dc.contributor |
Universidade Federal de Santa Catarina |
|
dc.contributor.advisor |
Moretti, Méricles Thadeu |
|
dc.contributor.author |
Menoncini, Lucia |
|
dc.date.accessioned |
2020-03-31T14:45:49Z |
|
dc.date.available |
2020-03-31T14:45:49Z |
|
dc.date.issued |
2018 |
|
dc.identifier.other |
360219 |
|
dc.identifier.uri |
https://repositorio.ufsc.br/handle/123456789/206101 |
|
dc.description |
Tese (doutorado) - Universidade Federal de Santa Catarina, Programa de Pós-Graduação em Educação Científica e Tecnológica, Florianópolis, 2018. |
|
dc.description.abstract |
Nesta pesquisa, investigamos como alunos de um curso de Licenciatura em Matemática usavam operações semióticas na aprendizagem da integral no cálculo de área. Trata-se de uma pesquisa qualitativa em que as intervenções empíricas foram realizadas no âmbito acadêmico, integrando-se ao processo de ensino e de aprendizagem de Cálculo. Embasados na Teoria dos Registros de Representação Semiótica de Raymond Duval e partindo de elementos da metodologia da Engenharia Didática, organizamos uma sequência didática composta por 5 blocos de atividades. Cada bloco continha objetivos específicos, que juntos, visavam a compreensão do objeto em estudo. A sequência didática explorou a diversidade de registros de representação e operações semióticas, principalmente tratamentos e conversões. Utilizamos o software GeoGebra para o esboço de curvas e para conversões de representações produzidas nos registros gráfico-geométrico e algébrico, proporcionando aos alunos um ambiente de experimentação. No desenvolvimento das atividades, os alunos foram desafiados a tratar, de forma articulada, o pensamento, a visualização e a escrita. Foram instigados a construir conhecimentos, pautados no confronto de ideias, na elaboração e na refutação de hipóteses e de conjecturas. A análise dos resultados sinaliza que a sequência didática possibilita a compreensão da integral no cálculo de área, visto que os alunos conseguiram desenvolver com autonomia as atividades propostas, alcançando os objetivos previstos em cada bloco. Também, a equivalência de áreas, assunto não abordado em livros textos de Cálculo, é um elemento que pode ser introduzido junto ao estudo desta integral. Outrossim, que os problemas envolvendo área requerem a mobilização de múltiplas operações semióticas e neste sentido, confirmamos que a conversão é, de fato, uma operação não neutra e criadora de novos conhecimentos, como afirma Duval. |
|
dc.description.abstract |
Abstract : In this research, it was possible to investigate how students from a graduation course from Mathematics were using semiotic operations in integral learning of area calculation. It refers to a qualitative research whose empirical interventions were proceeded in academic field, taking part of the process of teaching and learning calculation. Having as a background the Theory of Registers and Semiotic Representation by Raymond Duval and from elements of Didactics Engineering Methodology, organizing a didactics sequence formed by 5 blocks of activities. Each block contained specific goals, which, together, aimed at understanding the object in study. The didactic sequence has explored the diversity of registers of semiotic representation and operations, mainly treatments and conversions. The software GeoGebra was used for the sketch of curves and for conversions of representations produced in graphical-geometric and algebraic records, promoting to the students an experimentation environment. In the development of activities, students were challenged to deal, in an articulated way, the reasoning, viewing and writing. Students were also led to build knowledge, based on ideas confrontation, elaboration and refutation of hypothesis and conjectures. The analysis of results points that the didactic sequence makes possible the understanding of integral in area calculation, once students were capable to develop, autonomously, the activities proposed, reaching the goals aimed in each block. Furthermore, the equivalence of areas, a subject that is not approached in text books of calculation, is an element that can be introduced together with the study of the integral. Besides, the problems involving area require the mobilization of multiple semiotic operations, and, thus, we confirmed that conversion is, in fact, an operation non neutral and creator of new knowledge, as stated by Duval. |
en |
dc.format.extent |
274 p.| il., gráfs., tabs. |
|
dc.language.iso |
por |
|
dc.subject.classification |
Educação científica e tecnológica |
|
dc.subject.classification |
Cálculo integral |
|
dc.subject.classification |
Matemática |
|
dc.title |
O jogo das operações semióticas na aprendizagem da integral definida no cálculo de área |
|
dc.type |
Tese (Doutorado) |
|