Extensões de álgebras obtidas a partir de álgebras de Hopf
Show full item record
Title:
|
Extensões de álgebras obtidas a partir de álgebras de Hopf |
Author:
|
Teixeira, Mateus Medeiros
|
Abstract:
|
Neste trabalho fazemos uma descrição completa do grupo quântico A(SL_q(2)), em que q é a raiz cúbica da unidade, como uma extensão de Hopf-Galois fielmente plana de A(SL(2,C)) a partir da sequência exata de álgebras de Hopf A(SL(2,C)) A(SL_q(2)) A(F) determinada pelo morfismo de Frobenius Fr. Além disso, estendemos o resultado para o subgrupo quântico de Borel, obtendo a estrutura de produto cruzado. No mais, é feito um estudo dos resultados da teoria de álgebras de Hopf e da teoria de extensões de álgebras obtidas a partir de álgebras de Hopf. Ainda, mostramos que toda biálgebra que admite uma extensão de Hopf-Galois fielmente plana é uma álgebra de Hopf. |
Description:
|
Dissertação (mestrado) - Universidade Federal de Santa Catarina, Centro de Ciências Físicas e Matemáticas, Programa de Pós-graduação em Matemática e Computação Científica, Florianópolis, 2011 |
URI:
|
http://repositorio.ufsc.br/xmlui/handle/123456789/95887
|
Date:
|
2012-10-26 |
Files in this item
This item appears in the following Collection(s)
Show full item record
Search DSpace
Browse
-
All of DSpace
-
This Collection
My Account
Statistics
Compartilhar