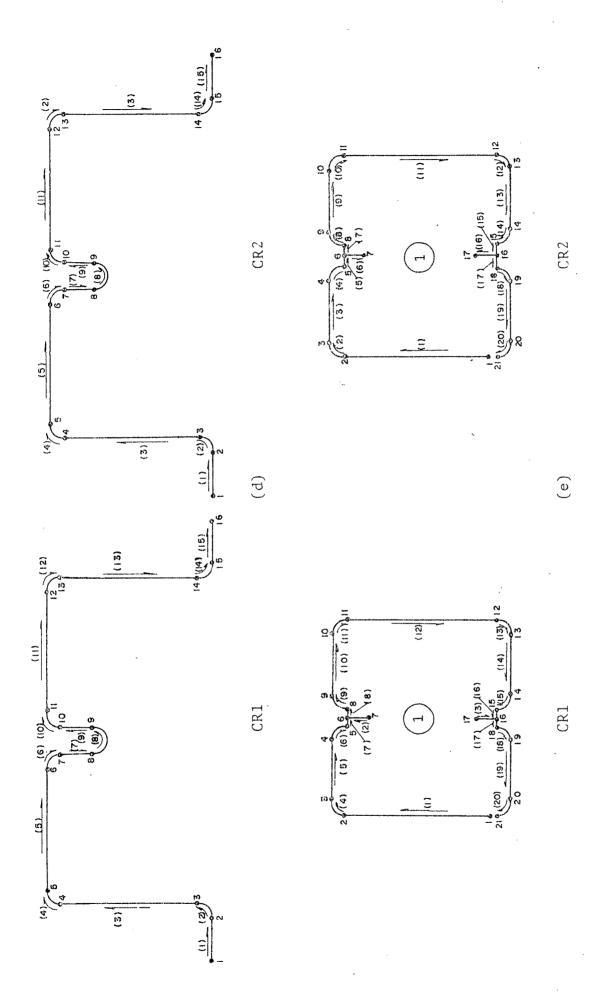


Figura B.5 - Identificação de nos, cavidades e elementos. (continuação)

B.3 - ENTRADA DE DADOS

- PARTE I

Para cada seção transversal são fornecidas as listas de variáveis e respectivos formatos que devem ser obedecidos na perfuração dos cartões de dados.

A seguir, relaciona-se a sequência de cartões de da dos correspondente à parte I.

1 - Cartões Tituladores

São cartões utilizados para cabeçalho na impressão dos resultados de cada seção testada. As informações contidas nestes cartões devem ser perfuradas dentro do limite das colunas 2 a 80. Todos os cartões com informações devem ter um inteiro na coluna um. Um cartão branco indicará a finalização do cabeçalho. Não havendo cabeçalho, um cartão em branco deve ser inserido.

· 2 - Informações Gerais

LISTA N, NN, NC, IFLAG, ISEC, ITOR, ALFA, XP, YP FORMAT (615, 3F10.5)

onde N - número de elementos da seção transversal.

NN - número de nós.

NC - número de áreas concentradas.

IFLAG - se IFLAG=1, o programa calcula os momentos de inércia CIU, CIV e CIUV em relação a um sistema de referência UV com origem no centróide C e paralelo a um outro sistema de referência com centro em P, cu jo eixo x faz um ângulo ALFA(α) graus com o eixo x de referência da seção. Além disso, o programa calcula a distância d entre C e P, bem como o ângu lo agudo δ que o segmento de reta CP faz com o eixo de coordenadas y (figura B.6). Se IFLAG≠1, essas grandezas não são determinadas.

ISEC - se ISEC < 1, a seção é fechada ou mista. ISEC = 1 indica seção aberta. ISEC > 1, indica seção aberta constituída de um elemento retilíneo ou múltiplos elementos retilíneos e colineares, ou ainda, seção composta de membros formados de elementos retilíneos e colineares de tal modo que esses membros te nham um ponto comum (figura B.7).

ITOR - indica o tipo de torção que o programa considera. Se ITOR > 0, o programa considera que a seção está submetida à torção não uniforme, caso contrário, torção uniforme.

ALFA - dado em graus e corresponde a α (figura B.6).

XP, YP - coordenadas de um ponto P (figura B.6).

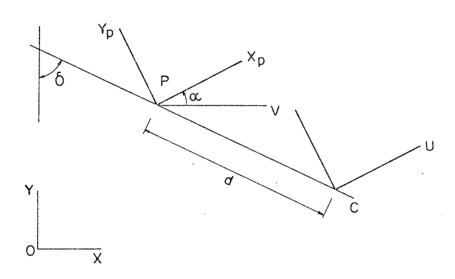


Figura B.6 - Posição dos sistemas de referência ${\hbox{UV e x}_p y_p}. \\$

Figura B.7 - Modelo de seção tipo ISEC > 1.

3 - Coordenadas dos Nós

LISTA (XNA(I), YNA(I), I=1,NN)FORMAT (8F10.5)

onde XNA(I), YNA(I) são as coordenadas (x_i, y_i) , respectivamente do i-ésimo nó.

OBSERVAÇÃO: cada cartão conterá quatro pares de coordenadas, exceto o último, que poderá conter menos. Os pares de coordenadas dos nos deverão ser fornecidos ordenada mente de 1 a NN, em relação ao sistema global de referência (figura 3.2).

4 - Identificação dos Elementos

LISTA (NOELI(I), IEPA(I), IEPB(I), L(I), NOEMP(I), IS(I), IPA(I), T(I), R(I), I=1,N)

FORMAT (715, 2F10.5)

onde NOELI(I) - número de ordem do i-ésimo elemento em CR1. Deverá ser fornecido ordenadamente de 1 a N.

IEPA(I) - número de ordem do nó origem do i-ésimo elemento em CR1.

IEPB(I) - idem para o no termino.

L(I) - número de elementos cujas setas indicativas do sentido origem-término "chegam" no nó origem do i-ésimo elemento em CR1. Como verificação, ob-

serva-se que L(I)+1 é o número de elementos ligados ao referido nó.

- NOEMP(I) número de ordem do i-ésimo elemento em CR2 e corresponde a NOELI(I).
- IS(I) = 1 significa que as setas indicativas do sentido origem-término dos correspondentes elementos, em CR1 e CR2, têm o mesmo sentido. Se IS(I)=-1, sentido contrário.
- IPA(I) número de ordem do elemento cuja seta indicativa do sentido origem-término "chega" no nó origem do i-ésimo elemento, em CR2.
- T(I) espessura do i-ésimo elemento. Se o elemento for de área concentrada fazer T(I)=0.
- R(I) corresponde ao raio de curvatúra para elementos curvos, em CR1. Toma o sinal positivo se, em relação ao centro de curvatura, tomado como pólo, as setas indicativas do sentido origem-término apontam rotação anti-horária. Caso contrário, negativo. Em elementos retilíneos fazer R(I)=0.

Os números NOELI(I) devem ser fornecidos ordenadamente de l a N.

Para os exemplos (a) e (e) da figura B.5, os seguintes cartões de dados são fornecidos:

a)

NOEL	I(I)	IEPA(I)	IEPB(I)	L(I)	NOEMP(I)	IS(I)	IPA(I)	T(I)	R(I)
	1	1	2	_0	1	1	0	2.00	0.0
	2	2	3	1	2	1	1	2.00	-3.0
	3	3	4	1	3	1	2	2.00	0.0
	4	4	5	1	4	1	3	2.00	3.00
	5	5	6	1	5	1	4	2.00	0.0
							•		
e)	1	1	2	0	1	1	0	2.00	0.0
	2	7	6	0	6	-1	5	4.00	0.0
	3	17	16	0	16	-1	15	4.00	0.0

4	2	3	1	2	1	1	2.00	-3.00
5	3	4.	1	3	1	2	2.00	0.0
6	4	5	1	4	1	3	2.00	-3.00
7	5	6	1	5	1	4	0.0	0.0
8	6	8	2	7	1	5	0.0	0.0
9	8	9	1	8	1	7	2.00	-3.00
10	9	10	1	9	1	8	2.00	0.0
11	10	11	1	10	.1	9	2.00	-3.00
12	11	12	1	11	1	10	2.00	0.0
13	12	13	1	12	1	11	2.00	-3.00
14	13	14	1	13	1	12	2.00	0.0
15	14	15	1	14	1	13	2.00	-3.00
16	15	16	. 1	15	1	14	0.0	0.0
17	16	18	2	17	1	15	0.0	0.0
18	18	19	1	13	1	17	2.00	-3.00
13	19	20	1	19	1	18	2.00	0.0
20	20	21	1	2.0	1	` 19	2.00	-3.00

5 - Areas Concentradas

Se NC > 0, os seguintes dados devem ser fornecidos

LISTA (NOEAC(N1), AA(N1), N1=1,NC) FORMAT (5(15,F10.5))

onde NOEAC(N1) - número de ordem do elemento considerado de área concentrada, em CR1.

AA(N1) - área do elemtno.

OBS.: cada cartão conterá cinco pares desses valores, exceto o último que poderá conter menos.

6 - Número de ordem dos elementos cujas setas indicativas do sentido origem-término "chegam" na origem do i-ésimo elemento, em CR1.

Devem ser perfurados cartões contendo esses números para cada elemento da seção para o qual $JL=L(I)\neq 0$. Em caso afirmativo, os seguintes dados são fornecidos:

onde LPI(IL) - número de ordem dos elementos cujas setas indicativas do sentido origem-término "chegam" na origem do i-ésimo elemento.

OBSERVAÇÕES:

- 1) Quando o espaço no cartão não for suficiente para informar todos os números LPI(IL), deve-se continuar em outro cartão, excluindo-se as cinco primeiras colunas.
- Os cartões devem ser perfurados na mesma ordem dos números NOELI(I) do item 4.

Continuando o exemplo da figura B.5, (a) e (e), tem -se os seguintes cartões de dados:

a)	NOELI(I)	LPI(IL),	IL=1,JL
	2	1	
	3	2	
	4	3	
	5	4	
e)	4	. 1	
	5	4	
	6	5	
	7	6	
	8	2	7
	9	8	
	10	9	
	11	10	
	12	11	
	13	12	
	14	13	
	15	14	
	16	15	

17	3	16
18	17	\
19	18	
20	19	

Para seções abertas, ISEC > 1, os dados de entrada são os indicados nos itens 1 a 6. Quando ISEC < 1, devem ser for necidos os seguintes dados adcionais

7 - Número de cavidades e elementos adicionais de seção aberta.

LISTA NCT, NA FORMAT (215)

onde NCT - número de cavidades tubulares.

NA - número de elementos adicionais de seção aberta.

Para o exemplo da figura B.5 (e), tem-se uma cavida de e dois elementos adicionais de seção aberta.

8 - Número de elementos e cavidades vizinhas à j-ésima cavidade

LISTA (NNCT(J), NT(J), NCC(J), J=1, NCT) FORMAT (1515)

onde NNCT(J) - número de ordem da j-ésima cavidade.

NT(J) - número de elementos que compõem a j-ésima cavida de.

NCC(J) - número de cavidades vizinhas à j-ésima cavidade.

Cada cartão conterá 15 números, ou seja, dados correspondentes a cinco cavidades. Para um maior número de cavidades, usar tantos cartões quantos necessários.

Os números NNCT(J) devem ser fornecidos, ordenadamente, de 1 a NCT.

Para o exemplo da figura B.5 (e) os dados são forne cidos como segue:

1 20 0

9 - Especificação dos elementos constituintes da j-ésima cavidade e orientação das setas indicativas do sentido origem-término desses elementos, em CR2.

Para cada cavidade devem ser informados os seguintes dados:

LISTA NNCT(J), (IPJII(JP), IHI(JP), JP=1,NTJ) FORMAT (1515,/,(5X,1415))

- onde IPJII(JP) número de ordem do j_p-ésimo elemento constitúinte da j-ésima cavidade. Os números IPJII(JP) podem ser fornecidos sem obedecer qualquer ordem.
 - IHI(JP) representa a orientação da seta indicativa do sentido origem-término do j_p-ésimo elemento. Quando, em relação à própria cavidade, a seta estiver orientada em sentido anti-horário, IHI (JP)=1 e, em sentido horário, IHI(JP)=-1.
 - $\operatorname{NTJ=NT}(J)$ numero de elementos que compõem a j-ésima cavidade.

