UNIVERSIDADE FEDERAL DE SANTA CATARINA PROGRAMA DE POS-GRADUAÇÃO EM ENGENHARIA MECÂNICA

PROPRIEDADES SECCIONAIS DE PERFIS DE PAREDES FINAS INCLUINDO O EFEITO DA FLAMBAGEM LOCAL

DISSERTAÇÃO SUBMETIDA À UNIVERSIDADE FEDERAL DE SANTA CATARINA PARA OBTENÇÃO DO GRAU DE MESTRE EM ENGENHARIA

CARLSON ANTONIO MENDES VERÇOSA

FLORIANÓPOLIS, DEZEMBRO DE 1981

PROPRIEDADES SECCIONAIS DE PERFIS DE PAREDES FINAS INCLUINDO O EFEITO DA FLAMBAGEM LOCAL

CARLSON ANTONIO MENDES VERÇOSA

ESTA DISSERTAÇÃO FOI JULGADA ADEQUADA PARA A OBTENÇÃO DO TÍTULO DE

"MESTRE EM ENGENHARIA"

ESPECIALIDADE: ENGENHARIA MECÂNICA, ÁREA DE CONCENTRAÇÃO PROJE-TO, E, APROVADA EM SUA FORMA FINAL PELO PROGRAMA DE PÓS-GRADUAÇÃO.

in da Khora

PROF. EDISON DA ROSA, M.Sc. ORIENTADOR

an

PROF. ARNO BLASS, Ph.D. COORDENADOR

BANCA EXAMINADORA:

PROF. NELSON BACK, Ph.D.

Edizon da Phopa

PROF. EDISON DA ROSA, M.Sc.

PROF. LUIZ TEIXEIRA DO VALE PEREIRA, M.Sc.

Aos meus pais.

,

AGRADECIMENTOS

- Ao Professor Arno Blass, na figura de coordenador do curso de Pós-Graduação em Engenharia Mecânica, pela oportunidade;
- Em especial ao Professor Edison da Rosa pela orientação técnica e pessoal;
- Ao engenheiro Vilson Wronscki Ricardo pela ajuda na parte computacional;
- Aos funcionários do NPD da UFSC, em especial aos amigos Luiz Carlos Pereira, Edson Luiz da Silva e Vilton Wronscki, pelo atendimento;
- Aos amigos Altamir Dias, João Pedro Quirino e Maurice Boulos Halal, pelo interesse;
- A Roberto José Dias pela excelente qualidade dos desenhos;
- A Josemar Maso pelo excelente trabalho de datilografia;
- À Comissão Nacional de Energia Nuclear (CNEN) e a Universid<u>a</u> de Federal de Pernambuco (UFPE), pelo apoio financeiro.

AGRADECIMENTO ESPECIAL

Ao caríssimo Professor Domingos Boechat Alves, minha gratidão. É uma honra tê-lo como mestre e amigo. Admirápor sua simplicidade, por seu espírito de luta, dedicação e por seu magnifico trabalho em prol do desenvolvimento científi co do país.

E finalmente pela proposição do presente tema de dissertação, sugestões e interesse.

SUMÁRIO

SIMBOLOGIA	viii
RESUMO	xi
CAPÍTULO 1 - INTRODUÇÃO	1
CAPÍTULO 2 - REVISÃO BIBLIOGRÁFICA	3
2.1 - Introdução	3
2.2 - Estabilidade de placas delgadas	7
2.2.1 - Introdução	7
mente apoiada. Casos I e II	9
2.3 - Resistência pós-flambagem	19
2.4 - Largura efetiva	22
2.4.1 - Elementos enrijecidos em ambas as bordas	
paralelas à direção da tensão	22
livre, sendo ambas paralelas à direção da	
tensão de compressão	32
2.5 - Membros em compressão axial	41
CAPÍTULO 3 - PROCESSO NUMÉRICO COMPUTACIONAL	47
3.1 - Introdução	47
3.2 - Configuração geométrica do i-ésimo elemento	49
3.3 - Propriedades geométricas do i-ésimo elemento	51
3.3.1 - Elemento retilíneo	51
7 4 Dronniededes accelencie	52
3.4.1 - Propriedades seccionais - seção plena	55 56
3.4.2 - Propriedades seccionais - seção reduzida	58
3.5 - Programa condificado em FORTRAN	73
CAPÍTULO 4 - EXEMPLOS E COMPARAÇÕES	74
CAPÍTULO 5 - CONCLUSÃO	86
REFERÊNCIAS BIBLIOGRÁFICAS	88
APÊNDICE A	91

,

APÊNDICE B - MANUAL DO USUÁRIO	93
B.1 - Introdução	93
B.2 - Modelagem da seção transversal	93
B 3 - Entrada de dados	102
APÊNDICE C	118
APÊNDICE D	122
APÊNDICE E	124

SIMBOLOGIA

LISTA BÁSICA DE SÍMBOLOS

A, A _{ef}	Área e Área efetiva da seção transversal, respec- tivamente (L²);
a, b, t	Dimensões da placa (comprimento, largura e espes- sura, respectivamente (L));
a/b	Relação de aspecto;
^b e	Largura efetiva (L);
b'e	Largura efetiva para sub-elemento (L);
С	Centróide da seção transversal Coeficiente de flambagem para coluna Coeficiente de proporcionalidade;
D	Rigidez flexional;
E	Módulo de elasticidade;
f(y)	Função deslocamento na direção transversal ao car regamento, para elemento apoiado nos lados x=0, x=a e y=0 e livre no lado y=b;
Ι _ξ , Ι _η , Ι _{ξη}	Momentos e Produto de inércia de área - seção pl <u>e</u> na (L ⁴);
$I_{x_g}(ef), I_{y_g}$	ef)'
^I x _g y _g (ef)	Momentos e Produtos de inércia de área - seção efetiva (L');
К	Coeficiente de flambagem;
L	Comprimento de flambagem (L);
M _x , M _y	Momento fletor segundo os eixos x e y, respectiv <u>a</u> mente (FL);
M ₁ , M ₂	Momento fletor máximo obtido com o módulo de re- sistência para seção plena e para seção reduzida respectivamente (FL);
M _t	Momento fletor médio máximo na falha (experimen- tal) (FL);

M _x , M _y	-	Momento fletor em relação aos eixos x e y, respectivamente (FL);
N_x, N_y, N_{xy}	-	Tensões resultantes de membrana;
n	-	número de elementos da seção transversal;
\tilde{N}_{X}	-	Tensão crítica de flambagem (força por unidade de comprimento - F/L);
Р	-	Força de compressão (F);
Q	-	Fator de forma ou de coluna, isto é, fator de área ou fator de tensão;
R _ξ , R _η		Raio de giração (L);
$R_{\xi p}, R_{\eta p}$		Raio de giração mínimo e máximo (L);
S _ξ , S _η	-	Módulo de resistência - seção plena (L³);
^S ξ(ef)'		
S _{n(ef)}	-	Módulo de resistência - seção efetiva (L³);
Vy	-	Força cisalhante (FL);
W	-	Deflexão de um ponto da superfície de referência da placa;
х, у	-	Eixos coordenados do sistema de referência global;
x _C , y _C	-	Coordenadas do centróide da seção;
x _S , y _S	-	Coordenadas do centro de cisalhamento;
ξ, η	-	Eixos coordenados com centro no centróide C e pa- ralelos aos eixos x e y;
ξ _p , η _p	-	Eixos principais de inércia;
ν	-	Coeficiente de Poisson;
σ	-	Tensão de trabalho;
σ _b	-	Tensão básica ou de projeto;
σ _{cc}	-	Tensão calculada pelas expressões (2.54) e (2.55);
σ _{ct}	-	Tensão de flambagem obtida de testes;
σ _{cr}	-	Tensão crítica de flambagem;
σca	-	Tensão admissível reduzida;

v

σe	- Tensão de escoamento;
σ _m	- Limite de resistência obtido dos testes;
^o máx	- Tensão máxima de borda;
	(Unidade de Tensão - FL ⁻²)

•

Demais símbolos - Descritos no Texto.

.

RESUMO

Este trabalho tem por objetivo desenvolver um processo numérico computacional e um programa codificado em FORTRAN, para se obter as propriedades seccionais plenas e efetivas de membros estruturais de paredes delgadas. As propriedades efetivas são d<u>e</u> correntes de uma redução na área da seção transversal, como conseqüência da flambagem local.

O programa está fundamentalmente baseado nas especificações para o projeto de membros estruturais leves, AISI (American Iron and Steel Institute) e NB-143 (Norma Brasileira - ABNT) e tem por suporte o programa computacional SEDEL.

São apresentados alguns resultados obtidos com o referido processo.

ABSTRACT

This work presents the development of a numerical procedure and the implementation of a computer program for the determination of the cross-sectional properties of thin wall members when local buckling is taken into account.

The numerical procedure complies with the Specification for the Design of Light Gage Cold-Formed Steel Structural Members (AISI), the Brazilian Norm NB-143 (ABNT) and has the support of the computational program SEDEL.

Several examples are presented and compared with known results.

CAPÍTULO 1

INTRODUÇÃO

A resistência pós-flambagem apresentada à compiessão por elementos delgados, é vista como o principal aspecto no cam po de projeto de estruturas leves. Ela, quando considerada, pro porciona um melhor aproveitamento na capacidade de carga do el<u>e</u> mento e conseqüente economia de material.

Paralelamente, o efeito da flambagem local é de fundamental importância em projetos que envolvem membros estruturais de paredes delgadas, uma vez que seu efeito é refletido através de uma redução nas propriedades seccionais plenas. Esta redução se torna mais aparente quando os elementos componentes do perfil possuem suas respectivas razões largura-espessura el<u>e</u> vadas e, notadamente, quando sujeitos a níveis elevados de tensão.

Evidentemente, o conhecimento das propriedades seccionais considerando a seção plena e a efetiva (reduzida), é imprescindível a todo e qualquer projeto de estruturas que envolva tais membros.

Com o propósito de se obter as propriedades seccionais plenas e efetivas, desenvolve-se um procedimento numérico computacional e programa codificado em FORTRAN. Os perfis são obtidos por conformação a frio a partir de chapas finas de aço ou de outros materiais.

O processo numérico, aqui elaborado, baseia-se nas especificações para projeto de membros estruturais leves, NB-143 (Norma Brasileira - ABNT) [17] e AISI (American Iron and Steel Institute) [4], e tem como suporte o programa computacional SE-DEL [22]. A hipótese fundamental para a elaboração deste proces so, é que os elementos de parede das seções transversais possam ser discretizados em tantos elementos quantos necessários, de tal modo que a seção venha a ser modelada por um conjunto de nós interligados por elementos retilíneos e/ou circulares. No apêndice B é apresentado um manual do usuário. Nele encontra-se as informações necessárias para a utilização do programa PEPAD. Estas consistem de procedimentos básicos referentes a modelagem da seção transversal, bem como da entrada de da dos.

Para verificar a validade da formulação desenvolvida e apresentada no capítulo 3, são determinadas as propriedades pl<u>e</u> nas e efetivas para uma variedade de seções transversais de uso corrente. Para efeito comparativo, os resultados são apresentados no capítulo 4, em tabelas, simultaneamente com resultados conhec<u>i</u> dos.

No apêndice E são apresentadas tabelas contendo propriedades plenas e efetivas de perfis estruturais, de aço, confo<u>r</u> mados a frio e, amplamente utilizados em estruturas. As dimensões dos perfis estão em acordo com a Norma Brasileira Registrada - NBR 6355 [24].

CAPÍTULO 2

REVISÃO BIBLIOGRÁFICA

2.1 - INTRODUÇÃO

O problema da estabilidade de placas delgadas sob com pressão tem sido extremamente investigado por muitos pesquisadores. Historicamente, a primeira solução deste problema data de 1891, quando Bryan [9] apresentou a análise para uma placa retangular simplesmente apoiada em todas as bordas, e sujeita a uma carga compressiva uniformemente distribuída no plano de referência, atuando em dois lados opostos. A solução apresentada provém da equação diferencial de equilíbrio estático da placa, a qual re laciona as forças de contorno com o deslocamento normal da placa.

A contribuição de Timoshenko [2] neste campo foi valiosa, uma vez que ele obteve resultados simples para a maioria dos casos que são importantes na engenharia. Outra análise deste problema é vista por Marguerre [15] para várias condições de carregamento e apoio das placas.

Em estruturas aeronáuticas, entretanto, chapas delgadas são freqüentemente utilizadas além do limite de estabilidade, e a carga que pode ser suportada pela estrutura é determinada pelo limite de resistência à compressão. A resistência apresentada por esses elementos para valores de tensão acima da tensão crítica, ou tensão de Bryan, foi estudada inicialmente por Von Karman [3] em 1928. Contudo, a complexidade das equações governantes levou-o a introduzir a hipótese de largura efetiva.

Os primeiros testes com finalidade de determinar-se experimentalmente o limite de resistência de placas delgadas, foram realizados por Shuman e Back [11]. Eles observaram que, para placas largas e delgadas, o limite de resistência chegava a ser cerca de trinta vezes maior que a carga crítica de Bryan, e que para placas espessas e estreitas, a carga máxima não excedia a de Bryan. Além disso, foi observado que para placas largas e delgadas, a carga máxima torna-se praticamente independente da largura da placa.

A questão da resistência máxima de uma placa delgada, particularmente de placas com reforços na direção da carga, foi nesta época de vital importância para a engenharia aeronáutica. Métodos empíricos [12] foram, então, propostos, até que Von Karman [3] desenvolveu uma fórmula semi-empírica para a determinação da capacidade plena de uma placa simplesmente apoiada. Sua formulação é simplificativa e está baseada na hipótese de que na falha, duas tiras adjacentes às bordas enrijecidas estão sujeitas a tensões de compressão uniformemente distribuídas e iguais a tensão de escoamento do material; a região central da placa mais energicamente distorcida, pode ser considerada livre de tensão.

Adicionalmente, numerosos testes foram realizados е espressões desenvolvidas para a engenharia aeronáutica, mas que não cobriam outras faixas de interesse. De principal interesse pa ra a engenharia naval, foram os extensivos testes conduzidos atra vés de U. S. Experimental Model Basin, com a finalidade de se determinar o limite de resistência de placas retangulares de aço sob compressão. Os testes apresentados na referência [13] foram realizados sob vários aspectos e os resultados criteriosamente analisados. Convém ressaltar que numa série destes testes foi mantida constante a espessura de 2,77mm, e a largura variou entre 127 e 762mm, inclusive. Já em outro grupo era a espessura а variar, numa faixa entre 1,27 e 2,77mm, inclusive. Os resultados fo ram incisivos para a utilização da formulação proposta Von por Karman [3] uma vez que ela era compatível com os ensaios experimentais, mais explicitamente para placas cuja largura excedia 254mm. Para razões largura-espessura maiores que 100, a capacidade máxima de carga era pouco afetada pela largura da placa. As placas com largura em torno de 762mm apresentam uma resistência insignificante, com relação às de 254mm de largura.

O caminho experimental era evidente, tendo em vista a complexidade matemática da equação diferencial de equilibrio para placas no campo de grandes deflexões. Esta teoria foi desenvolvida por Kirchhoff [18]. A forma final das equações foi dada por Von Karman. A partir daí ficou conhecida como equação diferencial de Von Karman. Algumas soluções aproximadas desta equação para os casos mais simples, isto é, placas retangulares e circulares uniformemente comprimidas, podem ser encontradas em [19].

Obviamente, a grande variedade de formas existentes e soluções altamente complicadas, levaram Winter e outros a buscarem relações simples para o problema. Uma nova verificação da hipótese apresentada em [3], foi levada a efeito por Sechler [8] е Winter [1,6,7]. A diferença entre os testes realizados por Winter e os apresentados em [8,11], é que os últimos trabalharam com pla cas isoladas, enquanto que o primeiro, com flanges, como parte in tegrante de um elemento estrutural, como por exemplo os flanges de uma viga I. Por outro lado, Winter não se limitou a tensões da ordem de escoamento, mas considerou também tensões na faixa elástica. A expressão proposta em [3] foi mais uma vez confirmada, mas um coeficiente variável função da geometria e integridade do carregamento pareceu em melhor concordância com os resultados experimentais. A expressão proposta em [3] superestima o valor da largura efetiva para pequenos e médios valores da razão larguraespessura. Ficou, portanto, desenvolvida uma expressão simples е coerente com as evidências experimentais, para a determinação da largura efetiva.

Por outro lado, para placas com uma borda livre paralela à direção da tensão, e outra oposta simplesmente apoiada, in teressava de perto o seu comportamento. Uma vez observado [1] que esses elementos diferiam frontalmente dos enrijecidos em ambas as bordas paralelas à direção da tensão, expressões foram desenvolvi das para o projeto destes elementos. Efetivamente, o projeto destes elementos se baseia em tensões admissíveis reduzidas em função da relação largura-espessura do elemento, conforme é visto nas especificações de projeto [4,17].

Como resultado do comportamento de pós-flambagem as propriedades geométricas da seção mudam com o aumento de carga. A área da seção transversal é então reduzida e na forma de satisfazer a condição de que a força através da seção transversal é zero, o eixo neutro muda correspondentemente de posição. Em consequência, momentos de inércia, módulos de resistência e outras pro priedades ligadas direta ou indiretamente à área, tem seus valores plenos reduzidos.

Pretende-se, então, desenvolver um processo numérico computacional e programa em FORTRAN, para calcular estas propriedades para os diversos tipos de seções. Uma visão sumária deste procedimento é apresentada em [23].

Inúmeros são os programas computacionais encontrados na literatura para determinação de propriedades seccionais plenas. Por exemplo, o apresentado por Kollbrunner e Basler [20] baseado em diferenças finitas, porém limitado a seções abertas. um programa mais geral que o anterior, denominado PROSEC [21], deter mina as propriedades requeridas na flexão, torção uniforme ou não uniforme de seções de paredes delgadas. Este programa, por sua vez, é limitado às seções abertas constituídas por elementos reti líneos em que no máximo, concorrem quatro elementos a único um nó. Aplica-se também, para seções com apenas uma cavidade tubular.

Outro programa mais abrangente é o SEDEL [22]. Com ele determina-se as mesmas propriedades de [21]. Contudo, este programa supera limitações comuns à maioria dos trabalhos citados anteriormente e encontrados na literatura. Dentre estas limitações pode-se citar, entre outras, a forma da seção transversal, o número de ramificações a partir de um único nó e o número de cavi dades tubulares.

Perfis de paredes delgadas, quando sob ação de forças compressivas, devida a flexão ou compressão axial, podem vir a so frer uma redução nas suas propriedades seccionais plenas. Neste caso, a redução é reflexo da flambagem local verificada em alguns elementos que constituem o membro estrutural.

Apesar da importância de se conhecer as propriedades efetivas, nenhum dos processos mencionados considera a flambagem local. Este é, pois, o objetivo desta dissertação.

O programa que ora se desenvolve tem por base o programa SEDEL [22], devido a sua generalidade e, ainda, as recomendações das normas para o projeto de membros estruturais leves, AISI [4] e NB-143 [17].

б

2.2 - ESTABILIDADE DE PLACAS DELGADAS

2.2.1 - INTRODUÇÃO

Flanges, almas e outros elementos planos de membros estruturais apresentam boa resistência quando sob tração. Contrariamente, quando sujeitos a cargas de compressão além de um valor determinado (crítico), diminuem em muito sua resistência, e apresentam uma configuração ondulada caracterizando o que se denomina de flambagem local.

As placas possuem a propriedade, talvez única dentre os componentes estruturais, de suportarem cargas bem maiores que a carga inicial de flambagem local, sem no entanto afetar o desempenho do componente estrutural.

As investigações sobre a estabilidade de placas del gadas, sujeitas a tensões resultantes de membrana em seu plano de referência, figura 2.1, estão baseadas na seguinte questão: considerando que a distribuição de tensões resultantes de membrana N_x , N_y , N_{xy} , na configuração de equilíbrio de flambagem incipiente são mantidas invariáveis, existirá uma configuração de equilíbrio alternativa admitindo flexão, que satisfaça as equações de equilíbrio, isto é:

$$\frac{\partial N_x}{\partial x} + \frac{\partial N_{yx}}{\partial y} = 0$$
 (2.1)

$$\frac{\partial N_{xy}}{\partial x} + \frac{\partial N_{y}}{\partial y} = 0$$
 (2.2)

$$D \left(\frac{\partial^4 w}{\partial x^4} + 2\frac{\partial^4 w}{\partial x^2 \partial y^2} + \frac{\partial^4 w}{\partial y^4}\right) + \left(N_x \frac{\partial^2 w}{\partial x^2} + 2N_x \frac{\partial^2 w}{\partial x \partial y} + N_y \frac{\partial^2 w}{\partial y^2}\right) = 0$$

... (2.3)

onde:

D é a rigidez flexional da placa definida por

$$D = \frac{Et^{3}}{12(1-v^{2})}$$
 (2.4)

- E Módulo de elasticidade.
- v Coeficiente de Poisson.
- w Deflexão de um ponto na superfície média da placa.

Figura 2.1 - Placa retangular plana carregada no plano médio.

A equação (2.3) relaciona as forças de contorno com o deslocamento normal da placa. Desta forma, pode-se determinar o menor valor da carga que permite a existência de duas config<u>u</u> rações, isto é, uma plana e uma flambada. Assume-se que as tensões $N_x \in N_y$ nas equações (2.1), (2.2) e (2.3) são compressivas, conforme é ilustrado na figura 2.1.

Nos itens que se seguem, são apresentados duas apl<u>i</u> cações da equação diferencial de equilíbrio, equação (2.3); intimamente ligada ao comportamento de flanges de membros estrut<u>u</u> rais de paredes delgadas, sujeitos a carregamento compressivo. 2.2.2 - FLAMBAGEM DE UMA PLACA RETANGULAR SIMPLESMENTE APOIADA

- CASO I

Considerar a placa retangular, simplesmente apoiada em todos os lados e sujeita a um carregamento compressivo, uniformemente distribuído ao longo dos lados x=0 e x=a, atuando no seu plano de referência conforme é visto através da figura 2.2.

Figura 2.2 - Placa retangular uniformemente comprimida.

Então, para a condição de carregamento da placa, figura 2.2, resulta:

$$N_{y} = N_{xy} = 0$$
 (2.5)

Considerar que a tensão resultante N_x seja incrementada gradat<u>i</u> vamente até a configuração de flambagem incipiente. Neste estágio, denota-se N_x por \tilde{N}_x , e a equação diferencial governante (2.3), tendo em vista que $N_x = \tilde{N}_x$, torna-se:

$$D \left(\frac{\partial^4 w}{\partial x^4} + 2\frac{\partial^4 w}{\partial x^2 \partial y^2} + \frac{\partial^4 w}{\partial y^4}\right) + \tilde{N}_x \frac{\partial^2 w}{\partial x^2} = 0$$
(2.6)

A configuração da placa pode ser expressa pela seguinte função deslocamento:

$$w(x,y) = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} A_{mn} \operatorname{sen} \frac{m\pi}{a} x \operatorname{sen} \frac{n\pi}{b} y \qquad (2.7)$$

que além de satisfazer a equação diferencial (2.6), satisfaz também as condições de contorno para a placa simplesmente apoi<u>a</u> da, isto é:

Em
$$x=0$$
 $w(0, y)=0$ e $M_{x}(0, y)=0$ (2.8)

$$y=0$$
 w(x,0)=0 e M_y(x,0)=0 (2.9)

$$x=a w(a,y)=0 e M_{\chi}(a,y)=0$$
 (2.10)

$$y=b w(x,b)=0 e M_y(x,b)=0$$
 (2.11)

Substituindo a função deslocamento, w(x,y), na equação diferencial (2.6) resulta:

$$D \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} A_{mn} \left[\left(\frac{m\pi}{a} \right)^{4} + 2 \left(\frac{m\pi}{a} \right)^{2} \left(\frac{n\pi}{b} \right)^{2} + \left(\frac{n\pi}{b} \right)^{4} - \frac{\tilde{N}_{x}}{D} \left(\frac{m\pi}{a} \right)^{2} \right] \\ \times \operatorname{sen} \frac{m\pi}{a} \times \operatorname{sen} \frac{n\pi}{b} y = 0$$
(2.12)

que para uma solução não trivial, requer

$$\left(\frac{m\pi}{a}\right)^{4} + 2\left(\frac{m\pi}{a}\right)^{2} \left(\frac{n\pi}{b}\right)^{2} + \left(\frac{n\pi}{b}\right)^{4} - \frac{\tilde{N}_{x}}{D}\left(\frac{m\pi}{a}\right)^{2} = 0 \qquad (2.13)$$

de onde se obtém

$$\tilde{N}_{x} = \frac{\pi^{2} D}{b^{2}} \left[m(\frac{b}{a}) + \frac{n^{2}}{m} (\frac{a}{b}) \right]^{2}$$
(2.14)

ou, tendo em vista a relação (2.4), resulta

$$\tilde{N}_{X} = \frac{\pi^{2} E t^{3}}{12(1-\nu^{2})b^{2}} \left[m(\frac{b}{a}) + \frac{n^{2}}{m}(\frac{a}{b}) \right]^{2} = K \frac{\pi^{2} E t^{3}}{12(1-\nu^{2})b^{2}}$$
(2.15)

onde K, conhecido como coeficiente de flambagem, depende das condições de contorno, da relação de aspecto a/b, e dos inte<u>i</u> ros m e n. A equação (2.15), através do coeficiente K, expressa a relação entre a carga crítica de flambagem para as várias po<u>s</u> sibilidades dos inteiros m e n, conforme é visto através da figura 2.3.

Figura 2.3 - Forma da superfície defletida da placa para os termos a_{11} e a_{42} da função-de<u>s</u> locamento.

A equação (2.15) é satisfeita para um número infini to de valores de \tilde{N}_x . Contudo, interessa apenas o menor destes valores para o qual a forma defletida existe. Evidentemente que o menor valor dos inteiros m e n fornece o menor valor de \tilde{N}_x , que é de interesse prático. Por simples inspeção na equação (2.15), é aparente que o valor de n que produz o menor valor de \tilde{N}_{χ} é l. Uma análise para o inteiro m é dada através da figura 2.5. Por conseguinte, o coeficiente K, na equação (2.15), fica

$$K = \left[m(\frac{b}{a}) + \frac{1}{m} (\frac{a}{b}) \right]^2$$
(2.16)

Assim, a equação (2.15), com K dado por (2.16), representa a carga crítica mínima de flambagem para a qual a placa flamba em meia onda senoidal através da largura da placa, conforme é visto na figura 2.4.

Figura 2.4 - Flambagem local para or mínima.

Dividindo-se ambos os membros da relação (2.15) por t, obtém-se a tensão crítica de flambagem ou tensão de Bryan, portanto

$$\frac{N_{x}}{t} = \sigma_{cr} = K \frac{\pi^{2} E}{12(1-\nu^{2})(b/t)^{2}}$$
(2.17)

O coeficiente de flambagem K indica a dependência da tensão crítica com a relação de aspecto. Na figura 2.5 estão representadas curvas dos valores de K para os diversos valores de m (m=1, 2, 3, ...) e n=1.

Figura 2.5 - Coeficiente de flambagem para a tensão crítica mínima em função da relação de aspecto.

Observa-se, através da figura 2.5, que para cada nú mero de meias ondas senoidais na direção do carregamento, existe uma relação de aspecto a/b, para a qual K, e portanto $\sigma_{\rm cr}$, assume um valor mínimo.

Derivando-se a expressão (2.16) com respeito a rel<u>a</u> ção de aspecto, o valor minimizante é então determinado pela r<u>e</u> lação

$$\frac{dK}{d(\frac{a}{b})} = 0 = 2 \left[m(\frac{a}{b})^{-1} + \frac{1}{m}(\frac{a}{b}) \right] \left[-m(\frac{a}{b})^{-2} + \frac{1}{m} \right]$$
(2.18)

resultando $\frac{a}{b} = m$

Assim, σ_{cr} assume o valor mínimo para a relação de aspecto igual a um número inteiro positivo, e o valor correspon dente de K é 4. Observa-se também que K tende para o valor mín<u>i</u> mo mencionado, à medida que a relação de aspecto cresce e paralelamente aumenta o número de meias ondas na direção do carre<u>ga</u> mento. As relações a/b correspondentes aos pontos de transição, em que a configuração passa de m para m+1 ondas, é obtida cons<u>i</u> derando-se que K(m)=K(m+1). Então, utilizando a relação (2.16), pode-se escrever:

$$m\frac{b}{a} + \frac{1}{m}\frac{a}{b} = (m+1)\frac{b}{a} + \frac{1}{(m+1)}\frac{a}{b}$$
(2.19)

Desta equação resulta

$$\frac{a}{b} = \left[m(m+1) \right]^{1/2}$$
(2.20)

Substituindo m por 1, 2, 3, 4, 5 obtém-se, para a/b, respectiv<u>a</u> mente, os valores $\sqrt{2}$, $\sqrt{6}$, $\sqrt{12}$, $\sqrt{20}$, $\sqrt{30}$ conforme é indicado na figura 2.5. Para placas longas, m é um número grande e usando a relação (2.20) pode-se escrever:

$$\frac{a}{b} = m$$
(2.21)

isto é, uma placa muito longa flamba em meias ondas longitudinais de comprimentos aproximadamente iguais a largura da placa. Assim, a placa fica aproximadamente subdividida em quadrados.

