Uso de enzinas na extração de polihidroxialcanoatos sintetizados por Cupriavidus necator

DSpace Repository

A- A A+

Uso de enzinas na extração de polihidroxialcanoatos sintetizados por Cupriavidus necator

Show simple item record

dc.contributor Universidade Federal de Santa Catarina pt_BR
dc.contributor.advisor Muller, José Miguel pt_BR
dc.contributor.author Neves, Andréia Lange de Pinho pt_BR
dc.date.accessioned 2012-10-24T10:38:49Z
dc.date.available 2012-10-24T10:38:49Z
dc.date.issued 2009
dc.date.submitted 2009 pt_BR
dc.identifier.other 267110 pt_BR
dc.identifier.uri http://repositorio.ufsc.br/xmlui/handle/123456789/92632
dc.description Dissertação (mestrado) - Universidade Federal de Santa Catarina, Centro Tecnológico. Programa de Pós-Graduação em Engenharia de Alimentos. pt_BR
dc.description.abstract Materials prepared from biodegradable polymers can be an alternative for reducing the environmental problems provoked by petroleum derived polymers used to produce packages. Starches from different sources have been considered as a technically viable raw material for producing biodegradable films at low cost. Moreover, starches are from renewable sources, which allow applying environmental politics for controlling the carbon cycle. Starch based films dot not resist to the mechanical stress they are submitted when used in commercial packages, and have high water vapor permeability (WVP). Incorporation of nanoclay and cellulose fibers have been reported as a viable alternative for reinforcing these films. The objective of this work was to investigate the influence of the incorporation of nanoclay and cellulose fibers on the properties of starch bases films. The work was performed in two steps. In the first step, films were prepared with different formulations and different processes of nanoclays incorporation their mechanical properties and WVP were determined. In the second step, the addition of nanoclay and cellulose fibers was investigated. For that, starch films, starch-nanoclay films and starch-nanoclay-cellulose fibers composites-films were prepared. The starch-nanoclay composites-films showed WVP one-fold lower that the values found for starch films. These composites were seven-fold more rigid than starch films, but with the same tensile strength of starch films, indicating that the added nanoclay did not reinforce the starch films. On the other hand, the incorporation of fibers and nanoclay increased the films tensile strength in 8.5 times and their rigidity (Young modulus) in 14 times. The composites diffractograms indicated intercalation between the clay lamellas and the starch chains. The WVP of composites-films were lower than the values found for starch films, and increased with the air relative humidity. The results reported in this work indicate that the incorporation of nanoclay and fibers to starch films is a viable alternative for reinforcing mechanically these films, and for reducing their WVP. pt_BR
dc.format.extent 102 f.| il., tabs., grafs. pt_BR
dc.language.iso por pt_BR
dc.publisher Florianópolis, SC pt_BR
dc.subject.classification Engenharia de alimentos pt_BR
dc.subject.classification Enzimas pt_BR
dc.subject.classification Polihidroxialcanoatos pt_BR
dc.title Uso de enzinas na extração de polihidroxialcanoatos sintetizados por Cupriavidus necator pt_BR
dc.type Dissertação (Mestrado) pt_BR


Files in this item

Files Size Format View
267110.pdf 931.9Kb PDF Thumbnail

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Browse

My Account

Statistics

Compartilhar