Os números de ordem NNCT(I) das cavidades devem ser fornecidos ordenadamente de l a NCT.

Se NTJ > 7, usar tantos cartões quantos necessários para informar todos os pares de números IPJII(JP) e IHI(JP).

Para o exemplo da figura B.5 (e), os seguintes dados são fornecidos:

1 -1 4 -1 5 -1 6 -1 7 -1 2 -1 8 1 10 -1 11 -1 12 -1 13 -1 14 -1 15 -1 16 -1 -1 17 -1 18 -1 19 -1 20 -1

No caso da seção ser constituída de mais de uma cavidade tubular e se existirem cavidades vizinhas, os seguintes dados adicionais devem ser fornecidos:

10 - Especificação das cavidades vizinhas e dos elementos que as separam.

Para cada cavidade que tiver cavidades vizinhas, de ve ser informado o número de ordem das cavidades vizinhas, o número de elemento que separam cada cavidade vizinha da cavidade considerada, bem como o número de ordem desses elementos.

LISTA NNCT(J), NNCC(J2), NECC(J2) FORMAT (315)

onde NNCT(J) - número de ordem da j-ésima cavidade.

NNCC(J2) - número de ordem da j_2 -ésima cavidade vizinha. Es te número pode ser fornecido em qualquer ordem.

NECC(J2) - número de elementos que separam a j₂-ésima cavidade vizinha da j-ésima cavidade considerada.

Imediatamente após cada cartão com esses três números, segue a lista:

LISTA (ICJLI(J3), J3=1, NECCJ) FORMAT (5X,1515)

onde ICJLI(J3) - número de ordem do j₃-ésimo elemento em CR2, pertencente ao conjunto de elementos que separam as duas cavidades vizinhas considera das. Os números ICJLI(J3) podem ser fornecidos sem obedecer qualquer ordem.

NECCJ=NECC(J2) - e o número de elementos que separam as cavidades consideradas.

A ordem em que devem ser fornecidas as listas é a mesma dos números de ordem NNCT(J) das cavidades consideradas e estes, por sua vez, são fornecidos ordenadamente de 1 a NCT. No entanto, quando a cavidade considerada não tiver vizinhas, nada deverá ser informado.

Os números de ordem NNCT(J) das cavidades consideradas, deverão ser repetidos tantas vezes quantas forem as cavidades vizinhas.

- PARTE II

Este conjunto de dados, cuja sequência de cartões é dada a seguir, permite que o efeito da flambagem local seja con siderado. Não havendo necessidade de incluir o efeito da flambagem local, um cartão em branco deve ser inserido.

LISTA ITIPO, LNT, EMO, SNI FORMAT (215, F12.2, F7.4)

ITIPO - conforme ITIPO assuma os valores 1,3 ou 2, tem-se seções constituídas apenas de elementos enrijecidos, apenas de elementos não enrijecidos e de ambos os elementos, respectivamente.

OBSERVAÇÕES:

- 1) Esta classificação é independente da denominação usual de seções abertas, fechadas ou mistas.
- 2) Aba ou virada de borda não deve ser levada em conta quanto a classificação de ITIPO.
 - LNT número de tensões de escoamento para as quais se deseja determinar as propriedades seccionais efet<u>i</u> vas.

EMO - módulo de elasticidade do material.

SNI - coeficiente de Poisson.

Para os exemplos da figura B.5, os seguintes cartões devem ser fornecidos, um para cada seção.

- a) 2 * **
- b) 2 * **

- c) 3 * **
- d) 1 * **
- e) 1 * ** **
- * a critério do usuário
- ** característica do material
 - 12 Tensão de escoamento do material

LISTA (ZGMAE(I), I=1,LNT) FORMAT (11F7.2)

13 - Informações gerais

LISTA NEFX, NEFY, NDA, NTEX, NTEY, NET FORMAT (615)

- NEFX número de elementos enrijecidos e paralelos ao eixo dos x, passíveis de flambarem localmente por compressão na flexão.
- NEFY número de elementos enrijecidos e paralelos ao eixo dos y, passíveis de flambarem localmente por compressão na flexão.
- NDA número de reforços principais da (s) subseção (es), isto é, dos elementos que funcionam como almas. Caso não existam subseções, fazer NDA=0.
 Entenda-se por subseção qualquer elemento plano de um perfil, enrijecido por um ou vários reforços intermediários. Para melhor entendimento, ver figura B.1 (d) no apêndice B.
- NTEX número de elementos enrijecidos e paralelos ao eixo dos x, passíveis de flambarem localmente por compressão axial.
- NTEY número de elementos enrijecidos e paralelos ao eixo dos y, passíveis de flambarem localmente por compressão axial.
- NET número de elementos não enrijecidos. Para seções de ITIPO igual a 1, informar NET=0.

OBSERVAÇÃO: tratando-se de seção tipo 3, isto é, seção não enrijecida, as variáveis NEFX e NEFY indicam apenas elementos não enrijecidos paralelos aos eixos x e y, respectivamente. Para cada direção indicar apenas um elemento (ver exemplo B.5 (c)).

Caso NEFX seja igual a zero, as propriedades efetivas com respeito ao eixo x não serão determinadas. Caso contrário, os seguintes dados devem ser informados:

LISTA (NELF(1,I), NDE(1,I), ND1(1,I), I=1,NEFX) FORMAT (1515)

- NELF(1,I) número de ordem do i-ésimo elemento passível de flambar, em CR1. Deverá ser fornecido ordenadamente de 1 a NEFX.
- NDE(1,I) indica se o elemento comprimido é simples ou se pertence a uma subseção. No primeiro caso informar NDE(1,I)=0. No segundo, NDE(1,I)=1.
- ND1(1,I) indica se o elemento comprimido \acute{e} de espessura simples ou dupla. ND1(1,I)=0 espessura simples. ND1(1,I)=1 espessura dupla.

Caso NEFY seja igual a zero, as propriedades efetivas com respeito ao eixo dos y não serão determinadas. Caso con trário, os seguintes dados devem ser informados:

LISTA (NELF(2,I), NDE(2,I), ND1(2,I), I=1,NEFY) FORMAT (1515)

NELF(2,I) - número de ordem do i-ésimo elemento passível de flambar em CR1. Deverá ser fornecido ordena damente de 1 a NEFY.

- NDE(2,I) indica se o elemento comprimido é simples ou se pertence a uma subseção. No primeiro caso, informar NDE(2,I)=0. No segundo, NDE(2,I)=1.
- ND1(2,I) idem ao que está exposto em ND1(1,I).

Se NDA > 0, deverá ser fornecido o seguinte dado:

LISTA (NEDA(I), I=1,NDA) FORMAT (1615)

NEDA(I) - representa o número de ordem dos elementos que são os reforços principais de uma subseção, nominalmente os que são almas.

Se NTEX é igual a zero, nada deve ser informado. Quando maior que zero, devem ser dadas as seguintes informações:

- NEL(1,I) número de ordem do i-ésimo elemento passível de flambar e paralelo ao eixo dos x.
- NDEF(1,I) indica se o elemento \tilde{e} simples ou se pertence a uma subseção. NDEF(1,I)=0, elemento simples. No segundo caso, NDEF(1,I)=1.
- NCOD(1,I) indica a forma pela qual o i-ésimo elemento em compressão está enrijecido.
 - 1 NCOD(1,I) < 0, significa elemento enrijecido
 por virada de borda.</pre>
 - 2 NCOD(1,I) = 0, significa elemento enrijecido
 por outro reforço significante.
 - 3 NCOD(1,I) > 0, significa elemento enrijecido
 por almas.

ND2(1,I) - indica se o elemento comprimido é de espessura dupla ou simples. No último caso, fazer ND2 (1,I)=0, e no primeiro, ND2(1,I)=1.

Se NTEY é igual a zero, nada deve ser informado. Quando maior que zero, devem ser fornecidas as seguintes informações:

- NEL(2,I) número de ordem do i-ésimo elemento passível de flambar e paralelo ao eixó dos y.
- NDEF(2,I) indica se o elemento \tilde{e} simples ou se pertence a uma subseção. NDEF(2,I)=0, elemento simples. No segundo caso, NDEF(2,I)=1.
- NCOD(2,I) indica a forma pela qual o i-ésimo elemento em compressão é enrijecido.
 - 1 menor que zero, significa elemento enrijecido por virada de borda.
 - 2 igual a zero, significa elemento enrijecido por reforço significante, porém menos eficiente que uma alma.
 - 3 maior que zero, significa elemento enrijecido por almas.
 - ND2(2,I) indica se o elemento comprimido é de espessura dupla ou simples. No último caso, fazer ND2 (2,I)=0, e no primeiro, ND2(2,I)=1.

Se NET é igual a zero, nada a ser informado. Quando maior que zero, devem ser fornecidas as seguintes informações:

LISTA (NEM(I), ND3(I), I=1,NET)FORMAT (16I5)

- NEM(I) número de ordem do i-ésimo elemento não enrijecido em CR1.
- ND3(I) indica se o i-ésimo elemento é de espessura dupla ou simples. No último caso, fazer ND3(I)=0, e no primeiro, ND3(I)=1.

Continuando com os exemplos da figura B.5 tem-se os seguintes cartões de dados:

- Informações Gerais :

a) 0 0 0 1			0	0	0	0	1	2
------------	--	--	---	---	---	---	---	---

- b) 0 0 0 0 1 2
- c) 1 1 0 0 0 3
- d) 2 1 2 2 2 0
- e) 2 1 0 1 2 0

- Informações Específicas :

a)	3	0	-1	0	Cartão	1
	1	0	5	0	Cartão	2

c) 1 0 0 Cartão 1

OBSERVAÇÃO: para o cartão 1, o elemento de número de ordem 2 poderia ser informado ao invés do elemento de número de ordem 1.

7	0	1				Cartão	2
1	0	2	0	7	1	Cartão	3

d) 5 1 0 11 1 0 Cartão 1 13 0 0 Cartão 2 OBSERVAÇÃO: para o cartão 2, o elemento de número de ordem 3 poderia ser informado ao invés do elemento de número de ordem 13.

	3	13							Cartão 3
	5	1	-1	0	11	1	-1	0	Cartão 4
	3	0	-1	0	13	0	-1	0	Cartão 5
									,
e)	5	0	0	10	0	0			Cartão 1
	12	0	0						Cartão 2

OBSERVAÇÃO: para o cartão 2, o elemento de número de ordem 1 poderia ser informado ao invés do elemento de número de ordem 12. Também poderia ser 14 e 19 ao invés de 5 e 10.

14 - Após os cartões de dados, correspondentes a todas as seções, vêm a seguir dois cartões em branco. Estes indicam o término do programa.

APÊNDICE C

Considere o ponto P de coordenadas (x_0,y_0) conhecidas e a curva indicada por f(x), conforme se vê na figura C.1.

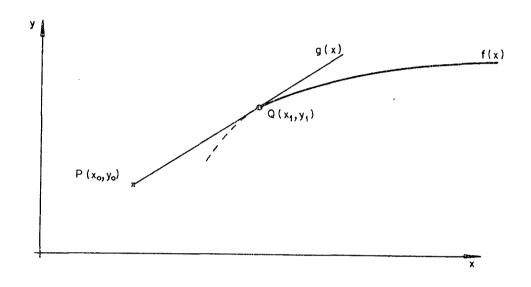


Figura C.1 - Gráfico para a determinação analítica da equação (2.43).

Seja g(x) uma reta que passa pelo ponto P e é tangente à curva f(x) no ponto Q. Ver figura C.1.