Dentro da faixa elástica, a configuração flambada existe para um valor bem definido dado pela equação (2.17). Este é o valor da tensão crítica mínima de flambagem. Acima do l<u>i</u> mite de proporcionalidade, a expressão (2.17) fornece valores exagerados para $\sigma_{\rm cr}$. Para a sua utilização nesta faixa é necessário substituir E por E_t, dado pela tangente à curva do diagrama compressivo tensão-deformação [2,10]. - CASO II

Considerar a placa carregada em seu plano de referência conforme é visto na figura 2.6, onde os lados x=0, x=a e y=0 são simplesmente apoiados, enquanto o lado y=b é livre.

Figura 2.6 - Placa simplemente apoiada nos lados x=0, x=a e y=0 e livre no lado y=b.

Para este caso, sob a ação da carga compressiva, a placa flamba em meias ondas senoidais na direção do carregamento |2,10,14|, e a função deslocamento é dada pela expressão

$$w(x,y) = f(y) \sum_{m=1}^{\infty} \operatorname{sen} \frac{m\pi}{a} x \qquad (2.22)$$

que satisfaz automaticamente as condições de contorno.

Em x=0 w(0,y)=0 e
$$M_{x}(0,y)=0$$
 (2.23)

$$x=a w(a,y)=0 e M_x(a,y)=0$$
 (2.24)

Substituindo (2.22) na equação diferencial de equilíbrio (2.6), resulta na seguinte equação diferencial ordinária:

$$\frac{d^4 f(y)}{dy^4} - 2\left(\frac{m\pi}{a}\right)^2 \quad \frac{d^2 f(y)}{dy^2} + \left[\left(\frac{m\pi}{a}\right)^2 - \frac{N_x}{D}\left(\frac{m\pi}{a}\right)^2\right] f(y) = 0 \quad (2.25)$$

cuja solução é

$$f(y) = C_1 \cosh (\alpha y) + C_2 \sinh (\alpha y) + C_3 \cos (\beta y) + C_4 \sin (\beta y)$$

... (2.26)

28)

.

onde

е

$$\alpha = \left[\left(\frac{m\pi}{a}\right)^{2} + \left(\frac{m\pi}{a}\right)^{2} \left(\frac{N_{x}}{D}\right)^{1/2} \right]^{1/2}$$

$$\beta = \left[-\left(\frac{m\pi}{a}\right)^{2} + \left(\frac{m\pi}{a}\right)^{2} \left(\frac{N_{x}}{D}\right)^{1/2} \right]^{1/2} \qquad (2.27)$$

Levando a equação (2.26) na relação (2.22) obtém-se

$$w(x,y) = \left[C_1 \cosh(\alpha y) + C_2 \operatorname{senh}(\alpha y) + C_3 \cos(\beta y) + C_4 \operatorname{sen}(\beta y)\right] \operatorname{sen} \frac{m\pi}{a} x \qquad (2.$$

Para as faces y=0 e y=b pode-se escrever as seguintes condições de contorno

Em y = 0 w(x,0) = 0 e
$$M_y(x,0) = 0$$
 (2.29)

$$y = b M_y(x,b) = 0 e V_y(x,b) = 0$$
 (2.30)

As condições de contorno dadas em (2.29), juntamente com a equação (2.28) fornecem

$$C_1 = C_3 = 0 (2.31)$$

e a equação (2.28) reduz-se a

$$w(x,y) = \left[C_2 \operatorname{senh} (\alpha y) + C_4 \operatorname{sen} (\beta y)\right] \operatorname{sen} \frac{m\pi}{a} x \quad (2.32)$$

Das condições de contorno dadas em (2.30) vem:

$$C_{2}\left[\alpha^{2} - \nu\left(\frac{m\pi}{a}\right)^{2}\right] \operatorname{senh} (\alpha b) - C_{4}\left[\beta^{2} + \nu\left(\frac{m\pi}{a}\right)^{2}\right] \operatorname{sen} (\beta b) = 0$$

... (2.33)

$$C_{2}\alpha \left[\alpha^{2} - (2-\nu)\left(\frac{m\pi}{a}\right)^{2}\right] \cosh (\alpha b) - C_{4}\beta \left[\beta^{2} + (2-\nu)\left(\frac{m\pi}{a}\right)^{2}\right]$$

$$\times \cos (\beta b) = 0 \qquad (2.34)$$

Para uma solução não trivial das equações (2.33) e (2.34) é requerido que seu determinante seja nulo, resultando na equação transcendental

$$\beta(\alpha^{2} - \nu \frac{m^{2} \pi^{2}}{a^{2}}) tgh(\alpha b) - \alpha(\beta^{2} + \nu \frac{m^{2} \pi^{2}}{a^{2}}) tgh(\beta b) = 0$$
 (2.35)

Usando as relações dadas em (2.27), em conjunto com a equação (2.35), determina-se o valor mínimo de N_x , denotado por \tilde{N}_x , para cada m. Os cálculos mostram que o menor valor de \tilde{N}_x é obt<u>i</u> do quando m=1. Portanto, a placa flamba em meia onda na direção do carregamento.

Timoshenko [2] apresenta, para placas longas, a seguinte expressão empírica para o coeficiente de flambagem:

$$K = 0,456 + \left(\frac{b}{a}\right)^2$$
(2.36)

que traçado em função da relação de aspecto fornece o gráfico da figura 2.7.

O gráfico da figura 2.7 revela que uma placa com uma borda livre paralela ao carregamento e com as outras simplesmente apoiadas, flamba em meia onda senoidal independentemente da relação de aspecto a/b.

Figura 2.7 - Coeficiente de flambagem para a tensão crítica mínima em função da relação de aspecto.

2.3 - RESISTÊNCIA PÓS-FLAMBAGEM

A teoria clássica de pequena deflexão [2,9,10,19], estabelece que uma placa retangular, sujeita a tensões resulta<u>n</u> tes de membrana compressivas ou cisalhantes, flamba para uma tensão dada pela equação (2.17), onde o coeficiente de flambagem K depende das condições de contorno e da relação de aspecto a/b. Esta equação é inteiramente análoga à equação de Euler para flambagem de coluna, dada por

$$\sigma_{\rm cr} = C \frac{\pi^2 E}{(L/r)^2}$$
(2.37)

onde o coeficiente C depende do carregamento e das condições de fixação das extremidades.

Contudo, a analogia entre a flambagem de colunas е placas acaba aqui. Experiências com placas comprimidas revelaram uma diferença fundamental entre o significado prático da tensão crítica de Euler para colunas, equação (2.37), e a tensão de Bryan para placas dada pela equação (2.17). Colunas longas falham para a tensão de Euler, ou um valor levemente abaixo dela. Entretanto, para uma placa enrijecida ao longo das bordas paralelas à direção da tensão, aparece uma leve e gradual ondulação quando o valor da tensão dada pela equação (2.17) é alcan cado, conforme é visto através da figura 2.8. Isto, absolutamen te, não implica a falha da placa. Ela continua a suportar aumen to de carga, algumas vezes um múltiplo grande [11] daquela que causou o aparecimento da primeira onda, escassamente perceptivel, notadamente quando a razão largura-espessura (b/t) da placa é grande. Esta capacidade de suportar cargas adicionais após a flambagem local é denominada de resistência pós-flambagem.

O comportamento de placas planas na faixa da pósflambagem é explicado através do modelo de grade, uma vez que é difícil visualizar o desempenho de um elemento bidimensional. A placa é substituída, então, pelo modelo que é mostrado na figura 2.9. Este consiste de uma grade onde o material da placa é discretizado em barras longitudinais e transversais. A placa es tá uniformemente comprimida com uma carga P, portanto cada barra longitudinal representa uma coluna carregada com uma carga P/5.

Figura 2.8 - Elemento capaz de suportar carga adicional.

Figura 2.9 - Modelo de grade para placas na faixa de pos-flambagem.

Com o aumento gradual da carga, a tensão de compressão em cada uma das colunas ou barras alcança a tensão crítica de flambagem dada pela equação (2.37) e, portanto, todas as cinco colunas flambam simultaneamente. Porém, tal fato não ocorre no modelo de grade da placa. As barras transversais restringem as deflexões das barras longitudinais. Em conseqüência, não ocorre a fa lha das barras longitudinais e elas defletem em quantidades diferentes. O efeito das barras transversais é mais efetivo para aquelas colunas (porções da placa) próximas às bordas enrijecidas. Na região central da placa, as deflexões são bem acentuadas. Por essa razão é que a placa é capaz de suportar cargas adicionais após ter alcançado a carga crítica de flambagem 10cal.

A placa não pode suportar cargas adicionais, e falha apenas quando a parte mais solicitada (região adjacente às bordas) alcança o limite de resistência do material.

O modelo da figura 2.9 representa eficazmente o comportamento de elementos planos enrijecidos ao longo das bordas longitudinais (paralelas à direção da tensão), como por exemplo, o flange da figura 2.10.

Figura 2.10 - Flambagem do flange em compressão de uma viga de seção cartola.

2.4 - LARGURA EFETIVA

2.4.1 - ELEMENTOS ENRIJECIDOS EM AMBAS AS BORDAS PARALELAS À DIREÇÃO DA TENSÃO

O conceito de largura efetiva para o projeto de pl<u>a</u> cas em compressão foi introduzido por Von Karman [3], em 1932. À medida em que a tensão compressiva é gradualmente aumentada, além da tensão crítica de Bryan, a distribuição uniforme de te<u>n</u> são dá lugar a uma distribuição não uniforme, conforme é visto através da figura 2.11.

Figura 2.11 - Distribuição de tensão e largura efetiva no campo da pós-flambagem.

22

A distribuição não uniforme de tensão através da largura da placa é substituída por uma outra, equivalente, que é uniforme sobre uma porção da placa denominada largura efetiva b_e , de intensidade σ_{max} . A figura 2.11 mostra que a largura efe tiva diminui com o aumento da tensão na borda, σ_{max} .

Assim, com apenas duas tiras efetivas de largura $b_e/2$ cada, a placa de largura geométrica b, é equivalente a uma placa estreita totalmente efetiva, de largura equivalente b_e .

A expressão analítica derivada por Von Karman para a largura efetiva é:

$$b_e = 1,9t\sqrt{E/\sigma_e}$$
(2.38)

ou

$$b_e = Ct \sqrt{E/\sigma_e}$$
 (2.39)

Com este conceito, a parte central da placa, em compressão, é imaginada como removida e a tensão uniforme age através da largura efetiva b_e.

Sechler [8], através de experimentos, tentou verifi car o coeficiente 1,9 da equação (2.38) e concluiu que em vez de fixar o valor de 1,9 dever-se-ia considerar um coeficiente, que de acordo com seus testes seria função de $\sqrt{E/\sigma_e}$ (t/b).

A figura 2.12 apresenta os resultados dos experimen tos realizados por Sechler, onde o coeficiente C é traçado em função do parâmetro $\sqrt{E/\sigma_e}$ (t/b). Também representa-se nesta fi gura a equação (2.38).

Vê-se que a equação (2.38) super-estima o valor da largura efetiva pois, quase em sua totalidade, os pontos experi mentais estão abaixo da reta dada pela equação (2.38). Somente para valores muito pequenos de $\sqrt{E/\sigma_e}$ (t/b), o que corresponde a placas extremamente largas e delgadas, C torna-se próximo de 1,9.

Figura 2.12 - Determinação experimental de largura efetiva.

Winter [1], imbuído do mesmo objetivo que Sechler, realizou uma extensiva série de experiências. Como resultado, mais uma vez, a hipótese de Von Karman se confirmara. Além disso, Winter não se limitou apenas a tensões da ordem da tensão de escoamento, como Karman e Sechler, mas considerou tensões na faixa elástica. A figura 2.13 apresenta os resultados da série A, onde a razão largura espessura variou entre 64 e 170, inclusive.

Figura 2.13 - Determinação experimental da largura efetiva.
Os experimentos realizados por Sechler foram feitos com placas individuais e para tensões da ordem de escoamento. Winter, por sua vez, trabalhou com flanges, representando partes de componentes estruturais. Contudo, os resultados são seme lhantes. Além disso, os pontos na figura 2.13 obtidos para tensões baixas, estão localizados de forma geral como aqueles obt<u>i</u> dos para tensões da ordem da tensão de escoamento. Assim, a equação (2.39) é usada indiferentemente para ambos os tipos de tensão, e portanto resulta

$$b_e = Ct \sqrt{E/\sigma}$$
 (2.40)

na qual σ é a tensão nominal de compressão que atua no flange, limitada ao valor da tensão de escoamento.

Uma vez determinada a relação entre o coeficiente C e o parâmetro $\sqrt{E/\sigma}$ (t/b), ficou estabelecida experimentalmente a expressão para a largura efetiva b_e. Representando os valores médios de ambos os testes, figura 2.12, 2.13, resulta na segui<u>n</u> te equação para C:

$$C = 1,9 - 1,09 / E/\sigma'(t/b)$$
 (2.41)

e que substituída em (2.40) resulta na equação de largura equivalente, comumente denominada de efetiva.

$$b_{e} = 1,9t \sqrt{\frac{E}{\sigma}} \left[1 - 0,574 \left(\frac{t}{b}\right) \sqrt{\frac{E}{\sigma}} \right]$$
(2.42)

Uma representação gráfica da equação (2.42), em te<u>r</u> mos dos parâmetros adimensionais b/t e b_e/b, é mostrada através da figura 2.14, para o valor particular de E/ σ = 1000.

Figura 2.14 - Razão b_e/b em função de b/t.

Observa-se que para médios e altos valores da razão b/t, a relação b_e/b diminui com o aumento de b/t. Entretanto, o inverso ocorre para pequenos valores de b/t, o que é fisicamente impossível. Por conseguinte, a equação (2.42) dá resultados incorretos para pequenos valores da relação largura-espessura. Portanto, seu campo de aplicação está restrito àquela faixa de b/t correspondente aos ensaios. Nestes ensaios, cujos resultados estão representados na figura 2.13, a relação largura-espes sura b/t variou de 64 até 170 [1].

Para investigar o comportamento de flanges em compressão, para pequenos valores de b/t, foi idealizado um novo conjunto de experimentos intitulado série B, onde b/t variou desde 14,3 até 56. Os resultados dos testes (figura 2.15) estão sumariados na referência [1], e são aqui reproduzidos.

b/t	TIPO	(a) Séries B e C LARGURA EFETIVA			$\frac{\text{Col. 5}}{\text{Col. 4}}$	(b) Séries B e C MOMENTO-MÁXIMO		
		σ(psi)	TESTE	GRĂFICO		σ _e	M_1/M_t	M_2/M_t
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
14,3	I-1	26300	14,1t	14,3t	1,01	35700	0,98	0,98
16,3	I-2	27200	16,5t	16,3t	0,99	33100	0,94	0,94
16,4	I-3	26600	16,6t	16,4t	0,99	33100	0,93	0,93
19,2	I-4	27600	19,2t	19,2t	1,00	35100	0,90	0,90
22,0	I~5	27200	21,8t	22,9t	1,05	33100	0,95	0,95
23,6	I-6	26300	23,4t	23,6t	1,01	36200	0,95	0,95
24,0	I-7	29200	22,6t	24,0t	1,06	35100	0,95	0,95
28,9	I-8	27400	27,4t	27,0t	0,98	30200	0,98	0,95
32,0	I-9	27200	31,7t	29,0t	0,91	36200	1,06	0,90
33,5	I-14α	•••	• • •	•••	•••	37900	1,07	1,00
36,0	I-15	•••		•••	•••	36400	0,84	0,76
38,3	I-10	25600	37,2t	32,5t	0,87	30200	1,02	0,92
42,6	I-11	27400	39,6t	35,0t	0,88	37300	1,14	1,02
45,0	I-12	23500	40,8t	37,0t	0,90	30300	1,04	0,92
49,5	Ι-16α		•••	•••	•••	37900	1,20	1,04
49,9	I-17	•••	•••		•••	36400	0,98	0,84
51,6	Ι-18α	•••	•••	• • •	•••	32200	1,08	0,95
56,0	I-13	28000	48,8t	41,5t	0,85	37300	1,17	0,97
77,7	I-19α	••••		•••	•••	37900	1,55	1,12
86,6	I-20α	•••	•••	···	•••	32200	1,47	1,10

Figura 2.15 - Resultados dos testes com viga I para pequenos valores de b/t. Séries B e C (α - resultado médio de três ensaios)

Na coluna 4 da tabela da figura 2.15 $ilde{e}$ visto que flanges com razão largura-espessura na faixa de 14,3 até 30, são praticamente efetivos, isto \tilde{e} , $b_e^{\tilde{=}}b$. Para valores crescentes de b/t, a partir de 30, b_e torna-se progressivamente menor que b. Conseqüentemente, é razoável obter-se uma curva de transição, linha pontilhada na figura 2.16, a partir do ponto de coordenadas $(b/t, b_e/b) = (25, 1)$, e tangente à curva representa da pela equação (2.42). Como nesta faixa de b/t, a largura efetiva é igual ou muito próxima da largura geométrica b, parece razoável [1] representar tal relação por uma reta.

Com esta proposição a abscissa do ponto de tangência T, figura 2.16, é determinada pela expressão

$$\left(\frac{b}{t}\right)_{1}^{'} = \frac{1,0906\frac{E}{\sigma} + \sqrt{(1,0906\frac{E}{\sigma})^{2} - 27,265\frac{E}{\sigma}(1,9\sqrt{\frac{E}{\sigma}} - 25)}}{1,9\sqrt{\frac{E}{\sigma}} - 25} \dots (2.43)$$

e a correspondente equação da reta é

b

$$b_{e} = \left[\frac{1,0906}{\left(\frac{b}{t}\right)^{2}} \frac{E}{\sigma t} \left(\frac{b}{t} - 25\right) + 25\right] t \qquad (2.44)$$

A obtenção das equações (2.43) e (2.44) é mostrada no apêndice C.

Traçando os valores de b_e em termos de b/t, obtém--se a curva mostrada na figura 2.16, a qual é constituída de três segmentos denotados por AB, BT e TS.

Assim, utilizando o gráfico da figura 2.16, pode-se obter diretamente a largura efetiva para um dado valor da relação b/t. Uma outra forma seria utilizar diretamente as equações correspondentes a cada trecho da curva na figura 2.16, ou seja,

$$b_{e} = b \qquad \text{para} \qquad 0 < \frac{b}{t} \le 25 \qquad (2.45)$$

$$e = \left[\frac{1,0906}{\left(\frac{b}{t}\right)^{2}_{1}} \frac{E}{\sigma(t)} - 25\right] + 25 \qquad \text{t para} \qquad 25 < \frac{b}{t} \le \left(\frac{b}{t}\right)_{1}$$

$$\dots \qquad (2.46)$$

$$\mathbf{b}_{e} = 1,9t \sqrt{\frac{E}{\sigma}} \left[1,0 - 0,574\left(\frac{t}{b}\right) \sqrt{\frac{E}{\sigma}} \right] \quad \text{para} \quad \frac{b}{t} > \left(\frac{b}{t}\right)_{1} \quad (2.47)$$

onde $\left(\frac{b}{t}\right)_1$ é dado pela relação (2.43).

Figura 2.16 - Determinação da largura efetiva.

Mais tarde é apresentado pelo próprio Winter [6], uma pequena correção para o coeficiente C, dado pela equação (2.41). Desta proposição, resulta para C a expressão

$$C = 1,9 - 0,9025 \sqrt{E/\sigma}$$
(2.48)

e, consequentemente, para a largura efetiva, a expressão

$$b_{e} = 1,9t\sqrt{\frac{E}{\sigma}} \left[1,0 - 0,475(\frac{t}{b})\sqrt{\frac{E}{\sigma}} \right]$$
 (2.49)

Uma representação da equação (2.49), em termos dos parâmetros adimensionais b/t e b_e/b , é mostrada através da figura 2.17, para o valor particular de $E/\sigma = 1000$.

Figura 2.17 - Razão b_e/b em função de b/t.

Vê-se que fica perfeitamente definido um valor b/t, que é função da tensão atuante, abaixo do qual o elemento é totalmente efetivo, isto é, a largura efetiva é igual à largura geométrica. Acima deste valor particular, a largura efetiva to<u>r</u> na-se progressivamente menor que a largura geométrica, e tanto menor quanto maior for b/t. Este valor particular de b/t é den<u>o</u> minado de $(\frac{b}{t})_{t}$ lim.

Para se determinar este valor limite de b/t, basta substituir, na relação (2.49), b_e por b e resolver para b. Assim, resulta:

$$\left(\frac{b}{t}\right)_{1im} = 0,95\sqrt{E/\sigma}$$
 (2.50)

Desta forma a largura equivalente fica efetivamente determinada em toda a faixa útil de b/t apenas por duas equações

$$b_e = b$$
 para $\frac{b}{t} \leq (\frac{b}{t})_{1im}$ (2.51)

$$b_{e} = 1,9t \sqrt{\frac{E}{\sigma}} \left[1,0 - 0,475(\frac{t}{b}) \sqrt{\frac{E}{\sigma}} \right] \text{ para } \frac{b}{t} > (\frac{b}{t})_{1im} \quad (2.52)$$

Estas expressões são utilizadas nas especificações de projeto estrutural de membros leves AISI e NB-143, edições 1961 e 1967, respectivamente. Nesta última em unidades do Sist<u>e</u> ma Internacional de Unidades.

Para fins práticos, traça-se b_e em função b/t, que para o caso particular de $E=2,1 \times 10^5$ MPa e para os níveis de tensão 60, 100, 140 e 210 em MPa, resulta nas curvas A, B, C e D, conforme está indicado na figura 2.18.

espessura b/t.

Outras curvas podem ser obtidas, para outros níveis de tensão, de forma similar. Para outros materiais, utilizar o correspondente módulo de elasticidade E.

2.4.2 - ELEMENTOS COM UMA BORDA ENRIJECIDA E OUTRA LIVRE, SEN-DO AMBAS PARALELAS À DIREÇÃO DA TENSÃO DE COMPRESSÃO

- Aspectos Gerais

Elementos deste tipo ocorrem em vigas I, por exemplo, como mostradas através da figura 2.19.

Figura 2.19 - Formas de seção I onde as bordas externas dos flanges em compressão não são enrijecidas.

Quando em compressão, este tipo de elemento desenvolve ondas de flambagem de considerável magnitude, imediatame<u>n</u> te após ter alcançado a tensão crítica de flambagem e mostra pouca resistência pós-flambagem. Assim, seu comportamento difere totalmente daquele apresentado por um elemento em que ambas as bordas longitudinais são enrijecidas. Com o objetivo de investigar este comportamento e traduzí-lo em termos de expressões simples, Winter [1] idealizou duas séries de testes D e E, com vigas de forma geral mostradas na figura 2.19, como o fizera para elementos enrijecidos.

Os resultados experimentais foram expressos, qualitativamente, nos seguintes termos:

- Flanges com razão largura-espessura menor que 12 falham por escoamento, com pouca ou nenhuma distorção perpendicular ao plano do flange;
- 2 Flanges com razão largura-espessura na faixa de 12 até
 30, aproximadamente, permanecem indeformados e resisten tes até o momento em que ocorre a flambagem local dos
 flanges, de forma repentina;
- 3 Flanges com razão largura-espessura maior que 30, apresentam boa resistência pós-flambagem e são capazes de su portarem cargas bem maiores que a carga crítica. Por outro lado, o não enrijecimento da borda externa permite que o flange fique seriamente distorcido. Assim, nesta faixa, eles não podem ser vistos como estruturalmente aplicáveis, exceto se usados sob tensão extremamente bai xa.
- Tensão de Flambagem e Tensão Admissível Reduzida

As tensões críticas σ_{cr} , para as quais a flambagem local foi inicialmente observada [1], foram computadas e traçadas em função da relação largura-espessura b/t, conforme é visto através da figura 2.20. A curva representando a fórmula

$$\sigma_{\rm cr} = 0,5 \frac{\pi^2 E}{12(1-\nu^2)(b/t)^2}$$
(2.53)

é mostrada pela linha cheia. A equação (2.53) dá a tensão críti ca teórica de flambagem local para uma placa onde uma das bordas paralelas à direção da tensão de compressão é simplesmente apoiada e a outra livre. (Ver figura 2.6).

Observa-se na figura 2.20 que para valores de b/t a partir de 25, de forma crescente, a flambagem local ocorre pa

33'

ra tensões iguais ou maiores que as tensões dadas pela equação (2.53), e que para valores de b/t menores que 25, as tensões de flambagem local são consideravelmente menores que as dadas pela mesma relação.

Para desenvolver um procedimento que determine os valores da tensão crítica de flambagem na faixa onde b/t \tilde{e} pequeno, o valor médio das tensões de escoamento é computado, tabela 4 de [1] aqui reproduzida apenas para referência, figura 2.21. Os elementos com σ_e =347 MPa foram excluídos para o valor médio, uma vez esta tensão é alta comparada com as demais. O valor médio de σ_e então obtido é 245 MPa.

Figura 2.20 - Valores observados da tensão crítica plotados em função de b/t, séries D e E.

Na tabela da figura 2.21 apresentam-se os resultados dos testes para os especímenes com b/t menor que 33,1, que por sua vez flambaram repentinamente. O limite de resistência σ_m , é computado para colunas por $\sigma_m = P_m / A$ e para vigas $\sigma_m = M_m / s$, onde A e S são, respectivamente, a área e o módulo por de resistência da seção plena; σ_{ct} é a tensão de flambagem obtida dos testes, computada de forma similar a $\sigma_{\rm m}$; e $\sigma_{\rm cc}$ é a tensão computada das expressões (2.54)/e (2.55), conforme o valor de b/t.

Uma vez que flanges com b/t menor que 12 falham por escoamento, parece razoável assumir uma linha reta, iniciando em $\sigma_{\rm e}$ para b/t=12 e terminando com $\sigma_{\rm cr}$ dado pela relação (2.53), para b/t=30, como representando aproximadamente os valores de $\sigma_{\rm ct}$. (Ver figura 2.20).

Então, pode-se escrever:

$$\sigma_{cc} = \sigma_{e}$$
 para $\frac{b}{t} \le 12$ (2.54)

$$\sigma_{cc} = \sigma_{e} - \left(\frac{\sigma_{e} - \sigma_{cr}}{18}\right) \left(\frac{b}{t} - 12\right) \quad \text{para} \quad 12 < \frac{b}{t} \le 30$$

.. (2.55)

onde σ_{cr} é dada pela equação (2.53).

	NŶ	b/t		σcc			
IIPO			σ _e	σ _m	^o ct	σ _{cc}	^o ct
I-S-2	3	9,3	35400	34600	33400	35400	1,06
I-S-3	3	10,1	49400	35800	35800	49400	1,38
I – B – 3	3	10,1	37300	30200	29600	37300	1,26
I – B – 4	3	17,5	36800	40300	30400	30200	0,99
I-S-6	3	18,5	35400	31800	25600	28000	1,09
I-S-7	3	19,0	34500	26100	22800	27000	1,18
I - S - 8	3	19,1	49400	38800	35400	36500	1,03
I – B – 5	2	20,3	37300	29400	23600	27000	1,14
I – B – 6	3	20,8	34000	29200	26100	24700	0,95
I – B – 7	3	21,6	32600	28300	23400	23100	0,99
I-S-9	3	21,6	34000	25500	23900	23700	0,99
I – B – 8	3	25,2	38700	30000	21200	21200	1,00
I-S-10	3	27,1	34500	22900	16700	18000	1,08
I-S-11	3	27,8	34000	23900	15600	17200	1,10
I-S-12	3	27,8	34500	29200	23700	17300	0,73
I-S-13	3	28,3	49400	29200	17600	18200	1,03
I – B – 9	1	28,9	29200	26200	19700	15900	0,18
I -B-10	3	29,9	32600	24600	15200	15200	1,00
I-B-11	3	30,6	34900	25700	17400	14500	0,83
I-B-12	2	31,2	37300	28300	14200	13800	0,97
I-B-14	3	33,1	34000	23000	15200	12300	0,81

Figura 2.21 - Resultados dos testes com vigas I Séries D e E

Tabela 4 da referência [1].

