Title: | Método das projeções relaxadas com penalização uniformemente convexa para solução de sistemas lineares mal-postos em espaços de Banach |
Author: | Pauleti, Marco Antônio |
Abstract: |
Problemas inversos formam uma classe de problemas matemáticos que possuem várias aplicações de relevância prática. Sendo um problema inverso frequentemente caracterizado como um problema mal-posto, métodos de regularização são necessários para calcular soluções numericamente. Este trabalho se dedica ao estudo de um método iterativo que visa obter soluções de problemas mal-postos formulados por operadores lineares que atuam entre espaços de Banach. Trata-se de um método do tipo Tikhonov iterado não-estacionário com o termo de penalização sendo a distância de Bregman induzida por uma função uniformemente convexa. A escolha dos parâmetros de regularização é feita a posteriori e a estratégia adotada para o cálculo dos multiplicadores de Lagrange gera o chamado método das projeções relaxadas. Para a formulação do algoritmo são usadas técnicas de otimização e análise convexa em espaços de Banach. O estudo trata de uma análise teórica, onde se discute as propriedades de convergência, estabilidade e regularização das soluções computadas pelo método proposto. Abstract: Inverse problems are a class of mathematical problems that have several applications of practical relevance. Due to the fact that an inverse problem often leads to an ill-posed problem, regularization methods are needed in order to compute solutions numerically. This work is dedicated to the study of an iterative method that aims to obtain solutions for ill-posed problems formulated by linear operators acting between Banach spaces. It is a nonstationary iterated Tikhonov-type method with the penalty term being the Bregman distance induced by a uniformly convex function. The choice of regularization parameters is made a posteriori, and the strategy adopted to compute the Lagrange multipliers generates the so-called range relaxed method. The algorithm is defined employing optimization and convex analysis techniques in Banach spaces. The study deals with a theoretical analysis, where the properties of convergence, stability, and regularization of the solutions computed by the proposed method are discussed. |
Description: | Dissertação (mestrado) - Universidade Federal de Santa Catarina, Centro de Ciências Físicas e Matemáticas, Programa de Pós-Graduação em Matemática Pura e Aplicada, Florianópolis, 2021. |
URI: | https://repositorio.ufsc.br/handle/123456789/231050 |
Date: | 2021 |
Files | Size | Format | View |
---|---|---|---|
PMTM0281-D.pdf | 958.5Kb |
View/ |