Da geometria analítica tem-se que a inclinação de uma reta é dada pela expressão

$$m = \frac{y - y_0}{x - x_0}$$
 (C.1)

A função f(x) representa a equação (2.42), aqui transcrita

$$f(x) = \frac{b_e}{t} = 1.9 \left(\frac{E}{\sigma}\right)^{1/2} - 1.0906 \frac{E}{\sigma} \frac{1}{b/t}$$
 (C.2)

e levando-se em conta que $x_0=25$ e $y_0=25$, resulta para m em (C.1) a expressão

$$m = \frac{1.9 \left(\frac{E}{0}\right)^{1/2} - 1.0906 \frac{E}{\sigma b/t} - 25}{\frac{b}{t} - 25}$$
 (C.3)

Por outro lado, a condição de tangência permite que se escreva

$$\frac{\mathrm{df}(x)}{\mathrm{d}x} = \frac{\mathrm{d}(\frac{b}{e})}{\mathrm{d}(\frac{b}{e})} = m = 1,0906 \frac{E}{\sigma} (b/t)^{-2}$$
(C.4)

Assim, igualando as expressões dadas por (C.3) e (C.4) e resolvendo para h/t, obtém-se a expressão (2.42)

$$\frac{(\frac{b}{t})_{1}}{t} = \frac{1,0906 \frac{E}{\sigma} + \left[(1,0906 \frac{E}{\sigma})^{2} - 27,265 \frac{E}{\sigma} (1,9(\frac{E}{\sigma})^{1/2} - 25) \right]^{1/2}}{1,9(\frac{E}{\sigma})^{1/2} - 25} \dots (C.5)$$

Para se obter a equação (2.44), reta tangente a f(x) no ponto Q, faz-se uso da expressão

$$y = mx + c (C.6)$$

O coeficiente angular m, dado em (C.4), torna-se conhecido desde que se substitua nesta o valor b/t por $(b/t)_1$. O coeficiente c, que representa a ordenada do ponto de intersecção do eixo y com a função g(x), é dado pela expressão

$$c = y_0 - mx_0 \tag{C.7}$$

conforme está indicado na figura C.2.

Desta maneira, a equação (C.6) torna-se

$$y = m(x - x_0) + y_0$$
 (C.8)

Levando em conta que $y=b_e/t$, x=b/t, $x_0=25$ e $y_0=25$, obtém-se então, a expressão (2.44), ou seja,

$$b_{e} = \begin{bmatrix} \frac{1,0906}{(\frac{b}{t})^{2}} & \frac{E}{\sigma} & (\frac{b}{t} - 25) + 25 \end{bmatrix} t$$
 (C.9)

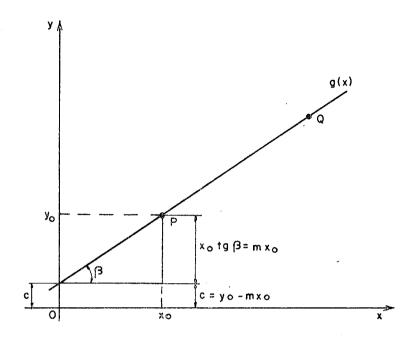


Figura C.2 - Gráfico para a determinação analítica da equação (2.44).

APENDICE D

Considere um elemento da seção transversal cuja influência geométrica deve ser removida. Figura D.1.

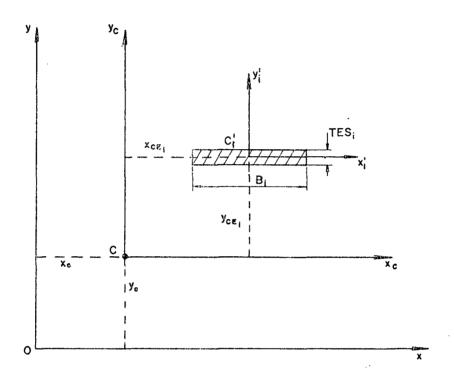


Figura D.1 - Sistemas de referências e elemento típico.

Os momentos de inércia deste elemento, em $\;$ relação aos eixos x $_{i}^{'}$ e $y_{i}^{'}$, são:

$$I_{x_{i}}' = B_{i} TES_{i}^{3}/12$$
 (D.1)

$$I_{y_i}' = B_i^3 TES_i/12$$
 (D.2)

Utilizando o teorema de Stein obtém-se respectivos momentos com respeito aos eixos centroidais x_C e y_C . Assim, pode-se escrever

$$I_{x_{C_{i}}} = I_{x_{i}}' + BB_{i} (y_{CE_{i}} - y_{C})^{2}$$
 (D.3)

$$I_{y_{C_{i}}} = I_{y_{i}}' + BB_{i} (x_{CE_{i}} - x_{C})^{2}$$
 (D.4)

$$I_{x_{C_{i}}, y_{C_{i}}} = BB_{i} (y_{CE_{i}} - y_{C}) (x_{CE_{i}} - x_{C})$$
 (D.5)

Extendendo a todos os elementos sujeitos à flámbagem local, pode-se escrever

$$\sum_{i=1}^{NEFX} I_{x_{C_{i}}} = \sum_{i=1}^{NEFX} I_{x_{i}} + \sum_{i=1}^{NEFX} BB_{i} (y_{CE_{i}} - y_{C})^{2}$$
 (D.6)

$$\sum_{i=1}^{NEFX} I_{y_{C_i}} = \sum_{i=1}^{NEFX} I_{y_i} + \sum_{i=1}^{NEFX} BB_i (x_{CE_i} - x_C)^2$$
 (D.7)

NEFX
$$\sum_{i=1}^{NEFX} I_{x_{C_{i}} y_{C_{i}}} = \sum_{i=1}^{NEFX} BB_{i} (y_{CE_{i}} - y_{C}) (x_{CE_{i}} - x_{C})$$
... (D.8)

As parcelas das expressões (D.6), (D.7) e (D.8) correspondem às equações (3.68), (3.69), (3.74), (3.75) e (3.76).

APÊNDICE E

TABELAS

·		·			
			ys	СШ	14.76 14.79 114.83 114.83 112.29 112.33 112.33 112.33
	C × J		x	сш	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
			χ.	CIII	112.500 122.500 122.500 122.500 122.500 122.500 122.500
			×	СШ	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
			Iyo	cm ⁴	194,46 170,000 163,16 149,72 135,66 120,99 105,68 184,23 165,76 154,60 114,66 114,66 114,66 114,66 114,66 114,66
	88	PLENAS	ox	cm ⁴	2958.45 2638.45 2638.45 2202.13 1276.90 1746.86 1512.00 1272.29 15708.42 15708.42 1538.42 1538.42 1538.72 983.72
00		CCIONAIS	iy	СШ	22222222222222222222222222222222222222
ENRIJECIDO		SE	$S_{\mathbf{y}}$	cm ³	20.45 23.93 23.77 21.54 19.21 16.78 14.25 23.36 23.36 23.36 18.89 16.51 16.51
IL C ENR		ROPRIEDADES	Iy	cm ⁴	194,46 1176,00 163,16 149,72 135,66 120,99 105,68 89,73 184,23 166,76 114,66 114,66 100,16 85,05
PERFI		PROPR	$i_{\rm x}$	СШ	111.328 111.328 111.328 111.328 111.40 11.43 11.
	×		$S_{\mathbf{x}}$	cm ³	197.23 175.89 161.51 146.81 131.79 115.46 100.80 84.82 84.82 153.63 125.62 102.70 90.84 78.70
			Ix	cm ⁴	2558.45 2638.31 2422.61 2202.13 1976.90 1746.86 1512.00 1272.29 1272.29 1428.72 1428.72 1428.72 1428.72 1428.72 1428.72 1428.72 1428.72 1428.72 1428.72
			ÁREA	cm^2	23 . 26 . 20 . 25 . 26 . 20 . 26 . 20 . 20 . 20 . 20 . 20
		ES	t=R	mm	44888244 44888244 4488824 448884 44884
	0	1S0]	đ	mm	00000000 00000000000000000000000000000
		DIMENSÕES	В	шш	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
		DI	D	mm I	22250 2250 225

	1	<u> </u>	00-10-20	10 - 4 - 401 7 - 40 0.	207496
	. y s	C III	2. 42 2. 42 2. 43 2. 43 3. 43 4. 43 4. 43 4. 43 4. 43 4. 43	5-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	6.18 6.20 6.22 6.24 6.24
	x S	CIII	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	-2.63 -2.70 -2.70 -2.75 -2.75 -2.81 -2.81	12.24 -2.25 -2.25 -2.35 -2.35
	γ	CJII	10.000 10.000 10.000 10.000	7.50 7.50 7.50 7.50 7.50 7.50 7.50	2020 2020 2020 2020 2020 2020 2020 202
	×	СШ			1.59 1.60 1.60 1.60
AS	lyo	cm ⁴	1225 11255 1114.05 105.56 105.56 177.07 179.07 53.86	55 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	25.98 25.87 21.58 19.10 10.43 15.57
AIS PLENAS	Ixo	cm ⁴	1037.60 929.60 856.14 780.51 702.72 622.73 526.84	436.39 363.50 363.50 363.91 301.12 267.90 233.44 197.73	194.66 176.58 157.63 137.81 117.12
CCIONAI	i y	СШ	2.051 2.13 2.13 2.13 2.13 2.14	2.20 2.20 2.20 2.20 2.20 2.20 2.24 2.24	1
DES SE	Sy	cm ³	24.25 22.03 20.48 18.64 17.11 15.30 10.16	44 5 1 1 1 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1	7.62 6.34 5.62 4.83 3.99
PROPRIEDADE	I	cm ⁴	125.58 1114.05 105.46 97.44 88.48 79.07 53.86	28.50 26.00 42.00 42.00 42.00 42.00 28.00 20 20 20 20 20 20 20 20 20 20 20 20 2	25.58 23.87 21.56 19.10 15.43
PR	·Ľ ×	CIII	2000 2000 2000 2000 2000 2000 2000	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	44444 ••••••••••••••••••••••••••••••••
	°×	Cm ³	103.76 92.96 85.61 78.05 70.27 62.27 52.68	58.19 68.62.47 68.52 60.15	30.66 27.81 24.82 21.70 13.44 15.04
	X	cm ⁴	1037.60 929.60 856.14 780.51 702.72 622.73 526.84 444.70	436.39 363.50 363.51 333.12 301.12 267.90 197.73	194.66 176.58 157.63 137.81 117.12
	AREA	cm^2	117.055 110.055 12.055 13.055 14.055 14.055	13.27 10.83 9.83 7.78 7.78 5.73 6.73	8.16 7.33 6.48 5.61 4.72
S	t=R	шш	4 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	44 W W W Z Z H H H W Z D D Z D Z D Z D Z D Z D Z D Z D Z D	23.33.3.2.04 22.064 11.0064 52.004
SÕE	P	m.	2222222 222222 200222	250 250 250 250 250	
DIMENSÕ	В	mm	22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0 9 9 0 0 9 0 0 9 0 0 9 0 0 9 0 0 0 9 0	000000
DIA	Ω	шш	2200022000220002200022000220002200022000220000	0.000000000000000000000000000000000000	122777

PERFIL C ENRIJECIDO (continuação)