- Largura Efetiva

Conforme é relatado em [1], Miller sob orientação de Winter, computou as larguras efetivas para os flanges das v<u>i</u> gas referenciadas nas séries D e E. Por conseguinte, foi apresentada uma expressão similar à equação (2.49) para a largura efetiva b_e , desses flanges. Ela é:

$$b_{e} = 1,25t \sqrt{\frac{E}{\sigma}} \left[1,0 - 0,333(\frac{t}{b}) \sqrt{\frac{E}{\sigma}} \right]$$
 (2.56)

válida para $\sqrt{E/\sigma}$ (t/b) em torno de 1,55, e que representa com boa precisão os valores médios determinados experimentalmente para b_e. Assim, no dimensionamento de flanges não enrijecidos deve-se tomar b e t, tais que

$$\frac{b}{t} = \frac{1}{1,55} \sqrt{E/\sigma}$$
(2.57)

Haja visto a considerável dispersão nos resultados experimentais, uma expressão mais conservativa foi desenvolvida, e que com poucas exceções, parece uma boa aproximação para os pequenos valores de b, obtidos experimentalmente. A expressão é

$$b_{e} = 0,8t\sqrt{\frac{E}{\sigma}} \left[1 - 0,202(\frac{t}{b})\sqrt{\frac{E}{\sigma}} \right]$$
(2.58)

válida para $\sqrt{E/\sigma}$ (t/b) em torno de 1,75.

Portanto, como no caso anterior, deve-se tomar b e t, tais que

$$\frac{b}{t} = \frac{1}{1,75} \sqrt{E/\sigma}$$
(2.59)

É mostrado em [1] que quando as condições (2.57) e (2.59) são observadas, a redução média máxima da largura do flange é somente 6% e 16%, respectivamente. Este fato revela que os cálculos baseados na largura plena do flange são tão pr<u>e</u> cisos quanto podem ser esperados, considerando que:

- 1 O grau de dispersão dos valores experimentais para as tensões de flambagem local σ_{ct}, torna a alta precisão de cálculo ilusória;
- 2 Uma redução na largura de 6% ou mesmo 16% resulta numa pequena redução nos valores significantes de A e S, pois o flange representa apenas uma fração muito pequena com respeito à seção transversal como um todo.

Pela discussão anterior, ê-se porque as especific<u>a</u> ções [4,17] de projeto de membros leves, com flanges não enrij<u>e</u> cidos, utilizam as propriedades seccionais plenas juntamente com tensões admissíveis reduzidas. As expressões para o cálculo destas tensões são obtidas em conformidade com as curvas a, b, c e d apresentadas na figura 2.22.

Figura 2.22 - Tensões admissíveis reduzidas σ_{ca} , em função da razão largura espessura b/t.

$$\sigma_{ca} = \sigma_{b} \qquad ; \qquad \frac{b}{t} \le 10 \qquad (2.60)$$

$$\sigma_{ca} = (1,667\sigma_{b} - 0,404\sigma_{cr}) - \frac{1}{15}(\sigma_{b} - \frac{\sigma_{cr}}{1,65})\frac{b}{t} ; \quad 10 < \frac{b}{t} \le 25$$
(2.61)

onde

$$\sigma_{\rm b} = \frac{\sigma_{\rm e}}{1,65} \tag{2.62}$$

е

$$\sigma_{\rm cr} = 0,5 \frac{\pi^2 E}{12(1-\nu^2)(25)^2}$$
(2.63)

Para os valores de b/t na faixa de 25 a 60, são apresentadas duas curvas, ou seja, c e d (ver figura 2.22). A reta denotada por c é dada pela equação:

$$\sigma_{ca_{i}} = \frac{1}{57,75} (\sigma_{cr/60} - \sigma_{cr/25}) \frac{b}{t} - \frac{25}{57,75}$$

$$\times (\sigma_{cr/60} - \sigma_{cr/25}) + \frac{1}{1,65} \sigma_{cr/25} \dots (2.64)$$

onde $\sigma_{cr/25} e \sigma_{cr/60} s$ ão dadas pela expressão (2.53) com b/t igual a 25 e 60, respectivamente, e a curva denotada por d, representa as tensões de compressão admissíveis para cantoneiras em compressão axial, haja visto que nenhuma resistência pósflambagem é verificada em tais membros. Assim, a tensão de compressão admissível reduzida é a própria tensão crítica teórica de flambagem local ou tensão de Bryan, equação (2.53), dividida pelo coeficiente de segurança 1,65, conforme está indicado na figura 2.22. Desta forma resulta a expressão

$$\sigma_{ca} = 0,303 \frac{\pi^2 E}{12(1-\nu^2)(b/t)^2} ; 25 < \frac{b}{t} \le 60 \quad (2.65)$$

As expressões correspondentes utilizadas nas espec<u>i</u> ficações de projeto NB-143 [17] e AISI [4] são:

1 - NB-143 (ed. 1967)
a)
$$\sigma_{ca} = \sigma_{b}$$
; $\frac{b}{t} \le 10$ (2.
b) $\sigma_{ca} = (1,667\sigma_{b} - 600) - \frac{1}{15}(\sigma_{b} - 900)\frac{b}{t}$; $10 < \frac{b}{t} \le 25$

... (2.67)

66)

<

c.1) para cantoneiras em compressão axial

$$\sigma_{ca} = \frac{570.000}{(b/t)^2} ; \qquad 25 < \frac{b}{t} \le 60 \qquad (2.68)$$

c.2) para outras seções em flexão ou compressão e também para cantoneiras em flexão

$$\sigma_{ca} = 1400 - 20\left(\frac{b}{t}\right) ; 25 < \frac{b}{t} \le 60$$
 (2.69)

onde σ_{ca} é expressa em kgf/cm².

a)
$$\sigma_{ca} = \sigma_{b}$$
; $\frac{b}{t} \le 10$ (2.70)

b)
$$\sigma_{ca} = (1,667\sigma_{b} - 8640) - \frac{1}{15}(\sigma_{b} - 12950)\frac{b}{t}$$
; $10 < \frac{b}{t} \le 25$

c.l) para cantoneiras em compressão axial

$$\sigma_{ca} = \frac{8.090.000}{(b/t)^2} ; 25 < \frac{b}{t} \le 60$$
 (2.72)

c.2) para outras seções em flexão ou compressão e também para cantoneiras em flexão

$$\sigma_{ca} = 20.000 - 282(\frac{b}{t})$$
; $25 < \frac{b}{t} \le 60$ (2.73)

onde σ_{ca} é expressa em psi.

Em ambas as normas, b/t está limitado ao valor 60.

2.5 - MEMBROS EM COMPRESSÃO AXIAL

Como consequência da flambagem local em membros de parede delgada em compressão axial, há uma redução de sua resis tência. Esta perda de resistência é considerada através de um fator de forma ou fator coluna Q.

A expressão para o cálculo da tensão, para a qual a coluna carregada axialmente começa a flambar por deflexão lateral, é dada pela equação (2.37). Entretanto, esta equação é efetivamente representada por outras duas, dependendo do valor do índice de esbeltez L/r. As equações são as que se seguem:

a) para pequenos e médios valores de L/r,

$$\sigma_{\rm cr} = \sigma_{\rm e} - \left(\frac{\sigma_{\rm e}^2}{4\pi^2 E}\right) \left(\frac{L}{r}\right)^2$$
 (2.74)

b) para grandes valores de L/r,

$$\sigma_{\rm cr} = \pi^2 E / \left(\frac{L}{r}\right)^2$$
 (2.75)

onde as tensões admissíveis são obtidas dividindo-se σ_{cr} , dada acima, por um coeficiente de segurança. Em ambas as normas [4,17] o valor prescrito para este coeficiente é 1,95.

Com o objetivo de considerar o efeito da flambagem local em membros de paredes delgadas em compressão axial, o fator de coluna Q é introduzido apenas na equação (2.74). Segundo a referência [5], isto é explicado através do seguinte fato:

"Na faixa de utilização da equação (2.75), isto é, para grandes valores de índices de esbeltez, as colunas flambam para tensões tão baixas que nenhuma flambagem local ocorre".

O fator de coluna Q é definido [4,17] conforme a se ção seja constituída somente de elementos enrijecidos, apenas de elementos não enrijecidos (cantoneiras) ou de ambos os elementos. Desta forma, tem-se a seguinte classificação:

 1 - para seções constituídas somente de elementos enrijecidos, o fator Q, também denominado fator de área, é definido por:

$$Q_a = \frac{\text{Area plena} - \text{Area removida}}{\text{Area plena}} = \frac{A_{ef}}{A}$$
 (2.76)

onde A_{ef} é a área efetiva da seção transversal e A é a área plena da seção. O termo área removida é usado para indicar a área hipoteticamente retirada da seção transversal, para se obter a área efetiva.

2 - para seções constituídas apenas de elementos não enrijecidos, o fator Q, também denominado fator de tensão, é definido por:

$$Q_{t} = \frac{\text{Tensão admissível reduzida}}{\text{Tensão de projeto}} = \frac{\sigma_{ca}}{\sigma_{b}}$$
(2.77)

onde σ_{ca} é dada pelas equações (2.60), (2.61), (2.64) e (2.65) conforme o valor de b/t.

3 - para seções constituídas de ambos os elementos, ou seja, enrijecidos e não enrijecidos, o fator de coluna Q é o produto de Q_a por Q_t , como calculado nos itens 1 e 2, respectivamente. Assim,

$$Q_{\rm m} = Q_{\rm a} Q_{\rm t} \tag{2.78}$$

As expressões apresentadas para o fator de coluna podem ser justificadas da seguinte forma:

Um membro compacto e muito curto, concentricamente comprimido falha por simples escoamento em vez de flambar, para a tensão de escoamento σ_e . Este fato é perfeitamente explicado através da equação (2.74), considerando pequenos valores de L/r. Assim, quando L/r \rightarrow 0 a equação (2.74) fornece

$$\left(\frac{P}{A}\right)_{max} = \sigma_e \tag{2.79}$$

Para um membro de parede delgada em compressão, a deformação local excessiva de certos elementos componentes, po

de ocorrer para cargas consideravelmente abaixo da máxima carga que o membro como um todo pode suportar. Por essa razão, para tal membro pode-se escrever:

$$\left(\frac{P}{A}\right)_{m\bar{a}x} = Q \sigma_{e} \qquad (2.80)$$

onde Q é um fator igual ou menor que a unidade. Se igual à unidade, então nenhuma flambagem local ocorre. Ele representa, po<u>r</u> tanto, uma redução na resistência da coluna devida a flambagem local.

Para elementos estruturais constituídos apenas de elementos enrijecidos, a carga máxima é:

$$P_{max} = A_{ef} \sigma_{e}$$
(2.81)

onde A $_{\rm ef}$ é a área efetiva da seção transversal calculada para a tensão $\sigma_{\rm a}.$

Dividindo-se ambos os membros da equação (2.81) pela área plena da seção transversal resulta:

$$\left(\frac{P}{A}\right)_{max} = \frac{A_{ef}}{A} \sigma_{e}$$
(2.82)

Por simples comparação desta última equação com a equação (2.79), resulta que para tais membros

$$Q_a = \frac{A_{ef}}{A}$$
(2.83)

É evidente que para um membro constituído inteiramente de elementos não enrijecidos, como por exemplo uma cantoneira, a carga máxima é:

$$P_{max} = A \sigma_{ct}$$
(2.84)

onde A é a área plena da seção transversal e σ_{ct} é a tensão cr<u>í</u> tica de flambagem local, correspondente ao elemento da seção com maior razão largura-espessura, dada pelas curvas A, B e C da figura 2.22, conforme o valor de b/t. Contudo, σ_{ct} =1,65 σ_{ca} e σ_{e} =1,65 σ_{b} . Portanto, tem-se:

$$\left(\frac{P}{A}\right)_{max} = \sigma_{ct} = \left(\frac{\sigma_{ct}}{\sigma_{e}}\right)\sigma_{e} = \left(\frac{1,65\sigma_{ca}}{1,65\sigma_{b}}\right)\sigma_{e} = \left(\frac{\sigma_{ca}}{\sigma_{b}}\right)\sigma_{e}$$
(2.85)

Por simples comparação das equações (2.85) e (2.79) pode-se escrever:

$$Q_{t} = \frac{\sigma_{ca}}{\sigma_{b}}$$
(2.36)

Como último caso, apresenta-se um elemento estrutural constituí do de ambos os elementos, isto é, elementos enrijecidos e não enrijecidos (ver figura B.1, exemplos a e b). Neste caso, o limite de resistência é alcançado quando o elemento não enrijecido flamba para a tensão σ_{ct} , dada pelas curvas A, B e C, confor me explicado anteriormente. Para esta tensão, a área efetiva da seção transversal consiste das áreas plenas de todos os elementos não enrijecidos e das áreas efetivas de todos os elementos não enrijecidos e das áreas efetivas de todos os elementos enrijecidos. Esta última parcela é calculada para a tensão de flambagem governante, ou seja, σ_{ct} . Assim, para uma seção mista, no que diz respeito a elementos constituintes, a máxima car ga é dada por

$$P_{max} = A_{ef} \sigma_{ct}$$
(2.87)

De forma similar aos dois casos precedentes, pode-se escrever:

$$\left(\frac{P}{A}\right)_{max} = \left(\frac{A_{ef}}{A}\right) \left(\frac{\sigma_{ca}}{\sigma_{b}}\right) \sigma_{e}$$
 (2.88)

Comparando a equação (2.88) com a equação (2.79) resulta imedia tamente

$$Q_{\rm m} = \left(\frac{A_{\rm ef}}{A}\right) \left(\frac{\sigma_{\rm ca}}{\sigma_{\rm b}}\right)$$
(2.89)

$$Q_{\rm m} = Q_{\rm a} Q_{\rm t}$$
 (2.90)

.

ou,

CAPÍTULO 3

PROCESSO NUMÉRICO COMPUTACIONAL

3.1 - INTRODUÇÃO

A importância e o grau de dificuldade existente na determinação das propriedades plenas de membros estruturais de paredes delgadas, levaram ao desenvolvimento de processos numéricos computacionais tais como os apresentados em |21,22|, com o objetivo de se obter estas propriedades.

Um fenômeno comum em membros estruturais de paredes delgadas é a flambagem local de certas partes da seção de tais membros. Ela, por sua vez, não significa a falha do membro, mas induz uma redução na área plena daquele membro que flambou localmente. Em consequência, há uma redução nas propri<u>e</u> dades seccionais plenas, sendo estas agora denominadas de propriedades seccionais efetivas ou equivalentes.

O programa SEDEL |22| foi desenvolvido para calcular as propriedades seccionais plenas requeridas na análise da flexão, da torção uniforme e não uniforme de membros de paredes delgadas, abertas, fechadas ou mistas. O programa PEDAD, por sua vez, considera o efeito da flambagem local em membros estru turais, e utiliza o SEDEL como uma subrotina. Com o PEDAD deter mina-se propriedades seccionais plenas e efetivas. Pode-se citar entre outras, as seguintes propriedades:

- a) Momentos e produto de inércia de área, momentos de inércia efetivos;
- b) Posição da linha neutra para a seção plena e para a seção reduzida;
- c) Momentos principais de inércia plenos e efetivos;
- d) Coordenadas do centro de cisalhamento;
- e) Tensões admissíveis e fatores de coluna.

Seção constituída de elementos não en- Tensão máxima de trabalho (campres-Propriedades seccionais efetivas Em flexão ou compressão axial. Tensão de compressão reduzida. Tensão máxima de trabalho Momento máximo admissível - Razão largura-espessura. são ou tração) rijecidos. Áreas, momentos e produto de inércia, momentos principais de inércia, coordenadas do centróide, modulos de resistência, raio de giração,co-٤ teticamente removida; tensão de compresbalho; comprimento efetivo f(G); área hipo-Seção constituída de elementos enrijesão reduzida; tensão máxima de trabalho. Razão largura-espessura, tensão de trađe geométricas Propriedades seccionais efetivas Em flexão ou campressão axial. - Tensão máxima de trabalho -Momento máximo admissível Propriedades seccionais plenas -Coordenadas do contróide Fim do processo Teste do tipo de seção ordenadas do centre de cisalhamento. e não enrijecidos -Módulcs de resistência -Momento de inércia Configuração e propriedades elemento da seção transversal -Fator de coluna - Areq cidos Secção constituída de elementos enrije-Razão largura-espessura; tensão de f(G); área hipoteticamente removida. Propriedades seccionais efetivas. trabatho (comp.); comprimento efetivo Em flexão ou compressão axial. - Coordenadas do contróide - Módulos de resistência - Momentos de inércia - Fator de coluna - Área cidos.

desenvolvimento do processo numérico computacional. Fluxo de t 3.1 Figura

Um fluxo de desenvolvimento do referido processo é mostrado na figura 3.1.

O processo é utilizado para seções transversais sujeitas às seguintes hipóteses:

- Cada seção transversal é modelada por um conjunto de nós interconectados por elementos retilíneos e/ou circulares, definidos pela ordem de seus nós origem e término;
- 2 Os nós origem e término para cada elemento são formados sobre a linha média da seção transversal e a espessura da parede, entre estes dois nós é considerada constante;
- 3 Elementos circulares devem ter arcos, no máximo, correspondentes a 180°. Para arcos maiores, subdividí-lo de tal forma que cada novo elemento satisfaça a restrição anterior;
- 4 Áreas concentradas são consideradas como elementos retilíneos de espessura nula e cujos nos origem e término têm as mesmas coordenadas;
- 5 As seções fechadas são tratadas como se fossem abertas. Isto é conseguido através de cortes hipotéticos e, em c<u>a</u> da corte, formam-se dois nós de mesmas coordenadas.
- 3.2 CONFIGURAÇÃO GEOMÉTRICA DO I-ÉSIMO ELEMENTO

A configuração geométrica do i-ésimo elemento é apresentada na figura 3.2, onde:

- A_i, B_i nós origem e término, respectivamente, do elemento. O sentido origem-término é definido de A_i para B_i.
- C, Centroide do elemento.

M_i - Ponto médio entre A_i e B_i.

- D_i Centro de curvatura (raio de curvatura denotada por R_i).
- C Centróide da seção.

0 - Origem do sistema de referência global.

 x_i', y_i' - Eixos paralelos aos eixos x, y e com origem em C_i' . x_i', y_i' - Eixos paralelos aos eixos x, y e com origem em D_i .

Figura 3.2 - Elementos: (a) retilíneo, (b) circular.

ξ, η		Eixos paralelos aos eixos x, y e com origem no cen- tróide da seção C.
ξρ, ηρ		Eixos principais de inércia.
ф _р	-	Direção dos eixos principais de inércia.
¢ _i	-	Ângulo que o segmento de reta orientado $\overline{A_i B}_i$ faz com o eixo x.
¢ _i	-	Ângulo que o segmento de reta orientado $\overline{D_iA_i}$ faz com o eixo x.
Θ _i		Ângulo subtendido pelo arco de circunferência $\widehat{A_i B_i}$.
t _i	-	Espessura do elemento.

3.3 - PROPRIEDADES GEOMÉTRICAS DO I-ÉSIMO ELEMENTO

3.3.1 - ELEMENTO RETILÍNEO

.

l - Distância entre os nós A_i e B_i ou comprimento do elemento.

$$d_{i} = b_{i} = \left[(y_{B_{i}} - y_{A_{i}})^{2} + (x_{B_{i}} - x_{A_{i}})^{2} \right]^{1/2}$$
(3.1)

2 - Área do elemento.

$$Ar_{i} = b_{i} t_{i}$$
(3.2)

Em elementos de áreas concentradas Ar_i é dado.

3 - Inclinação do segmento de reta $\overline{A_i B_i}$

sen
$$\phi_{i} = (y_{B_{i}} - y_{A_{i}})/d_{i}$$
 (3.3)

$$\cos \phi_{i} = (x_{B_{i}} - x_{A_{i}})/d_{i}$$
 (3.4)

4 - Coordenadas do ponto médio M_i ou centróide C'_i .

$$x_{M_{i}} = (x_{A_{i}} + x_{B_{i}})/2$$
 (3.5)

$$y_{M_{i}} = (y_{A_{i}} + y_{B_{i}})/2$$
 (3.6)

5 - Momentos de inércia e produto de inércia em relação aos eixos x'_i e y'_i .

$$I_{x_{i}} = Ar_{i}(t_{i}^{2} \cos^{2} \phi_{i} + b_{i}^{2} \sin^{2} \phi_{i})/12$$
 (3.7)

$$I_{y_{i}} = Ar_{i}(t_{i}^{2} sen^{2} \phi_{i} + b_{i}^{2} cos^{2} \phi_{i})/12$$
 (3.8)

$$I_{x_{i}y_{i}} = Ar_{i}(b_{i}^{2} - t_{i}^{2}) \operatorname{sen} \phi_{i} \cos \phi_{i}/12$$
 (3.9)

Em elementos de áreas concentradas.

$$I_{x_{i}} = I_{y_{i}} = I_{x_{i}y_{i}} = 0$$
 (3.10)

3.3.2 - ELEMENTO CIRCULAR

Nas expressões apresentadas a seguir, adota-se a seguinte convenção:

"Quando o sentido origem-término no i-ésimo elemento é anti-horário, em relação a D_i , toma-se R_i com sinal posit<u>i</u> vo e caso contrário, negativo".

1 - Distância entre os nós A_i e B_i

$$d_{i} = \left((y_{B_{i}} - y_{A_{i}})^{2} + (x_{B_{i}} - x_{A_{i}})^{2} \right)^{1/2}$$
(3.11)

2 - Distância entre os pontos $D_i \in M_i$

$$h_{i} = \left(R_{i}^{2} - (d_{i}/2)^{2}\right)^{1/2}$$
(3.12)

3 - Coordenadas do ponto M_i

$$x_{M_{i}} = (x_{B_{i}} + x_{A_{i}})/2$$
 (3.13)

$$y_{M_{i}} = (y_{B_{i}} + y_{A_{i}})/2$$
 (3.14)

4 - Ângulo do arco $\widehat{A_i B_i}$

$$\Theta_{i} = 2 \text{ tg}^{-1} (d_{i}/2h_{i}) ; \quad 0 < \Theta_{i} < \pi$$
 (3.15)

5 - Inclinação do segmento de reta $\overline{A_i B_i}$

sen
$$\phi_i = (y_{B_i} - y_{A_i})/d_i$$
 (3.16)

$$\cos \phi_{i} = (x_{B_{i}} - x_{A_{i}})/d_{i}$$
 (3.17)

6 - Coordenadas do centro de curvatura

$$x_{D_{i}} = x_{M_{i}} - R_{i} \operatorname{sen} \phi_{i} \cos (\Theta_{i}/2)$$
(3.18)

$$y_{D_{i}} = y_{M_{i}} + R_{i} \cos \phi_{i} \cos (\Theta_{i}/2)$$
 (3.19)

7 - Inclinação do segmento de reta $\overline{D_i A_i}$

sen
$$\phi_{i} = (y_{A_{i}} - y_{D_{i}}) / |R_{i}|$$
 (3.20)

$$\cos \phi'_{i} = (x_{A_{i}} - x_{D_{i}}) / |R_{i}|$$
 (3.21)

8 - Comprimento do elemento

$$\mathbf{b}_{\mathbf{i}} = |\mathbf{R}_{\mathbf{i}}| \Theta_{\mathbf{i}} \tag{3.22}$$

9 - Área do elemento

$$Ar_{i} = b_{i} t_{i}$$
(3.23)

Em elementos de áreas concentradas Ar_i é dado.

10 - Momentos de inércia e produto de inércia em relação aos eixos x_i, y_i

$$I_{x_{i}}'' = Ar_{i} R_{i}^{2} \left(1 + sen \Theta_{i} (cos^{2} \phi_{i} - sen^{2} \phi_{i}) / \Theta_{i} \right) / 2$$

$$\dots \quad (3.24)$$

$$I_{y_{i}}^{"} = Ar_{i} R_{i}^{2} \left(1 - \operatorname{sen} \Theta_{i} (\cos^{2} \phi_{i} - \operatorname{sen}^{2} \phi_{i}) / \Theta_{i} \right) / 2$$

$$\dots \quad (3.25)$$

$$I_{x_{i}y_{i}}^{""} = -Ar_{i}R_{i}^{2} \operatorname{sen} \Theta_{i} \operatorname{sen} \phi_{i} \cos \phi_{i}/\Theta_{i}$$
(3.26)

11 - Raios interno e externo

•

$$RI_{i} = R_{i} - t_{i}/2$$
 (3.27)

$$RE_{i} = R_{i} + t_{i}/2$$
 (3.28)

12 - Coordenadas do centróide

$$x_{i} = x_{D_{i}} + \frac{4}{3} \left(\frac{RE_{i}^{3} - RI_{i}^{3}}{RE_{i}^{2} - RI_{i}^{2}} \right) \operatorname{sen} (\Theta_{i}/2) \operatorname{sen} \phi_{i}/\Theta_{i}$$
 (3.29)

$$y_{i} = y_{D_{i}} - \frac{4}{3} \left(\frac{RE_{i}^{3} - RI_{i}^{3}}{RE_{i}^{2} - RI_{i}^{2}} \right) \operatorname{sen} (\Theta_{i}/2) \cos \phi_{i}/\Theta_{i}$$
 (3.30)

13 - Momentos de inércia e produto de inércia em relação aos eixos x_i, y_i

$$I_{x_{i}} = I_{x_{i}} - Ar_{i} (y_{i} - y_{D_{i}})^{2}$$
(3.31)

$$I_{y_{i}} = I_{y_{i}} - Ar_{i} (x_{i} - x_{D_{i}})^{2}$$
 (3.32)

$$I_{x_{i}y_{i}} = I_{x_{i}y_{i}} - Ar_{i} (y_{i} - y_{D_{i}})(x_{i} - x_{D_{i}})$$
(3.33)

3.4 - PROPRIEDADES SECCIONAIS

Em se tratando de seções transversais de paredes delgadas, constituídas por n elementos binodais, resulta nas se guintes expressões para a determinação das correspondentes propriedades geométricas:

3.4.1 - PROPRIEDADES SECCIONAIS - SEÇÃO PLENA

1 - Área da seção transversal

$$AREA = \sum_{i=1}^{n} Ar_{i} \qquad (3.34)$$

2 - Centróide da seção

$$x_{C} = (\sum_{i=1}^{n} Ar_{i} x_{i}) / AREA$$
 (3.35)

$$y_{C} = (\sum_{i=1}^{n} Ar_{i} y_{i}) / AREA$$
 (3.36)

3 - Momentos de inércia e produto de inércia em relação aos eixos do centróide $\xi,\ \eta$

$$I_{\xi} = \sum_{i=1}^{n} (I_{x_{i}} + Ar_{i} y_{i}^{2} - Ar_{i} y_{i} y_{C})$$
(3.37)

$$I_{\eta} = \sum_{i=1}^{n} (I_{y_{i}}' + Ar_{i} y_{i}^{2} - Ar_{i} x_{i} x_{C})$$
(3.38)

$$I_{\xi\eta} = \sum_{i=1}^{n} (I_{x_{i}}' + Ar_{i} x_{i} y_{i}) - AREA x_{C} y_{C}$$
(3.39)

4 - Direção dos eixos principais

$$\phi_{\rm p} = 0,5 \ {\rm tg}^{-1} \left(2 \ {\rm I}_{\xi\eta} / ({\rm I}_{\eta} - {\rm I}_{\xi}) \right)$$
(3.40)

$$I_{\xi p} = I_{\xi} \cos^{2} \phi_{p} + I_{\eta} \sin^{2} \phi_{p} - 2 I_{\xi \eta} \sin \phi_{p} \cos \phi_{p}$$

$$\dots \quad (3.41)$$

$$I_{\chi} = I_{\chi} \sin^{2} \phi_{\chi} + I_{\chi} \cos^{2} \phi_{\chi} + 2 I_{\chi} \sin \phi_{\chi} \cos \phi_{\chi}$$

$$n_{p} = 1\xi^{\text{sen}} \phi_{p} + 1\eta^{-1} \cos^{-\phi} \phi_{p} + 2 \xi_{\eta}^{-1} \sin^{-\phi} \phi_{p}^{-1}$$
... (3.42)

6 - Módulos de resistência (seção plena)

$$S_{\xi} = I_{\xi}/D_{\xi} \qquad (3.43)$$

$$S_{\eta} = I_{\eta} / D_{\eta}$$
 (3.44)

onde D $_{\xi}$ - distância da linha neutra à fibra mais afasta- da com respeito ao eixo ξ .

