Diagnóstico estrutural com inteligência artificial

DSpace Repository

A- A A+

Diagnóstico estrutural com inteligência artificial

Show simple item record

dc.contributor Universidade Federal de Santa Catarina pt_BR
dc.contributor.advisor Batista, Eduardo Luiz Ortiz
dc.contributor.author Cunico, Gabriel Martins dos Santos
dc.date.accessioned 2024-09-09T00:01:14Z
dc.date.available 2024-09-09T00:01:14Z
dc.date.issued 2024-09-08
dc.identifier.uri https://repositorio.ufsc.br/handle/123456789/259365
dc.description Seminário de Iniciação Científica e Tecnológica Universidade Federal de Santa Catarina Centro Tecnológico (CTC) Departamento de Engenharia Elétrica e Eletrônica pt_BR
dc.description.abstract O diagnóstico estrutural é parte essencial na manutenção de qualquer construção. No entanto, monitorar continuamente a deterioração de uma estrutura com a ajuda de um corpo técnico pode ser custoso. Assim, nossa pesquisa - Aprendizagem de Máquina Aplicada ao Diagnóstico de Saúde de Estruturas - busca automatizar a tarefa. Para isso, aplicamos diferentes níveis de desgaste em uma viga metálica presa em ambas as extremidades, vibrando-a com atuadores magnéticos e medindo sua resposta com Unidades de Medida Inercial (IMUs) em cada etapa de desgaste. Aplicando filtragem adaptativa, respostas em frequência foram geradas a partir dos dados de acelerômetros dos IMUs, com o objetivo de treinar modelos de Inteligência Artificial (IA). Dois métodos foram utilizados para diagnóstico automatizado: treinamento de algoritmos supervisionados - Multilayer Perceptron (MLP) e Random Forest Classifier - a partir dos harmônicos presentes na resposta em frequência; treinamento de algoritmo não supervisionado - autoencoder - a partir da resposta em frequência completa. Os modelos supervisionados alcançaram precisão média de 72% na previsão do nível de desgaste e 97% na previsão da presença de desgaste, enquanto as análises com autoencoder reconheceram dano logo no primeiro nível de desgaste. Embora os modelos supervisionados tenham apresentado precisão elevada, sua aplicabilidade é limitada pela necessidade de exposição aos dados da estrutura danificada. Por sua vez, o autoencoder apresentou sensibilidade suficiente para diagnosticar deterioração mesmo quando houve dano superficial. Ainda, por se tratar de um algoritmo não supervisionado, o autoencoder necessita apenas de leituras realizadas na estrutura intacta, tornando-o adequado para aplicações reais onde esta é a única informação disponível. Ao fim do projeto, foi obtido um método de diagnóstico de saúde de estruturas com IA funcional, de modo que algoritmos não supervisionados além de autoencoders podem ser promissores. pt_BR
dc.format.extent Resumo + Vídeo pt_BR
dc.language.iso pt_BR pt_BR
dc.publisher Florianópollis, SC pt_BR
dc.subject controle de vibrações pt_BR
dc.subject controle ativo de vibrações pt_BR
dc.subject monitoramento de saúde de estruturas pt_BR
dc.subject aprendizagem de máquina pt_BR
dc.subject filtragem adaptativa pt_BR
dc.title Diagnóstico estrutural com inteligência artificial pt_BR
dc.type Video pt_BR


Files in this item

Files Size Format View Description
videosic.mp4 9.537Mb MPEG-4 video View/Open
videosic.srt 7.240Kb Unknown View/Open Legendas do vídeo

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Browse

My Account

Statistics

Compartilhar