					10011111	מוס מתקעת	CCIONAL	S EFELLVA	VAS					
Γ					TENSA	O BASIC	A (kgf/	cm ²)				,		
7	1606	1854	1297	1606	1854	1297	1606	1854	1297	1606	1854	1297	1606	1854
	I	Ix	Sx	S _x	Sx	$I_{\rm y}$	I	I	S	S	S	FATO	R DE CO	OLUNA
4	cm ⁴	cm ⁴	cm ³	cm ³	cm ³	cm ⁴	cm ⁴	cm.4		cm ³	cm ³		C	
4 m 4 m 7	2956,45 2638,31 2422,61	2550.45 2558.31 2422.61	197.22 175.83 161.51	1 K) m	197.23 175.35 101.51	253.79 257.51 259.12	285.79 257.51 239.12	285.79 257.51 239.12	34.35 31.00 28.70	34.35 31.06 28.73	34.35 31.05 23.78	0.459 0.817 0.791	0.320	0.903 0.770 0.743
183	976.5	2,75° 5	3 to 0 to	W 100 W	31.7	ナ・ハー	13°1 88°4	19.7	3 W	သည် ကြောက်	۵. س س س	• 75 • 72	75.	. 71
000	746.8 512.0	746.3 511.4	16.4 00.3	16.3 44.2	15.d 93.2	70.2 55.9	78•2 55°9	78.2	الله الله الله الله	₩ ₩ ₩ ₩	# B	99.	200	655
0.0	20402	25700	2 a 3	્0 7	Q	32.5	32,5	32.5	5.7	5.7	5.7	• 61	(O)	15.
83	912°E	215.8	m m	53.0	53.0	7 9 2	43.7	83.7	4.3	4.3	4.3	. 92	969	. 87
25	1570.25	1570.25	125.62	125.02	120.02		23/•48 239•10	257.48	31.06	31.06	31.06	an a c c c c c	0,857	0.033
72	428.7	428.7	10 to	14.5	1403	15. T	15.7	18.1		6.3	φ. • ω	82.	000	2 100
) ~	135.4	135.4	90.8	02.1	90.	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	7.7.4.4	49.4	سان ا • ا ا کا کٹ	m m	io ii m ~	57.	-77	• 75 • 75
12	83.7	83.3	8,3	7.3	0	\$. S.	50.00	\(\hat{V}_0\)	תינ מיני	1 (0)	1 4 • 4 • 00	2 ~	1 0 - (70 P
65	22.9	17.9	4	00 •	X) 	52.5	32.5	32.5	5.07	5.7	7.40	1 /2	2 0	• • • •
09	7.6	37.0	20.7	3.7	103.70	01.7	01.7	0107	707	7.0.7	7.7	1.5	3	0.40
<u>ر</u> و ک	φ.	25.6	2.5	2.3	2.5	83,7	53.7	53.7	5.4	5.7	5.2	* C*	, v,	
	- u • c		၁ ၈	vy a O c	ນ. ນີ້.	70°5	70.3	70.9	ن ن و ن		ان. ان م	. 52	06.	အ
25	702, 72	792.72	70.27	70.27	70.27	156.50	157.00	101.00	21.049	21,49	21.49	0,895 0,047	0,872	4430 °C
73	2.7	22.7	2.5	2.2	2.2	28.2	28.5	28.5	, <u>~</u>	こったっ	, ~	0 0) (C)	700
4	က် အ	26.8	2.0	5.0	2.2	00.3	00.5	00.3	. ປ ຮ ຄຸນ	(J)	(U)	20	200	77.0
_ _	401	43.4	יט מי	0	4.0	4	\(\frac{2}{3}\)	4		(())) -) - [; ;	

		[.) n x	n ~	1 'T	م، یس	· ~^	
	1854	OLUNA		7. 7. 0 C	900	30.	(1) (C)		0.971 0.944 0.911 0.871 0.825 0.769 0.952 0.952 0.952
	1606	R DE C	8	1.000	45.5	• • • • 30	က္ဆ	7	0.462 0.462 0.462 0.462 0.462 0.462 0.600 0.600 0.600 0.600 0.600
	1297	FATO		1.000 0.990 0.990	15.	, C.	. a.	* 77	0.955 0.975 0.951 0.867 0.811 0.000 1.000 1.000 0.957 0.957
	1854	S _{>}	cm ³	15.21	3.5	0.7	40	9.	8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	1606	Sy	cm ³	16.61	1,7 tml	ر. ن م	• • ○	(4) •	88.75 7.28 7.28 6.44 5.53 4.56 7.28 6.79 6.74 7.28 7.56
	1297	$S_{\mathbf{y}}$	cm ³	15.01 15.21 14.20		7 ° 0	\$ O	·O	7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00
FETIVAS	1854	Iy	cm ⁴	95.69 88.00 62.51	4.0	ക ന	7.0	الا الا	42.44 35.10 35.40 51.46 27.13 22.45 35.44 31.40 27.13 22.45
S E	1606	Iy	cm ⁴	45.09 58.00 82.51	0.0	0	0 ~ 0	2 e s	42,44 54,10 35,10 27,13 22,45 31,44 31,44 22,13 22,45
SECCI ICA (k	1297	Iy	cm ⁴	75, 69 88,00 62,51	0.0	₩ 1	٠ الـ ال	5.2	42°44 39°10 35°45 31°45 27°13 22°45 42°44 31°45 27°13 22°45
TEDADES ISAO BAS	1854	ς×	cm ³	32.47 40.52	4.0	507	6.2	ं	30.60 27.31 24.32 21.70 13.44 14.91 17.36 15.74 15.74 10.36
PROPRIE	1606	××	cm ³	00 00 00 00 00 00 00 00 00 00 00 00 00	4°4 0°1	C 0 -	(C) +	Ω 0	20.06 27.81 24.82 21.70 18.44 15.00 15.00 17.46 15.74 13.44
	1297	×××	cm ³	52°19 52°47 68°54	4°4 0.1	5. · ·	6.3		20.06 27.81 24.62 21.70 18.44 15.07 20.07 17.50 113.41
	1854	T _X	cm ⁴	420,39 393,50 303,91	33.1	67.5 33.4	97.7	160,32	194.00 176.58 157.03 137.81 117.12 95.52 95.52 100.34 39.81 78.72 67.07
	1606	X	Cm	430.39 393.50 363.51	33. I	67°5	7.15	60°7	194.66 176.58 157.63 137.63 117.12 95.52 95.52 95.52 67.03
	1297	1 x	m.	436.39 393.50 363.91	020	6 4 8 9 9 4 9 9 4 9 9 4 9 9 4 9 9 9 9 9 9	7076	60.7	194.66 170.53 157.63 137.61 117.12 95.52 95.52 100.34 39.81 78.72 54.84

PERFIL Z ENRIJECIDO (continuação)

			T		 													
			ys	СШ	Σ. C.	15.71	7.0	ე. ა. ა.	(C)	J. J.	က် ဂိမ	o ~	5.7	50	₹	5.2	5.5	ğ. 3
	y X P P		y	СШ	•	6.34		•	•	0	•	• •		•		٠	•	•
	B * C		Iyo	cm ⁴	14.3	285.12	20.5	85°1	57.6	63.1	44 6 44 7 4	70°07	2005	8.4	4.6	Ç• 2	O:	2.8
	9	S	Ixo	cm ⁴	15. K	19 (0.19	57.9	37.3	16.0	73.7	61•Z	400 1	05.2	57.5	6114	26.0	0.60	2.1
	, x	PLENAS	i	сш	0	4.82	0	∞ •	~	o i				7.	7 .	~	·	Q.
CARTOLA		CCIONAIS	$S_{\mathbf{y}}$	cm ³	₩	33.53	4.0	200	0.1		ન ત ઉ	7.5	4.4	5.0	3.8	~~d	0.3	S.
		ES SE	I	cm ⁴	14.3	282012	20.5	89.1	57.6	4.00	44.9	0.07 0.07 0.07	50.5	χ • 4	4.6	0.5	9 1	2.8
IL		PROPRIEDAD	i_x	СШ	3.	4.03	5	್ಳ	,l •	D (ာ့ ျ	• •	្ន	0	*	<u>ئ</u>	2	٠ و
PERF	. 0	PROP	x _S .	cm ³	υ (0 (28.65	5.4	107	8 • 4	5.7	φ. γ.	n di n C	7 . £	6.7	15	2.5	9.6	6.6
	→ ×		Ix	cm ⁴	15.8	177.87	57.9	37.3	16°0	7.8°	61.62	ない。なって	05.2	57.3	41.9	26.0	0.8.0	2.7
			AREA	cm ²	3.4	10.83	9,5	2	ယ	\ \frac{1}{2} \cdot	ဂ (၁၈	0 4	• • Luj	• 4	(1) •	•	್	σ.
	i i		t=R	mm —	ω c	2 to 10 to 1	2.6	2.5	<u>~</u>	W :	ا ا ا	0.7	1 00	3,	0,5	2.6	2.2	6•1
			đ	m m m		/ v												
	>	SÕES	ВО	шш	iv i	150 150	S	S		\sim $^{\circ}$	\sim \sim	ソヘ	1 🔼	0	\bigcirc	\circ	0	0
		DIMENSÕ	В	mm .	0	36	0	Ç	\circ									
		D.	D	mm	01	011	10	0.1	01	,		-4	4		~~	***		

T											
	ys	сm			100 7 10 10 10 10 10 10 10 10 10 10 10 10 10 1	• •	P P	ж •	:D	4.	0.55 6.59
	У	СШ	m p m o m 4 4 4 4 4 4 4 9 0 0 0	30	0	• •	.xo .xo	ထ	ထ	• ·	2,58 2,55
	Iyo	cm ⁴	 ☼ ¼ ũ Ở μ ¼ ũ ¼ ũ ở ở ở ở ở ở ở ở ở ở ở ở ở ở ở ở	4.0	36.3	98.4	e e	7.6	6.5	3. S.	32.96
PLENAS	Ixo	cm ⁴		מ. ף מ. ת	4 9 4	1 ~ · · ·	4.1	0.5	6.9	ω • • • •	16,32
ONAIS	i	СШ		0 0	0 4	0	10	-	.	~ ~	2.70
SECCI	$S_{\mathbf{y}}$	cm ³	244424424424424 	0.0	8 5 1 1	3.4	* ·	e.0	01) •	6.59 5.50
IEDADES	I ,	cm ⁴	2000 F 4 20 8 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4.0	36.93	98.4	m id	7.6	5.0	~ დ დ	32.96
PROPR	i X	СШ	0	, T	S 1	ζ.	<u>ئ</u> ک	T)	<u>پ</u> (ر رد	1.94
	S _x	cm ³	1, 0, 1, 0, 0, 0, 1, 0,	. ~	φ	• •	• •		. () · .	5.38 5.48
	I	cm ⁴		6 v	4.1	8	4.1	0.6	6.3	α • υ	16.32
	AREA	cm ²	0400140404010000	> ~d	w 4	. IV	4 0	ဆ	<u>س</u> .	00	4.32
	t=R	шш	24000040000000	r O	97	0	ೆ ನ	•2	O	್	2.28
	P	WIII									2,2
ÕES	BO	mm		ט ע	וע וע	I IM	\sim \sim	2	7)	100
DIMENSÕE	B	mm	1000000rrrrnnnn c		Ç	0					2000
DIA	Q	шш	000000000000000000000000000000000000000	0	00	0	2 % 2 %	50	00 0	<i>y</i> 00	200
l											

PERFIL CARTOLA (continuação)