 D_η - distância da linha neutra à fibra mais afasta- da com respeito ao eixo $\eta.$

7 - Raios de giração com respeito aos eixos ξ e η

$$R_{\xi} = (I_{\xi} / AREA)^{1/2}$$
 (3.45)

$$R_{\eta} = (I_{\eta} / AREA)^{1/2}$$
 (3.46)

8 - Raios de giração com respeito aos eixos principais

$$R_{\xi p} = (I_{\xi p} / AREA)^{1/2}$$
 (3.47)

$$R_{np} = (I_{np} / AREA)^{1/2}$$
 (3.48)

3.4.2 - PROPRIEDADES SECCIONAIS-SEÇÃO REDUZIDA

Os elementos que constituem um membro estrutural l<u>e</u> ve, obtido por conformação a frio, são denominados, do ponto de vista de projeto, de elementos enrijecidos e não enrijecidos. A partir de tais conceitos, são instituídos procedimentos básicos para o projeto de tais elementos, quando em compressão, confo<u>r</u> me está explícito no capítulo 2.

Para seções onde os elementos em compressão, e portanto sujeitos a flambarem localmente, são enrijecidos, determinam-se propriedades tais como momento de inércia efetivo, módulo de resistência efetivo e nova posição da linha neutra, entre outras. Estas estão baseadas unicamente numa redução de área da seção plena. Para seções onde os elementos em compressão, e portanto sujeitos a flambarem localmente, não são enrije cidos, determinam-se tensões de compressão admissíveis e momentos máximos admissíveis [1]. Estes, ao contrário de seções con<u>s</u> tituídas de elementos enrijecidos, estão baseados na área plena da seção.

- Elementos Enrijecidos em Compressão

1 - Tensão básica de projeto ou máxima tensão de trabalho

Esta atuará na fibra mais afastada da linha neutra, podendo ser de compressão ou de tração. Segundo as especifica ções de projeto AISI [4] e NB-143 [17], esta tensão corresponde ao limite de escoamento mínimo especificado para o material dividido por 1,65.

$$\sigma_{\rm b} = Z \, \text{GMA} = Z \, \text{GMAE} / 1,65$$
 (3.49)

onde ZGMAE corresponde ao limite de escoamento mínimo especificado.

2 - Tensão de compressão no elemento mais distante da linha neutra e sujeito a flambar localmente

O cálculo desta tensão de compressão envolve os seguintes elementos:

- a) Posição da linha neutra;
- b) Distância da linha neutra ao elemento comprimido, passível de flambar, mais distante (DI);
- c) Metade da altura da seção transversal (HS2);
- d) Distância da linha neutra às fibras mais afastadas dela (ALT2, ALT1).

Assim, dependendo de comparações entre os fatores citados em a), b), c) e d) resulta as seguintes expressões:

a.1) TCMAX = ZGMA DI/ALT1 (3.50)

se ALT2 > D1 e ALT2 < HS2 a.2) TCMAX = ZGMA D1/ALT2 (3.51)

se ALT2 > D1 e ALT2 > HS2

a.3) TCMAX = ZGMA ALT2/ALT1 (3.52)

se ALT2 = D1 e ALT2 < HS2

a.4) TCMAX = ZGMA (3.53) se ALT2 = D1 e ALT2 \ge HS2

A figura 3.3, (a.1), (a.2), (a.3) e (a.4), descreve claramente a situação.

3 - Tensão de compressão

Uma vez conhecida a tensão de compressão básica, item anterior, pode-se obter as tensões de compressão nos de-

(a.1)

(a.2)

(a.3)

(a.4)

Figura 3.3 - Configurações para o cálculo da tensão compressiva máxima no elemento passível de flambar.
mais elementos passíveis de flambarem (caso existam) pela relação:

$$ZG_{i} = TCMAX (|y_{CE_{i}} - y_{G}| + TES_{i}/2)/D1 ; i = 1, NEFX$$

... (3.54)

e para o elemento determinado no item anterior, tem-se:

$$ZG_i = TCMAX$$
 (3.55)

onde i - número de ordem do elemento passível de flambar.

- y_{CE} ordenada do centróide do elemento de número de ori dem i.
- TES; espessura do elemento de número de ordem i.
- 4 Razão largura-espessura e razão largura-espessura limite

A razão largura-espessura do elemento é determinada pela expressão:

$$BST_{i} = COMP_{i} / TES_{i}$$
(3.56)

onde COMP_i - comprimento do elemento de número de ordem i. A razão largura-espessura limite é determinada em função de te<u>n</u> são (compressão) atuante, em conformidade com a equação (2.50), e que resulta nas expressões:

a) para o cálculo das deformações

BSTLF_i = 0,95
$$(E/ZG_i)^{1/2}$$
 (3.57)

b) para o cálculo da resistência

5 - Largura efetiva ou largura útil

De conformidade com as equações (2.51) e (2.52) resulta nas seguintes expressões para a largura efetiva do i-ésimo elemento passível de flambar:

a) para o cálculo das deformações

$$BE = COMP_i$$
 quando $BST_i \leq BSTLF_i$ (3.59)

.

e
$$BE = 1,9 \left(\frac{E}{ZG_{i}}\right)^{1/2} \left[1 - 0,475\left(\frac{E}{ZG_{i}}\right)^{1/2}\frac{1}{BST_{i}}\right] TES_{i}$$

quando $BST_{i} > BSTLF_{i}$... (3.60)

b) para o cálculo da resistência

$$BE = COMP_i$$
 quando $BST_i \leq BSTLS_i$ (3.61)

e
$$BE = 1,479 \left(\frac{E}{ZG_{i}}\right)^{1/2} \left[1 - 0,3698 \left(\frac{E}{ZG_{i}}\right)^{1/2} \frac{1}{BST_{i}}\right] TES_{i}$$

quando $BST_{i} > BSTLS_{i}$... (3.62)

6 - Comprimento descontado

$$B_{i} = COMP_{i} - BE \qquad (3.63)$$

7 - Área hipoteticamente removida

.

$$BB_{i} = B_{i} TES_{i}$$
(3.64)

8 - Momentos de inércia das áreas consideradas removidas, em relação aos eixos centroidais x_i, y_i

$$I_{x_{i}} = B_{i} (TES_{i})^{3}/12$$
 (3.65)

$$I_{y_{i}} = B_{i}^{3} (TES_{i})/12$$
 (3.66)

$$I_{x_{i}y_{i}} = 0$$
 (3.67)

9 - Primeira parcela de correção para o tensor de inércia (ver apêndice D)

$$\overline{I}_{o_{X}} = \sum_{i=1}^{NEFX} I_{x_{i}}$$
(3.68)
$$\overline{I}_{o_{y}} = \sum_{i=1}^{NEFX} I_{y_{i}}$$
(3.69)

10 - Área total hipoteticamente removida

$$AREAD = \sum_{i=1}^{NEFX} BB_i$$
(3.70)

11 - Parcela correspondente a transferência de eixos (Teorema de Stein)

$$\overline{I}_{x_{i}} = BB_{i} (y_{CE_{i}} - y_{C})^{2}$$
 (3.71)

$$\overline{I}_{y_{i}} = BB_{i} (x_{CE_{i}} - x_{C})^{2}$$
 (3.72)

$$\overline{I}_{x_{i}y_{i}} = BB_{i} (y_{CE_{i}} - y_{C}) (x_{CE_{i}} - x_{C})$$
(3.73)

12 - Segunda parcela de correção para o tensor de inércia (ver apêndice D)

$$\overline{I}_{x} = \sum_{i=1}^{NEFX} \overline{I}_{x_{i}}$$
(3.74)

$$\overline{I}_{y} = \sum_{i=1}^{\text{NEFX}} \overline{I}_{y_{i}}$$
(3.75)

$$\overline{I}_{xy} = \sum_{i=1}^{\text{NEFX}} \overline{I}_{x_i y_i}$$
(3.76)

13 - Tensor de inércia corrigido, todavia, relativo aos eixos baricêntricos da seção plena

$$I_{x_{C}} = I_{\xi} - (\overline{I}_{o_{x}} + \overline{I}_{x})$$

$$(3.77)$$

$$I_{y_{C}} = I_{\eta} - (\overline{I}_{o_{y}} + \overline{I}_{y})$$
(3.78)

$$I_{x_{C}y_{C}} = I_{\xi\eta} - \overline{I}_{xy}$$
(3.79)

14 - Área efetiva ou área equivalente da seção

$$AREF = AREA - AREAD$$
(3.80)

15 - Deslocamento do eixo neutro em relação a sua posição or<u>i</u> ginal, isto é, correspondente a seção plena

$$x_1 = Q_y / AREF$$
 (3.81)

$$y_1 = Q_x / AREF$$
 (3.82)

onde $\textbf{Q}_{\textbf{X}}$ e $\textbf{Q}_{\textbf{y}}$ são os momentos de primeira ordem, calculados como segue:

a) para elementos passíveis de flambarem localmente

$$Q_{x} = \sum_{i=1}^{NEFX} (COMP_{i} TES_{i} - BB_{i})(y_{CE_{i}} - y_{G})$$
 (3.83)

$$Q_y = \sum_{i=1}^{NEFX} (COMP_i TES_i - BB_i) (x_{CE_i} - x_G)$$
 (3.84)

onde $x_G e y_G$ são as coordenadas do centróide da seção. b) para elementos que não sofrem redução de área

$$Q_{x} = \sum_{i=1}^{N-NEFX} (COMP_{i} TES_{i})(y_{CE_{i}} - y_{G})$$
 (3.85)

$$Q_y = \sum_{i=1}^{N-NEFX} (COMP_i TES_i) (x_{CE_i} - x_G)$$
 (3.86)

16 - Nova posição da linha neutra com respeito ao sistema de referência global x-y

$$y_{G_1} = y_G + y_1$$
 (3.87)

$$x_{G_1} = x_G + x_1$$
 (3.88)

17 - Tensor de inércia corrigido, relativo á nova posição dos eixos baricêntricos (seção efetiva)

$$I_{x_g(ef)} = I_{x_c} - AREF (y_c - y_{G_1})^2$$
 (3.89)

$$I_{y_g}(ef) = I_{y_c} - AREF (x_c - x_{G_1})^2$$
 (3.90)

$$I_{x_{g}y_{g}(ef)} = I_{x_{C}y_{C}} - AREF (x_{C} - x_{G_{1}}) (y_{C} - y_{G_{1}})$$

... (3.91)

18 - Direção dos eixos principais de inércia

$$\psi_{p} = 0,5 \text{ tg}^{-1} \left[2 \text{ I}_{x_{g}y_{g}}(\text{ef}) / (\text{I}_{y_{g}}(\text{ef}) - \text{I}_{x_{g}}(\text{ef})) \right] \qquad (3.92)$$

19 - Momentos principais de inércia (seção efetiva)

$$I_{\xi p}(ef) = I_{x_g}(ef) \cos^2 \psi_p + I_{y_g}(ef) \sin^2 \psi_p .$$

$$- 2 I_{x_g y_g}(ef) \sin \psi_p \cos \psi_p \qquad (3.93)$$

$$I_{np}(ef) = I_{x_g}(ef) \sin^2 \psi_p + I_{y_g}(ef) \cos^2 \psi_p + 2 I_{x_g y_g}(ef) \sin \psi_p \cos \psi_p \qquad (3.94)$$

20 - Para a obtenção do módulo de resistência efetivo, o procedimento desde o item 3.4.2 (1) até 3.4.2 (17) é repetido, uma vez que agora a expressão que dá o comprimento efetivo é a (3.62) e não a (3.60) e o módulo de resistência é dado pela expressão

$$S_{x(ef)} = I_{x_{g}(ef)} / ALT1$$
 (3.95)

onde ALT1 é a distância desde a nova posição do eixo neutro até a fibra mais afastada.

A determinação das propriedades efetivas, quando os elementos em compressão são paralelos ao eixo dos y, é feita de forma inteiramente análoga a descrita nos itens 3.4.2 (1) a 3.4.2 (20). Desta maneira, para a reutilização do processo na direção y, é requerido uma inversão de eixos. Portanto, o que se referia ao eixo x, passa agora a se referir ao eixo dos y.

Em se tratando de seções com reforços intermediários, a largura efetiva ou comprimento efetivo é determinado com as expressões usuais, isto é, com as equações (3.59), (3.60), (3.61) e (3.62), conforme a razão largura-espessura do sub-elemento, quando comparada com a razão largura-espessura l<u>i</u> mite (função da tensão), equação (3.57) ou (3.58). Porém, quando a razão largura-espessura de um sub-elemento é maior que 60,

o comprimento efetivo é determinado através da relação

$$BE' = BE - 0,10 (BST_i - 60)$$
 (3.96)

onde BST_i - razão largura-espessura do sub-elemento.

BE - comprimento efetivo determinado com as equações (3.59), (3.60), (3.61) e (3.62) conforme for o caso.

Para membros de paredes delgadas em compressão axial, o efeito da flambagem local é considerado através do fator de coluna Q. Sua obtenção é efetivada através dos seguintes itens:

Para o i-ésimo elemento passível de flambagem local.

1 - Tensão de compressão

$$ZGMA_{i} = ZGMAE/1,65$$
 (3.97)

2 - Razão largura-espessura

$$BST_{i} = COMP_{i} / TES_{i}$$
(3.98)

3 - Razão largura-espessura limite, em função da tensão atuante ZGMA;

$$BSTQ_{i} = 0,7396 \left(\frac{E}{ZGMA_{i}}\right)^{1/2}$$
(3.99)

4 - Largura efetiva ou largura útil

a)
$$BE = COMP_i$$
 quando $BST_i \leq BSTQ_i$ (3.100)

b) BE = 1,479
$$\left(\frac{E}{ZGMA_{i}}\right)^{1/2} \left[1 - 0,3698 \left(\frac{E}{ZGMA_{i}}\right)^{1/2} \frac{1}{BST_{i}}\right]$$
 TES_i
quando BST_i > BSTQ_i ... (3.101)

c) existindo reforços intermediários, o comprimento efetivo dos sub-elemento é dado por

$$BE = BE \qquad para \qquad BST_{i} \leq 60 \qquad (3.102)$$

$$BE' = BE - 0,10 (BST_i - 60) para BST_i > 60$$
 (3.103)

5 - Comprimento descontado

1

$$B_{i} = COMP_{i} - BE \qquad (3.104)$$

6 - Area hipoteticamente removida

$$BB_{i} = B_{i} TES_{i}$$
(3.105)

7 - Área total removida

$$AREAD = \sum_{i=1}^{NTEX+NTEY} BB_i$$
(3.106)

onde NTEX - número de elementos paralelos ao eixo x e passíveis de flambagem local. NTEY - número de elementos paralelos ao eixo y e passíveis de flambagem local.

8 - Área efetiva da seção transversal

$$AREF = AREA - AREAD \qquad (3.107)$$

9 - Fator de coluna

$$Q = \frac{AREF}{AREA}$$
(3.108)

- Elementos não Enrijecidos em Compressão

Em se tratando de seções constituídas apenas de el<u>e</u> mentos não enrijecidos, e em função do comportamento apresentado por tais elementos quando em compressão, determinam-se propriedades seccionais plenas, bem como tensões de compressão admissíveis e momento admissível, por razões descritas no item 2.4.2 do capítulo 2.

Propriedades Seccionais

- 1 O procedimento para a obtenção das propriedades seccionais plenas, encontra-se descrito no item 3.4.1 deste ca pítulo.
- 2 Tensões de compressão admissíveis Para cada elemento determina-se a correspondente tensão de compressão admis sível. Esta tensão, que é função da razão largura-espessura, é obtida através das expressões:

a)
$$\sigma_{ca_i} = \sigma_b$$
 para $\frac{b}{t} \le 10$ (3.109)

۰.

b)
$$\sigma_{ca_i} = (1,667\sigma_b - 0,404\sigma_{cr}) - \frac{1}{15}(\sigma_b - \frac{1}{1,65}\sigma_{cr})\frac{b}{t}$$

para
$$10 < \frac{b}{t} < 25$$
 ... (3.110)

$$\sigma_{\rm b} = \sigma_{\rm e}/1,65$$
 (3.111)

$$\sigma_{\rm cr} = 0,5 \frac{\pi^2 E}{12(1-\nu^2)(25)^2}$$
(3.112)

c)
$$\sigma_{ca_{i}} = \frac{1}{57,75} (\sigma_{cr/60} - \sigma_{cr/25}) \frac{b}{t} - \frac{25}{57,75}$$

 $\times (\sigma_{cr/60} - \sigma_{cr/25}) + \frac{1}{1,65} \sigma_{cr/25}$ (3.113)

onde $\sigma_{cr/25} = \sigma_{cr/60}$ são dadas pela expressão (2.53) com b/t igual a 25 e 60, respectivamente.

Estas expressões podem ser utilizadas para membros em flexão ou compressão axial, com exceção da equação c que não se aplica para cantoneiras em compressão axial. Assim, apresenta-se a seguinte expressão

d)
$$\sigma_{ca_{i}} = 0,303 \frac{\pi^{2}E}{12(1-\nu^{2})(b/t)^{2}}$$
 para $25 < \frac{b}{t} \le 60$
... (3.114)

3 - Momento admissível - Sua obtenção é feita com a expressão

$$M_{adm} = S_{pleno} \sigma$$
 (3.115)

onde

- onde σ é a tensão governante, podendo ser de tração σ_b ou compressão σ_{ca_i} . A tensão σ_{ca_i} corresponde a do elemento em compressão na flexão.
 - 4 - fator de coluna De acordo com as recomendações das Normas AISI e NB-143, ele é a relação entre a tensão de compressão admissível e a tensão básica de projeto, σ_h. Assim,

$$Q_{t} = \sigma_{ca_{i}} / \sigma_{b}$$
(3.116)

onde σ_{ca_i} - é a menor das tensões de compressão admissíveis.

- Seções Constituídas de Elementos Enrijecidos e não Enrijecidos

Para estas seções, devido a presença de elementos enrijecidos e não enrijecidos, fica implícita a possibilidade de serem determinadas, além das propriedades plenas, propriedades considerando a seção efetiva bem como tensões de compressão admissíveis e momento admissível. Um exemplo esclarecedor desta situação pode ser visto no capítulo 4, exemplos e comparações, para a seção C com flanges não enrijecidos.

Propriedades Seccionais

- 1 O procedimento para a obtenção das propriedades seccionais plenas, encontra-se descrito no item 3.4.1 deste ca pítulo.
- 2 As propriedades seccionais efetivas são obtidas com a formulação apresentada no item 3.4.2 com subtítulo Ele mentos enrijecidos em compressão.
- 3 Na forma em que se tenha elementos não enrijecidos em compressão, as propriedades seccionais são obtidas con-

forme os procedimentos apresentados no item 3.4.2 com subtítulo - Elementos não enrijecidos em compressão.

4 - Fator de coluna - Em conformidade com a equação (2.90)
 pode-se escrever:

$$Q_{\rm m} = Q_{\rm a} Q_{\rm t} \tag{3.117}$$

onde Q_a e Q_t são dados pelas equações (3.108) e (3.116), respectivamente.

3.5 - PROGRAMA CODIFICADO EM FORTRAN

Para a solução numérica da formulação apresentada neste capítulo, foi codificado um programa em FORTRAN. Um fluxo grama geral é apresentado no apêndice A.

CAPÍTULO 4

EXEMPLOS E COMPARAÇÕES

A seguir, são apresentados alguns exemplos com a finalidade de demonstrar a flexibilidade e validade da formulação numérica desenvolvida e apresentada no capítulo 3.

As seções transversais selecionadas para as quais as propriedades seccionais plenas e efetivas são calculadas, foram extraídas do manual de especificação para o projeto de membros estruturais leves, AISI [4] com a finalidade exclusiva de comp<u>a</u> ração de resultados. A razão desta limitação reside no fato de que não se dispõe de outra referência que apresente propriedades seccionais levando em conta o efeito da flambagem local.

Como primeiro exemplo ilustrativo, considera-se uma seção C modelada de acordo com o exposto no apêndice B, e mostr<u>a</u> da na figura 4.1.

Figura 4.1 - Exemplo de seção ITIPO = 1 Dimensões em polegadas.

Quando em flexão pura em relação ao eixo x_g , dependendo do sentido do momento fletor, o elemento de número de ordem 3, ou o de número de ordem 7, pode se encontrar sob compres são, e portanto, dependendo do nível de tensão atuante poderá ha ver uma redução em sua área plena, como consequência da flambagem local. Este fato, evidencia a existência de duas soluções distintas, com respeito ao mesmo eixo. Aqui, naturalmente, devido a simetria em relação a este eixo, x_g , é necessário considerar apenas um sentido para o momento fletor, e determinar então, as propriedades seccionais efetivas. No que diz respeito ao eixo \mathbf{y}_{g} , pode-se ver que, dependendo do sentido do momento fletor, tanto o elemento de número de ordem 5 quanto os elementos de número de ordem 1 e 9 podem estar em compressão. Poder-se-ia pensar em determinar as propriedades seccionais efetivas para as du as situações distintas, contudo segundo as referências [4,17] os elementos de número 1 e 9 funcionam como reforço, isto é, enri jecedores de borda e portanto são dimensionados de tal forma que mesmo sujeito a maior tensão admissível, isto é, tensão básica de projeto o_b, não flambam localmente. Assim, é desnecessário analisar esta situação ou similar. Isto significa que as propriedades efetivas, neste caso, são as próprias propriedades plenas. Portanto, deve ser verificada alguma redução nas propriedades plenas, com respeito ao eixo y $_{\sigma},$ quando o elemento comprimido for o de número de ordem 5.

Para efeito comparativo apresenta-se uma tabela (ver figura 4.2) demonstrativa dos resultados obtidos para a seção em apreço, correspondendo a aços com tensão de escoamento da ordem de 232 MPa (33000 psi) e 348 MPa (49500 psi).

Nota: Algumas propriedades efetivas não estão disponíveis na referência [4]. Nas tabelas que se seguem, é colocado um tr<u>a</u> ço no local das referidas propriedades.

Uma situação onde as propriedades seccionais plenas são utilizadas em conjunto com tensões de compressão admissíveis, pode ser vista utilizando-se a cantoneira da figura 4.3, modelada conforme os requisitos do apêndice B.

			PR(DPRIEDA	DES SEC	CIONAIS	PLENAS			
FONTE	ÅREA	Ixg	Sxg	rxg	Iyg	Syg	ryg	xc	Уc	Х _S
PROCESSO	0,885	8,792	2,198	3,152	0,997	0,458	1,061	0,822	4,00	-1,253
REF. [4]	0,885	8,79	2,20	3,15	0,997	0,458	1,06	0,822	4,00	-1,253

		DR = NA	σ=σ _{b2}	0	0,565	0,565
		FAT(DI COLU	α=σ _{b1}	6	0,635	0,635
	RESIST.	compressão	$\sigma = \frac{\sigma b 1}{\sigma b 2}$	Syg	0,458	0,458
S	DEF.	₩ tração	$\sigma = \frac{\sigma b 1}{\sigma b 2}$	Iyg	0,997	0,997
EFETIVA	TÊNCIA		$\sigma = \sigma_{b2}$, Syg	0,409	1
CIONAIS	RESIS	τração	α=α ^{b1}	Syg	0,421	B
ADES SEC	AÇÕES	ogssərqmoo	σ=σ _{b2}	Iyg	0,812	1
PROPRIED	DEFORM	5	σ=σ _{b1}	Iyg	0,869	1
	ENCIA	×	$\sigma = \sigma_{b2}$	Sxg	1,956	1,95
	RESIST)	rtessão L L ão	σ=σ _{b1}	Sxg	2,058	2;06
	MAÇÕES	comp	$\sigma = \sigma_{b,2}$	Ixg	8,497	1
	DEFORI	т Х М	$\sigma = \sigma_{b1}$	Ixg	8,702	1
					PROCESSO	REF. [4]

- Quadro Comparativo Figura 4.2

. •

 σ_{b1} = 20000 psi; σ_{b2} = 30000 psi

4 e tração em 2) 3 e σ - Tensão de trabalho (compressão em 1, Unidades pol, pol², pol³, pol⁴.

Figura 4.3 - Exemplo de seção ITIPO = 3 Dimensões em polegadas.

Para esta seção, duas situações distintas podem ocor rer com respeito ao mesmo eixo. Tome-se como exemplo o eixo bari cêntrico x_{σ} . Dependendo do sentido do momento pode-se ter o elemento de número de ordem 1 ou o elemento de ordem 3 em compressão. No primeiro caso tem-se que a tensão de trabalho (compressão) é determinada em conformidade com o gráfico da figura 2.22 ou com as equações correspondentes àqueles segmentos em função da razão largura-espessura b/t. Aqui, no caso, deve-se tomar b/t do elemento de número de ordem 1. O momento máximo admissível é portanto, determinado em função desta tensão de trabalho reduzida. No segundo caso, o momento máximo admissível pode ser dado diretamente em função da tensão básica de projeto $\sigma_{\rm b}^{}$, atuando na fibra tracionada, ou em função de uma tensão de tração reduzida. Esta última dada por uma relação linear envolvendo a tensão de compressão admissível do elemento. Para o caso em questão, esta tensão corresponde a do elemento de número de ordem 3.

Para efeito comparativo apresenta-se uma tabela (ver figura 4.4) demonstrativa dos resultados obtidos para a seção em apreço, correspondendo a aços com tensão de escoamento da ordem de 232 MPa (33000 psi) e 348 MPa (49500 psi).

Um tratamento similar ao utilizado para a cantoneira, (ver figura 4.3) pode ser usado para a seção mostrada no apêndice B (figura B.1 (c)) onde todos os elementos constituintes são não enrijecidos. Portanto, tem-se para esta seção ITIPO = 3. Pa-

			PRC	PRIEDADE	S SECCIO	NAIS PLE	NAS			
FONTE	ÅREA	$Ix_g = Iy_g$	Sxg=Syg	rx _g =ry _g	x _c =y _c	Τξ	rç	In	rn	Ixgyg
PROCESSO	0,240	0,104	0,068	0,657	0,544	0,167	0,834	0,040	0,408	-0,0636
REF. [4]	0,241	0,104	0,069	0,658	0,545	ł	1	0,0404	0,409	I

	TOR	DE	UNA		Q 6	σ=σ ca	0,267	0,267	
	FA'		COL		Q 5	σ=σ _{ca}	0,401	0,401	
		ressão	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		ão 4	Mmax	2053	2070	
AS	STÊNCIA	comp	×	inne stylest	traç	σ=σ _{b2}	30000	30000	
S EFETIV	RESI	npressão		X bo	tção 3	M max	756	760	
SECCIONAI		сол	ФРИНЕ П. I. 6 У 8 ФЕТ 1 МИВИ НА ИНИЦИ И И И И И 	X	tra	σ=σ ca	11041	11040	
IEDADES S		npressão	×		ação 2	Mmax	1368	1380	
PROPR	TENCIA	COL		alap-aloga i s	tr	σ=σ _b 1	20000	20000	
	RESIS	ressão	ção 1	Mmax	756	760			
		com	P-4010 เป็มชุญชุญชุญชุญชุญชุญชุญชุญชุญ	xg	traç	σ=σ ca	11041	11040	
			<u></u>		<u>-</u>		PROCESSO	REF. [4]	

Figura 4.4 - Quadro comparativo.

 $\sigma_{b1} = 20000 \text{ psi}; \sigma_{b2} = 30000 \text{ psi}$ σ - Tensão de trabalho (compressão em 1,3,5 e 6 e tração,2 e 4) Unidades pol, pol², pol³, pol⁴.

			PROPRIE.	DADES S	ECCIONA	IS PLEN	AS		
FONTE	ÁREA	Ixg	Sxg	rxg	Iyg	Syg	ryg	×c	с ×
PROCESSO	2,102	3,431	1,164	1,278	5,831	1,452	1,666	0,00	1,069
REF. [4]	2,10	3,430	1,164	1,28	5,831	1,452	1,67	0,00	1,069

		LUNA	Q 6	σ=σ _{ca}	0,360	0,361	
		FA CO	Q 5	σ=σ ca	0,541	0,542	
		s O	4	Mmax	34931	34920	
[VAS	ISTENCIA	compres	tração	$\sigma = \sigma_{b,2}$	30000	30000	
AIS EFETI	RESI	es são	3 8	M max	14306	14320	
SECCION		compre	8 tração	σ=σ c a	12287	12300	
RIEDADES		ăo	2	Mmax	23287	23280	-
PROPF	STENCIA	compress	tração	σ=σ _{b1}	20000	20000	
	RESIS	RESIS ão X	1	Mmax	14306	14320	
		compres	k tração	σ=σ _{ca}	12287	12300	
					PROCESSO	REF. [4]	

2 e 4). Unidades pol, pol², pol³, pol⁴.

