Detecção de Danos em Rodovias por meio de Aprendizado Profundo

DSpace Repository

A- A A+

Detecção de Danos em Rodovias por meio de Aprendizado Profundo

Show full item record

Title: Detecção de Danos em Rodovias por meio de Aprendizado Profundo
Author: Santos, Felipe Henrique Verones Pereira dos
Abstract: A manutenção eficiente de rodovias é crucial para a segurança e o desenvolvimento socioeconômico. Contudo, técnicas de inspeção manual tornam-se desvantajosas por falta de objetividade, eficiência limitada, custos elevados e segurança comprometida. Este trabalho propõe um método para a detecção de danos em pavimentos asfálticos utilizando técnicas de visão computacional e aprendizado profundo. O método proposto foi estruturado em cinco estágios principais, incluindo a aquisição de dados, pré- processamento, definição de arquitetura para criação do modelo de classificação, treinamento e validação dos modelos, e inferência em imagens de rodovias para detecção de danos. Uma vez definido e pré-processado o conjunto de dados inicial, a arquitetura YOLO, baseada em Redes Neurais Convolucionais, foi escolhida para realizar o treinamento dos modelos YOLOv8x e YOLOv9e, seguido pela avaliação de suas métricas de desempenho e subsequente utilização para classificação de danos em rodovias. Os resultados mostram que ambos os modelos são eficazes na identificação de danos, com o YOLOv8x apresentando melhor desempenho em quase todas as métricas avaliadas, com um f1-score de 88,79% e um mAP50 de 89,13%. De modo geral, este estudo contribui para o campo da manutenção de rodovias ao fornecer uma análise comparativa detalhada entre os modelos YOLOv8 e YOLOv9 e sugerir novas abordagens para aprimorar a acurácia e eficiência na detecção de danos em rodovias.
Description: TCC (graduação) - Universidade Federal de Santa Catarina, Campus Araranguá, Engenharia de Computação.
URI: https://repositorio.ufsc.br/handle/123456789/255766
Date: 2024-06-21


Files in this item

Files Size Format View
TCC_Felipe_Verones-final_assinado.pdf 8.353Mb PDF View/Open

This item appears in the following Collection(s)

Show full item record

Search DSpace


Browse

My Account

Statistics

Compartilhar