	Т	T			,			-												T						:_									
	1854	OLUNA		.00		0.962	اسر الأر •	• 04	9 /	<u>დ</u> დ.	18.	603	φ.	⊕ \$	56.	95.	.92	° 8 7	o 8 •		00	55.	16.	رن ارن	.87	• 19	1,00C	900	496	15.	.83	φ. •	\$50	ار 6.	• 84
	1606	R DE CO	Q	00•	55°	615.0	* 'C'	• 37	• 79	55.	. 58	. 95	05.	. 82	55.	. 58	9 8	6 8 •	8 8 3		္	8	66*	37.0	.90	* 82	1.000	66.	. S7	.93	• 86	ふか・	15.	. 53	87
	1297	FATO		.00	00	966.0	25.	4m (I)	* \$	00.	66•	15.	.93	• å 6	000	9.00	.97	.93	98.		00	90	000	φ. Φ	96.	·87	1.000	00	99	950	06.	000	\$ 9	96.	06.
	1854	S	cm ³	5 e	7=7	33.47	E - 7	3,8	8. 8	6.1	3.1	6.6	6.5	3,1	5.0	3,88	2.0	0.0	0,		40	5	4.4	703	2.8	8,2	24.45	•	8.00	5.8	2.6	3.0	15) 0 1-4	9.	•
	1606	F =	cm ³	7.5	7 = 7	33.57	ڻ. ن	7.5	8.5	6.1	3	0,1	6.8	3.3	500	300	2.1	₹*O	, i		ن ب سا	5.3	1.5	705	3.1	α, (ζ,	24042	*	20.00	÷.0	2.9	0.0	~~4 (1)	•	∞i •
	1297	S	cm ³	1.9	7.7	33.58	M U	4.7	7.5	6.1	3.	0.2	7 o I	3.7	5.5	(A)	2.1	0.2	(1)		5.1	5.3	1.4	7.5	3.4	0.6	24045	701	8.9	6.2	3.	3.0		۲ ه	6
FETIVAS	1854	 	cm ⁴	14.3	d3. 1	251.84	20.5	88.0	53.3	63.1	6 0 4 4 5	26.6	06.1	ن ق	4.0	7 %	0.5	1.6	2.3		53 . 8	ύ4• α	35.6	06.4	77.0	45.7	152.04	35.6	10.6	01.6	3. X	Ç. • •	Θ • C	e o	
NAIS E	1606	1 y	cm ⁴	14.3	83°1	251.84	20.5	ਲਤ • ਲ	54.8	63.1	6.44	26.6	98.4	9.1	4. 8	5.6	0.5	9.4	2.6		93.86	64.82	35.69	00.40	77.18	46.75	152.64	35.65	18.65	01.66	4.3	2.1	5 8	ري د	0.3
S SECCIO ASICA (k	1297	1 y	cm ⁴	14.3	83.1	251.84	20.5	85.1	56.5	63.1	6.44	26.0	Q8.4	Q 5	\$. 8	4.5	6.5	100	2.3		93°0	64.9	ئ گۇ	06.4	17.1	47.0	152064	35.0	18°6	01.6	4.6	ري م سر	€ • 3	a S	ନ୍ଦ୍ର ପ
EDADE SÃO B	1854	S	cm ³	33°8C	1.0	о 9	4 • 0	1.4	7.8	6.1	6.8	3.9	0.7	7.04	1.9	S G	2.5	3.6	9.9		9.28	6.83	4.27	1.52	8,58	5,48	25,71	3.27	0.73	8.0€	5	9	9.5	7.0	4.4
PROPRI	1606	Sx	cm ³		0	<u>ာ</u>	4. 30		6.0	5	တ	ტ ტ	80	7.5	6.1	5	2.5	9.6	9.9		2.6	6 3	4.2	(C e	ာ	5.6	25.71	3 .2	0.7	ල . ස	5.2	6	9.5	7.0	* * *
	1297	Sx	cm ³	Ç,	7°C	• න	5.4	1. ¢	χ.	50 J	δ. Ε	3.9	0.8	7.6	5.2	5.3	2.5	9.6	9.0		5 0	ර න	4.2	1 • £	8	5.7	25,71	5.2	0.7	8 •	5,00	1,99	5.0	7 · C	4.4
	1854	Н	cm ⁴	in	67.01	77.00	5.15	30 .7	12.9	78.7	61.2	43.1	24.5	05 .1	57.3	41.9	26.0	9.60	2 . 7		70.7	50.1	୍ଷ	25 • 3	08.6	6.68	141.31	27.5	13.4	8.7	83 • 4		4.6	9.5	a a
	1606	LX	cm ⁴	5.8	97.1	-	57.9	37.2	14.1	7807	61.2	43.1	24.5	05.2	57.3	41.9	26.0	9.60	2.7		70.7	56.1	1.0	25.3	0.60	80.8	141.31	21.6	13.4	8	w.	J. 3	4.6	0.0	3.3
	1297	IX	cm ⁴	J. 38	97.19	77.87	57.91	37.32	15.44	73.76	61.27	43.19	24.53	05.28	57.31	96.14	26.08	89.60	2.7		70.77	56,16	1.02	25.34	09.11	91.38	3	27.52	13.44	3.7	83.5	1.38	5.	6.6	₩ •

	 	Ŧ T	T	ı — —		٦
,		1854	COLUNA		00.00000000000000000000000000000000000	
		1606	FATOR DE Q	1.000 0.553 0.975 0.975 0.911 1.000 1.000 1.000 1.000 1.000		
		1297			1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	
		1854	S _x	cm ³	23.11 26.66 16.18 14.29 14.29 10.82 10.82 7.05 7.05	
		1606	S	cm ³	23.11 13.12 15.18 15.18 14.24 14.24 10.82 7.05 7.05 7.07	
CCIONAIS EFETIVAS		1297	Sy	cm ³	23. 11.60. 11.3. 11.2. 11.2. 11.2. 11.2. 11.2. 11.2. 11.2. 11.2. 11.2. 11.2. 12. 1	
	/cm ²)	1854	Iy	cm ⁴	11.3. 12.4. 13.4. 13.4. 13.6. 13	
	CA (kgf/cm	1606	Iy	cm ⁴	173.34 136.93 1175.93 1175.93 1175.93 89.34 78.53 67.50 96.03 97.96 27.52	
RIEDADES SE	BÁSI	1297	Iy	ć cm	1136.934 1136.934 1136.934 126.034 126.034 126.034 126.033 126.033 126.037	
PROPRIEI	TENSÃO	1854	Sx	cm ³	0.000000000000000000000000000000000000	
PRC		1606	Sx	cm ³	00000000000000000000000000000000000000	
		1297	S _×	cm ³	0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
		1854	×	cm ⁴	29 37 5 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1
		1606	I X	cm ⁴	26.83 26.83 24.11 21.98 24.10 24.10 21.65 16.33 16.33 16.32 13.96	
		1297	Ix	cm ⁴	29.37 26.83 24.11 21.22 18.12 24.10 24.10 21.65 19.06 16.30 18.55 18.55 13.96	T
		L	L			

PERFIL CARTOLA (continuação)

	går dyggeren og gentli og gjöliger vid å firetorradiskskaffrindbornen och		imin	Cm		2.52
			i máx	СШ	111.56 111.61 111.61 111.71 111.77 111.77 111.77 111.77 111.77	
			Ixy	cm ⁴	30044643 08404040 08404040 084040 084040 0800	
			ys	CIII	44444444444444444444444444444444444444	2 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
			У	CIII	12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
			Iyo	cm ⁴	132.76 120.17 1111.41 102.23 92.64 82.62 72.17 01.28 101.93	00-
		3 PLENAS	Ixo	cm ⁴	2109.47 2550.33 2550.33 2319.65 2083.74 1842.43 1555.73 1555.73 1707.42	298.4 238.0 073.5 504.4
00		IONAIS	'n	шЭ	2222222 22 22 22 22 22 22 22 22 22 22 2	0 • • • ■
ENRIJECIDO		SECC	Sy	cm ³		3 m m m
7 T		LEDADES	Iy	cm ⁴	255.00 2557.51 2257.51 2257.51 215.79 1178.20 1155.50 1155.50 1155.50 125.74 255.10	48.4 48.5 50.0 60.0 60.0
PERFI	******	PROPRI	ix	СШ	######################################	2777
	Z. X		S _x	cm ³	25 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	90.6 90.6 73.7 66.2
			Ix	cm ⁴	2953.45 2633.31 2422.61 2202.13 1976.90 1746.86 1512.00 1272.29 1912.88 1708.42 1570.25	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
			AREA	cm ²	223 203 203 203 203 203 203 203 203 203	0000
	00		t=R	шш	μαστορίαμαστορίαμαστορίαμαστορίαμαστορίαμαστορίαμαστορίαμαστορίαμαστορίαμαστορίαμαστορίαμαστορίαμαστορίαμαστορίαμαστορίαμαστορίαμαστορίαμαστορίαμαστορίαμαστορίαμαστορίαμαστορίαμαστορίαμαστορίαμαστορίαμαστορίαμαστορίαμαστορίαμαστορίαμαστορίαμαστορίαμαστορίαμαστορίαμαστορίαμαστορίαμαστορίαμαστορίαμαστορίαμαστορίαμαστορίαμαστορίαμαστορίαμαστορίαμαστορίαμαστορίαμαστορίαμαστορίαμαστορίαμαστορίαμαστορίαμαστορίαμαστορίαμαστορίαμαστορίαμαστορίαμαστορίαμαστορίαμαστορίαμαστορίαμαστορίαμαστορίαμαστορίαμαστορίαμαστορίαμαστορίαμαστορίαμαστορίαμαστορίαμαστορίαμαστορίαμαστορίαμαστορίαμαστορίαμαστορίαμαστορίαμαστορίαμαστορίαμαστορίαμαστορίαμαστορίαμαστορίαμαστορίαμαστορίαμαστορίαμαστορίαμαστορίαμαστορίαμαστορίαμαστορίαμαστορίαμαστορίαμαστορίαμαστορίαμαστορίαμαστορίαμαστορίαμαστορίαμαστορίαμαστορίαμαστορίαμαστορίαμαστορίαμαστορίαμαστορίαμαστορίαμαστορίαμαστορίαμαστορίαμαστορίαμαστορίαμαστορίαμαστορίαμαστορίαμαστορίαμαστορίαμαστορίαμαστορίαμαστορίαμαστορίαμαστορία<	7 4 8 0 0 0 0 0
ļ	ê L	SÕES	ָט	mm	スロスマスマスマ ス ス ス ス ス ス ス ス ス ス ス ス ス ス ス ス	ח יח יח יח
¥ 1		IMENSÕE	6	E	<i>พพพพพพพพ</i> <i>พพพพพพพ</i> <i>พพพพพพ</i>	<u> </u>
		DII	D	mm	2000 000000000000000000000000000000000	

	P,	m.	्य स											150								46				C.	7	71 8	*	4
	1 m	; •	7.	•	•	•	•	•	•			•	• •	, 0	´ •	0	•	•	1	•		7.4	•	•	•	•	•	•		7 • 7
	i máx	CIM	3,12	4	• 2	₹ 7	•2		•			,	1 🗸	6.25	ب ر با	ο .χ)	3	(T)	0	7	2	5.26	2	• •	w	70	7	• 4	4	4.50
	Txx	cm4	-334.08 -306.85	284.1	260.3	73300	5.607	170.3	144.5	52. d	5.5	いっかべて	119.3	-108.58	-97.2	-850 Z	72.6	59.4	,	ာ •	050	-55.cl	1.64	42.0	34.5	52.2	47.7	43.0	27.0	-32.50
	·ys	сш	9.76 9.79	α α	က် သ	• & & o	÷ 03.4	46.	ر ا ا	2	29	3.1) (A)	7.35	F. E.	560	*	+	'	d G	⊘	6.22	7.	و. ا	. 2	80	Œ	00	ထိ	4.91
	Ý.	сш	10.00	0.0	0.0	0 0	0.0	0 •0	0.0	, T		י יי	10	7.50	Š	S	5	ر.	(7	4	6.35	3	4 ليا	€	0	Ç	3 0	, O	5.00
ENAS	Iyo	cm4	73.70	4 ° 0	0.1	700		C .	4.7	7.2	•	ان • سر		27.02	40	J • 4	ກ • ຄ	0.0		<u>ه</u> ه	5.5	13.79	7.07	0.5	9 0	4	0		400	95°P
ONAIS PL	1 1	C III 4	1158.23 1059.01	400°	75.0	8507	0.65	さた。プ	45.6	34.8	47.4	14.4	0.00	344.13	06.6	67.0	27.1	04.0	, t	70.07	00°4	179.29	57.0	53.7	09.2	38.6	4007) W	2.66	85.24
SECCI	۲, ا	Сm	204	3	4	:0	(c ^	+	• 4) •	-		. ~	2.02	::O	·x)	⊕	<u>.</u> ک	'	7	1	2.54	٠,	4.	*		-3	4	ιΛ •	45 07
EDADES	S	cmo	27.72	3,3	** *** ****	9.5	+ 4	3.5	ارا ان	0	5.	4		11.30	1.0	†	୍ର	<u>ه</u>	'	•	<u>ે</u>	7.25	†	•	٠ <u>٠</u>	-		^	*	5.03
PROPRIE	I	cm4	201.74	70.9	51.5	43.6	20.5	6000	၅ • ဂ	5.0	0.5		, O	70.03		٠ د	7 • 7	. K		1.		35.45	1.4	7.1	7.5	7	j.	t t		27015
	÷. .	СШ	7.05	•	٠,	ာ	χ,	X)	-30 •	~	~	း) စ	((C)	5.04	30	ဘ	ġ	(C)		CY B	σ.	4.93	9	٥,	୍	0.	7) •	<i>></i>	3.99
_		cm ³	103, 76 92, 50	J. t	3, C	2.0	2	2° &	* * *	0,0	7.2	(3) (1)	ち * ち	40.15	5.7	, d • •	6.3	ì • 4		် ၁	8	24.82	Ţ	. c	5.0	2.0	0	, / -	5.7	13.41
	I	Cm ⁴	1037.60 929.60	56.1	30.5	02.7	22.7	2608	44.7	36.3	93.5	Ω Ω Ω	33.1	501.12	5.19	33.4	97.7	60°7		7.4° 0	70.5	157.63	37.8	17.1	(C)	10,3	0.3	89.8	8.7	07.07
	ÁREA	cm ²	17.35	704	S = 3	-17 174	0.1	ري •		3.2	8	7.0	ું 6	3.62	•		្	tr)	-	•	•	8+•0	0	ە ب	100	0	10		7	4.21
	t=R	шш		ာ	4.	੍ਹ	0	•2	<u>ም</u>	~	ineq.	00 •	2	\$0°	9	• 2	O,	<u>.</u> س		† ·	0	• 0 ¢	• (1	<u>٠</u>	iU	70	C		7	96.
ØES	q	mm mm	25 4	S	S.	<i>•</i> رر	147	၁	0	G	0	C	0	20/3	0	0	0	O	-	- 1		172	_	_	~	<u>~</u>	7	-	~	171
MENS	m	mm r	75	S	S	<u>m</u>	٠À	un.	iU	0	C	O	0	0.9	0	0	0	0	-	> -	0	0.0	0	0	0	0	C	0	0	0.5
DIN	ä		2002											150					,	~ !	27	127	27	27	27	8	00	00	00	100