Figura 4.5 - Quadro comparativo.

5 e 6 e tração em м. σ_{b1} = 20000 psi; σ_{b2} = 30000 psi σ - Tensão de trabalho (compressão em l, 2 e 4).

.

ra efeito de validação dos resultados, apresentam-se as propriedades seccionais determinadas pelo programa PEPAD em confronto direto com aquelas apresentadas na referência [4]. (ver figura 4.5).

Dando continuidade a esta série exemplo-comparação, apresenta-se agora uma seção constituída de ambos os elementos, isto é, elementos enrijecidos e não enrijecidos, conforme é visto na figura 4.6. Esta seção é a mesma da figura B.1 (b) do apê<u>n</u> dice B, aqui reproduzida apenas por comodidade.

Figura 4.6 - Exemplo de seção ITIPO = 2 ou ITIPO = 1. Dimensões em polegadas.

Esta seção apresenta uma singularidade no que diz respeito ao eixo y $_g$. Dependendo do sentido do momento fletor haverá um elemento enrijecido ou dois elementos não enrijecidos em compressão.

O programa PEPAD determina as propriedades seccionais efetivas para uma única situação, ou sentido do momento fletor com respeito a um dos eixos, x_g ou y_g . Então, para o caso em que se deseja obter as propriedades seccionais efetivas, relativa aos outros sentidos do momento fletor, é necessário apenas, introduzir um outro deck de dados, uma vez que o programa prevê a possibilidade de execução consecutiva. Justamente esta situação se aplica para a seção da figura 4.6, cujos resultados são apresentados nas tabelas da figura 4.7.

4,0075 Y s 4,00 -0,580-0,531x S 4,00 4,00 y C 0,384 0,383 ч К PROPRIEDADES SECCIONAIS PLENAS ryg 0,549 0,548 Syg 0,294 0,293 0,466 0,465 IУg 2,895 2,89 rx g Sx Sy 3,239 3,24 12,954 Ix 12,9 1,546 1,55 Årea PROCESSO [4] FONTE REF.

Figura 4.7 - Quadro comparativo.

σ_{b1} = 20000 psi; σ_{b2} = 30000 psi σ = Toncão do trabalho (comunoccão om 1

4 e tração em 3) Φ 2 σ - Tensão de trabalho (compressão em 1, Unidades pol, pol², pol³, pol⁺.

Os exemplos apresentados até o momento mostram a validade da formulação desenvolvida e também, de forma sucinta, como se deve analisar uma seção para se trabalhar eficazmente com o programa, para a obtenção das propriedades seccionais efetivas. Os exemplos que se seguem são especificamente para efeito comparativo. Assim, os resultados do perfil indicado na figura 4.8 são apresentados na tabela da figura 4.9.

Figura 4.8 - Exemplo de seção ITIPO = 1 Dimensões em polegadas.

Um outro perfil amplamente utilizado em estruturas é indicado na figura 4.10, e os resultados apresentados na figura 4.11

Os exemplos acima apresentados usam as tensões básicas de projeto σ_{b1} =140 MPa(20000 psi) e σ_{b2} =210 MPa (30000 psi), única e exclusivamente para comparação com os resultados existentes na referência [4].

O programa pode ser utilizado para qualquer material com propriedades mecânicas dadas em qualquer sistema coerente de unidade.

. .

8,614 1 Y s 0,00 0,00 ×° 3,815 3,82 ×× PROPRIEDADES SECCIONAIS PLENAS о х 0,00 0,00 ryg 3,9183,92 6,423 sy_g , 6,42 I y_g 36,836 36,84 rxg 2,243 2,24 Sx 3,1633,16 12,07 - IX g 12,1 2,399 2,40AREA [4] PROCESSO FONTE REF.

4 σ=σ_{b2} 0,671 0,671 0 COLUNA FATOR DE σ=σ_{b1} 0,751 0,751 \circ Μ $|\sigma = \sigma_{b_2}$ Syg 5,642 compressão RESISTENCIA I $\sigma = \sigma_{b1}$ 5,965 , Syg Ł PROPRIEDADES SECCIONAIS EFETIVAS >> 20 $\sigma = \sigma_{b2}$ Iyg 35,42 RESIST. DEFORMAÇÕES ł ıα=α^{b1} Iyg 36,37 tração 1 $\sigma = \sigma b1$ $\sigma = \sigma b2$ 3,163 \sim 3,16 Sxg compressão tração DEF. $\sigma = \sigma b 1$ $\sigma = \sigma b 2$ IX 12,07 12,1 $\sigma = \sigma_{b2}$ 2,921 × 8 r---| 2,92 , Sx g RESISTÊNCIA σ=σ_{b1} Sxg 2,99 3,00 compressão tração $\sigma = \sigma_{b2}$ I X g DEFORMAÇÕES 10,68 10,7 ,σ=σ_{b1} PROCESSO | 11,27 , Ix 11,3 х х -t> REF.

Figura 4.9 - Quadro comparativo

 σ_{b1} = 20000 psi; σ_{b2} = 30000 psi

4 tração em 1). 2,3 e o - Tensão de trabalho (compressão em Unidades pol, pol², pol³, pol⁴

. CR1

CR2

Figura 4.10 - Exemplo de seção ITIPO = 1 Dimensões em polegadas.

		ld	ROPRIEDA	DES SEC	CIONAIS	PLENAS			
FONTE	ÅREA	Ixg	Sxg	rxg	Iyg	Syg	ryg	x x	y _c
PROCESSO	2,681	40,958	8,192	3,908	6,333	1,809	1,537	0,00	5,00
REF. [4]	2,68	41,0	8,2	3,91	6,33	1,81	1,54	0,00	5,00

			1		·		,
		ATOR DE DLUNA	σ=σ _{b2}	Q	0,565	0,567	
		ч Ö	σ=σ _{b1}	Q	0,634	0,634	
	rência		σ=σ _{b2}	Syg	1,809	1,81	
ETIVAS	RESIS	compressaro	σ=σ _{b1}	Sy _g `	1,809	1,81	
DNAIS EF	MAÇÕES	¢ L 1	σ=σ _{b2}	Iy _g ,	6,333	6,33	
S SECCI(DEFOR		$\sigma = \sigma_{b1}$	Iyg	6,333	6,33	
PRIEDADE	STÊNCIA	× ×	σ=σ _{b2}	Sxg	7,428	7,44	-
PROI	RESIS	pressão ação	$\sigma = \sigma_{b1}$	Sxg	1,791	7,80	
	MAÇÕES	com tr	σ=σ _{b2}	Ixg	39,936	ł	
	DEFORI	ы Х Х	$\sigma = \sigma_{b1}$	Ixg	40,745	ł	
					PROCESSO	REF. [4]	

Figura 4.11 - Quadro comparativo.

 σ_{b1} = 20000 psi; σ_{b2} = 30000 psi

o - Tensão de trabalho. Unidades pol, pol², pol³, pol⁴.

CAPÍTULO 5

CONCLUSÃO

O processo numérico computacional e programa codificado em FORTRAN, elaborados neste trabalho, permitem a determinação das propriedades seccionais plenas e efetivas de membros estruturais de paredes delgadas, utilizados como viga ou coluna.

A partir da apresentação e comparação dos resultados, fica demonstrada a concordância entre os valores obtidos e os de referência. Além disso, o programa se apresenta como uma ferramenta de grande utilidade, uma vez que suplanta as formas comuns de cálculo através do uso de tabelas e gráficos em muitos aspectos, tais como:

- 1 Tempo requerido para o cálculo das propriedades plenas e efetivas - Esta é uma consideração muito importante em seções de paredes delgadas, devido as mais variadas formas de seções transversais e principalmente porque para muitas seções, as propriedades efetivas são determinadas através de processo iterativo.
- 2 Largura efetiva Nível de tensão As tabelas e gráficos permitem determinar a largura efetiva em função da razão largura-espessura, somente para níveis discretos de tensão de trabalho, acarretando portanto, para outros níveis, aproximações.
- 3 Obtenção de propriedades seccionais para outros materiais e níveis básicos de tensão - Geralmente as propriedades tabeladas são para um material e no máximo para dois níveis básicos de tensão. (ver AISI - tabelas). Pa ra outros níveis, as propriedades são obtidas por inter polação e extrapolação, originando portanto, erros.

Uma das aplicações para o programa, de maior interesse prático, é a confecção de tabelas contendo todas as propr<u>i</u> edades seccionais plenas e efetivas, para as mais variadas formas de seções transversais e os diversos tipos de materiais usados na fabricação de perfis estruturais. Estas tabelas são de grande valia para o meio industrial. A exemplo, ver tabelas no volume II.

A tendência atual, em estruturas leves, é o uso de vigas conformadas a frio. Uma vez que perfis desta natureza preenchem os dois requisitos básicos de projeto, isto é, economia e segurança, sugere-se, então, desenvolver uma pesquisa com o objetivo único de otimizar ou de apresentar expressões que dete<u>r</u> mine com grande precisão a largura equivalente de componentes e<u>s</u> truturais em compressão.

REFERÊNCIAS BIBLIOGRÁFICAS

- [1] WINTER, George, "Strenght of Thin Steel Compression Flanges", Trans. ASCE, Vol. 112 p. 527, 1947.
- [2] TIMOSHENKO, S. P. and Gere, J. M., Theory of Elastic Stability. 2nd ed., McGraw-Hill, New York, 1961.
- [3] KARMAN, T. Von, Sechler, E. E., and L. H. Dornell, "The Strenght of Thin Plates in Compression", Trans. ASME, APM, Vol. 54.5, 1932, pp 53-57.
- [4] Light Gage Cold-Formed Steel Design Manual AISI, ed. 1961
- [5] WINTER, George, Light Gage Cold-Formed Steel Design Manual, "Commentary on The 1961 Edition".
- [6] WINTER, George, Performance of Thin Steel Compression Flanges, Prelim. Pub. 3ed Congr. Intern. Assoc. Bridge and Structural Eng., Liège, 1948, p. 137.
- [7] WINTER, George, Cold-Formed Light-Gage Steel Construction Proc. ASCE, J. Struct. Div., Vol. 85, N° ST9, Nov 1959
- [8] SECHLER, E. E., The Ultimate Strenght of Thin Sheets in Compression, Guggenheim Aeronaut. Lab. Pub. 27, California Institute de Technology, Pasadena, 1933.
- [9] BRYAN, G. H., On The Stability of a Plane Plate Under Thrusts in its Own Plane With Application on the "Buckling" of The Sides of a Ship, Proc. London Math Soc., 1891 p. 54.
- [10] BLEICH, F., Buckling Strenght of Metal Structures. McGraw-Hill, 1952.
- [11] SCHUMAN and G BACK, Strenght of Retangular Flat Plates Under Edge Compression, NACA Tech. Rept. 356. 1930.

- [13] SWEENEY, R. J., The Strenght of Hull Plating Under Compression, U. S. Experimental Model Basin, Progress Repts. 1 and 2, 1933.
- [14] GAYLORD, E. H. Jr. and Gaylord, C. N., Design of Steel Structures, 2nd ed., McGraw-Hill, Tokyo, 1972.
- [15] MARGUERRE, Karl and Woernle, Hans-Theo, Elastic Plates, Blaisdell Publishing Company - 1969.
- [16] DEWOLF, John T., PEOKOZ, Teoman and WINTER, George, "Local and Overall Buckling of Cold-Formed Members", Journal of The Structural Division.
- [17] NB-143 (ABNT Norma Brasileira) ed. 1967.
- [18] KIRCHHOFF, G. R., Mechanik, 2nd ed., p 450, 1877.
- [19] TIMOSHENKO, S. P., and Krieger, S., Theory of Plates and Shells, 2nd ed., pp. 415-428, McGraw-Hill Book Company, Inc., New York, 1959.
- [21] ALVES, D. B., PROSEC Propriedades Seccionais de Vigas Retas de Paredes Delgadas. Centro Tecnológico da UFSC, 1976.
- [22] ANDERSON, Volnei, "determinação de Propriedades Seccionas na Flexão, na Torção Uniforme e Não Uniforme de Seções de Paredes Delgadas, "Dissertação de Mestrado", CTC-UFSC, 1978.

[23] - VERÇOSA, C. A. M., ROSA, Edison da, ALVES, D. B., Propriedades Seccionais de Perfis de Parede, Fina. Anais do VI Congresso Brasileiro de Engenharia Mecânica - COBEM 81, PAPER Nº B-18, pp. 189 - 198, Dezembro, 1981.

[24] - NBR 6355 (ABNT - Norma Brasileira Registrada) ed. 1980.

APENDICE A

A.1 - Estrutura do programa PEPAD

A.2 - PEPAD - FLUXOGRAMA GERAL

APÊNDICE B

B.1 - INTRODUÇÃO

Este apêndice tem por objetivo ilustrar a correta <u>u</u> tilização do programa PEPAD. As instruções compreendem duas et<u>a</u> pas a saber: modelagem da seção e entrada de dados.

B.2 - MODELAGEM DA SEÇÃO TRANSVERSAL

A seção transversal deve ser modelada por nos, elementos retilíneos e curvilíneos e cavidades tubulares, segundo os seguintes procedimentos:

1 - Em caso de seção fechada ou mista (figura B.1 (e)), cortar as cavidades tubulares de forma que a seção seja con siderada aberta. Os cortes podem ser realizados em quais quer pontos sem, no entanto, subdividir a seção.

Figura B.1 - Exemplos de seções diversas

2 - Desenhar dois croquis da seção, modelada por um conjunto de elementos binodais (linha média da parede): Denominar os croquis por CR1 e CR2, conforme é visto na figura B.2

A modelagem da seção requerida pelo processo numéri co é feita considerando a contribuição dos fluxos de cisalhamen to e empenamento, ao longo da seção. Tal fato, em geral, implica em duas configurações de fluxos distintas originando, portanto, dois croquis.

- 3 Áreas concentradas são tratadas como elementos retilineos cujos nós, origem e término, têm as mesmas coordena das.
- 4 Elementos circulares têm seus arcos limitados a 180°.
- 5 Nenhuma cavidade deve estar contida em outra.
- 6 Numerar as cavidades tubulares em CR1 e CR2 de 1 a NCT, onde NCT é o número de cavidades da seção. Figura B.3.
- 7 Numerar os nós em CR1 e CR2 de 1 a NN, onde NN é o número de nós da seção. Figura B.3.
- 8 Em CR1, representar as setas indicativas do sentido origem-término, tomando extremidades livres como origem, exceto no elemento considerado como "último" e assumindo que, de cada nó sai apenas uma seta. Figura B.4.
- 9 Em CR2, representar as setas indicativas do sentido origem-término, tomando extremidades livrès como término, exceto no elemento considerado como "primeiro" e que este não deverá coincidir com o elemento considerado "últi mo" em CR1. As demais setas são representadas assumindo que em cada nó chega apenas uma seta.
- 10 Numerar os elementos da seção de l a N, onde N é o número de elementos em que a seção transversal é discretizada.

Em geral, as numerações dos elementos em CR1 e CR2 não coincidem, com exceção do elemento de número de ordem um (1), que deverá ser o mesmo nos dois croquis. Para numerar os demais elementos, é indiferente recomeçar em CR1 ou CR2.

10.1 - EM CR1

- 1 Numerar em ordem crescente (2, 3, 4, ...) todos os elementos cujos nõs origens são extremidades livres, escolhendo-os arbitrariamente.
- 2 O último elemento, isto é, o de número de ordem N é aque le cujo nó término coincide com uma extremidade livre.

(a)

(b)

•

Figura B.3 - Identificação de cavidades e nós. •

(a)

CR2

(b)

CR2

Figura B.4 - Representação das setas indicativas do sentido origem-término.

- 3 Os elementos restantes são numerados como segue:
 - Procurar um no onde todos os elementos, cujas setas chegam, estão numerados e continuar a numeração no ele mento cuja seta tem origem no referido no.
 - Repetir este procedimento até que todos os elementos da seção estejam numerados. Figura B.5.
- 10.2 Em CR2 a numeração é governada pelo seguinte procedimento:
- 1 O elemento de número de ordem (2) tem como origem o término do elemento de número de ordem (1); o elemento de número de ordem (3) tem como origem o término do elemento de número de ordem (2) e assim sucessivamente para os elementos seguintes até alcançar uma extremidade livre. Caso exista elementos sem número de ordem, reiniciar а sequência a partir de um elemento que se liga a, pelo me nos, um elemento ja numerado. Figura B.5.

CR1

(b)

(c)

.

CR1

CR2

Figura B.5 - Identificação de nos, cavidades e elementos. (continuação)

- PARTE I

Para cada seção transversal são fornecidas as listas de variáveis e respectivos formatos que devem ser obedecidos na perfuração dos cartões de dados.

A seguir, relaciona-se a sequência de cartões de d<u>a</u> dos correspondente à parte I.

1 - Cartões Tituladores

São cartões utilizados para cabeçalho na impressão dos resultados de cada seção testada. As informações contidas nestes cartões devem ser perfuradas dentro do limite das colunas 2 a 80. Todos os cartões com informações devem ter um inte<u>i</u> ro na coluna um. Um cartão branco indicará a finalização do cabeçalho. Não havendo cabeçalho, um cartão em branco deve ser i<u>n</u> serido.

2 - Informações Gerais

LISTA N, NN, NC, IFLAG, ISEC, ITOR, ALFA, XP, YP FORMAT (615, 3F10.5)

onde N - número de elementos da seção transversal. NN - número de nós.

NC - número de áreas concentradas.

IFLAG - se IFLAG=1, o programa calcula os momentos de inér cia CIU, CIV e CIUV em relação a um sistema de refe rência UV com origem no centróide C e paralelo a um outro sistema de referência com centro em P, cu jo eixo x_p faz um ângulo ALFA(α) graus com o eixo x de referência da seção. Além disso, o programa calcula a distância d entre C e P, bem como o ângu lo agudo δ que o segmento de reta CP faz com o eixo de coordenadas y (figura B.6). Se IFLAG≠1, essas grandezas não são determinadas.

. ·

- ISEC se ISEC < 1, a seção é fechada ou mista. ISEC = 1 indica seção aberta. ISEC > 1, indica seção aberta constituída de um elemento retilíneo ou múltiplos elementos retilíneos e colineares, ou ainda, seção composta de membros formados de elementos retilíneos e colineares de tal modo que esses membros te nham um ponto comum (figura B.7).
- ITOR indica o tipo de torção que o programa considera. Se ITOR > 0, o programa considera que a seção está submetida à torção não uniforme, caso contrário, torção uniforme.

ALFA - dado em graus e corresponde a α (figura B.6). XP, YP - coordenadas de um ponto P (figura B.6).

Figura B.6 - Posição dos sistemas de referência UV e x_py_p.

Figura B.7 - Modelo de seção tipo ISEC > 1.

3 - Coordenadas dos Nós

LISTA (XNA(I), YNA(I), I=1,NN) FORMAT (8F10.5)

onde XNA(I), YNA(I) são as coordenadas (x_i,y_i), respectivamente do i-ésimo nó.

OBSERVAÇÃO: cada cartão conterá quatro pares de coordenadas, e<u>x</u> ceto o último, que poderá conter menos. Os pares de coordenadas dos nós deverão ser fornecidos ordenad<u>a</u> mente de 1 a NN, em relação ao sistema global de r<u>e</u> ferência (figura 3.2).

4 - Identificação dos Elementos

LISTA (NOELI(I), IEPA(I), IEPB(I), L(I), NOEMP(I), IS(I), IPA(I), T(I), R(I), I=1,N) FORMAT (715, 2F10.5)

onde NOELI(I) - número de ordem do i-ésimo elemento em CR1. Deverá ser fornecido ordenadamente de 1 a N.

IEPA(I) - número de ordem do nó origem do i-ésimo elemento em CR1.

IEPB(I) - idem para o no termino.

L(I) - número de elementos cujas setas indicativas do sentido origem-término "chegam" no nó origem do i-ésimo elemento em CR1. Como verificação, observa-se que L(I)+l é o número de elementos ligados ao referido nó.

- NOEMP(I) número de ordem do i-ésimo elemento em CR2 e corresponde a NOELI(I).
- IS(I) IS(I)=1 significa que as setas indicativas do sentido origem-término dos correspondentes elementos, em CR1 e CR2, têm o mesmo sentido. Se IS(I)=-1, sentido contrário.
- IPA(I) número de ordem do elemento cuja seta indicativa do sentido origem-término "chega" no nó origem do i-ésimo elemento, em CR2.
- T(I) espessura do i-ésimo elemento. Se o elemento for de área concentrada fazer T(I)=0.
- R(I) corresponde ao raio de curvatúra para elementos curvos, em CR1. Toma o sinal positivo se, em re lação ao centro de curvatura, tomado como pólo, as setas indicativas do sentido origem-término apontam rotação anti-horária. Caso contrário, negativo. Em elementos retilíneos fazer R(I)=0.

Os números NOELI(I) devem ser fornecidos ordenadamente de l a N.

Para os exemplos (a) e (e) da figura B.5, os seguin tes cartões de dados são fornecidos:

a)

NOELI	(I) IEPA(I) IEPB(I	[) L(I)	NOEMP(I)) IS(I)	IPA(I)	T(I)	R(I)
1	1	2	_0	1	1	0	2.00	0.0
2	2	3	1	2	1	1	2.00	-3.0
3	3	4	1	3	1	2	2.00	0.0
4	4	5	1	4	1	3	2.00	3.00
5	5	6	1	5	1	. 4	2.00	0.0
e) 1	1	2	0	1	1	0	2.00	0.0
2	7	6	0	6	-1	5	4.00	0.0
3	17	16	0	16	-1	15	4.00	0.0

4	2	3	1	2	1	1	2.00	-3.00
5	3	4	1	3	1	2	2.00	0.0
6	4	5	1	4	1	3	2.00	-3.00
7	5	6	1	5	1	4	0.0	0.0
8	б	8	2	7	1	5	0.0	0.0
9	8	9	1	8	1	7	2.00	-3.00
10	9	10	1	9	1	8	2.00	0.0
11	10	11	1	10	.1	9	2.00	-3.00
12	11	12	1	11	1	10	2.00	0.0
13	12	13	1	12	1	11	2.00	-3.00
14	13	14	1	13	1	12	2.00	0.0
15	14	15	1	14	1	13	2.00	-3.00
16	15	16	. 1	15	1	14	0.0	0.0
17	16	18	2	17	1	15	0.0	0.0
18	18	19	1	13	1	17	2.00	-3.00
13	19	20	1	19	1	18	2.00	0.0
20	20	21	1	2.0	1	19	2.00	-3.00

5 - Áreas Concentradas

Se NC > 0, os seguintes dados devem ser fornecidos

LISTA (NOEAC(N1), AA(N1), N1=1,NC) FORMAT (5(15,F10.5))

- onde NOEAC(N1) número de ordem do elemento considerado de área concentrada, em CR1. AA(N1) - área do elemtno.
- OBS.: cada cartão conterá cinco pares desses valores, exceto o último que poderá conter menos.
 - 6 Número de ordem dos elementos cujas setas indicativas do sentido origem-término "chegam" na origem do i-ésimo el<u>e</u> mento, em CR1.

Devem ser perfurados cartões contendo esses números para cada elemento da seção para o qual JL=L(I)≠0. Em caso afirmativo, os seguintes dados são fornecidos:

onde LPI(IL) - número de ordem dos elementos cujas setas indica tivas do sentido origem-término "chegam" na origem do i-ésimo elemento.

OBSERVAÇÕES:

- Quando o espaço no cartão não for suficiente para informar todos os números LPI(IL), deve-se continuar em outro cartão, excluindo-se as cinco primeiras colunas.
- Os cartões devem ser perfurados na mesma ordem dos números NOELI(I) do item 4.

Continuando o exemplo da figura B.5, (a) e (e), tem -se os seguintes cartões de dados:

a)	NOELI(I)	LPI(IL),	IL=1,JL
	2	1	
	3	2	
	4	3	
	5	4	
e)	4	. 1	
	5	4	
	6	5	
	7	6	
	8	2	7
	9	8	
	10	9	
	11	10	
	12	11	
	13	12	
	14	13	
	15	14	
	16	15	

17	3		16
18	17	1	
19	18		
20	19		

Para seções abertas, ISEC > 1, os dados de entrada são os indicados nos itens 1 a 6. Quando ISEC < 1, devem ser for necidos os seguintes dados adcionais

 7 - Número de cavidades e elementos adicionais de seção aberta.

> LISTA NCT, NA FORMAT (215)

onde NCT - número de cavidades tubulares. NA - número de elementos adicionais de seção aberta.

Para o exemplo da figura B.5 (e), tem-se uma cavida de e dois elementos adicionais de seção aberta.

8 - Número de elementos e cavidades vizinhas à j-ésima cavidade

> LISTA (NNCT(J), NT(J), NCC(J), J=1,NCT) FORMAT (1515)

onde NNCT(J) - número de ordem da j-ésima cavidade.

NT(J) - número de elementos que compõem a j-ésima cavid<u>a</u> de.

NCC(J) - número de cavidades vizinhas à j-ésima cavidade.

Cada cartão conterá 15 números, ou seja, dados correspo<u>n</u> dentes a cinco cavidades. Para um maior número de cavid<u>a</u> des, usar tantos cartões quantos necessários. Os números NNCT(J) devem ser fornecidos, ordenadamente, de 1 a NCT. Para o exemplo da figura B.5 (e) os dados são forn<u>e</u> cidos como segue:

1 20 0

9 - Especificação dos elementos constituintes da j-ésima cavidade e orientação das setas indicativas do sentido ori gem-término desses elementos, em CR2.

Para cada cavidade devem ser informados os seguintes dados:

LISTA NNCT(J), (IPJII(JP), IHI(JP), JP=1,NTJ) FORMAT (1515,/,(5X,1415))

- onde IPJII(JP) número de ordem do j_p-ésimo elemento constituinte da j-ésima cavidade. Os 'números IPJII(JP) podem ser fornecidos sem obedecer qualquer ordem.
 - IHI(JP) representa a orientação da seta indicativa do sentido origem-término do j_p-ésimo elemento. Quando, em relação à própria cavidade, a seta estiver orientada em sentido anti-horário, IHI (JP)=1 e, em sentido horário, IHI(JP)=-1.
 - NTJ=NT(J) número de elementos que compõem a j-ésima cav<u>i</u> dade.

Os números de ordem NNCT(I) das cavidades devem ser fornecidos ordenadamente de 1 a NCT.

Se NTJ > 7, usar tantos cartões quantos necessários para informar todos os pares de números IPJII(JP) e IHI(JP).

Para o exemplo da figura B.5 (e), os seguintes dados são fornecidos:

> 1 1 -1 4 -1 5 -1 6 -1 7 -1 2 -1 8 1 10 -1 11 -1 12 -1 13 -1 14 -1 15 -1 16 -1 -1 17 -1 18 3 -1 19 -1 20 -1

109

No caso da seção ser constituída de mais de uma cavidade tubular e se existirem cavidades vizinhas, os seguintes dados adicionais devem ser fornecidos:

10 - Especificação das cavidades vizinhas e dos elementos que as separam.

Para cada cavidade que tiver cavidades vizinhas, d<u>e</u> ve ser informado o número de ordem das cavidades vizinhas, o n<u>ú</u> mero de elemento que separam cada cavidade vizinha da cavidade considerada, bem como o número de ordem desses elementos.

> LISTA NNCT(J), NNCC(J2), NECC(J2) FORMAT (315)

onde NNCT(J) - número de ordem da j-ésima cavidade. NNCC(J2) - número de ordem da j₂-ésima cavidade vizinha. E<u>s</u> te número pode ser fornecido em qualquer ordem. NECC(J2) - número de elementos que separam a j₂-ésima cavidade vizinha da j-ésima cavidade considerada.

Imediatamente após cada cartão com esses três números, segue a lista:

> LISTA (ICJLI(J3), J3=1,NECCJ) FORMAT (5X,1515)

- onde ICJLI(J3) número de ordem do j₃-ésimo elemento em CR2, pertencente ao conjunto de elementos que separam as duas cavidades vizinhas considera das. Os números ICJLI(J3) podem ser fornecidos sem obedecer qualquer ordem.
 - NECCJ=NECC(J2) é o número de elementos que separam as cavidades consideradas.

A ordem em que devem ser fornecidas as listas é a mesma dos números de ordem NNCT(J) das cavidades consideradas e estes, por sua vez, são fornecidos ordenadamente de 1 a NCT. No entanto, quando a cavidade considerada não tiver vizinhas, nada deverá ser informado.

Os números de ordem NNCT(J) das cavidades consideradas, deverão ser repetidos tantas vezes quantas forem as cavi dades vizinhas.