PERFIL Z ENRIJECIDO (continuação)

				7. I	TENSÃO	BÁSIC	A (kef/c	cm ²)	VAS					
1297	1606	1854	1297	1606	854	1297	1606	1854	1297	1606	1854	1297	1606	1854
I	IX	I	SX	S×	S×	I	I	I	S	S	S	FATO	R DE CC	OLUNA
€m ⁴	cm ⁴	cm ⁴	cm ³	cm ³	cm ³	cm ⁴		cm ⁴	cm ³	cm ³			0	
2958.45	2956,45	2550,45 2558,31	197.25	1 KJ .	197.23	253.79	257.51	285.73	34.35	34.35	34.35	0.857	0.320	0.903 0.77c
422. 6 202.1	422.6 202.1	422. 6 202. 1	61.5 46.8	6 1. 5 4 0. 8	01.5 46.6	19.1 19.1	37. L	35°1	C	8.0 5.3	0.0 0.0	• 73 • 75	.73	. 71
576° 5 746. 8	976.5 746.8	976.9 746.4	31.07	3107	31.	70.7	73.4	4.55 7.87	(4) m • 4 • 14	3.00 2.00 2.00	W	• 72	.70	• 65 65
512.0	512,0	511.4	00.3	7 · · · · · · · · · · · · · · · · · · ·	43.2	55°9	55,9	2. 3. 3. 4. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.	10	1 20	(A)	• 66	- m - m - m	19.
271.0	2040 2	257.0	2 & 3	○ • ₹	0	32°5	32.5	32.5		5.7	J	<u>।</u>	0 •	10.
512.8	912.6	912.8	(A)	53.0	53.	83.7	83.7	83.7	4.	4. W. C	4.3	925	900	18.
570.2	570.2	570.2		, w	• • • •	1 - 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	100 A	39.1	> ~ • %	γ. 8.	2. C	8 6 8		ດ ດ ຫ
428.7	428.7	428.7	14.3	1403	140	1507	1801	15.7	.O	6.0	6 • €	. 82	. 50	. 78
1283.80	1283.80	1253, 80	102.76	102.70	102.6 90.30	179.47	7 + 451	199.47	25.33	23.89	23.69	0.797	0.738	0.754
983.7	983.7	583.3	8 9 9	7.3	4	25.00	50.0	55.0	0 0 0	8.5	1 47	. 72	50	0.
27.6	22.5	17.9	4.	g • 2	·	32.5	34.5	32.5	5 ° 7	5.7	5.47	اء د ا	† 0	• 63 €
37.5	37.6	37.6	3.7	3.7	3.7	01.7	01.7	0107	7.7	7.8.7	7.7	1.50	300	96.
25°6	29.€	25.6	5.2	2.3	2.3	83.7	63.3	53.7	5.4	5.2	5.2	3	260	05.
355.14	856.14	250.14	20°C	85.61 20.01	85.61	170.58	170.98	170.98	25.53	23.39	23.39	0.520	0.900	0.882
02.7	02.7	02.7	2.0	2.0	7.0	43.2	43.2	43.2	+ (A)		1 (J) 1 (J) 1 (J)	* • 88	0 0	\$ 6 \$ 6
22.7	22.7	22.7	2.2	2.2	2.2	28.2	28.5	28.2	7.4	7 . 4	7.4	. 33	0.0	. 79
26.8	26.8	26.8	2.0	2.5	2.2	00.3	00.3	00.3	வ் வ	3 e 5	J. 5	. 78	.76	, 74
4407	440 5	4304	m)	7.5	9.2	5.0	ى ئ	5.0	ر • ٦	1.5	٠. د	- 74	7	.00

PROPRIEDADES SECCIONAIS EFETIVAS TENSÃO BÁSICA (kgf/cm²)	36 1854 1297 1606 1854 1297 1606 1854 1297 1606 1854 1297 1606 1854 1297 1606 1854	x I _x S _x S _x I _y I _y I _y S _y S _y FATOR DE COLUNA	7	.09 95.69 15.01 16.61 16.61 1.000 1.000 0.99	1 305.91 48.52 48.52 40.52 62.51 82.51 02.51 14.20 14.20 14.20 0.950 0.971	2 301.12 40.15 40.15 70.03 70.03 70.03 11.96 11.98 0.944 0.920 0.90	C 267.50 35.72 35.72 35.72 43.03 63.08 63.68 10.75 10.75 10.75 0.911 0.880 0.86	3 197.73 26.36 26.35 26.25 47.71 47.71 47.71 8.00 8.08 8.08 00.820 0.802 0.78	1 160.32 21.18 20.54 20.55 35.25 35.25 35.25 6.65 6.63 0.770 0.742 0.72	6 1940 bg 30.00 30.00 42.44 42.44 42.44 0.79 8.75 8.75 0.55 0.97	8 176.58 27.81 27.81 27.81 39.10 39.10 39.10 6.07 8.07 8.07 0.978 0.955 0.94	3 151.63 24.62 24.62 24.82 35.45 35.45 35.45 7.28 7.28 7.28 0.951 0.928 0.91	1 13/081 210/U 210/U 210/U 210/U 31040 31040 31040 0044 6044 6044 00514 00886 0.87	95.52 15.04 15.00 14.91 22.45 22.45 22	3 110.33 22.07 22.07 22.07 42.44 42.44 42.44 8.79 8.79 8.79 1.000 1.000	10 35.10 35.10 8.00 0.06 8.06 1.000 6	1 39.81 17.50 17.90 17.90 35.44 35.44 35.44 7.20 7.28 7.28 0.995 0.983 0.97	2 78.72 15.74 15.74 15.74 31.45 31.45 31.45 6.44 6.44 6.44 0.973 6.955 0.94	7 67.07 13.41 13.41 13.41 27.13 27.13 27.13 5.53 5.53 5.53 0.53 0.915 0.90	4 54.84 10.97 10.94 10.86 22.45 22.45 4.56 4.56 4.56 0.887 0.864 0.84	
	85			200 900 900 900 900	65° 53° 1	011.	67.5 33.4	97.7	60,3	9400	76.5	56.6	310 B	4 4 4 00 0 4 00 0 1	0,3	0.3	න ආ	8 · 7	ः >	7	
	160	I	cm		30 30 50 50 50 50 50 50 50 50 50 50 50 50 50	301	267.9	197.7	160.7	19406	16.5	107.6	136	4 6 6 5 5 5 5 5 5	110.3	100.3	3 · 6 %	73.7	0.70	74.	
	1297	X	cm ⁴	436°39	653.00	-	5 4 8 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4	9707	60.7	94.6	70,5	√. 6 . 4	.0 ~	4.4.4.0.00 9.00.00	0,3	100.34	တ္လ	8.7	• ·	4 Σ	

PERFIL Z ENRIJECIDO (continuação)

		, ,	-		
	α @		Ixy	cm ⁴	-1055 -1055 -1866 -1866 -1968 -1
	B C C		imin	CM	
			i máx	Cm	7
			ys	CM	7000000
		VAS	y	СШ	10.00 10.00
		IS PLENAS	Iyo	cm ⁴	18.06 16.09 16.09 12.25 10.86 7.97 15.66 17.99 11.87 10.71 10.71 8.28
		SCCIONAI	ox _I	cm ⁴	200 200 200 200 200 200 200 200 200 200
IMPLES	a ja 20	DES SE	.t.	Cm	1, 559 1, 550 1, 61 1, 62 1, 63 1, 63 1, 63 1, 77 1, 77 1, 77 1, 73 1, 73 1, 73
IWIS Z		PROPRIEDADE	Sy	cm ³	7.30.0.4.4.W W. 2.0.0.4.4.W W. 2.0.0.0.4.W W. 2.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.
ERFIL 7	2 1	PROPI	Iy	cm ⁴	34.41 25.27 25.73 22.13 20.47 17.96 14.96 14.96
PI			i x	СШ	7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.
			Sx	cm ³	2000 2000
			Ix	cm ⁴	699.16 523.77 572.94 520.96 467.82 413.52 358.04 301.38 345.04 308.84 239.02 233.08 179.12 151.03
·	N- 		ÁREA	cm ²	113.54 16.633 11.16 16.633 17.16 17.
	aa) JES	t=R	mm	4 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
		ENS(В	mm	
	 	DIMENSÕ	D	шш	200 200 200 200 200 200 200 200 200 200

1	T					•						T																		
	Ixy	cm4	0 0	55 * 8C-	24.2	30	400	¥ • 1	33.9	25.6	- n	1~	T	0• 9	7.3	38.5	34.6	ာ	-20.60	4.7	1001	2.1	28.8	6.5	4.2	(X)	ري اليا	6.8	2.4	ځ.
	imín	C	I	1.20	7	.4	5 •	•2	2.	3	.2	-	4	4		<u>-</u> -	.2	5.	1.21	ů	4	<u>ي</u>	Q.	٠ <u>٠</u>	9	8	6	Q.	O.	6.
	imáx	CI	Φ.	5.02	0	0	0	• •	•	•	•	"	4	7	4	5	•2	•2	4.28	u,	3	Э	\$	()	9	φ.	0	0	0	0.
	ys	E.	, md 0	6.14		,i	• 2	3	2	.2	2		•		သ	୍ୟଠ	∞ •	φ.	4 8 89	Ġ.	Ġ	~	•	ထ	ထ	8	ထ	8	٠.	. 9
ENAS	y	C	:Y)	6.35	•		4	12)	3)	ه (بر)		•	्	្	9	়	Q	5.00	• •	0	9	•	0	0	਼	•	0	0	·
S PL	Ivo	cm^4	t	12.78	 30	0 • à	P	•	Š	40	• 2		•	က	0.0		~	4.	6.47	4	4.	ာသ •	~	7.	7.	-	• 2	-		• Ó
ECCIONAI	Ixo	cm4	50.9	254.92	07.2	33,4	70.5	50.9	31,0	10.0	9.5	0 0	1.70	37.2	0.0	15.6	04.3	2.0	30.57	₩. 20	5.2	က် (၁)	07.1	9.1	0.7	2.0	2.9	3.0	3. ∞	3.8
ADES S	iγ	Cm	Ω) •	1.80	10	3	သ	.D	ဘ	ယ	ന •	5	•	Ţ	5	0	•	0	2.01	0	•	4.	4	4,	4.	ů	L.J.	rU.	13.7	. 5
RIED	Sy	cm3	17	0.41	~÷	٠ س	• i	7.	0	្វ	4	,	•	*	ာ	~	~	2	3.03	୍	\$	٠ <u>٠</u>	0	्	4	C	0	~)	ني	i)
PROP	Ĭ	cm4	4. 3	30.70	8.2	5.7	4	Ç.	7.7	4.9	2.1	,	,	ာ င့်	2.3	16.3	3.	0.4	17.14	4.9	<u>, , , , , , , , , , , , , , , , , , , </u>	\$ 0	5.2	0.4	2,3	1.5	0.2	\$	ঐ	prod •
	ix	СШ	7	4.82	ဆ	90	ω •	Ů,	υ •	Ş	<u>ۍ</u> •	0	•	ب	\$	Ġ.	Ş	5.	3.57	\$	•	·-	-	•	တ	œ	ω •	œ	φ	φ
	Sx		6.3	32.60	0.0	7.4	4.7	()\ • •	ଂ ଚ	0•9	್ ೧	1	•	3.4	1.6	က (၄	1.9	S. S.	13,8€	1.07	÷.	1.7	∂• ∂•	8.1	·O	50	3.4	1.6	${\mathcal O}_{\bullet}$	0
	Ix	cm ⁴	30.7	207.00	8.05	74.1	56.8	39.1	20.8	02.1	2.7	200	000	~ .3	08.4	7.5	5.5	⊘. 6	69.31	ე• 8	7.0	8.7	8 . 1	8.0	3.2	5.2	7.0	8.4	9.5	٠ ع
	AREA	cm ²	0	8.91		u,	0	သ	្	,¢	33	,		•	6 2	**	•	0	4.39	٠ 9	φ,	œ	C.	3	-	~	'n	4	3	•
JES	t=R	mm	7	4.18	က္	70	0	•	5	\$.C.	^	o o	~	00	4	್ಷ	ů.	2.28	O,	ις.	•	_	ΩQ.	4	0	•6	4	9	ιΩ
NS(В	mm		50															20											
DIMENSÕE	D	шш	N	127	3	N	N	?	\sim	2	\sim	00.1	2	100	001	100	90.	001	100	91	1 00	100	100	007	100	100	100	100	100	100

PERFIL Z SIMPLES (continuação)

	PROPRI	EDADES SI	ECCIONA	AIS EFF	ETIVAS		
TENSÃO	O BÁSICA	kgf/cm ²	_	PERFII	Z SIMP	LES	
1297	1606	1854	FATOR	R DE CO	LUNA		
TENSÃO	ADMISSÍ	VEL		Q			
σca	(kgf/cm^2))	1297	1606	1854		
1296.97 1260.76 1228.07 1179.70 1117.52	160 6.06 160 6.06 155 2.09 148 3.28 139 7.26 128 6.66 113 9.19 93 2.74	1854.55 1854.55 1781.48 1688.44 1572.15 1422.63 1223.27 944.16	0.934 0.880 0.829		0.830 0.820		
1296.97 1266.76 1228.07 1179.70 1117.52	1506.05 1606.06 1552.09 1483.28 1397.26 1286.66 1135.19 932.74	1854.55 1854.55 1781.48 1688.44 1572.15 1422.63 1223.27 944.16	0.997 0.904 0.918 0.859 0.787	0.935 0.937 0.875 0.802	0.973 0.917		
1296.97 1266.76 1223.07 1179.70 1117.52	1606.06 1606.06 1552.09 1483.28 1397.26 1286.66 1139.19 932.74 782.11	1854.55 1854.55 1781.48 1688.44 1572.15 1422.63 1223.27 944.16 782.11	1.000 0.977 0.944 0.895 0.829	1.000 1.000 0.9311 0.943 0.758 0.653	0.598 0.551 0.389 0.811 0.717	•	
1246.97 1260.76 1228.07 1179.70 1117.52 1034.61 918.54 782.11 1296.97 1296.97 1296.97 1296.97 1296.76 1217.01 1150.69	160 & .06 160 & .06 155 2 .09 143 3 .28 139 7 .26 128 6 .66 1139 .19 93 2 . 74 78 2 .11 160 6 .06 160 6 .06 160 6 .06 155 2 .09 140 3 .01 134 5 .04 11 d 0 .48 93 2 .74	18 54 . 55 17 81 . 48 16 88 . 44 15 72 . 15 14 22 . 63 12 23 . 27 9 44 . 16 7 82 . 11 18 54 . 55 18 54 . 55 18 54 . 55 17 81 . 48 16 61 . 86 15 02 . 37 12 79 . 09 9 44 . 16	1.000 0.977 0.947 0.910 0.851 0.683 1.000 1.000 1.000 1.000 0.977 0.935 0.867		0.640 0.759 0.643 0.490		

I		<u></u>	I			
				ys	СШ	\$
		E CC CC		×s	СШ	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
				у	СШ	10.00 10.00 10.00 10.00 10.00 10.00 10.00 7.50 7.50 7.50
			PLENAS	×	СШ	1.04 1.00 1.00 0.96 0.96 0.95 0.95 1.05 1.15 1.15 1.15 1.10 1.10
			}	i y	СШ	11.00000000000000000000000000000000000
	.0		SECCIONAIS	Sy	cm ³	00044880 00044880 00044880 00000 00000 00000 00000 00000 000000
	SIMPLES	>	į i	$\mathbb{I}_{\mathbf{y}}$	cm ⁴	25.78 21.18 15.20 17.34 12.34 12.34 11.20
	C	*	PROPRIEDADES	ix	Cm	744444 744444 744444 744444 744444 744444 744444 7444444 744444 744444 744444 744444 744444 744444 744444 7444444 74444 74444
-	PERFI		PROPI	Sx	cm ³	20
				Ix	cm ⁴	699.16 623.77 572.94 520.96 467.82 413.52 413.52 301.38 301.38 264.27 259.02 235.08 179.12 151.08
				ÁREA	cm ²	1113 100.000 100.000 111 100.0000 100.000 100.000 100.000 100.000 100.000 100.000 100.0000 100.000 100.000 100.000 100.000 100.000 100.000 100.0000 100.000 100.000 100.000 100.000 100.000 100.000 100.0000 100.000 100.000 100.000 100.000 100.000 100.000 100.0000 100.000 100.000 100.00000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.00000 100.00000 100.00000 100.00000
				t=R	шш	4 4 8 8 8 8 9 4 5 8 8 9 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
	ļ	8	SÕES	В	E	
			DIMENSO	D	шш	2 00 2 00 2 00 2 00 2 00 2 00 2 00 2 00

			Para Para Para Para Para Para Para Para											`											1					
	y	, E		7	8 3 9	4	\sim	. 2	7	2				100		3	70	က		্	\$	သ	ဘ	π) •	သ	3)	33 e	ဘ	4.91	
	×	Cm	1.7		-1.73	• نجر]	-	-	-	70				တ	(X)	ာ	ထ	æ • -1		က	₩. ₩.	(1)	4	63	S.	3	4	4	•	-1.41
PLENAS	У	Cm		in.	6.35	3	હ. (ડ.)	14)	3	3	(L)		Q	0	0	್ಳ	਼	0	0	•	•	਼	0	9	•	਼	0	್	5.00	0.
	×	Cm		2.	1.27	• 2	•2	7	.4	~4	t		*	4	7	40	٠,		w.	1,0	10		਼	਼	•	਼	್ತ	Ċ	16.0	O.
CCIONAIS	i	S C m	1.5	1,5	1.52	1.5	1,5	1.5	1.5	L 5	1.5		ιΩ	ເນ	TU.	ın	in.	itJ	in.	ιΩ.	EC.		~	• 2	5	~	7	2	1.23	. 2
SE	S	Cm	Ģ.	بر الله الله	5.02	4.5	ر ، و	3.6	٠. ا	2.6	2,1		 	5.2	4.0	4.4	ان ان	3.4	9	2.5	2.0	<u>س</u> س	3.4	3.1	2.3	2.5	2.2	1.9	1.65	٠. ن
PROPRIEDADES	I	cm ⁴	2 s 7	C • 3	18.74	7.0	ιη Μ	ယ] စီ	1.3	্ৰা •	0		1.0	ಐ	703	Σ. α	4.2		6.3	•2	5	سا •	C.0	• 2	+	0	-	9	5.00	0
PROPR	j	СШ	, 7	Ġ.	4. 84	کر •	ထ	<u>ب</u>	\$	بن •	٦'n		တ	သ	a O	٠ ص	ۍ د	ە ئ	ŝ	<u>ن</u>	0	-	ر .		သ	ထ	ထ	ω •	3.87	S)
	S _x	cm ³	6.3	2,00	30.05	4.	4.7	1.9	0.6	6.0	0,0		6.0	·*	1.65	§• €	5.6	5.0	3∙€	103	5.5	1.7	5.5	ત્ર ક•્ર	∂• ♦	0.3	3.4	1.6	06.6	o,
	X	cm^4	30.7	01.0	150.30	74.1	56 • 3	39.1	20.84	02.11	2 - 7		30.3	7.3	08.4	₹•6	9.5	3.6	6.3	δ. δ.	7.6	8 . 7	33 • 33	8.0	3 . 2	5.2	7.0	8.4	49.52	0.3
	AREA	cm ²	0	O'S	යා යැ	3	4	∞	೦	~	φ.		-		 1	4.	-	0	S.	O	Q.	သ	Ś	3		~-d	1	Q.	3,30	\$
ÕES	t=R	ı mm	4.7	4.	3 . 80	3.4	3.0	2.6	2.2	501	, .	-	4.7	4.1	3.8	3.4	3,0	2.6	2.2	5.	1.5	4.7	401	3.8	3.4	3.0	2.6	2*2	1.90	1.5
I MENS(В	mm mm	3	5	5.0	<u>:೧</u>	n	·v.	S	įΛ	iù																		40	
DIME	D	mm	N	N	127	2	2	\sim	~	7	N		001	001	100	001	1 00	100	100	100	100	001	100	100	100	100	100	001	100	100

PERFIL C SIMPLES (continuação)

	PROPRIE	DADES SEC	CCIONA	S EFET	IVAS		
TENSÃ	O BÁSICA	kgf/cm ²	- PEF	RFIL C	SIMPLE	ES	
1297	1606	1854	FATOR	R DE CO	LUNA	,	
TENSÃO A	DMISSÍVEL			Q			
σ _{ca} (k	gf/cm ²)		1297	1606	1854		
1296.97 1296.97 1266.76 1228.07 1179.70 1117.52	1606.06 1552.09 1483.28 1397.26 1286.66 1139.19	1854.55 1854.55 1781.46 1688.44 1572.15 1422.63 1223.27 944.16	0.934 0.886 0.829		1		
1179.70	1606.06 1552.09 1483.28 1397.26 1286.60	18 54 • 55 18 54 • 55 17 81 • 48 16 88 • 44 15 72 • 15 14 22 • 63 12 23 • 27 9 44 • 16	0.997 0.964 0.919 0.859 0.787	0.985 0.937 0.875 0.802	0.973 0.917 0.848		
	1606.06 1552.09 1483.28 1397.26	1854.55 1854.55 1781.48 1688.44 1572.15 1422.63 1223.27 944.16 782.11	1.000 0.577 0.544 0.895 C.829	1.000 0.963 0.911 0.843 0.758	0.598 0.551 0.889 0.811 0.717		
1296.97 1296.97 1266.76 1228.07 1179.70 1117.52 1034.61 918.54 782.11 1296.97 1296.97 1296.97 1296.97 1296.97 1266.70 1217.01 1150.09 1057.83 916.54	160 €.05 160 €.05 1552.09 1483.28 1397.26 1286.65 1139.19 932.74 732.11 160 €.06 160 €.06 160 €.06 1552.09 1403.61 1345.64 1180.48 932.74	1223.27 944.16 782.11 1854.55 1854.55	1.000 1.000 0.977 0.947 0.910 0.861 0.788 0.683 1.000 1.000 1.000 1.000 0.977 0.935 0.867 0.770	1.00C C.966 C.924 C.87C C.797 G.695 C.559 1.00C 1.00C 1.00C C.965 C.898	1.000 0.961 0.910 0.846		

.