- PARTE II

Este conjunto de dados, cuja sequência de cartões é dada a seguir, permite que o efeito da flambagem local seja co<u>n</u> siderado. Não havendo necessidade de incluir o efeito da flamb<u>a</u> gem local, um cartão em branco deve ser inserido.

> LISTA ITIPO, LNT, EMO, SNI FORMAT (215, F12.2, F7.4)

ITIPO - conforme ITIPO assuma os valores 1,3 ou 2, tem-se seções constituídas apenas de elementos enrijecidos, apenas de elementos não enrijecidos e de ambos os elementos, respectivamente.

OBSERVAÇÕES:

- Esta classificação é independente da denominação usual de seções abertas, fechadas ou mistas.
- 2) Aba ou virada de borda não deve ser levada em conta quanto a classificação de ITIPO.
 - LNT número de tensões de escoamento para as quais se deseja determinar as propriedades seccionais efet<u>i</u> vas.
 - EMO módulo de elasticidade do material.
 - SNI coeficiente de Poisson.

Para os exemplos da figura B.5, os seguintes cartões devem ser fornecidos, um para cada seção.

> a) 2 * ** ** b) 2 * ** **

c)	3	*	* *	* *
d)	1	*	* *	* *
e)	1	*	* *	* *

- * a critério do usuário
- ** característica do material

12 - Tensão de escoamento do material

LISTA (ZGMAE(I), I=1,LNT) FORMAT (11F7.2)

13 - Informações gerais

LISTA NEFX, NEFY, NDA, NTEX, NTEY, NET FORMAT (615)

- NEFX número de elementos enrijecidos e paralelos ao eixo dos x, passíveis de flambarem localmente por compressão na flexão.
- NEFY número de elementos enrijecidos e paralelos ao eixo dos y, passíveis de flambarem localmente por compressão na flexão.
- NDA número de reforços principais da (s) subseção (es), isto é, dos elementos que funcionam como almas. Caso não existam subseções, fazer NDA=0. Entenda-se por subseção qualquer elemento plano de um perfil, enrijecido por um ou vários reforços intermediários. Para melhor entendimento, ver figura B.1 (d) no apêndice B.
- NTEX número de elementos enrijecidos e paralelos ao eixo dos x, passíveis de flambarem localmente por compressão axial.
- NTEY número de elementos enrijecidos e paralelos ao eixo dos y, passíveis de flambarem localmente por compressão axial.
- NET número de elementos não enrijecidos. Para seções de ITIPO igual a l, informar NET=0.

OBSERVAÇÃO: tratando-se de seção tipo 3, isto é, seção não enrijecida, as variáveis NEFX e NEFY indicam apenas ele mentos não enrijecidos paralelos aos eixos x e y, respectivamente. Para cada direção indicar apenas um elemento (ver exemplo B.5 (c)).

Caso NEFX seja igual a zero, as propriedades efetivas com respeito ao eixo x não serão determinadas. Caso contrário, os seguintes dados devem ser informados:

> LISTA (NELF(1,I), NDE(1,I), ND1(1,I), I=1,NEFX) FORMAT (1515)

- NELF(1,I) número de ordem do i-ésimo elemento passível de flambar, em CR1. Deverá ser fornecido ordenadamente de 1 a NEFX.
 - NDE(1,I) indica se o elemento comprimido é simples ou se pertence a uma subseção. No primeiro caso informar NDE(1,I)=0. No segundo, NDE(1,I)=1.
 - ND1(1,I) indica se o elemento comprimido é de espessura simples ou dupla. ND1(1,I)=0 espessura simples. ND1(1,I)=1 espessura dupla.

Caso NEFY seja igual a zero, as propriedades efetivas com respeito ao eixo dos y não serão determinadas. Caso co<u>n</u> trário, os seguintes dados devem ser informados:

> LISTA (NELF(2,I), NDE(2,I), ND1(2,I), I=1,NEFY) FORMAT (1515)

NELF(2,I) - número de ordem do i-ésimo elemento passível de flambar em CR1. Deverá ser fornecido orden<u>a</u> damente de 1 a NEFY.

- NDE(2,I) indica se o elemento comprimido é simples ou se pertence a uma subseção. No primeiro caso, informar NDE(2,I)=0. No segundo, NDE(2,I)=1.
- ND1(2,I) idem ao que está exposto em ND1(1,I).

Se NDA > 0, deverá ser fornecido o seguinte dado:

LISTA (NEDA(I), I=1,NDA) FORMAT (1615)

NEDA(I) - representa o número de ordem dos elementos que são os reforços principais de uma subseção, nomi nalmente os que são almas.

Se NTEX é igual a zero, nada deve ser informado. Quando maior que zero, devem ser dadas as seguintes informações:

- LISTA (NEL(1,I), NDEF(1,I), NCOD(1,I), ND2(1,I), I=1,NTEX) FORMAT (16I5)
- NEL(1,I) número de ordem do i-ésimo elemento passível de flambar e paralelo ao eixo dos x.
- NDEF(1,I) indica se o elemento é simples ou se pertence a uma subseção. NDEF(1,I)=0, elemento simples. No segundo caso, NDEF(1,I)=1.
- NCOD(1,I) indica a forma pela qual o i-ésimo elemento em compressão está enrijecido.
 - 1 NCOD(1,I) < 0, significa elemento enrijecido
 por virada de borda.</pre>
 - 2 NCOD(1,I) = 0, significa elemento enrijecido por outro reforço significante.
 - 3 NCOD(1,I) > 0, significa elemento enrijecido por almas.

ND2(1,I) - indica se o elemento comprimido é de espessura dupla ou simples. No último caso, fazer ND2 (1,I)=0, e no primeiro, ND2(1,I)=1.

Se NTEY é igual a zero, nada deve ser informado. Quando maior que zero, devem ser fornecidas as seguintes informações:

- LISTA (NEL(2,I), NDEF(2,I), NCOD(2,I), ND2(2,I), I=1,NTEY) FORMAT (16I5)
- NEL(2,I) número de ordem do i-ésimo elemento passível de flambar e paralelo ao eixó dos y.
- NDEF(2,I) indica se o elemento é simples ou se pertence a uma subseção. NDEF(2,I)=0, elemento simples. No segundo caso, NDEF(2,I)=1.
- NCOD(2,I) indica a forma pela qual o i-ésimo elemento em compressão é enrijecido.
 - menor que zero, significa elemento enrijecido por virada de borda.
 - 2 igual a zero, significa elemento enrijecido por reforço significante, porém menos eficiente que uma alma.
 - 3 maior que zero, significa elemento enrijecido por almas.
 - ND2(2,I) indica se o elemento comprimido é de espessura dupla ou simples. No último caso, fazer ND2 (2,I)=0, e no primeiro, ND2(2,I)=1.

Se NET é igual a zero, nada a ser informado. Quando maior que zero, devem ser fornecidas as seguintes informações:

> LISTA (NEM(I), ND3(I), I=1,NET) FORMAT (16I5)

115

- NEM(I) número de ordem do i-ésimo elemento não enrijecido em CR1.
- ND3(I) indica se o i-ésimo elemento é de espessura dupla ou simples. No último caso, fazer ND3(I)=0, e no primeiro, ND3(I)=1.

Continuando com os exemplos da figura B.5 tem-se os seguintes cartões de dados:

- Informações Gerais :

a)	0	0	0	0	1	2
b)	0	0	0	0	1	2
c)	1	1	0	0	0	3
d)	2	1	2	2	2	0
e)	2	1	0	1	2	0

- Informações Específicas :

a)	3	0	-1	0	Cartão l
	1	0	5	0	. Cartão 2
b)	3	0	-1	0	Cartão 1
	1	0	5	0	Cartão 2
c)	1	0	0		Cartão 1

OBSERVAÇÃO: para o cartão 1, o elemento de número de ordem 2 poderia ser informado ao invés do elemento de número de ordem 1.

	7	0	1				Cartão 2
	1	0	2	0	7	1	Cartão 3
d)	5	1	0	11	1	0	Cartão l
	13	0	0				Cartão 2

OBSERVAÇÃO: para o cartão 2, o elemento de número de ordem 3 p<u>o</u> deria ser informado **a**o invés do elemento de número de ordem 13.

	3	13							Cartão 3
	5	1	-1	0	11	1	-1	0	Cartão 4
	3	0	-1	0	13	0	-1	0	Cartão 5
e)	5	0	0	10	0	0			Cartão l
	12	0	0						Cartão 2

OBSERVAÇÃO: para o cartão 2, o elemento de número de ordem 1 p<u>o</u> deria ser informado ao invés do elemento de número de ordem 12. Também poderia ser 14 e 19 ao invés de 5 e 10.

5	0	-1	0	10	0	-1	0	14	0	-1	0
19	0	-1	0						Cart	ão 3	
·1	0	1	0	12	0	1	0		Cart	ão 4	

 14 - Após os cartões de dados, correspondentes a todas as seções, vêm a seguir dois cartões em branco. Estes indicam o término do programa. Considere o ponto P de coordenadas (x_0,y_0) conhecidas e a curva indicada por f(x), conforme se vê na figura C.1.

Figura C.1 - Gráfico para a determinação analítica da equação (2.43).

Seja g(x) uma reta que passa pelo ponto P e é tangente à curva f(x) no ponto Q. Ver figura C.1.

Da geometria analítica tem-se que a inclinação de uma reta é dada pela expressão

$$m = \frac{y - y_0}{x - x_0}$$
(C.1)

A função f(x) representa a equação (2.42), aqui transcrita

$$f(x) = \frac{b_e}{t} = 1,9 \left(\frac{E}{\sigma}\right)^{1/2} - 1,0906 \frac{E}{\sigma} \frac{1}{b/t}$$
(C.2)

e levando-se em conta que $x_0^{=25}$ e $y_0^{=25}$, resulta para mem (C.1) a expressão

$$m = \frac{1,9 \left(\frac{E}{\sigma}\right)^{1/2} - 1,0906 \frac{E}{\sigma} \frac{1}{b/t} - 25}{\frac{b}{t} - 25}$$
(C.3)

Por outro lado, a condição de tangência permite que se escreva

$$\frac{df(x)}{dx} = \frac{d(\frac{b}{e})}{d(\frac{b}{t})} = m = 1,0906 \frac{E}{\sigma} (b/t)^{-2}$$
(C.4)

Assim, igualando as expressões dadas por (C.3) e (C.4) e resolvendo para h/t, obtém-se a expressão (2.42)

$$\left(\frac{b}{t}\right)_{1} = \frac{1,0906 \frac{E}{\sigma} + \left[\left(1,0906 \frac{E}{\sigma}\right)^{2} - 27,265 \frac{E}{\sigma} \left(1,9\left(\frac{E}{\sigma}\right)^{1/2} - 25\right)\right]^{1/2}}{1,9\left(\frac{E}{\sigma}\right)^{1/2} - 25} \dots (C.5)$$

Para se obter a equação (2.44), reta tangente a f(x) no ponto Q, faz-se uso da expressão

y = mx + c (C.6)

.

O coeficiente angular m, dado em (C.4), țorna-se co nhecido desde que se substitua nesta o valor b/t por $(b/t)_1$. O coeficiente c, que representa a ordenada do ponto de intersecção do eixo y com a função g(x), é dado pela expressão

$$c = y_0 - mx_0 \tag{C.7}$$

conforme está indicado na figura C.2.

Desta maneira, a equação (C.6) torna-se

$$y = m(x - x_0) + y_0$$
 (C.8)

Levando em conta que y=b $_{e}/t$, x=b/t, x $_{0}$ =25 e y $_{0}$ =25, obtém-se então, a expressão (2.44), ou seja,

$$b_{e} = \begin{bmatrix} \frac{1,0906}{(\frac{b}{t})^{2}} & \frac{E}{\sigma} & (\frac{b}{t} - 25) + 25 \end{bmatrix} t$$
(C.9)

Figura C.2 - Gráfico para a determinação analítica da equação (2.44).

Considere um elemento da seção transversal cuja influência geométrica deve ser removida. Figura D.1.

Figura D.1 - Sistemas de referências e elemento típico.

Os momentos de inércia deste elemento, em relação aos eixos x'_i e y'_i , são:

$$I_{x_{i}} = B_{i} TES_{i}^{3}/12$$
 (D.1)

$$I_{y_{i}} = B_{i}^{3} TES_{i}/12$$
 (D.2)

Utilizando o teorema de Stein obtém-se respectivos momentos com respeito aos eixos centroidais x_c e y_c . Assim, pode-se escrever

$$I_{x_{c_i}} = I_{x_i} + BB_i (y_{CE_i} - y_C)^2$$
 (D.3)

$$I_{y_{c_i}} = I_{y_i} + BB_i (x_{CE_i} - x_C)^2$$
 (D.4)

$$I_{x_{C_{i}} \overset{y}{}_{C_{i}}} = BB_{i} (y_{CE_{i}} - y_{C}) (x_{CE_{i}} - x_{C})$$
 (D.5)

Extendendo a todos os elementos sujeitos à flámbagem local, pode-se escrever

$$\sum_{i=1}^{NEFX} I_{x_{C_{i}}} = \sum_{i=1}^{NEFX} I_{x_{i}} + \sum_{i=1}^{NEFX} BB_{i} (y_{CE_{i}} - y_{C})^{2}$$
(D.6)

$$\sum_{i=1}^{\text{NEFX}} I_{y_{C_{i}}} = \sum_{i=1}^{\text{NEFX}} I_{y_{i}} + \sum_{i=1}^{\text{NEFX}} BB_{i} (x_{CE_{i}} - x_{C})^{2}$$
(D.7)

$$\sum_{i=1}^{\text{NEFX}} I_{x_{C_i}y_{C_i}} = \sum_{i=1}^{\text{NEFX}} BB_i (y_{CE_i} - y_C) (x_{CE_i} - x_C)$$

$$\dots (D.8)$$

As parcelas das expressões (D.6), (D.7) e (D.8) cor respondem às equações (3.68), (3.69), (3.74), (3.75) e (3.76).

TABELAS

			y _s	сш	14.76 14.76 14.79 14.83 14.83 14.83 14.83 14.83 14.83 14.33 14.39	1222222222 5 0 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	x ia ia		xs	сш		20000000 2000000 2000000 20000000 2000000
			۲ ۲	c m	112 112 112 112 112 112 112 112	20000000000000000000000000000000000000
			×	СШ	2.2002.2002.220002.22000.2200.22000.22000.2200.2200.22000.2200.2200.2200.2200.2200.2200.2200.2200.2200.2200.2200.2200.2200.22000.22000.22000.22000.22000.22000.22000.22000.22000.22000.22000.22000.22000.22000.220000.220000.220000.220000.220000.22000000	00000000000000000000000000000000000000
			Iyo	cm ⁴	194.46 170.00 163.16 149.72 135.66 120.99 105.68 89.73	184 156 154 154 154 165 124 124 124 125 125 125 125 125 125 125 125 125 125
		PLENAS	Ixo	cm ⁴	2958.45 2638.31 2422.61 2422.61 2202.13 1576.90 1746.86 1512.00 1272.29	1512.68 1708.42 1570.25 1428.72 1283.80 1135.47 983.72 828.51
0		[ONA I S	iy	сш	0001000 0001000 0001000	80.00000 80.000000 80.00000000000000000
IJECII		SECCI	s _y	cm ³	30.35 27.93 27.93 23.77 23.77 23.77 23.77 24.25 15.71 15.21 15.21 15.21 15.21 15.21	30.30.31.225.45 23.45 21.13 21
L C ENR		A I EDADES	Iy	cm ⁴	194.46 176.00 163.16 169.72 129.72 120.99 105.68 89.73	184.23 166.76 154.60 141.87 141.87 128.56 1128.56 100.16 85.05
PERFI	>	PROPR	ix	Ш С	111111 2444 24440 24440 24440 24440 24440 24440 24440 24440 24440 24440 24440 24440 24440 24440 24440 24440 24440 24440 24440 244600 2446000 2446000 2446000 2446000 2446000 2446000 2446000 2446000 244600000000000000000000000000000000000	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
			s _x	cm ³	197.23 175.89 161.51 146.81 146.81 131.79 116.46 100.80 84.82	153.03 136.67 125.62 114.30 90.84 78.70 78.70 78.70
			Ix	cm4	2558.45 2628.45 2422.61 2422.61 2422.61 1976.50 1746.85 1512.00 1272.29 1272.29	1912.88 1570.25 1570.25 14283.80 1283.80 1135.47 983.72 828.51
		S	Área	cm ²	23.26 20.59 18.81 17.01 15.20 13.37 11.51 19.54	20 88 18 50 15 91 15 90 13 58 88 13 58 8 58 8 58 8 58 8 55 8 55
			t=R	шш		- 7 7 7 7 9 9 4 4 9 7 7 4 9 7 7 7 4 9 7 7 7 9 9 7 7 7 9 9 7 7 7 9 9 7 7 7 9 9 7 7 7 7 9 9 7
		IQSN	q		<u> </u>	25 25 25 25 25 25 25 25 25 25 25 25 25 2
		MEN	В	шш	ແ ແ ພ ພ ພ ພ ພ ພ ພ ພ ພ ພ ພ ພ ພ ພ ພ ພ ພ ພ	ແພນແພນ ທີ່ມີມີມີມີມີມີມີມີມີມີມີມີມີມີມີມີມີມີມ
		DI	D	, MM		250 250 250 250 250 250 250 250 250 250

•

	·····			·····	
	· y _s	сш	200 200 200 200 200 200 200 200		6.18 6.20 6.22 6.24 6.24 6.27
	xs	ШС			- 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2
	у	cm			6. 86 66 8. 35 6 6 6 35 6 35 8 35 8 35 8 35 8 35 8 35 8 35 8 35 8
	×	Cm	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		1.59 1.59 1.60 1.60 1.60 1.60
AS	Iyo	cm4	122.58 114.05 105.56 105.44 88.48 79.07 79.07 53.86	56 50 50 50 50 50 50 50 50 50 50 50 50 50	25.98 25.87 21.58 19.10 10.43 15.57
AIS PLEN	Ixo	cm ⁴	1037.60 929.60 856.14 780.51 782.72 622.73 526.84 444.70	436.39 353.50 363.91 363.91 363.91 267.90 253.44 157.73 150.76	194.66 176.58 157.63 137.81 117.12 55.52
CCION	iy	сш	2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.	2.28 2.20 2.20 2.22 2.22 2.22 2.22 2.22	1.400 1.400 1.6000 1.60000 1.6000 1.6000 1.6000 1.60000 1.60000 1.6000 1.60000 1.60000 1.60000 1.60000 1.60000 1.60000 1.60000 1.60000000000
DES SE	s y	cm ³	24.25 24.25 22.03 22.03 20.48 20.48 10.48 10.48 10.48 10.15 11.93 10.15	14.33 13.15 13.15 10.41 10.41 10.41 10.41 7.06 5.50 5.50	→ 4 5 5 5 5 5 5 5 5 5 5 5 5 5
OPRIEDA	Iy	cm ⁴	125.58 114.05 97.44 88.48 88.48 79.03 53.86	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	25.58 23.87 21.56 19.10 15.43 13.57
PR	ı. X	СШ			5 4 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
	°x x	cm ³	103.76 92.96 85.61 78.61 70.27 52.68 44.47	58,19 52,47 44,42 40,15 31,13 26,36 21,43 21,43 21,43	30.66 27.81 24.82 21.70 13.44 15.04
	IX	cm ⁴	1037.60 929.60 856.14 780.51 702.72 622.73 526.84 444.70	436.39 363.50 363.51 363.51 363.51 301.12 257.50 233.44 197.73 160.75	194.66 176.58 157.63 137.81 117.12 95.52
	ÅREA	cm ²	100110 10000 100000 100000 1000000	111 100 100 100 100 100 100 100	8.16 7.33 5.61 5.61 3.82
SS	t=R	шш	90000000000000000000000000000000000000	10000000000000000000000000000000000000	3.42 3.44 2.66 1.90 1.90
SÕE	ש	mm m	NONNNNNN NNNNNNN	00000000 775555	
IEN	В	mm	000000000 2222222	0000000000	000000
DIN	D	u u u	00000000000000000000000000000000000000		127 127 127 127 127

PERFIL C ENRIJECIDO (continuação)

-	-			1													
	1854	DLUNA		0.503 0.770 0.744	0.716 0.687	0.656 0.617	0.572	0.875 0.434 0.512 0.784	0.721	0.03U	0.941	0.505	0.882 0.854	0. 824	0. 745	0.694	-
	1606	R DE CO	0	0. 755 0. 755 0. 752	0.733 0.764	0.034 0.034	0.535	0.494 0.857 0.830 U.502	0.738	0 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0.457	0.225	0.900 0.372	0.041	0.763	0.713	
	1297	FATOI		0.857 0.817 0.791	0.729 0.729	0.696	0.614	0.921 0.835 0.825 0.825	0.763	0. 670	172 0	0.943	0. 520 0. 895	0.867	0.787	0.741	
	1854	S v	cm ³	34.25 31.06 23.78	26.35 23.90	21.30 18.59	15.78	34.34 31.06 28.77 26.39	21.04 21.04	15.77	27078	25.20	21.49	19.50	13.59	11.57	-
	1606	Sv	cm ³	34.35 31.06 28.73	26.39 23.90	21 . 30 18.59	15.78	34.34 31.06 28.77 26.39	21.30 21.30	15.77	27.70	25.20	21.49	19.50	13.59	11-57	
VAS	1297	S _V	cm ³	34.55 31.00 28.70	20.34	21.5U	15.70	34.34 31.06 28.17 28.34	21.50	15.77	27.70	25.20	21.049	19.50		11.57	
EFETI	1854	Iy	cm4	285.73 257.51 239.12	219.79	1/8.20	132.59	283.74 2557.48 239.10 239.10 215.77	175.40	132.55	201074	153.71	157.50	143.27	100.35	0.00	
CIONAIS (kef/c	1606	Iy	cm 4	233-12 234-12	219.79	L /3.20 L55.90	132,55	283.74	176.19	۲. ۲. ۲.	201.74	163.71	127.50	143.27	100.19	32.07	
NDES SEC D BÁSICA	1297	Iy	cm ⁴	253.79 257.51 259.12	219.79	1/0. 20 125.90	132.59	203.74 257.48 255.10 255.10 215.77	178.19 178.19	132.59	201.74	183.71	157.50	128.27	100.39	85.67	
COPRIEDA TENSAC	1854	S _x	cm ³	147.25 175.35 101.51	146.dl 131.79	93.21	10051	153.03 136.07 125.62 114.30	90 - 90 90 - 90 90 - 90	61.85	103.70	92.30	10.02	10.27	52.22	42.65	
Ч	1606	Sx	cm 3	144 144 146 146 146 146 146 146 146 146	140.81 131.79	5 C - C - C - C - C - C - C - C - C - C	α 0 ₀ 7 3	153.03 136.67 125.62 114.50	50°.70 77°.30	ο Ν 03 Ο Ν 03 Ο Ν 03	103.70	42.30 8.40	78.05	10.27	52.52	4 2•23	
	1297	SX	cm ³	197.25 175.89 161.51	146.81	100.34	82°30	153,03 136,67 125,62 114,30	90.00 90.00 90.00 90.00 90.00	04.15	103.76	52.5 51.5 51.5	78.05	10.27 62.27	52.0	4 2 4	
	1854	IX	cm4	2 42 2 • 61 2 42 2 • 61	576.50	14.115	251°04	512°88 708°42 428°72 283°72	135.47 583.30	617.94	037.60	925.60 P5.61	780.51	102.72 622.73	526.84	140041	
	1606	Ix	cm ⁴	450.45 452.45 422.41	976 • 5 0	512.00	2040 23	912.68 708.42 570.25 12 428.72 12 28.3 26.3 26.3 26.3 26.12	135.47 1	822 • 53	037.60 1	529° 60 856-14	780.51	102. 12 622. 73	526.84		
	1297	Ix	Èm ⁴	2958.45 2638.31 2422.61 2422.61	576°50 13 746°50 1	1512.00 1	1 50 01 17:	712.83 1 708.42 1 570.25 1 428.72 1 283.50 1	135.47 1 933.72	827.65	037.60	929° 60 855.14	780.51	622.73	526.84	1440	

0.477 0.4554 0.4554 0.4553 0.4553 0.4553 0.4553 0.755 0.871 0.825 0.340 0.941 0.941 0.901 0.723 0.971 0.944 0.709 1.000 255.0 1854 COLUNA 0.080 0.340 0.802 0. 388 0.920 0.945 1.000 0.471 1606 0.742 0.562 DE 0 FATOR 0.970 1.000 0.990 0. 575 0. 975 0.900 0.820 0.867 0.811 1.000 0.595 0.575 0.527 0.837 1297 116.0 0.372 0.951 \$15°C 0.170 1.000 16.01 15.21 14.20 11.98 10°45° 6°55° 6°55° 6°55° 8.75 6.07 7.28 5°54 4°50 4°50 4°50 cm³ 13.12 1854 s' 14°20 13°12 10.75 \$.45 8**.** 0∂ 8.07 7.28 1606 ic. 61 15.21 11.98 6° 63 6044 5.53 4.56 06 7.28 5.53 4.56 8.75 8.79 6 • 44 Cm Š 297 15.0i 15.2i 13.12 7.20 11.90 14°20 9.45 3.00 00 03 . E U 10°75 *ز م*م 6.07 0 0 4 4 10.00 0.C • 4 а. 74 8.00 7.20 6.44 5.53 5.53 Š SECCIONAIS EFETIVAS ó2•51 38**.**00 تَ تَ م م تَ تَ تَ م م تَ 70.05 39. IU 35.45 70.50 63**.**68 22.45 35.44 34.25 31.40 22.40 22.45 47.71 51.40 42*44 27.13 854 95.03 45.44 35**.1**0 сщ С Ι Υ ဒီဒီ • ၂ ၀ 70°01 70.03 63.0 B 44.00 86.51 22.49 47.71 95.09 čv ∗čč 35.25 54.10 42044 35.45 Э 27.1J .n 35°10 1606 54.074 31.45 27.13 ړ ح 22.44 31.040 Cm (kgf/cm 75°69 88.00 62.51 76.50 70.03 43.03 31°45 27•13 35.25 39**. 1**0 35.45 **60.4**00 35.44 31.45 27.13 22.45 47.71 5 かちのこち 22.45 42.44 35° 10 1297 لم لم Ğ E U TENSÃO BÁSICA PROPRIEDADES 854 52.47 52.47 40 • 56 44 • 42 31.12 31.13 20.50 26.25 24.32 17.36 21.70 13.44 40°15 27.51 22**.**07 20**.**07 х S Cm 30 . 60 13041 14.91 10.36 ----606 40.15 35°72 6•19 2•47 30°66 27°81 24°82 21.70 18.44 15.00 22.07 20.07 17.46 15.74 13.41 0.94 Sx ШC r---1 0 10 mm \sim N cm³ 40**.1**5 35**.**72 31°13 26°36 30.66 27.51 24.62 21.70 21.70 15.04 220°07 20°07 17°50 15°74 13°41 13°41 10°97 21.18 1297 လို 05 **d** 333.12 301.12 267.50 233.44 197.73 194.00 176.58 157.63 157.81 117.12 95.52 с СП 110.33 100.34 54.84 54.84 54 160.32 4 cm ч 4300 393. 3000 ∞ ----430.35 393.50 363.51 333.12 301.12 267.50 233.44 197.73 160.71 194° 66 176.53 137.63 117.12 110.33 89.61 78.72 67.07 54.84 606 I X . U 436 33 393 50 363 91 363 12 333 12 333 12 201 12 201 12 233 44 12 233 44 194.65 170.53 157.63 137.61 **117.1**2 95.52 75 100.34 39.81 78.72 67.07 54.84 1 т х 110.33 1297 Cm 160°

PERFIL Z ENRIJECIDO (continuação)