			Уs	СШ	0.0000000 0.00000 0.000000 0.0000 0.000000 0.0000 0.00000 0.0
		S	y	СШ	10000 10000
	J	PLENAS	iy	CM	11
		ONAIS	Sy	cm ³	117.70 127.70
ES		SECCIONAI	Iy	cm ⁴	80.65 64.02 64.02 65.75 60.53 60.32 60
SIMPLE	> \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	DADES	ix	СШ	
PERFIL I	U <u>l</u> U	PROPRIEDADE	Sx	cm ³	139.83 114.59 114.59 104.19 53.70 71.51 60.28 62.01 62.10 62.10 67.77 40.29
PE			X	cm ⁴	13 98 . 32 11 45 . 88 11 45 . 88 10 41 . 92 9 35 . 64 8 27 . 04 7 16 . 08 6 02 . 76 6 02 . 76 5 13 . 04 4 12 . 91 3 58 . 24 3 02 . 16
			AREA	cm ²	2000 2000
		SS	t=R	шш	4 4 6 6 6 7 4 7 4 8 8 8 9 7 4 9 8 8 9 7 4 9 8 9 7 4 9 9 9 7 4 9 9 9 9 9 9 9 9 9 9 9 9
		DIMENSÕE	В	шш	
		DIME	D	mm	200 200 200 200 200 200 120 120 120 120

.

гт												Т	<u>-</u> -																	
	ys	СШ	ned #		~	سا	2.	6.22	~	.7	• 2			-	ာ	က	သ	00 9	9	♡ `•	<u>ۍ</u>	•	-	ထ	∞	ဘ	က	68.4	Q.	\$
	УC	СШ	-1	<u>)</u>	Δ)	υ,	1	6.35	C.	ڻ س	(,)		0	0	្	੍ਹ	੍ਵ	਼	୍	্	្	0	្	਼	•	0	਼	5.00	्	0
田田	iy	СШ	0	₽	·.	⊅	9	1.90	ن •	<u>.</u> ټ	<u>ئ</u>		-4	0			•	O	0	O.	•	৺	ď,	0	٠O	in.	₹.	1.58	Š	Š
1	$S_{\mathbf{y}}$	cm ³	ି • ବ	Ċ	2.7	1.4	0.1	8.90	•	₹	0		5	0.4	~	1.4	0.1	အ	ů	3	្		್	۳.	<u>.</u>	iS,	~	4.83	្	~
ECCIONA	I	cm ⁴	0	0.2	3.1	7.3	0.8	44.43	30 (C)	- - 4	5.00		5	0.0	3.0	7.2	O • 8	4.	8 0	1.1	ξ, δ,	1.2	0.0	2.7	4.6	b. 1	2.0	19.53	6.2	5.9
S S	i, X	СШ	7.	Ώ •	ဏ	α •	ထ	36.4	6•	Q.	\$		ာ	00 •	<i>ن</i> ې	<u>ۍ</u> •	5.	<u>ۍ</u>	<u>Ф</u>	5.	0	~	₹.	•	ထ	ဆ	တ္	3.82	œ	က •
<u> </u>	Sx	cm ³	2.6	5.2	0.1	4 a 8	4.6	43.82	8,0	2,1	0•9		2.1	0.0	ω ω	\$.	S S	1.3	7.7	3.4	O•5	3.5	9.2	6.3	3.5	5	& • 3	23.37	8.6	6.1
PRO	IX	cm ⁴	61.5	14.0	81.6	43.1	13,7	273.29	41.7	04.1	0505		50.7	3407	16.8	98.3	1.6	58.2	38.6	17.3	5.3	17.4	96.3	81.6	6.3	50.5	34.0	116,85	9,0	0.5
	ÁREA	Cm ²	Ç• 1	7.8	€ 03	4.7	(1)	11,61	0.0	3	•		3.5	η, ιν	4.2	ن. لا)	(2)	: :	•	w.	ψ,	(n)	or m	2.1	17	0.3	d 0	7.87	0	3
	t=R	шш	-	errid •	10	*	0	2.66	7	<u>۴</u>	S		10	اسا	သ	4	<u>٠</u>	90	5.	a,	S	. 7	~~! •	00	7.	•	<u>ာ</u>	2,28	<u>က</u>	1
ISÕES	m	шш	00	00	00	00	00	100	00	8	00		00	00	00	00	00	00	8	0	00	0	0	0	0	<u> </u>	0	80	_	<u> </u>
DIMENSÕ	Ω	mm	2	N	\sim	$^{\prime\prime}$	7	127	\sim	7	\sim		100	100	100	100	100	100	100	100	100	100	100	100	1 00	100	100	100	001	100

PERFIL I SIMPLES (continuação)

	PROPRIEDA	DES SECCI	ONAIS	EFETIV	AS						
	BÁSICA kg		- PERFIL I SIMPLES								
1297	1606	1854	FATOR	R DE CO							
TENSÃO	ADMISSÍV	FI.	Q								
	kgf/cm ²)		1297	1606	1854						
1296.97 1296.97 1266.76 1228.07 1179.70 1117.52 1034.61 918.54	1606.06 1606.05 1552.09 1483.28 1397.26 1266.66 1135.19 932.74	1854.55 1854.55 1781.48 1688.44 1572.15 1422.63 1223.27 944.16	0.934 0.886		0.880						
1296.97 1290.97 1266.70 1228.07 1179.70 1117.52 1034.61 918.54	100 £.06 160 6.06 1552.09 1483.28 1397.26 1286.66 1135.19 932.74	1854.55 1654.55 1781.48 1688.44 1572.15 1422.63 1223.27 944.16	0.997 0.964 0.913 0.859	C.965 C.937 C.875	0.973 0.517 0.643						
1296.97 1296.97 1266.76 1228.07 1179.70 1117.52 1034.61 918554 782.11	1606.06 1606.06 1552.09 1483.28 1397.20 1286.66 1139.19 932.74 782.11	1854.55 1854.55 1781.48 1688.44 1572.15 1422.63 1223.27 944.16 782.11	1.000 0.977 0.944 0.895 0.829	0.953 0.911 0.843 0.758	0.558 0.551 0.889 0.611 0.717						
1296.97 1296.97 1208.76 1228.07 1179.70 1117.52 1034.61 918.54 782.11 1296.97 1296.97 1296.97 1296.97 1296.97 1296.97 1296.97 1296.97 1296.97	1606.05 1606.06 1552.09 1483.28 1397.26 1286.66 1139.19 932.74 782.11 1606.06 1606.06 1606.06 1606.06 1552.09 1463.61 1345.64 1180.48 932.74	1854.55 1781.46 1661.86	1.000 0.977 0.947 0.910 0.861 0.788 0.683 1.000 1.000 1.000 1.000 0.977 0.935 0.867	1.000 1.000 0.966 0.924 0.870 0.797 0.695 0.559 1.000 1.000 1.000 0.965 0.896 0.685	1.000 1.000 0.961 0.510 0.643 0.643 0.490 1.000 1.000 1.000 1.000 0.953 0.874 0.770	•					

																	2	(
F1		7			·							1		•	×		0	
8				860	165	ന	619.	, e 5.34	906°	, 639	252		1855	.				
		Ixy	cm ⁴	-17.	-13	ဘ	• 0	+		-2.	-20		α ₁ ,=]	٠.		Mmāx		
		imín	CIM	1.47	1049	1 = 1		Ž,	رر م		55.0		_					
			уо	C	01.0	7)	2,32		2, 5,8	~		1047		COMP.		TRACÃO T	מי	
				cm ⁴	01 7						~	2))	×	<u> </u>		ŀ
1四1	SECCIONAIS PLENAS	1819	cm cm 3.02 3.02 3.02 2.40 2.41 2.00 2.01	∂	2,00		·			Mmax	11111							
		Ixo	cm4	06.4	14.70	5.23	ch	2,65	.0,23	7.45	6009	IVAS	Ĺ	×		2	-	
		λ	C III	. 03 4	999	• 60 2	.02	41,	.37	, T 0	32	EFETIVAS	1606			מ		
		×		-03 2	5	.66 1	.02 1	1,41	37 1	1 450	321	VAIS	$\sigma_{h}=1$, 	×I		-	
		IONAI x x	37 2	м Ю	33 1.	y0 1.	57 1.	53 1.	2.4	53 1.	SECCIONAIS				Mmax			
		SECC	, iv	Cm	7	2		ار س	0	<u>,</u>	7 1.	2 1.	1 1	NP.		-XX		-
ANTON	1	ADES	ζĵ	Cm ³	יח	'n		0 2.5	2 2 2 2	2 1 . 7	+ 11 02	0 1 9	EDADI	COMP		X TRACÃO	Ь	
C	N N N	PROPRIEDADES	Iy	cm ⁴	27.80	a)	13.95	11.10	7.90	m O	4.64	3.70	PROPRIEDADES		ř			
	,	PROP	i X	CM	13.7	2.33	£8.	06.1	1.57	36.1	1.59	. 59	PR		_		Mmāx	
			Sx	cm ³	.03		.21	.53	. 20	*74	.27	.02		7	×			
			×		80 5	÷ ŵ	95 3	10 2	2 26	32 1	04 1	76 1		129		 	р	
		I	CIII	1 27.	(7	13*	2	~ ~		**	3		σh=	'	×	āx		
			AREA	cm ²	T	3.79						1.4					Mmãx	
SØES	t=R	mm	3.42	2.60	3.45	2.56	3.42	2,000	1,90	1.52		COMP.		X - TRACÃO	ס			
		DIMENSOES	മ	EF.	3	75		09				52		ŭ			<u> </u>	
														,2)	1855	COLUNA		
														gf/cm	1606	DE CC	0	

			×	· .	Niñāx	9428.91 7254.75 5958.93	20	4 4	- /0
00000000000000000000000000000000000000		855	'×		Q	1854,55 1854,55 1854,55	54°0	24.50 24.00 24.00	0.4°C
m In Ix Y Cm 4 Cm 4 Cm 4 Cm 4 Cm 4 Cm 4 Cm 6 Cm 4 Cm 6 Cm 6		ab= 1		×	Mmāx	219376	20.02	3 B	24.00 94.00
L 2 C B C C C C C C C C C C C C C C C C C		COMP.		TRAÇÃO TRAÇÃO	ט		1183.3		782.1
xo jmax .40 s.02 .70 3.03 .59 2.40 .91 2.41 .23 2.00 .59 2.00 .23 2.00	AS	-	× 	····	Mmãx	6165-96 6282-71 5160-56	070°5 538°5	799.0	640.0
Y Cm Cm Cm 1.99 34 4 1.99 34 4 1.05 22 1.17 1.05 1.37 1.05 1.37 1.05 1.33 1.33 1.33 1.33 1.33 1.33 1.33 1.3	EF	1606	×		מ	0.000 60000 00000	1000.00 1600.06	1000.) C
Cm Cm Cm Cm 2.37 2.03 2.38 1.999 1.02 1.02 1.02 1.02 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03	SECCIONAIS	αp=1		×	Mmāx	5751. 3376. 4323.	2012.3 3268.0	2242.4	5 -
Cm ⁵	DADES	COMP.	·	X TRAÇÃO	р	1139.i 305.0 1345.0		1235.0	
cm cm ⁴ cm cm ⁴ 2.37 27.0 2.33 21.0 1.99 13.0 1.90 11.0 1.55 6.0 1.59 4.0	PRO				Mmāx	4.0 3.5 7.4	280.99 857.85	002	0 * T + O
SX 64 cm ³ 80 5.08 54 3.51 10 2.53 92 2.20 32 1.74 64 1.27		= 1297	×		р	1296.9 1296.9 1296.9	1296. 1296.	1296.9	1295.
AREA IN Cm ² Cm ² Cm ² 4.94 27.3.79 21.33.91 13.23 7.2.54 6.1.84 4.1.84		d p		×	Mmãx	5250.19 3376.25	2580.0	1947	102.1 758.0
HER MM TER MM 75 3.42 75 2.60 60 3.42 60 2.66 50 3.42		COMP.	— т	X TRACÃO	р	1034 863 1150	1016.0	1117.5	782.1
		/cm ²)	606 1855	COLUNA		739	71 0 e3	01 0 76	81 0.50 72 0.32
		15	1297 16	FATOR DE	0	0.798 0. 0.610 0. 0.837 0.	•785 0. •47 0.	352 0.	. (03 0. .450 0.