- u

ł

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$]	1	r	1	1									_			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				y s	сш	15.u0	15.21	15.77	15.33	10.63	00.01 10.01	15.06	17.cl	15.70	12.17	15.21	1 10 11	15.32
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		× P		y	cm	b.37	5.35 45.34	0	6.32	0.30	6.00 6	5.99	5.58	5 °	5.62	10° 10° 10°		5.57
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				Iyo	cm ⁴	314.34	283.12	220.50	165.11	157.67	163.17	126.58	108.47	52°05	78.41	69.44 60.50	200	42.88
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			S	Ixo	cm ⁴	215.80	197.19	157.91	137.32	116.03	161-27	143.19	£2.421	105.23	15.7.51	141.90	100 001	92.10
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		₩ ₩	PLENA	iy	сш	4.04	4.00	4.04	4.80	61.4	3-30 3-70	3.78	3.77	3.70	2.74	2.13	2 2 2	2.69
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			IONAIS	s _y	cm ³	15-15	37.75	29.40	25.21	21.02	26.11	20.27	11.35	14.45	ي. د. د.	13. 89	10 4 6 7 1 10 4 6 7 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	TOLA		ES SECC	Iy	cm ⁴	314.34	283.12	220.50	189.11	157.67	102.11	126.68	108.47	50 • 29	13.41	64.44 10 10	51.57 51.57	42.88
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	IL CAR		RIEDAD	ix	сш	4.01	4 • 03	4.07	4 °09	4.11	0 0 0 0 0 0 0 0 0	4.02	4.04	4.06	а. 59	۳. ۲. ۲. ۲. ۲.	0.00	+ -Q • -D • - • -
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	PERF		PROPI	×s.	cm ³	33.50	31. 63	24.95	21 . 74	18.41	21 . 62	23.51	20.84	17.66	27.99	25.32	10 44	17. CO 16. ÉÉ
nmm nmm nmm nmm nno 125 25 2.66 9.52 nno 7.63 7.63 nno 25 2		> >		Ix	cm ⁴	215.88	177.87	157.91	137.32	116.08	1/2.10	143.19	124.53	10 5.28	157.31	141.96	000011	67.76
DIMENSÕES DIMENSÕES				ÅREA	cm ²	13.40	12.12	9.52	6°50	b. E6	10.07	0°25	7.63	0•39	10.41		C 	5.91
Number Number Number DIMENSOES DIMENSOES DINO DINO DIN		Г. Г.П.		t=R	ШШ	08° €	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2.66	2.28	05.1	5 4 5 1 2 4 5 1 2 4 5 1	2.00	2.28	1 •90	3 42	3.04	2 C C V V	1.90
DIMENSÕES DIMENSÕES				q	ШШ	52	n n N n	n un N	5	un i int i	N N 1	1 01	53	41 (V	ці і (Лі і	() () () ()	1 10	n kn V rV
DIMED DIMED 1000000000000000000000000000000000000		>	ISÕES	BO	шш	150	150	150	150	150	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	125	125	125	100	100		100
			IMEN	В	ШШ .	001	1 00	1000	100	100	5.2	12	15	15	ဌ	0.0		205
		i U M	D	D	шш	110	110	110	110	110	110	110	110	110	110	110		110

	y _s	cm	14+ 14+ 14+ 14+ 14+ 14+ 14+ 14+	00000000000000000000000000000000000000
	У	сш	のある の の の の の の の の の の ら ら ら ら ら ら ら ら ら ら ら ら ら	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	Iyo	cm ⁴	253.45 254.82 255.65 255.65 255.65 1152.65 1152.65 1135.75 1135.75 110	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2
PLENAS	Ixo	cm ⁴	170.77 156.10 141.02 141.02 125.34 123.34 123.34 93.70 93.70 93.70 93.70 93.70 93.70 93.70 93.70 93.70 93.70 93.70 93.70 93.70 93.70 93.70 93.70	24.84 24.33 24.84 24.84 24.15 24.15 24.15 24.15 24.15 25.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 26.55 27.55
ONAIS	iy	СШ	24747499948 24747498 24747999 24747999 2474999 2474999 247499 2018 2018 2018 2018 2018 2018 2018 2018	4444 000000000000000000000000000000000
S SECCI	Sy	cm ³	34 24 25 25 25 25 25 25 25 25 25 25 25 25 25	203 111 122 122 122 122 122 122 12
LEDADES	I y	cm ⁴	2222 2222 2222 2222 2222 2222 2222 2222 2222	113 132 132 132 132 132 132 132 132 132
PROPH	ix	cm	00000000000000000000000000000000000000	1 1 1 1 1 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4
	x	cm ³	40440 404400 4044000 40440000 40400000000	ゆ 2 8 2 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8
	Ix	cm4	1120 1220 1220 1220 1220 1220 1220 1220	256.33 256.33 266.33 21.65 21.65 21.65 21.65 21.65 21.65 21.65 21.65 21.65 21.65 21.65 21.65 21.65 21.65 21.65 21.65 21.65 21.65 21.65 21.55 21.
	Årea	cm ²		10000000000000000000000000000000000000
	t=R	шш	1000000000000000000000000000000000000	
	q	Ē	(A)	() () () () () () () () () () () () () (
SÕES	BO	mm	1000 1000 1000 1000 1000 1000 1000 100	
MEN	В	um m	1111100 2000 2000 2000 2000 2000 2000 2	50 50 50 50 50 50 50 50 50 50 50 50 50 5
DI	D	шш		

.

.

PERFIL CARTOLA (continuação)

	297 1606 1854	ATOR DE COLUNA	0	.000 I .000 I .00C	•000 0 • 558 0 • 551	.996 0.579 0.362	• 570 0 • 435 0 • 414	918 0.377 0.445		997 0 983 0 976	975 0.952 0.933	.935 0.502 0.877	. 865 0. 828 0. 300	166.0.593 0.991	\$56 0.582 0.557	.973 0.948 0.928	.930 0.898 0.875	808 0.833 0.805	 000 1.000 1.000	000 1.000 0.958	.060 0.992 0.979	985 0 561 0.435	942 0.905 0.878	870 0.827 0.798	000 1 000 1 000	400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	563 0.533 0.910	902 0.863 0.635	000 0. 997 0. 988	555 0.51+ 0.558	960 0.532 0.911	904 0.871 0.849
	1854 12	Sy I	cm ³	41.51 1.	37.75 1.	33.47 0	2E.76 0.	23 81 0.		23-17 0.	19.97 0.	16.57 0.	13.10 0.	15.08 1.	13.89 0.	12-04 0.	10.04 0.	7.98 0.	39°18 1.	35.31 1.	31.43 1.	27°35 0	22.87 0.	18°22 0.	24•42 1 2 4 4 5 1	4 C 2 2 4	15.88 0.	12.65 0.	13.03 1.	11.36 0.	9.60 0.	7.71 0.
	1606	s y	cm ³	41.51	37.75	33.57	29.08	74.21	17.60	23.14	20.15	16.85	13.37	15.63	13.85	12.10	10.17	ä . įj	39.10	35.31	31.43	27.50	23.17	18.50	24.842		10.00	12.50	L3.0.5	11.37	9.67	7.82
	1297	Sy	cm ³	41.91	37.75	33.58	25.36	24.12		23.19	20.27	17°13	13.74	15.6d	13,89	12.10	10.23	8•32	35.13	35.31	31.43	27.53	23.49	10.61	24042	18.98	16.23	13.19	13.03	11.37	9.71	7.95
FETIVAS	1854	1 y	cm 4	314.34	233.12	251.84	220.50	128.00		14001	126.68	10ds 16	33.37	70.41	69° 44	60.52	51.66	42.38	253.86	264.82	235.69	200.48	50.111	140.10	126.04	112.55	101.66	83.38	65 . 16	50.83	4 a . 57	40.19
ONAIS E kef/cm ²	1606	Iy	cm^4	14.34	283.12	251.84	220.50	183.01	204401	144-91	126.68	108.44	89.14	78.41	69.44	60 . 52	51.67	42.65	253.86	264.52	235.69	200 .40	111.18	140.15	127.004 125.04	118.65	101.66	84.35	65.16	50°83	40.50	40.30
S SECCI ASICA (1297	1 y	cm ⁴	314.34	283.12	251.84	220.50	105.11	160.001	144.91	126.63	103.47	96°58	18.41	65.44	60 . 52	51.67	42.37	293 aco	204.32	235.69	206.43	111.13	141.05	135.04	118.65	101.60	84.67	65.10	56.83	48.20	40.32
LEDADE NSÃO B	1854	s x	cm ³	33°9C	31.03	28.03	24.92	21.46	70 - 11	26.87	23.91	20.75	17.45	27.99	25.32	22.54	19.66	16.66	29°28	26.33	24.27	26.12	18°2°	24.04	1) 007	20.73	18.06	15.17	21.92	19.54	17.06	14.48
PROPR TF	1606	Sx	cm ³	33.90	31.03	28.04	24 85	10.12	11 . 24	26.87	23.91	20.83	17.52	27 .99	25 ° 32	22.54	19.66	16.65	29°23	26.83	24.28	21.53	200	10.01	11002	20.73	18.08	15.23	21.92	19.54	11.06	14.48
	1297	s _x	cm ³	33.50	31,03	28.04	24.55	21.64	11.01	26.67	23.91	20.84	17.61	27.99	25.32	22.54	19.66	10.66	29•28	26.83	24.28	21-62	14.18	12.14	10.02	20.73	18.09	15.31	21.92	19.54	1/.06	14•48
	1854	Ix	cm ⁴	215.00	197.19	177.07	151.61	110 011	172 76	161 .27	143.19	124 •53	105.11	157.31	141 •90	126.03	109.68	92 • 7 5	170.77	cl. 0čl	141.02	125.34	100.04		124 431	113 .44	98 76	83 .46	111.83	14.99	50.03	73.33
	1606	Ix	cm ⁴	215.30	197.13	17.87	157.91	22.161	1141	161.27	143.19	124.53	105.23	157.31	141.96	126.03	1 09.63	92.75	170.77	156.15	141.02	1 60.034	100.601	50.80	121.42	113.44	98.76	83.59	111.38	24.65	80.03	73•33
	1297	Ix	cm4	215.38	197.19	177.37	157.91	131.36	1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	161.27	143.19	124.53	105.28	157.31	141.96	126.08	103.58	92.15	170.77	150.16	141.02	45.021	11.61	71.00	101.00	113-44	93.76	83.55	111.38	74-65	80.63	66.61

			r	· · · · · ·	T
		1854	LUNA		1
		1606	DE CO	δ	1.00 0.550 0.5575 0
		1297	FATOR		0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 000
		1854	s y	cm ³	23,11 20,05 15,15 15,15 15,13 14,25 10,85
		1606	Sy	cm ³	23. 18. 18. 18. 18. 18. 18. 18. 18. 18. 18
I VAS		1297	Sy	cm ³	23.11 23.11 16.12 15.67 12.67 12.67 12.56 2.50 5.50 5.50 5.50
IS EFET	/cm ²)	1854	Iy	cm ⁴	113. 113.
ECCIONA	CA (kgf,	1606	Iy	cm ⁴	1173. 1175. 1175.
DADES SI	AO BÁSI	1297	Iy	cm 4	11111111111111111111111111111111111111
ROPRIE	TENS	1854	s x	cm ³	2012 2012 2012 2012 2012 2012 2012 2012
Ы		1606	Sx	cm ³	0,00,00,00,00 0,00,00,00 0,00,00,00 0,00,0
		1297	s _x	cm ³	0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
		1854	$\mathbf{I}_{\mathbf{X}}$	cm ⁴	29.37 26.33 21.26.33 21.381 15.65 16.29 16.29 16.29 16.29 16.29 16.35 18.55 18.55 18.55 18.55 18.55 18.55 18.55 19
		1606	Ix	cm4	255.837 265.837 21.22 24.11 25.55 24.12 24.12 25.55 15
		1297	Ix	cm ⁴	29-37 26-33 24-11 24-11 221-22 24-11 18-12 16-30 13-96 13-96 13-96 13-96 13-96
l]		

PERFIL CARTOLA (continuação)

.

1
			min	c m	w4444400 x00000000	44444000
			×		00000000000000000000000000000000000000	50750505 507505057
			ы. 1 1 а	C H		\$0000000000000000000000000000000000000
			Ixy	cm ⁴		-539.29 -485.57 -448.79 -448.79 -4448.79 -4448.79 -4448.79 -248.79 -243.04 -243.04
			y _s	cm	1444444 14444 14444 14444 14444 14444 14444 14444 144444 144444 144444 144444 1444444	12.20 12.29 12.33 12.33 12.35 12.35 12.35 12.35 12.41
		:	Y	cm		12.50 12.50 12.50 12.50 12.50 12.50 12.50
			Iyo	cm4	132°76 120°17 111°41 102°23 92°554 82°554 01°28	121.40 105.52 101.93 95.55 84.75 72.03 60.08 56.11
		5 PLENAS	Ixo	cm ⁴	5109.47 25109.47 2550.33 2319.65 2319.65 2319.65 2063.74 1642.43 1543.59 1543.59	2075.22 1855.58 1707.42 1554.94 1554.94 1238.48 1238.48 1073.54 204.49
00		ONAI	i, y	сш	222000000 22000000 220000000	5.55 5.55 5.55 5.55 5.55 5.55 5.55 5.5
RIJECII		S SECC	Sy	cm ³	34 31 28 28 28 28 28 28 28 28 28 28 28 28 28	34 - 34 31 - 54 28 - 77 28 - 77 29 - 56 21 - 30 21 - 56 21 - 5
L Z ENI		LEDADE	Iy	cm ⁴	262.75 257.51 225.51 215.79 175.51 178.20 155.50 155.50 152.55	283.74 257.48 259.10 219.77 219.77 199.47 199.19 195.90 132.59
PERFI	× ×	PROPI	ix	сш		1 1 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	yo × ×		Sx	cm ³	197.23 175.23 175.23 161.51 146.81 131.79 116.46 100.60 84.82	153.03 136.67 125.67 114.30 102.70 90.64 73.70 56.28
			Ix	cm ⁴	2953.45 2623.31 2422.61 2422.61 2422.61 1976.90 1976.90 1746.86 1512.20 1272.29	1912. & 8 1708. 42 1570. 25 1570. 25 1570. 25 1570. 25 1570. 25 1570. 25 11283. 80 11283. 80 1135. 47 983. 47 983. 47
			ÅREA	cm ^c	223 223 223 223 223 235 235 235 235 235	20 8 8 8 8 9 1 1 2 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9
			t=R	Ш	10000000000000000000000000000000000000	4 4 8 8 9 4 9 4 9 4 8 9 4 9 4 9 4 9 4 9
	è la	SÕES	ъ	Ш	80000000000000000000000000000000000000	222222222 222222222
		MEN	É	ШШ	ແມ່ນເມີນ ບໍ່ມີບັນບັນເມີຍ	ເມຍາດ ເມຍາ ເມຍາ ເມຍາດ ເມຍາ ເມຍາ ເມຍາ ເມຍາ ເມຍາ ເມຍາ ເມຍາ ເມຍາ
		Iq	Ð	M M	ммммммм 000000000000000000000000000000	00000000000000000000000000000000000000

DI	MENS	ÕES						PROPRI	EDADES	SECCI	ONAIS PL	ENAS					
ä	m	d t	R.=	AREA	I _x .	S _¥	۲. ۲	Iv	Sv2	٦.	Î	I	Ý	·y	T	i mí	i , "
ana	I mm		um mm	cm ²	cm ⁴	cm ³	сш	cm4	Cm C	C m	cm4	cm4	сщ	сш	cm4	cm	сш
200	75	254.		17.55	1037.60 929.60	103.76 92.50	7.05	201.74	27.70	5.43	11.26.23	01.10	10.00	5.76 5.79	-339.08 -3(5,85	3.12 3.12	2.15 2.18
200	12	253.	0	14.25	056.14	dj. 61	1.1.	170.93	23 . 3 4	1 0 7 9 9 9	508.02	00.49	10.00	18.5	~234.12	2°*	2.14
200	75	253.	42	12.91	730.51	73.05	7.73	157.50	21.49	3.49	875.01	00.00	10.00	କ ଅକ୍ଟ ଅକ୍ଟ	-260.39	6.23	2•2ī
200	15	25 B.	.040	1.55	702.72	70.27	7.80	143.67	19.50	3. 52	785.76	57+25	10 .00	9 . 85	10.002-	8°20	2.23
200	10	2 5 2.	.00	10.17	622.73	02.27	7.32	120.25	17.041	ъ. ЭЭ́	694.03	21.15	10.00	5.87	-209-53	8.29	2.24
200	52	202	•2 2	8.95 55	526°64	520 68	10001	100.39	13,55	je ý J	586°20	40.72	10.00	5°95	-170.30	6.28	2.13
2 00	12	201.	<u>つ</u> グ	7 = 17	444.70	25 * 35	7.5.7	10.00	11.07	• • • •	445.67	34.70	10.00	9° 91	-144.50	8.31	2.20
1 50	0.0	20 4	16	13.17	436.39	م برید بر	5.74	ד ב יינ יינ ד	10.01	67.2	494.39	06.15	7.50	7.26	152,23		1.67
1 50	0.0	20 4	x. (13.11	102.50	50. CY	5 77		15 01	5. 22	447 40	- 4 - 4	- r 2 C L	- r		• :	- C
						- u - u - u	- C - C - U							- 1			2 -
			ן ר ג רי ג רי		12.000	40° UN			140/0	0 ; ;	25.515	1 1 1 1 1 1 1 1	1.00			0.13	1.12
061	20	202	V *	5 5 7	555.12	75 * 55	1007	00.00	14+14	5° (3	330.06	23.50	04.1		-119.37	5=25	1. 13
្អ	09	20 3.	04	20.0	301.12	40.15	5.04	60.01	11.30	2. 42	344.13	27.02	7.50	7.35	-108.58	o.25	1.75
150	00	20 2.	00.	7.78	267.50	35.72	5.87	03 . 08	10.75	∠ູ ເວີ	306.69	24.30	7.50	7.37	-97.21	6.23	11.
150	60.	202.	βŽ,	5.43	233.44	31.15	5°.¢	00.65	С.†. С	2.000	267.09	25.012	7.50	7.39	-85.22	to 31	1.70
1 50	00	201.	50	ນ. ເ	197.73	26.36	1.6.5	47.71	ਹ ੇ ਹ	2.41	227.13	10.31	7.50	7.+1	72.63	0.34	1.80
1 50	ပ ၁	20 1.	25	•0 10. +	160.70	21.43	4 0. 1	1 1	50°0.	2.93	104.97	40.CI	7.50	7.42	1 24.40	6.37	1.02
			-+														
127	5 D	173.	42	8.16	194.66	30. 66	4.39	42.44	8.79	2.28	220.52	3 3 . 51	6.35	ó.13	-01.36	5.20	L•43
127	20	173.	40.	55.1	170.58	27.81	4.91	39.10	3.07	2.31	200°43	15.25	6.35	6.20	-02.04	5•23	1 • 44
127	50	172.	50	6 • 4 8	157.63	24 . 82	4.33	35.45	7.25	2• 54	179.29	13.79	6.35	6.22	≂55 . c1	5.26	1.46
127	50	172.	5 G	5.61	137.81	21.70	4.90	31.46	44.0	2.37	157,00	12.21	6.35	6.24	-49.16	5.29	L.40
127	20	171.	90	4.72	117.12	13.44	4.98	27.13	ະ ເ ເ	2.40	133.73	10.51	¢.35	6°20	-42.05	5.32	i. 49
127	50	17]1.	25	3 °62	95.52	15.04	5.00	22.45	4.55	2.43	109.29	J • 68	ó • 35	6.27	65.45:	5.35	10.1
		_															
1 00	20	17 30	42	7.23	110,33	22.07	15°n	42.44	ä.79	2.42	138.66	14.10	5.00	4.83	= 52•22	4.38	L • 40
100	50	173.	04	10.0	100.34	20.07	3.93	51.10	3.06	2 • 45	120.47	12.97	5°00	4.85	=47.78	4.41	1.41
100	00	172.	00	5.76	09.81	17.96	0.00 0.00 0.00	30.44	7.23	2.43	13.51	11.74	5.00	4.87	-43.02	4.44	1.43
1 00	50	172.	28	4 °99	78.72	15.74	3.97	C+.Ic	6.44	2.51	11.66	10.40	5.00	4.84	29.76-	4.47	1.44
1 00	00	171.	06	4.21	01.07	13.41	9.99 9	27.015	ۍ ژ. و	2.0 54	85.24	8°56	5°00	4.91	-32.50	4.50	
1001	501	171.	521	3.401	<u>54.84</u>	10.571	4.01	22.45	¢ C • Ĥ	2.571	69.99	7.401	5.00	4•92	- 26.72	4.531	1 e 4 7

PERFIL Z ENRIJECIDO (continuação)

							· · ·	
		1854	LUNA		0.503 0.770 0.744 0.744 0.745 0.716	0.656 0.617 0.572	0.875 0.875 0.812 0.812 0.754 0.754 0.721 0.631 0.631	0.000 0.0000 0.00000 0.0000 0.0000 0.00000 0.00000 0.0000 0.0000 0.000
		1606	DE CC	0	0.426 0.755 0.755 0.752 0.753 0.704	0.034 0.034 0.535	0.494 0.857 0.857 0.8330 0.771 0.771 0.738 0.098 0.098	0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.000000
		1297	FATOF		0.857 0.817 0.791 0.791 0.761 0.729	0.698 0.660 0.614	0.921 0.835 0.835 0.741 0.761 0.761 0.755	0.577 0.545 0.545 0.855 0.857 0.857 0.857 0.785 0.785 1.41
	•	1854	S V	Cm 3	34.25 31.05 23.78 23.78 23.39 23.90	21-30 19-76 19-76	34.34 31.34 28.34 28.34 28.34 28.34 28.34 18.59 18.59 10.17	27. 78 255. 20 225. 39 21. 49 12. 49 113. 50 113. 50 113. 59 113. 59
		1606	S V	cm ³	34.35 31.06 28.73 26.39 23.90	21-30 18-59 15-78	31.06 31.06 28.77 28.77 28.39 23.89 23.89 23.89 18.59 15.77	27.76 25.20 223.39 21.49 19.50 11.57 11.57
IAS		1297	S V	cm 3	34.55 31.00 28.70 28.39 29.39 23.99	21.30 13.09 15.78	34.44 31.06 25.34 22.55 25.34 22.55 21.30 13.59 15.77	225-22 225-20 21-25-20 12-50 1
EFETIV	m ²)	1854	Iv	cm4	285.73 257.51 239.12 219.79 219.48	178.20 155.90 132.59	283.74 257.48 239.10 239.10 239.10 199.47 176.19 155.50 132.55	201.74 153.71 170.98 157.50 143.25 128.25 128.25 100.35
CIONAIS	(kgf/c	1606	Iv	cm 4	233-12 21-22 213-12 213-12 219-79	173•20 155-90 132•55	2234 2234 2224 2224 24 24 24 24 24 24 24 24 24 2	201-74 153-71 170-98 123-27 123-25 100-59 85-67
DES SEC	BASICA	1297	Iv	cm ⁴	253.79 227.51 229.12 219.79 2195.48	176.20 155.90 152.59	288 2523 2523 2523 2523 2523 253 253 253 25	201-74 163-71 170-98 157-98 123-27 123-25 100-39 85-67
D P R I E D A	TENSAO	1854	S _x	cm ³	147.25 175.35 101.51 146.61 131.74	112.00 93.21 79.21	153.03 125.62 125.62 90.30 75.70 61.35	103.70 42.70 855.51 70.27 552.27 42.65 52.22
PR		1606	s _x	cm ³	147.75.73 1661.551 1461.551 1460.651 1460.651	Ц 6 • 3 6 4 5 • 2 3 6 4 6 • 7 3 4 7 3	123.03 124.00 50.10 50.0	4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
		1297	S _X	cm ³	161.02 161.05 16	116.45 100.34 82.36	64.94 64	4 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
		1854	Ix	cm ⁴	2 42 2 • 45 2 42 2 • 1 2 42 2 • 61 2 42 2 • 61 2 20 2 • 13 1 5 7 6 • 90	1 746 - 30 1 51 1 - 41 1 25 7 - 04	512888 15708.42 15708.42 15708.42 1553.57 5833.57 5833.57 5833.57 5833.57 5833.57 5833.57 5833.57 5833.57 5833.57 5833.57 5833.57 5833.57 5833.57 5833.57 5833.57 5833.57 5835.57 5855.57 5855.57 5855.57 5855.57 5855.57 5855.57 5855.57 5855.57 5855.57 5855.57 5855.57 5855.57 5855.57 5855.57 5855.57 5855.57 5855.57 57555.57 5755.5755.57 5755.57 57555.5755.5755.57555.5755.5755.57555.5755.575	1037.60 925.60 856.14 732.72 622.72 622.73 526.84 443.47
		1606	Ix	cm ⁴	2950, 45 2038, 31 2422, 61 2202, 13 2202, 13 1976, 50	1746.86 1512.00 1204.23	1912. 68 1708. 42 1570. 25 1570. 25 1253. 80 1253. 80 1255. 80 125	1037.60 929.60 856.14 780.51 702.72 622.73 526.84 444.57
		1297	Ix	Ém ⁴	2958.45 2638.31 2422.61 2422.61 2202.13	1 746.85 1 512.00 1 27 1.05	1512.83 15708.42 1570.25 1570.25 1570.25 1570.25 1573.72 533.72 533.72 533.72 533.72	525.60 525.60 555.14 702.72 526.84 444.70

				**************************************									_							
	1854	LUNA		0.940	0.933 0.933	0.903	0. 630 0. 630	0.765	0.723	0.971	0.944	0.911	0.871	0. 709		1.000	270.00	0°941	0.901	
	1606	S DE CC	0	1.000	0.945	0.520	0.840 0.840	0.802	0.742	0.562	256.0	0.92 €	0.000 2000	- 28 - 0 - 78 - 1		1.000		0. 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.915 0.864	, , , , , ,
	1297	FATOF		1.000 0.995	0.920	0.944	0.372	0.820	0.170	c32.0	0.978	0.951	15-0 575	0.811		1.000	0 0 0 0 0 0 0 0 0 0 0 0	572.0	0. 557	
	1854	s _y	cm ³	15.21	14.20	11.948	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	8.08	6°03	8.75	č.07	7. 28	50 4 4 5 4 4 5 4 4	4 • •		8.79 25	2. 2 B	6.44	5°53 4°56)
	1606	s _y	cm ³	16.61 15.21	13.12	11.98 11.98	45. 1J	8 , 03	6° 63	8 . 75	8.07	7.28	6°44 ин	4.56		8°79	00 °0	6°44	5 - 53 4 - 56) } •
	1297	sy	cm ³	15.01	14° 20	11.30	10° 10	3.00	0° 03	0 74	0.07	7.20	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2		a. 7	20°00		5°5°5°)))
ETIVAS	1854	Iy	cm4	95.04 86.04	10.50 70.50	70.03	50°000	47.71	34°55	42 * 44	39.10	35+45	51.46	22.45		45 . 44	35.44	31.40	22.45	•
INAIS EF	1606	Iy	cm ⁴	20.0 20.0 20.0	200 Ju	70.03 22.03	5 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	47.71	52025	42044	01.FC	10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	31.40	22.45		47.44	2 3 4 7 6 1 7 7 7	31.45	27.13	, , , ,
SECCIC ICA (kg	1297	Iy	cm ⁴	45° 45° 45°	36°50 76°50	70.03	5 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	47.71	35 ° 25	42044	39.10	52.45	51°40	22.45		42.44	1 1 0 1 0 2 1 0 1 0 1 0 2 1 0 1 0 1 0 1 0 2 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	31.45	27.15	1
IEDADES SAO BAS	1854	Sx	cm ³	52.67 52.47	44 = 42	40°15	31.15	26.25	20.50	30 . 60	27.51	24.32	210/0 13-44	14.91		22.07	17.44	15.74	13°41 10°36))))
PROPR	1606	Sx	cm ³	0.00 - 1 C		40.15 40.15) (J)) (H) 0 0 1 (J) 1 (J)	26.35	20 ° 84	30 ° 66	27.61	24.92	5 1 • 7 () - 2 • 4 • 4	15.00		22.07	17.57	15.74	13.41	- - - - - -
	1297	, S X	cm ³	50.10	40° 7 1	40.15	10 10 10 10 10	26.36	01°12	30°66	27.31	24.52	21.012	15.04		22.07	17.40	15.74	13.41	
	1854	Ix	cm ⁴	410°34 393°50 393°50	353.12	301.12 267.50	233.44	197.73	160.32	194000	176.58	157.03	13/081	45.22		110.33		78.72	67.07 54.84	,)
	1606	Ix	cm ⁴	430.35 393.50	333.12	301.12 267. cr	233.44	197.72	100°71	194066	176.53	157.62	13/081	65 ° 52	-	110.33		73.72	67.07 54.84	, , ,
	1297	Ix	cm ⁴	436°39 393°50	333.12	301.12	233.44	197.73	160 ° 75	194.65	170.53	157.63	10.121	9 5. 52		100.33	10.00°	78.72	67.07 54.84	 } }

PERFIL Z ENRIJECIDO (continuação)

u

ł

	1			1	
		Ixy	cm ⁴	-105.03 844.05 844.05 170.45 170.45 152.20 1450.20 1450.20	11111 111111
		imín	cm		
		imáx	сш С	7.201 7.301 7.305 7.535 7.535 7.54 7.54 7.54 7.54	000000000
		y _s	cm	5. 76 9. 76 9. 79 9. 83 9. 76 9. 76	00100000000000000000000000000000000000
	VAS	Y	сш	10.000 10.000 10.000 10.000 10.000	
	IS PLEN	Iyo	cm ⁴	18.06 16.19 14.91 12.25 10.86 10.86 17.97	15 15 15 15 15 15 15 15 15 15 15 15 15 1
	ECCIONA	Ixo	cm ⁴	715.51 586.33 586.30 586.30 586.30 478.70 478.70 478.70 303.37 303.37	365 365 2925 2925 2925 2925 2925 2925 2925 29
o ****	DES SI	iy	CB	1.000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00000 1.00000 1.00000000	1
	RIEDAI	Sy	cm ³	 ✓ ✓	14804 000 000 000 000 000 000 000 000 000
» k v	PROP	Iy	cm4	34.41 28.41 28.21 28.21 28.21 28.21 28.13 28.13 28.13 28.13 28.13 28.13 28.13 11.13 28.41 29.51 14.95	334°334°34 255°5334°37 223°472 223°472 223°472 223°472 223°472 223°472 223°472 223°472 223°472 223°472 223°472 223°472 224°272 22772 22772 22772 22772 22772 22772 22772 22772 22772 22772 22772 22772 22772 227772 27
		ix	cm	7. 20 7. 20	0.00.00.00 - 0.00 -
		Sx	cm ³	65.45 57.55 57.55 57.55 57.55 57.55 57.55 50.85 80.15 80.85 80.150	本語 1 1 1 1 1 1 1 1 1 1 1 1 1
		Ix	cm ⁴	699.16 623.77 572.94 572.94 572.94 467.82 413.52 413.52 413.52 301.33	345.04 308.84 284.27 284.27 284.27 284.27 284.27 284.27 284.27 208 208 208 208 208 175.12 175.12 151.03
Ŋ─Ŧ		ÅREA	cm ²	113.54 16.693 56.793 56.75 58.75 577	1 2 2 2 2 2 2 2 2 2 2 2 2 2
	JES	t=R	шш	4 4 m m m m m m m m m m m m m m m m m m	12233344 222354 2224
	ENS(В	· ШШ	000000000000000000000000000000000000000	00000000 00000000
19]	DIMI	D	ШШ	200 200 200 200 200 200 200 200 200 200	
		DIMENSÕES DIMENSÕES DIMENSÕES PROPRIEDADES SECCIONAIS PLENAS	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

	Ixy	cm4	- 00° 00°	55°80-	-54°21	-49.32	16.44-	-34.14	-33 ,95	-20.60	=23.13	=51.¢3	10 Y	10.04 140.04								-32.16	-23 °34	-26.57	= 24.24	-21.84	15.31-	-16.33	-14.22	-11°53
	imín	E U	61 - 1	1.20	1.20	1.221	1.22	1.22	1.23	1.24	1. 24	Tol	10	0707		K - 1 0 - 1	07.1	न - - 	1201	7 7 7 7	1 • 1	0.43	45°0	0°52	0.96	0.96	0.97	0.58	0.98	66*0
	ináx	ш С	4 99	5.02	5.04	5 . 06	5 . 0ð	5.10	5.12	5.14	5.15	4017	0 C - 7	4.00	100	1 u 1 c 1 c 1 c	4 • K U		2 C 7 C 7 C	4 · 1 · 2 ·	+ 0 € 1 €	0.6.5	59 . 5	3 955	3.97	3.98	4.00	4.02	4.04	4 ° 0¢
•	y s	C n	6.11	6°14	0.1 6	0.18	b. 20	6.22	6 • 24	6.26	6.27	4.76	1 70	4. 4 4	. C		0 0 0 * *		4 • 03	- A - 4	11	4.(6	4.79	4.8]	4.83	4.85	4087	4.89	4.91	4°92
NAS	y.	cm	6 .35 25	6.35	6.3b	6.35	6.35	¢5.0	6.35	5.35	6 • 3 5	5.00	с С С С С С С С	00. č						0 L 0 C		2.00	5.00	5°00	5.00	5.00	5.00	5.00	5.00	5.00
IS PLE	Iyo	cm4	14.19	12.78	11.32	10.31	9.17	8°05	1.57	6.4l	5.21	11.94		10.01		7.4.97	20. 20. 20.	1.	0 i	0 • 1 4	- + - + • +	6• 3 I	0. LU	5.74	5.28	4.79	4.28	3.75	3.19	2.60
ECCIONA	Ixo	cm4	250.32	224.92	207.22	133.35	170.23	150.92	131.06	L10.04	07.67	152.73	127 72	1 24.63		00.01T	₩ C 3 • C 3		10.00	η (1 - μ 2 - μ	2 7 * C C	113.04	107.19	99.12	90.74	82.03	72.98	63. o l	53.89	43.82
DES S	jv	c m	.35	1.80	1. ởó	1.87	1.87	1.63	L. 33	1. E9	1.83	1.98	00	1. CO			35.	1 0 0 0 1 0	7. UL	7• UZ	20 42	1.41	I. 43	1.49	1.49	1.50	1.50	1.51	1.51	1. 52
RIEDA	S.v	cm^{7}	7.71	0.41	16.6	5.32	4.77	4.20	3.63	3.05	2.46	7.21	07 0			1000				ς 	0 * • V	4.01	4.02	3.69	خق. ٤	3°01	2.05	2.30	L.93	1.5ů
PROF	I.	cm4	34.35	30.70	28.24	25.71	23.12	20.40	17.74	14.95	12.10	34.32	26.40	50°00 00°00	2 H 40		11.002		1.1.1.4	14.40	1 4 • 10	16.95	15.22	14.04	12.32	11.57	10.27	6.93	3.55	6.13
	ix	сш	4.79	4.82	4.84	4.80	4.58	4.50	4 . 51	4.53	4• 95	3.85	2 2 2		1 A 0 A		1 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		- C - C - C - C - C - C - C - C - C - C	1.		5. (3	3.76	3.78	3.80	3.82	3.84	3.85	3.87	3 . 89
	Sx	cm ³	36-34	32.00	30.05	27.42	24.71	21.51	19.04	16.00	13.04	26.07	5 7 80	- t - C - T - C - C - T - C - C - C - C - C				1000	12.00	11.0	5 L 5 L 6	c) • 17	15.63	18.17	16.64	15.05	13.40	11.68	5.90	ε . 0 έ
	Ix	cm ⁴	230.70	207.00	190.60 I	174.10	150.88	139.14	120.89	102.10	82 ° 7 7	130.35	117 25	108.62					TC• 50	10.01		c) • 20 T	41. 86	90.83	83.20	75.25	67.00	58.42	49.52	40.30
	ÅREA	cm^2	10-06	8.91	6,15	7.36	6.50	5.61	5.00	4.19	3°37	8.78	7 70) . 4 .1 				γ γ γ γ	ος • ος • ος	0 7 7 7	79.1	6•95	6 * 37	5.77	5.17	4.56	3 . 93	3.30	2.60
ES	t=R	шш	4.76	4.18	3.80	3.42	3.04	2.66	Z • 28	1.90	1.52 1	4.76	4.12		57 - K				200			4. [0	4 • 1 8	3 . 80	3.42	3 • 04	2.66	2.28	1.90	1.52
SNSO	В	mm	50	50	50	50	50	50	50	50	50	50	C G	5 C 9 V) (C) (S			ר ב ר ר		5 C		ç	0 7	40	40	40	\$ 0	40	9 7	40
DIMI	D	шш	127	127	127	127	127	127	127	127	27	1 CO	001		2001	3 C						100	100	00	100	100	100	100	1 00	100

PERFIL Z SIMPLES (continuação)

	PROPRIEDADES S	ECCION	AIS EFI	ETIVAS	
TENSÃO I	BÁSICA kgf/cm ²		PERFII	_ Z SIMP	LES
1297 1	606 1854	FATO	R DE CO	DLUNA	
TENSÃO A	DMISS Í VEL		Q		
σ _{ca} (k	gf/cm ²)	1297	1606	1854	
1296.97 16 1296.97 16 1266.76 15 1228.07 14 1179.70 13 1117.52 12 1034.61 11 913.54 9	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.570 0.534 0.880 0.829	0.944 0.903 0.846 0.781	0.924 0.830 0.820 0.751	
1290.97 15 1296.97 16 1266.76 15 1228.07 14 1179.70 139 1117.52 12 1034.61 11 918.54 9	06.05 1854.55 06.05 1854.55 52.05 1781.48 83.25 1688.44 97.26 1572.15 86.65 1422.63 35.19 1223.23 32.74 944.16	1.000 0.997 0.997 0.904 0.918 0.918 0.859 0.787	C.999 O.935 C.937 C.875 C.802 C.716	0.595 0.973 0.517 0.645 0.765 0.214	
1296.97 169 1296.97 169 1266.76 15 1223.07 14 1179.70 139 1117.52 129 1034.61 11. 918.54 9. 782.11 7	06.06 1854.55 06.05 1854.55 52.09 1781.48 32.28 1688.44 97.25 1572.15 86.66 1422.63 39.19 1223.23 32.74 944.16 82.11 782.11	1.000 1.000 0.977 0.944 0.895 0.829 0.829 0.744	1.00C 1.00C 0.953 C.911 C.843 0.758 C.653	1.000 0.593 0.551 0.389 0.811 0.717 0.601	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.000 1.000 0.977 0.947 0.910 0.851 0.788 0.683 1.000 1.000 1.000 1.000 0.977 0.935 0.867 0.770	1.000 1.000 0.966 0.524 0.524 0.5797 0.695 0.559 1.000 1.000 1.000 1.000 0.565 0.898 0.806 0.685	1.000 1.000 0.561 0.910 0.640 0.759 0.643 0.490 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.553 0.874 0.770 0.636	

Ī				S	æ	
		ה- ה-			U	ແລະອອດອີສີ່ສີ່ອີດ ທີ່ສຳມັນ ທີ່ສຳມັນທີ່ມີ ທີ່ມີ ທີ່ສຳມັນ ທີ່ມີ ທີ່ສຳມັນ ທີ່ມີ ທີ່ມີ ທີ່ມີ ທີ່ມີ ທີ່ມີ ທີ່ມີ ທີ່ມີ
				xs	cm	
				Y	c m C	
			LENAS	×	ш С	
			AIS PI	i y	СЩ	
	S		CC I ON	S	cm ³	00000000000000000000000000000000000000
	SIMPLE		DES SE	Iy	cm ⁴	 4 (1) 4 (2)
	IL C 9	×	RIEDAI	ix	сш	
	PERF		PROPI	s x	cm ³	ないろうですか したし、 したし したし
				Ix	cm ⁴	659.16 652.77 572.94 520.95 467.82 413.52 301.38 301.38 301.38 259.02 259.02 259.02 259.02 259.02 259.02 259.02 179.12 151.08
				Årea	cm ²	
			Ś	t=R	шш	
			SOE:	В	ШШ	00000000 00000000000000000000000000000
			DIMEN	D	шш	2000 2000 2000 2000 2000 2000 2000 200

,

																							,						
	y,	c no	ó. 14	6.16	0• 1 B	6 •19	6.2I	6,23	b. 24	6.20	6 •28	4.79	4.81	4.83	4.84	4.36	4.87	4.89	4.91	4.93	4.80	4.82	4.83	4.85	4.36	4 a 8 8	4.89	4.91	4.93
	x	c m	= 1.73	-1.73	-1.73	-1.74	-1.74	-1.74	-1.75	-1.75	-1.75	-1.85	-1-85	-1.80	-1.80	-1.86	-1.87	-1.87	-1.87	-1.87	-1.38	-1.38	= L • 39	-1.39	-1.39	-1.40	-1.40	-1.40	-1.41
SNAS	y	Cm	6.35	0.35	6 . 35	6.35	6.35	6.35	6.35	6.35	6.35	5.00	5.00	5.00	5.00	00°.¢	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00
IS PLI	×	æ ت	1.31	1.29	1.21	1.25	1.24	1.22	1.20	1.19	1.17	L • 47	1.44	L • 43	1.04	1.34	1.37	1.35	1 • 34	1 • 32	i.10	1.08	l •00	1.04	1.02	1.01	0.99	16.0	0.96
CIONA	i	с щ С	1.50	1,51	I• 52	1. 52	L 53	I. 53	L. 54	Lo 54	1.55	1 • 55	1.56	1 = 56	1.57	1.57	L. 58	1.58	1.53	1.59	1.19	1.20	1.21	1.21	1.22	1.22	1.23	1.23	1• 24
S SEC	S	с <u></u> 3	6.ł¢	5 + 0	5.02	4.50	4.08	3.60	J. 1. 1	2.61	2.11	ۍ•ر ت	5.2Y	4.85	4.41	3.45	3.49	5.01	2.03	2.04	3.84	3.42	3.14	2.30	2.57	2.27	1.90	1.05	4č.1
IEDADE	ľ	cm^4	22.73	2C.35	1 5. 74	17.07	15.37	12.52	11.32	19.2	£°08	21.00	16.83	17.36	15.83	14.26	12.05	1C-98	5.27	7.52	11.12	10.01	5.25	E .46	7.04	6.19	5.91	5.00	4.06
PROPR	ix	n C	4.79	4.82	4. 84	4. 60	4. 28	4. 50	16.4	4.53	4• 55	3.85	3.88	3.50	3.92	3 • 54	3, 56	3.57	3.59	4.01	3.73	3.70	3.78	3.80	3.82	3.84	3.85	3.87	3.69
•	°,	cm ³	36.34	32,00	30.05	27.42	24.71	21.91	19.04	16.08	13.04	26.07	23.47	21.68	15.03	17.91	15.92	13.66	11.73	5 . 53	21.75	15.63	18.17	16.54	15.05	13.40	11.68	06.9	8.06
	Ix	cm ⁴	230.76	207.00	1 90 . 30	174.10	156.38	139.14	120.39	102°10	82.77	130.35	117.35	108.42	66 °1 5	89.55	19.60	69.31	58.67	47.67	27.801	58.15	90 . 85	83 . 20	75.25	67.00	58.42	49 °52	40.30
	AREA	cm ²	10.05	5°9	3 	3.38	6.60	5.81	5.00	4.19	3.37	6.73	61.1	ج د ا ه د	6.40	5.73	5.09	4 °39	3.68	2,95	7.82	6.55	6.37	5.77	5.17	4.50	3.93	3.30	2.60
ES	t=R	mm	4.70	4 • 13		3.42	3.04	2.66	2.23	1.50	1.52	4.70	4.13	3 8 0	3.42	3 ° 04	2.66	2 • 28	1.90	1.52	4.76	4 . 1d	3 \$ 80	3.42	3.04	2 .60	2.28	1.90	1.52
NSO	В	mm	5 C	200	5	0 6	с У У	с С	50	5 O	ы С	5. C	50	5 C	с С	0 5	50	20	20	20	40	40	40	40	40	40	40	40	40
DIME	D	mm	127	121	127	127	127	127	127	127	127	1 00	. 100	100	1 00	100	1 00	100	1 00	1 00	100	100	100	100	100	100	1 00	1 00	100

•

PERFIL C SIMPLES (continuação)

	PROPRIE	DADES SEC	CIONAI	IS EFET	IVAS		
TENSÃ	O BÁSICA	kgf/cm ²	- PEF	RFIL C	SIMPLE	ES	
1297	1606	1854	FATOF	R DE CC	LUNA	,	
TENSÃO A	DMISSÍVEL			Q			
σ _{ca} (k	gf/cm ²)		1297	1606	1854		
1296.97 1296.97 1266.76 1228.07 1179.70 1117.52 1034.61 918.54	160 £.06 160 6.06 1552.09 148 3.28 139 7.26 128 6.66 113 9.19 932.74	1854.55 1854.55 1781.48 1688.44 1572.15 1422.63 1223.27 944.16	0.970 0.934 0.886 0.829	C.944 O.903 O.846 C.781	0.924 0.880 0.820 0.751		
1290.97 1295.97 1266.76 1228.07 1179.70 1117.52 1034.01 918.54	1606.06 1606.06 1552.09 1483.28 1397.25 1286.60 1139.19 932.74	18 54.55 18 54.55 17 81.48 16 88.44 15 72.15 14 22.63 12 23.27 944.16	1.600 0.997 0.564 0.518 0.859 0.787	0.9995 0.985 0.937 0.875 0.802 0.716	0.595 0.573 0.517 0.848 0.763 0.674		
1295.97 1295.97 1266.76 1228.07 1179.70 1117.52 1034.61 913.54 782.11	1606.00 1606.06 1552.09 1483.28 1397.26 1286.66 1139.19 932.74 782.11	1854.55 1854.55 1781.48 1688.44 1572.15 1422.63 1223.27 944.16 782.11	1.000 1.000 0.577 0.544 0.895 C.829 0.744	1.000 1.000 0.963 0.911 0.843 0.758 0.653	1.000 0.993 0.951 0.889 0.811 0.717 0.601		
1296.97 1296.97 1266.76 1228.07 1179.70 1117.52 1034.61 918.54 782.11 1296.97 1296.97 1296.97 1296.97 1296.97 1296.70 1217.01 1150.69 1057.83	$160 \pounds.05$ $160 \pounds.05$ 1552.09 1483.28 1397.25 $128 \pounds.65$ 1135.19 932.74 732.11 $160 \pounds.06$ $160 \pounds.06$ $160 \pounds.06$ $160 \pounds.06$ 1552.09 1453.61 1345.64 1180.48	1854.55 1854.55 1781.48 1688.44 1572.15 1422.63 1223.27 944.16 752.11 1854.55 1854.55 1854.55 1854.55 1854.55 1854.55 1854.55 1854.55 1781.48 1661.86 1502.37 1279.09	1.000 1.000 0.977 0.947 0.910 0.861 0.788 0.683 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	1.000 1.000 C.966 C.924 C.870 C.797 C.695 C.559 1.000 1.000 1.000 1.000 C.965 C.896 C.896 C.896 C.896 C.896 C.896 C.896 C.896 C.965 C.955 C.965 C.965 C.965 C.965 C.965 C.965 C.856 C.855 C.965 C.	1.000 1.000 0.961 0.910 0.846 0.759 0.643 0.643 0.643 0.643 0.643 0.600 1.000 1.000 1.000 1.000 0.953 0.874 0.770 0.636		

S сщ 9.79 9.83 9.85 7.35 9.70 7.20 9.81 9.87 9.83 7.33 7.39 > 16.91 7.29 7.31 7 · + æ α 10.00 10.00 10.00 10.00 7.50 7.50 7.50 10.00 7.50 10.00 10.00 ШU > SECCIONAIS PLENAS 0 1. 71 1. 72 1. 70 1. 70 1.73 1.72 1.69 1.65 l. 89 1.88 87 1.80 1.85 1.85 1.87 06 ۲ ۱. ШC ---cm³ | 12.30 11.50 12.77 19.3 7.63 6.35 7.02 14.11 10.20 10.06 14.06 5.35 10.19 8.90 10.13 11.47 S_V 7.22 7.22 7.24 64.02 7.26 57.50 7.32 51.62 7.33 44.57 7.33 38.15 cm^4 | 5.56 80.29 5.55 80.29 5.61 63.83 5.61 63.83 5.65 50.33 5.67 50.53 5.67 44.51 80.65 38.11 31.73 L SIMPLES PROPRIEDADES 7.19 5.65 5.71 i. X Cm 82.36 53**.**56 82**.**70 75.81 69.07 62.16 55.05 cm³ 40.29 139.83 124.75 II 4.59 104.19 60°23 2.01 47.77 71.51 PERFIL Sx أن 1145.38 1041.92 535.64 827.04 716.08 602.76 568.54 513.04 1247.54 \mathtt{cm}^4 6 50°0 8 617°68 1398.32 466.17 412.91 358.24 302.16 $\mathbf{I}_{\mathbf{X}}$ 16.05 16.33 14°59 12.83 cm^2 13.34 27.07 11.06 11.16 22.31 19°75 \mathcal{Q} AREA 5.2 4.16 3.80 3.42 2.66 3.80 3.04 2.06 4.76 **3**∎04 4.13 3.42 2.28 1.40 4.76 2.28 1.90 t=R шш DIMENSÕES 1 00 100 001 1 00 100 100 001 100 100 1000 100 1 00 р шш Ω mm

	1		r	
	Уs	сш	6.22 6.22 6.22 6.22 6.22 6.22 6.22 6.22	<i>4444444444444</i>
	УC	СШ	ວວວວວວວວວວ ມີມີມີມີມີມີມີມີ ບ່າວນັ້ນມີມີມີມີມີ	
ENAS	iy	СШ	2.00 1.98 1.98 1.99 1.99 1.99 1.99 1.94	56458 56458 56458 56458 56458 5645 5645
AIS PI	Sy	cm ³	10.02 12.02 12.02 12.02 10.120	
ECCION	Iy	cm ⁴	40.12 50.21 550.33 44.44 31.72 31.02 50.33 31.72 25.36 25.36	75 6 70 6 70 70 70 70 70 70 70 70 70 70 70 70 70
ADES S	ix	СШ	4444444 • • • • • • • • • • • • • • • •	を を の の の の の の の の の の の の の
)PRIED/	s _x	cm ³	200 200 200 200 200 200 200 200 200 200	 1 1 2 4 4<
PRC	Ix	cm ⁴	461.53 414.00 381.60 381.60 343.19 241.27 241.27 204.13 204.13 204.13	260 250 250 216 84 2156 84 2156 255 21 255 21 255 21 255 21 255 21 255 21 255 25 255 25
	Årea	cm ²	26.12 17.83 14.83 14.30 11.61 10.01 8.39 6.75	11111 - 0,4 0,4 0,8 - 0,9 0,9 0,9 0,9 0,9 0,9 0,9 0,9 0,9 0,9
	t=R	шш	1 2 2 2 2 2 2 2 2 2 2 2 2 2	10000000000000000000000000000000000000
ISOES	В	шш		00000000000000000000000000000000000000
DIME	D	шш		

.

PERFIL I SIMPLES (continuação)

•

	PROPRIEDA	DES SECCI	ONAIS	EFETIV	AS	
TENSÃO	BÁSICA kg	f/cm^2 -	. PEF	RFIL I	SIMPLE	S
1297	1606	1854	FATOF	DE CO	LUNA	
TENSÃO	ADMISSÍV	EL		Q		
σ _{ca} (kgf/cm ²)		1297	1606	1854	
1296.97 1296.97 1266.76 1228.07 1179.70 1117.52 1034.61 918.54	1606.05 1606.05 1552.09 1483.28 1397.26 1266.66 1135.19 932.74	1854.55 1854.55 1781.48 1688.44 1572.15 1422.63 1223.27 944.16	0.970 0.934 0.885 0.829	0.944 0.903 0.846 0.731	0.924 0.880 0.820 0.751	
1296.97 1296.97 1266.70 1228.07 1279.70 1117.52 1034.61 918.54	100 £.06 160 6.06 155 2.09 143 3.28 139 7.26 128 6.66 113 5.19 93 2.74	1854.55 1854.55 1781.48 1688.44 1572.15 1422.63 1223.27 944.16	1.000 0.997 0.564 0.913 0.859 0.787	0.999 C.935 C.937 C.875 C.802 C.802 C.716	0.995 0.973 0.917 0.843 0.765 0.674	
1295.97 1296.97 1266.75 128.07 1128.07 1179.70 1117.52 1034.61 918554 782.11	1606.05 1502.09 1433.23 1397.20 1256.65 1139.19 932.74 782.11	1854.55 1854.55 1781.48 1688.44 1572.15 1422.63 1223.27 944.16 782.11	1.000 1.000 0.977 0.544 0.895 0.829 0.744	1.000 1.000 0.963 0.911 0.843 0.758 0.653	1.000 0.553 0.551 0.889 0.611 0.717 0.601	
1296.97 1296.97 1205.76 1223.07 1179.70 1117.52 1034.61 918.54 782.11 1296.97 1296.97 1296.97 1296.97 1296.76 1217.01 1150.69 1057.83 918.54	1606.05 1606.05 1552.09 1483.28 1397.26 1286.66 1135.19 932.74 782.11 1606.06 1606.06 1606.05 1606.05 1606.05 1552.09 1463.61 1345.64 1180.48 932.74	1854.55 1854.55 1781.48 1688.44 1572.15 1422.63 1223.27 944.16 782.11 1854.55 1854.55 1854.55 1854.55 1781.48 1661.86 1502.37 1279.09 944.16	1.000 1.000 0.977 0.947 0.947 0.947 0.861 0.738 0.683 1.000 1.000 1.000 1.000 1.000 0.977 0.935 0.857 0.770	1.00C 1.00C 0.946 0.924 0.87C 0.797 0.695 0.559 1.00C 1.00C 1.00C 1.00C 1.00C 1.00C 1.00C 0.965 0.898 C.806 C.685	$1 \cdot 000$ $1 \cdot 000$ $0 \cdot 921$ $0 \cdot 510$ $0 \cdot 643$ $0 \cdot 643$ $0 \cdot 450$ $1 \cdot 000$ $0 \cdot 953$ $0 \cdot 874$ $0 \cdot 770$ $0 \cdot 635$	•

								x	, ,	Nimáx	• 55 9+28•91 • 55 7254•75 • 55 5958•59	.55 4700.04 .52 40ac.Co	55 3247 55 2347 55 2347 1893 82
		imin I _{XY}	cm cm ⁴ 1.47 -17.098	2 1-1 7	0.95 -2.239	PROPRIEDADES SECCIONAIS EFETIVAS	σ_{b} = 1606 - CONP. σ_{b} = 1855	۴	x x x	Mmáx σ	27 u219.35 1854 08 3370.25 1854 37 4827.39 1854	39 2999.12 1854 44 3720.09 1854	53 2475.40 1854 16 1195.20 1854 11 754.57 1854
	μ	xo lmáx lyo	4 cm cm ⁴ .90 3.02 10.70	-59 2.40 5.32 -91 2.41 4.25 -65 2.00 2.98	.23 2.01 2.42 +6 2.02 1.60			-×	TRAÇAC	Mmáx σ	6165.90 1223. 6282.71 863. 5160.56 1502.	4070.30 1183. 3538.58 1065.	2799.09 1422. 2032.09 944. 1640.07 782.
SIMPLES		IONAIS PLENAS	Cm Cm Cm Cm 237 2.03 2.03 44.	34 1.66 1.66 22 40 1.02 1.02 1.7 57 1.41 1.41 12	03 1.37 1.37 1.37 10 09 1.34 1.34 1.37 10 09 1.32 1.32 1.32 0.7			×	x	Mmáx a	5751.90 1000.06 3370.25 1600.06 323.79 1000.66	2612.35 1000.06	2242.43 1000.06 1180.72 1000.06 753.67 1000.06
CANTONEIRA	x x x x x x x x x x x x x x x x x x x	DPRIEDADES SECC I I S S	Cm ⁴ Cm ⁵ Cm 27.80 5.08 2.	113.95 3.21 1. 111.10 2.53 1.	6 6.32 1.74 1. 4.64 1.27 1. 3.76 1.02 1.		$\sigma_{b} = 1297$ COMP.	X	TRAÇÃO	a Y	94.07 1139.19 5 73.58 300.03 67.40 1345.04 4	01.50 1109.10	0.40 1235.00 1 41.82 932.74
-		IX SX iX	cm ⁴ cm ³ cm 27.80 5.00 2.37 21.54 3.91 2.35	13.95 3.21 1.85 11.10 2.53 1.90	6.32 1.74 1.55 4.64 1.27 1.55 3.76 1.02 1.59			-+- ×	×	ζ α Mm	•19 1296.97 05 •25 1296.97 50 •36 1296.97 41	•03 1296.97 32	• 55 1296.97 22 • 77 1296.97 22 • 07 1296.97 10
		DIMENSÕES B t=R ÅREA	ит. mm cm ² 75 3.42 4.94 75 2.60 3.79	60 3 42 3 91 60 2 66 3 08 50 3 2 5 3 08	50 2 00 2 00 2 00 2 00 2 00 1 0 8 4 1 0 0 1 0 8 4 1 0 0 1 0 8 4 1 0 1 0 8 4 1 0 1 1 0 1 1 0 1 1 0 1 1		COMP.	T	TRACÃO	a Mmão	0 1034.01 5250 6 863.08 3376 0 1150.63 3597	a 1016.03 2580	7 1117.52 1947 9 918.54 1162 2 782.11 758
							σh (kgf/cm²)	1297 1606 1855	FATOR DE COLUNA	Ø	0.798 0.739 0.66 0.610 0.492 0.42 0.837 0.432 0.31	0.785 0.641 0.c3	0.362 0.801 0.76 0.703 0.561 0.76 0.450 0.372 0.50